
A Model of Service-Oriented Computation

Luis Caires, Hugo T. Vieira, J. C. Seco

CITI / Departamento de Informática, Universidade Nova de Lisboa, Portugal

October 31, 2007
(revised March 18, 2008)

Abstract

We propose a motivation from “first principles” of a small set of abstractions for ex-
pressing and analyzing service based systems. In particular, we suggest the aspects of
distribution, process delegation, communication and context sensitiveness, and loose cou-
pling as specific to the service-oriented computational model. Distinguishing aspects of
our model are the adoption of a very simple, context sensitive, message-passing local com-
munication mechanism, and a novel mechanism for handling exceptional behavior. We
instantiate our model by extending of a fragment of the π-calculus, and show that behav-
ioral equivalences, defined by strong bisimilarity and weak bisimilarity, are congruences
for all operators.

1 Introduction

Web services have emerged mainly as a toolkit of technological and methodological solutions
for building open-ended collaborative software systems on the internet. Main actors behind this
impulse include top software companies, some of them acting quite independently, and indus-
trial consortia such as the W3C. Many concepts that are frequently put forward as distinctive
of service-oriented computing, namely, object-oriented distributed programming, long duration
transactions and compensations, separation of workflow from service instances, late binding
and discovery of functionalities, are certainly not new, at least when considered in isolation.

What is certainly new about services is that they are contributing to physically realize (on
the internet) a global, interaction-based, loosely coupled, model of computation. Although this
transition may look for many IT actors as leading to unknown territory, it opens challenging
opportunities for the Computer Science research communities that have been studying gen-
eral interaction-based models of computation (e.g., process algebras) and their properties for
decades. In fact, one would like to better understand in what sense service orientation is to be
seen as a new paradigm to build and reason about distributed systems. Of course, the global
computing infrastructure is bound to remain highly heterogeneous and dynamic in its capabil-
ities and phenomena, so it does not seem reasonable to foresee the premature emergence of
comprehensive theories and technological artifacts, well suited for everyone and every applica-
tion. This suggests that one should focus not only on particular systems and theories themselves,
but also on general systems, properties, and their interfaces.

In this report, we propose a new model of service-oriented computation. Our starting point
is an attempt to isolate and clarify essential characteristics of the service-oriented model of
computation, in order to propose a motivation from “first principles” of a reduced set of general
abstractions for expressing and analyzing service based systems. To focus on a set of inde-
pendent primitives, we instantiate our model by modularly extending the static fragment of the

1

π-calculus with a notion of conversation context, message-passing communication primitives,
and an exception handling mechanism.

We have tried to keep our realization fairly general (hoping to escape from the doom of
premature optimization or specificity, and wishing to provide a wide basis for many different
kinds of analysis and many different techniques), to achieve some level of simplicity and clarity,
and to ensure orthogonality and semantic independence of the primitives (so that we may easily
consider fragments).

Concerning this last point, we may show that strong and weak bisimilarity, defined in the
standard way, are congruences for all operators of the language, this fact justifies the semantic
status as behavioral operators of the various primitives considered.

2 Aspects of Services

In this section, we attempt to identify some essential characteristics of the service-oriented
model of computation, in order to propose a motivation from “first principles” of a reduced set
of general abstractions for expressing and analyzing service based systems. We assume some
familiarity with concepts and technological artifacts of the “services world”.

We identify as key aspects of the service-oriented computational model: distribution, pro-
cess delegation, communication and context sensitiveness, and loose coupling.

Distribution

The purpose of a service relationship is to allow the incorporation of certain activities in a given
system, without having to engage local resources and capabilities to support or implement such
activities. By delegating activities to an external service provider, which will perform them
using its own remote resources and capabilities, a computing system may concentrate on those
tasks for which it may autonomously provide convenient solutions. Thus, the notion of service
makes particular sense when the service provider and the service client are separate entities,
with access to separate sets of resources and capabilities. This understanding of the service re-
lationship between provider and client assumes an underlying distributed computational model,
where client and server are located at least in distinct (operating system) processes, more fre-
quently in distinct sites of a network.

The invocation of a service by a client results in the creation of a new service instance. A
service instance is composed by a pair of endpoints, one endpoint located in the server site,
where the service is defined, the other endpoint in the client site, where the request for instan-
tiation took place. From the viewpoint of each partner, the respective endpoint acts as a local
process, with potential direct access to local resources and capabilities. Thus, for us an end-
point is not a name, a port address, or channel, but an interactive process. Both endpoints work
together in a tightly coordinated way, by exchanging data and control information through a
hidden communication tunnel (just known by the endpoints).

An essential concept arising is then the notion of “remote process delegation”. Remote
process delegation differs from the more restricted notion of “remote operation invocation”,
as known, e.g., from distributed object systems, or even from earlier client-server or remote
procedure call based systems. We elaborate on this point in the next item.

Process Delegation versus Operation Invocation

The primitive remote communication mechanism in distributed computing is message passing,
yielding asynchronous interaction.

2

process and endpoint look the same

from the local viewpoint of the client context

client context

service provider context

closed context process delegation

Figure 1: Process delegation.

On top of this basic mechanism, the only one actually implementable, more sophisticated
abstractions may be represented, namely remote procedure call (passing first order data) and
remote method invocation (also passing remote object references). Along these lines, we see
service invocation as a still higher level mechanism, allowing the service client to delegate to a
remote server not just a single operation or task, but the execution of a whole interactive activity
(technically, a process). By invoking a service, and thus creating a new service instance, a client
incorporates in its workflow a process (a dynamic stateful interactive entity) that, although
executing remotely in the server environment, appears to the client as a local subsystem. As
typical examples of subsystems we may think of a service to book flights (cf., a travel agency),
a service to order goods (cf., a purchasing department), a service to process banking operations
(cf., an ATM), a service to store and retrieve documents (cf., an archive), a service to receive and
send mail (cf. an expedition service), and so on. The distinguishing feature of service-oriented
computing, in our view, is an emphasis on the remote delegation of interactive processes, rather
than on the remote delegation of individual operations.

The remote process delegation paradigm seems more general than the remote operation
invocation paradigm, at least at our current level of description, since one can always see an
individual operation as a special case of an interactive process. Conversely, one may argue that
the delegation of a given interactive process may always be implemented, at a lower level, by
the invocation of individual remote operations. However, our view of remote process delegation
makes special sense when the endpoints of a service instance make essential use of being located
in different execution contexts.

Communication, Contexts, and Context Sensitiveness

The endpoints of a particular service instance are created in different spatial contexts: typically
one endpoint will be located in the client context, and the other endpoint in the service provider
context. Each endpoint apears to its surrounding context as a local process, even if it offers a
communication path to its (dual) remote endpoint.

For example, consider the scenario where the endpoint realizing an archiving functional-
ity in the client context communicates with the other subsystems of the client, e.g., to receive
document archiving requests and document retrieval requests, while the corresponding remote
endpoint in the server site will communicate with other subsystems in the service provider con-

3

inside other side upside

service instance

client context provider context

context

process

initiator endpoint

responder endpoint

Figure 2: Contexts and Communication Pathways.

text, e.g., the database, the indexing infrastructure, and other resources needed for the mission
of the service provider.

We understand an endpoint just as a particular case of a delimited context or scope of in-
teraction. More generally, a context is a delimited space were computation and communication
happens. A context may have a spatial meaning, e.g., as a site in a distributed system, but
also a behavioral meaning, e.g., as context of conversation, or a session, between two or more
partners. For example, the same message may appear in two different contexts, with different
meanings (web services technology has introduced artifacts such as “correlation” to determine
the appropriate context for otherwise indistinguishable messages).

Thus, the notion of context of conversation seems to be a convenient abstraction mechanism
to structure the several service instances collaborating in a service-oriented system.

Computations interacting in a context may offer essentially three forms of communication
capabilities. First, they may communicate inside the context, this would correspond to regular
internal computations of the context. Second, an endpoint must be able to send messages to and
receive messages from the other (dual) endpoint of the context, reflecting interactions between
the client and the server roles of a service instance. Third, it must be able to send messages to
and receive messages from the enclosing context. Contexts as the one described may be nested
at many levels, corresponding to subsidiary service instances, processes, etc.

Notice that we do not expect communication to happen between arbitrary contexts, but
rather to always fall in one the three special cases described above: internal interaction (inside
the given context), remote interaction (with the dual endpoint), and external interaction (with
the immediatly external context).

In Figure 2 we illustrate our intended context dependent communication model, and the
various forms of interaction it admits.

We expect that while service invocation may be sensibly performed across any contexts (at
an arbitrary “distance”), by any process in possession of the service public name (cf., the URI
of the service), any message-based interactions between different conversation contexts should

4

only be allowed across a single boundary at most, and when the involved contexts are somehow
(co)related.

A context is also a natural abstraction to group and publish together closely related services.
Typically, services published by the same entity are expected to share common resources, we
notice that such sharing is common at several scales of granularity. Extreme examples are an
object, where the service definitions are the methods and the shared context the object internal
state, and an entity such as, e.g., Amazon, that publishes several services for many different
purposes; such services certainly share many internal resources of the Amazon context, such as
databases, payment gateways, and so on.

Delimited contexts are also natural candidates for typing, in terms of the messages inter-
change patterns that may happen at its border. We would thus expect types (or logical formulas)
specifying various properties of interfaces, of service contracts, of endpoint session protocols,
of security policies, of resource usage, and of service level agreements, to be in general as-
signed to context boundaries. Enforcing boundaries between subsystems is also instrumental to
achieve loose coupling of systems.

Loose Coupling

A service based computation usually consists in an collection of remote partner service in-
stances, in which functionality is to be delegated, some locally implemented processes, and
one or more control (or orchestration) processes.The flexibility and openness of a service based
design, or at least an aimed feature, results from the loose coupling between these various in-
gredients. For instance, an orchestration describing a “business process”, should be specified
in a quite independent way of the particular subsidiary service instances used, paving the way
for dynamic binding and dynamic discovery of partner service providers. In the orchestration
language WSBPEL [1], loose coupling to external services is enforced to some extent by the sep-
arate declaration of “partner links” and “partner roles” in processes. In the modeling language
SRML [9], the binding between service providers and clients is mediated by “wires”, which
describe plugging constraints between otherwise hard to match interfaces.

To avoid tight coupling of services, the interface between a service instance (at each of its
several endpoints) and the context of instantiation should in general be mediated by appropri-
ate mediating processes, in order to hide and/or adapt the end-point communication protocols
(which is in some sense dependent of the particular implementation or service provider chosen)
to the abstract behavioral interface expected by the context of instantiation. All computational
entities cooperating in a service task should then be encapsulated (delimited inside a conversa-
tion context), and able to communicate between themselves and the outer context only via some
general message passing mechanism.

Other Aspects

There are many other aspects that must be addressed in a general model of service-oriented
computation. The most obvious ones include of course, failure handling and resource disposal,
security (in particular access control, authentication and secrecy), time awareness, and a clean
mechanism of interoperation. This last aspect seems particularly relevant, and certainly suggests
an important evaluation criteria for any service-oriented computation model.

Non Characteristics of Services

We mention here some interesting features of distributed systems that seem fairly alien to the
service-oriented computational model. Forms of code migration (weak mobility) seem to re-

5

quire an homogeneous execution support infrastructure, and thus to run against the aim to get
loose coupling, openness and independent evolution of subsystems. In general, any mechanism
relying on centralized control or authority mechanisms, or that require a substantial degree on
homogeneity in the runtime infrastructure, for example strong mobility, also seem hard to ac-
commodate.

3 The Conversation Calculus

In this section, we motivate and present in detail the primitives of our calculus. After that, we
present the syntax of our calculus, and formally define its operational semantics, by means of a
labeled transition system.

Context

A conversation context is a medium where related interactions can take place. A conversation
context can be distributed in many pieces, and processes inside any piece can seamlessly talk
to any other piece of the same context. Each context has a unique name (cf., a URI), and is
partitioned in two endpoints, which we will refer by “initiator” (J), or “responder” (I). We
use the endpoint access construct

n J [P]

to say that the process P is placed at the initiator endpoint of context n, and the (dual) construct

n I [P]

to say that the process P is placed at the responder endpoint of context n. Potentially, each
endpoint access will be placed at a different enclosing context. On the other hand, any such
endpoint access will necessarily be placed at a single enclosing context. The relationship be-
tween the enclosing context and such an endpoint may be seen as a call/callee relationship, but
where both entities may interact continuously. Sometimes it is useful to introduce anonymous
(or protected) contexts, that may be defined thus (where n is not used in P):

[P] , (new n)(n I [P])

Service Publication and Service Instantiation

A context (a.k.a. a site) may publish one or more service definitions. Service definitions are
stateless entities, pretty much as function definitions in a functional programming language. A
service definition may be expressed by the construct

def ServiceName⇒ ServiceBody

where ServiceName is the service name, and ServiceBody is the process that should be executed
at the service endpoint (responder) for each service instance, in other words the service body.
In order to be published, such a definition must be inserted into a context, e.g.,

ServiceProvider I [def ServiceName⇒ ServiceBody · · ·]

Such a published service may be instantiated by means of a instantiation construct

instance nρServiceName⇐ ClientProtocol

6

where nρ describes the context (n) and the endpoint role (ρ) where the service is published. For
instance, the service defined above may be instantiated by

instance ServiceProvider I ServiceName⇐ ClientProtocol

The ClientProtocol describes the process that will run inside the initiator endpoint. The outcome
of a service instantiation is the creation of a new globally fresh context identity (a hidden name),
and the creation of two dual endpoints of a context named by this fresh identity. The responder
endpoint will contain the ServiceBody process and will be located inside the ServiceProvider
context. The initiation endpoint will contain the ClientProtocol process and will be located in
the same context as the instance expression that requested the service instantiation.

Context Awareness

A process running inside a given context should be able to dynamically access its identity. This
capability may be realized by the construct

here(x).P

The variable x will be replaced inside the process P by the name n of the current context. The
computation will proceed as P{x�n}. This primitive bears some similarity with the self or
this of object-oriented languages, even if it has a different semantics.

Communication

Communication between subsystems is realized by means of message passing. Internal com-
putation is related to communications between subsystems inside the given context. We denote
the input and the output of messages from/to the current context by the constructs

in � Message(x1, . . . ,xn).P
out � Message(v1, . . . ,vn).P

In the output case, the terms vi represent message parameters, values to be sent, as expected. In
the input case, the variables xi represent message parameters and are bound in P, as expected.
The target symbol � (read “here”) says that the corresponding communication actions must
interact in the current context.

Second, we denote the input and the output of messages from/to the outer context by the
constructs

in � Message(x1, . . . ,xn).P
out � Message(v1, . . . ,vn).P

The target symbol � (read “up”) says that the corresponding communication actions must in-
teract in the (uniquely determined) outer context, where “outer” is understood relatively to the
context where the out � or in � process is running.

Third, we denote the input and the output of messages from/to the dual endpoint by the
constructs

in � Message(x1, . . . ,xn).P
out � Message(v1, . . . ,vn).P

The target symbol � (read “other”) says that the corresponding communication action must
interact in the other (the dual) endpoint context, relative to the context where the out� or in�
process is running.

7

Exception Handling

We introduce two primitives to model exceptional behavior, in particular fault signaling, fault
detection, and resource disposal, these aspects are certainly orthogonal to the previously in-
troduced communication mechanisms. We recover the classical try−catch− and throw−,
adapted to a concurrent setting. The primitive to signal exceptional behavior is

throw.Exception

This construct throws an exception with continuation the process Exception, and has the effect
of forcing the termination of all other processes running in all enclosing contexts, up to the point
where a try−catch block is found (if any). The continuation Exception will be activated when
(and if) the exception is caught by such an exception handler. The exception handler construct

try P catch Handler

actively allows a process P to run until some exception is thrown inside P. At that moment,
all of P is terminated, and the Handler handler process, which is guarded by try−catch, is
activated, concurrently with the continuation Exception of the throw.Exception that originated
the exception, in the context of a given try− catch− block. By exploiting the interaction
potential of the Handler and Exception processes, one may represent many adequate recovery
and resource disposal protocols.

3.1 Syntax and Semantics of the Calculus

We may now formally introduce the syntax and semantics of the conversation calculus. We
assume given an infinite set of names Λ, an infinite set of variables V , and an infinite set of
labels L . We abbreviate a1, . . . ,ak by ã. We use dir for the communication directions, α for
directed message labels, and ρ for the endpoint roles (ρ =J, the initiator role, or ρ =I, the
responder role). We denote by ρ the dual role of ρ, for instance I = J. Notice that message
and service identifiers (from L) are plain labels, not subject to restriction or binding. The syntax
of the calculus is defined in Figure 3.

The static core of our language is derived from the π-calculus [19]. We thus have stop for
the inactive process, P | Q for the parallel composition, (new a)P for name restriction, and !P for
replication. Then we have context-oriented polyadic communication primitives: out α(ṽ).P for
output and in α(x̃).P for input. In the communication primitives, α denotes a pair of name and
direction, as explained before. We then have the context endpoint access construct nρ [P], the
context awareness primitive here(x).P, the service invocation and service definition primitives
instance nρs⇐ P and def s⇒ P, respectively. The primitives for exception handling are
the try P catch Q and the throw.P. The distinguished occurrences of a, x̃, and x are binding
occurrences in (new a)P, in α(x̃).P, and here(x).P, respectively. The sets of free (fn(P))
and bound (bn(P)) names and variables in a process P are defined as usual, and we implicitly
identify α-equivalent processes.

We define the semantics of the conversation calculus using a labeled transition system. We
introduce transition labels λ. We use act to range over actions, defined as

act ::= τ | α(ã) | here | throw | def s

Then, a transition label λ is an expression as given by λ ::= cρact | act | (νa)λ. In (νa)λ the
distinguished occurrence of a is bound with scope λ (cf., the π-calculus bound output and bound
input actions). A transition label containing cρ is said to be located at cρ (or just located),

8

a,b,c, . . . ∈ Λ (Names)
x,y,z, . . . ∈ V (Variables)
n,v, . . . ∈ Λ∪V (Names and variables)
l,s . . . ∈ L (Labels)

dir ::= � |� | � (Directions)
α ::= dir l (Directed message labels)
ρ ::= I |J (Roles)

P,Q ::= (Processes)
stop (Inaction)

| P | Q (Parallel)
| (new a)P (Restriction)
| out α(ṽ).P (Output)
| in α(x̃).P (Input)
| !P (Replication)

| n ρ [P] (Context)
| here(x).P (Context awareness)
| instance n ρ s⇐ P (Instantiation)
| def s⇒ P (Definition)

| try P catch Q (Try-catch)
| throw.P (Throw)

Figure 3: The Conversation Calculus

otherwise is said to be unlocated. We write (ν̃a) to abbreviate a (possibly empty) sequence
(νa1) . . .(νak).

We adopt a few conventions and notations. We note by λdir a transition label λdir containing
the direction dir (�,�,�). Then we denote by λdir′ the label obtained by replacing dir by dir′ in
λdir. Given an unlocated label λ, we represent by cρ ·λ the label obtained by locating λ at cρ ,
so that e.g., cρ · (ν̃a)act = (ν̃a)cρact. We assert loc(λ) if λ is not located and does not contain
here.

The set of transition labels is polarized and equipped with an injective involution λ (such
that λ = λ). The involution, used to define synchronizing (matching) transition labels, is defined
such that act 6= act ′ for all act,act ′, and

c ρ def s , c ρ def s c ρ � α , c ρ � α c ρ � α , c ρ � α

We define out(λ) as ã\ (b̃∪{c}), if λ = (ν̃b)cρα(ã) or λ = (ν̃b)α(ã). We use fn(λ) and bn(λ)
to denote (respectively) the free and bound names of a transition label.

In Figs. 4, 5 and 6 we present the labeled transition system for the calculus. The rules
presented in Figure 4 closely follow the π-calculus labeled transition system (see [21]). In (vii)
the unlocated � label is excluded (to synchronize it must first get located in some context). We
omit the rule symmetric to (vi).

We briefly review the rules presented in Figure 5: (i) service instantiation request; (ii) ser-
vice instantiation; (iii) after going through a context boundary, an � message becomes �; (iv) an

9

unlocated � message gets located at the context identity in which it originates, analogously (v)
for a � message and (vi) for service instantiation; (vii) a here label matches the enclosing con-
text; (viii) a here label reads the context identity; (ix) a non-here located label transparently
crosses the context boundary, likewise (x) for a τ label; (xi) an unlocated label synchronizes
with a part (the unlocated part) of a located label, originating a here label, thus requiring the
interaction to occur inside the given context. We omit the rule symmetric to (xi).

As for the rules in Figure 6: (i) signals an exception; (ii) and (iii) terminate enclosing
computations, (iv) a non-throw transition crosses the handler block, (v) an exception is caught
by the handler block. We omit the rule symmetric to (ii).

Notice that the presentation of the transition system is fully modular: the rules for each
operator are independent, so that one may easily consider several fragments of the calculus
(e.g., without exception handling primitives). The operational semantics of closed systems,
usually represented by a reduction relation, is here specified by τ−→.

4 Examples

In this section, we illustrate the expressiveness of our calculus through a sequence of simple,
yet illuminating examples. For the sake of commodity, we informally extend the language with
some auxiliary primitives, e.g., if−then−else, etc, and standard concurrency combinators,
for instance, input guarded choice ⊕ (that may be added perhaps to the basic language as a
primitive) and recursion rec X .P (that may be represented using replication). We also use
anonymous (or protected) contexts, defined as (where n is not used in P) [P] , (new n)(n I [P]).

4.1 Reading a Remote Value

We start with a trivial example. A service provider Antarctica provides a service Temperature.
Whenever invoked such service reads the current value of a sensor at the service provider site,
and sends it to the caller endpoint.

Antarctica I [
def Temperature⇒
in � ReadSensor(x).out � SensorValue(x)
|
Sensor

]

By Sensor we denote some process running in the Antarctica I [· · ·] context, and that is able to
send ReadSensor(t) messages inside that context, where t is the current temperature.

To use the service in “one shot”, a remote client may use the code

instance Antarctica I Temperature⇐
in � SensorValue(x).out � Temperature(x)

The effect of this code would be to drop a Temperature(t) message in the client context, where t
is the temperature value as read by the remote sensor at the Antarctica site. A service delegation
as the one just shown resembles a remote method call in a distributed object system.

4.2 Memory Cell

We discuss here some simple examples of stateful service definition and invocation patterns,
using memory cell implementations. Here is a possible implementation of a memory cell ser-

10

out α(ṽ).P
α(ṽ)−→ P (i) in α(x̃).P

(ν̃n)α(ṽ)−→ P{x̃�ṽ} (ñ⊆ ṽ) (ii)

P λ−→ Q n 6∈ fn(λ)

(new n)P λ−→ (new n)Q
(iii)

P λ−→ Q n ∈ out(λ)

(new n)P
(νn)λ−→ Q

(iv)
P | !P λ−→ Q

!P λ−→ Q
(v)

P λ−→ Q λ 6= throw

P | R λ−→ Q | R
(vi)

P
(ν̃n)λ−→ P′ Q

(ν̃n)λ−→ Q′ λ 6= � l(ã)

P | Q τ−→ (new ñ)(P′ | Q′)
(vii)

Figure 4: Basic Operators

instance nρs⇐ P
(νc)nρdef s−→ c J [P] (i) def s⇒ P

(νc)def s−→ c I [P] (ii)

P λ�
−→ Q

nρ [P] λ�
−→ nρ [Q]

(iii)
P λ�
−→ Q

nρ [P]
nρ·λ�

−→ nρ [Q]
(iv)

P λ�
−→ Q

nρ [P]
nρ·λ�

−→ nρ [Q]
(v)

P
(νc)def s−→ Q

nρ [P]
(νc)nρdef s−→ nρ [Q]

(vi)
P

nρhere−→ Q

nρ [P] τ−→ nρ [Q]
(vii) here(x).P

nρhere−→ P{x�n} (viii)

P λ−→ Q loc(λ)

nρ [P] λ−→ nρ [Q]
(ix)

P τ−→ Q

nρ [P] τ−→ nρ [Q]
(x)

P
(ν̃n)act−→ P′ Q

(ν̃n)cρact−→ Q′

P | Q cρhere−→ (new ñ)(P′ | Q′)
(xi)

Figure 5: Service and Context Operators

throw.P throw−→ P (i)
P throw−→ R

P | Q throw−→ R
(ii)

P throw−→ R

nρ [P] throw−→ R
(iii)

P λ−→ Q λ 6= throw

try P catch R λ−→ try Q catch R
(iv)

P throw−→ R

try P catch Q τ−→ Q | R
(v)

Figure 6: Exception Handling Operators

11

vice.
def Cell⇒ (

!in � Read().in � Value(x).(out � Value(x) | out � Value(x))
⊕
in � Write(x).(out � Value(x))

)

We show how to instantiate the Cell service so to create a delegate cell process in the current
context. The delegate accepts Put(v) and Get() messages from the client context, and replies
to each Get() message with a Reply(v) message to the context. It provides the memory cell
functionality delegation to the remote service FreeCellsInc I Cell.

instance FreeCellsInc I Cell⇐ (
!in � Put(x).out � Write(x)
⊕
in � Get().out � Read().in � Value(x).out � Reply(x)

)

A process in the context may then use the created service instance as follows:

out � Put(value).out � Get().in � Reply(x).out � Proceed(x)

4.3 Dictionary

In the next example, we use a toy dictionary service to discuss the possible need of correlating
messages belonging to different interaction contexts. A possible instantiation of such a service
may be expressed thus:

instance FreeBagsCo I Dict⇐ (
!in � Put(key,x).out � Store(key,x)
⊕
in � Get(key).out � Get(key).in � Value(x).Reply(x)

)

If the generated instance is to be solicited by several concurrent Get(key) requests, some form of
correlation may be needed, in order to route the associated Reply(v) answers to the appropriate
contexts. In this case, we set the Get(r,key) message to play the role of an initiator message,
now receiving also a reference r to the context of interaction (associated to getting the dictionary
entry associated to the key key).

instance FreeBagsCo I Dict⇐ (
!in � Put(key,x).out � Store(key,x)
⊕
in � Get(r,key).out � Get(key).in � Value(x).r I [out � Reply(x)]

)

Now, the Reply(v) message is sent inside the appropriate conversation context r, the one that
relates to the initial Get(r). A process in the context may then use the service instance by
following the appropriate intended protocol, e.g.:

out � Put(key,value).
(new r)(

out � Get(r,key).
r I [in � Reply(x).out � Proceed(x)])

12

Here, we are essentially in presence of a familiar form of continuation passing. We present
later another example on the correlation of interactions, in a sense closer to the one used in web
services technology.

In this case, we have generated a new special context r in order to carry out the appropriate
conversation. In many situations we would like just to correlate the subsidiary conversation
with the current context, without having to introduce a new special context. In this case, we
may write the (perhaps more natural) code, that will have the same effect as the code above:

out � Put(key,value).
here(thiscontext).
out � Get(thiscontext,key).
in � Reply(x).
out � Proceed(x)

Remember that the here(r).P (context-awareness) primitive binds r in P to the identity of the
current context.

4.4 Service Provider Factory

We revisit the memory cell example, and provide a different realization. In this case, we would
like to represent each cell as a specific service provider, such that the Read and Write operations
are now services, rather than operations of a particular service as shown above. A cell (named
n) may be be represented by the context:

Cell(n) , n I [def Read⇒ in � Value(x).out � Value(x) |
def Write⇒ in � Value(x).out � Value(x)]

We may now specify a memory cell factory service.

CellFactoryService , def NewCell⇒ (new n)(Cell(n) | out � ReplyCell(n))

To instantiate the cell factory service, and drop a TheCell(c) message with a fresh cell reference
(c) in the current context, we may write:

instance FreeCellsInc I NewCell⇐ in � ReplyCell(x).out � TheCell(x)

The newly allocated cell service provider is allocated in the FreeCellsInc context, as expected.
To use the cell one may then write, e.g.,

in � TheCell(c).(
· · ·
instance c I Read⇐ ···
| · · ·
instance c I Write⇐ ···
· · ·
)

This usage pattern for services, where service instantiation corresponds to some form of task
delegation rather that process delegation, is closer to a distributed object model than to a service-
oriented model. In any case, it is interesting to be able to accommodate this usage pattern as a
special case, not only for the sake of abstract generality, but also because it will certainly turn
out useful in appropriate scenarios.

13

def TravelApproval⇒
in � TravelRequest(employee,flightData).
out � EmployeeTravelStatusRequest(employee).
in � EmployeeTravelStatusResponse(travelClass).

(
instance AmericanAirlines I FlightAvailability⇐
out � FlightDetails(flightData, travelClass).
in � FlightTicketCallBack(responseAA,priceAA).
out � FlightResponseAA(responseAA,priceAA).
out � Done()
|

instance DeltaAirlines I FlightAvailability⇐
out � FlightDetails(flightData, travelClass).
in � FlightTicketCallBack(responseDA,priceDA).
out � FlightResponseDA(responseDA,priceDA).
out � Done()
|
in � FlightResponseAA(flightAA,priceAA).
in � FlightResponseDA(flightDA,priceDA).
if (priceAA < priceDA) then

out � ClientCallBack(flightAA)
else
out � ClientCallBack(flightDA)

)

Figure 7: The Travel Approval Service (I).

4.5 Service Composition and Orchestration (I)

Our next example, depicted in in Figure 7, illustrates a familiar service composition and orches-
tration scenario (inspired by a tutorial example on BPEL published in the Oracle website [15]).
Any instance of the TravelApproval service is expected to receive a TravelRequest message and
return a ClientCallBack message after finding a suitable flight. The implementation of the ser-
vice relies on subsidiary services provided by AmericanAirlines and DeltaAirlines in order to
identify the most favorable price.

Notice how the service instance interacts with service side resources in order to find the
travelClass associated to each employee, by means of the EmployeeTravelStatusRequest and
EmployeeTravelStatusResponse messages to and from the server endpoint context. The context
is also used to pass around control messages with the responses from the two airline services
involved, FlightResponseAA and FlightResponseDA, respectively.

In the WSBPEL example cited above, information about the flights is stored in state variables
of the script, manipulated by WSBPEL “assign” commands. Such contextual state manipula-
tions are represented in our model by interactions between the endpoints and their context via
upward (�) message exchanges. Another difference between the above specification and the
WSBPEL code is the separation between service instantiation and (initiating) message exchange,
an unfortunate design decision of WSBPEL to mix up these two concepts. Apart from these su-
perficial differences, we believe that the code above is a faithful and succinct rendering of the
inspiring WSBPEL script.

14

def TravelApproval⇒ (
instance AmericanAirlines I FlightAvailability⇐ % Partner AmericanAirlines

in � FlightRequestAA(flightData, travelClass).
out � FlightDetails(flightData, travelClass).
in � FlightTicketCallBack(response,price).
out � FlightResponseAA(response,price).out � Done()

|
instance DeltaAirlines I FlightAvailability⇐ % Partner DeltaAirlines

in � FlightRequestDA(flightData, travelClass).
out � FlightDetails(flightData, travelClass).
in � FlightTicketCallBack(response,price).
out � FlightResponseDA(response,price).out � Done()

|
in � TravelRequest(employee,flightData). % Orchestration
out � EmployeeTravelStatusRequest(employee).
in � EmployeeTravelStatusResponse(travelClass).(

out � FlightRequestAA(flightData, travelClass) |
out � FlightRequestDA(flightData, travelClass))

|
in � FlightResponseAA(flightAA,priceAA).
in � FlightResponseDA(flightDA,priceDA).
if (priceAA < priceDA) then

out � ClientCallBack(flightAA)
else

out � ClientCallBack(flightDA)
)

Figure 8: The Travel Approval Service (II)

4.6 Service Composition and Orchestration (II)

More substantial differences on the structure of the BPEL script and our rendering above relates
to the declaration of the so-called partner links and partner roles. These are BPEL concepts
introduced with the motivation of decoupling the description of the business process (the work-
flow) from the identification and binding to the actual partners involved in the particular service
instances. We present in Figure 8 a different rendering of the BPEL script under consideration,
based on our view of service invocation as process delegation, that assigns some meaning to the
intuitive notions of partner links and roles. The separation between the partner service instances
and the orchestration script is made clearer in this presentation.

All interactions between the orchestration and the endpoints is loosely-coupled and realized
through messages exchanged in the context of each particular TravelApproval service instance,
but also with the external context. The body of this service definition follows the general pattern

instance Partner1 I Service1⇐Wire1 |
· · ·
instance Partnern I Servicen⇐Wiren |
OrchestrationProcess

where OrchestrationProcess is a process communicating with the several instance via mes-

15

sages, and the Wirei descriptions adapt the remote endpoint functionalities (or protocols) to the
particular roles performed by the instances in this local process.

4.7 Service Composition and Orchestration (III)

In Figure 9 we elaborate a bit on the last example, with the intent of allowing the client of
the service to obtain several possible travel plans for the TravelRequest before committing.
This will require unbounded message exchanges (conversations) between the “orchestration”
process and the (two in this case) subsidiary service instances. In this case, upon reception
of the ClientCallBack(f light) message the client endpoint is expected to either finalize the
instance by means of a Done() message, or to ask for another flight, by means of a Retry()
message.

4.8 Logging flight data by delegating to Amazon S3

We further extend our previous example, in Figure 10, by adding a delegate to (a service in-
spired in) Amazon S3 Simple Storage Service [13], in order to store the flight data processed.
To do that we just introduce a new “partner”, and modify the workflow just with a message
sending operation LogFlight(flightData) (marked below). Notice how the modifications to the
orchestration script are quite independent of the particular storage provider chosen.

4.9 Service Composition and Orchestration (IV)

We get back to example 4.7, to discuss another interesting variation. In this case, we would
like to instantiate the FlightAvailability services independently (e.g., at site setup time), in
the service provider context, rather than creating new instances for each instantiation of the
TravelApproval service. In other words, the service DeltaAirlines I FlightAvailability and the
service AmericanAirlines I FlightAvailability will be used by the orchestration script in the
same way as the EmployeeTravelStatus already is, by means of loosely coupled message ex-
changes. We depict the solution in Figure 11.

Since many concurrent instantiations of the TravelApproval service may be outstanding at
any given moment, the need arises to explicitly keep track of the messages relative to each
instance (establish a correlation mechanism, in web services technology terminology). In the
specification above, correlation is achieved by passing the name of the current endpoint context
(accessed by the here(context) primitive) in the appropriate messages to the services instanti-
ated in the shared context (e.g., as in the message FlightRequestAA(context,flightData)).

4.10 Orc

The Orc language by Misra and Cook [20] is sometimes cited as presenting a general model
of service orchestration. This example is of particular interest to our discussion, since Orc also
seems to present a mechanism of process delegation, although in a more restricted sense than
we are introducing here. In fact, calling a site in Orc causes a persistent process to be spawned,
the observable behavior of such a process consists in streaming a sequence of values to athe

16

def TravelApproval⇒
instance AmericanAirlines I FlightAvailability⇐
rec Loop.
in � FlightRequestAA(flightData, travelClass).
out � FlightDetails(flightData, travelClass).
in � FlightTicketCallBack(response,price).
out � FlightResponseAA(response,price).Loop
⊕
in � DoneAA().out � Done()

|
instance DeltaAirlines I FlightAvailability⇐
rec Loop.
in � FlightRequestDA(flightData, travelClass).
out � FlightDetails(flightData, travelClass).
in � FlightTicketCallBack(response,price).
out � FlightResponseDA(response,price).Loop
⊕
in � DoneDA().out � Done()

|
in � TravelRequest(employee,flightData).
out � EmployeeTravelStatusRequest(employee).
in � EmployeeTravelStatusResponse(travelClass).
rec Start.

(
out � FlightRequestAA(flightData, travelClass) |
out � FlightRequestDA(flightData, travelClass) |
in � FlightResponseAA(flightAA, priceAA).
in � FlightResponseDA(flightDA, priceDA).
if (priceAA < priceDA) then

out � Prompt(f lightAA)
else
out � Prompt(flightDA)

|
in � Prompt(flight).
out � ClientCallBack(flight).
in � Done().(out � DoneAA() | out � DoneDA())
⊕
in � Retry().Start

)

Figure 9: Service Travel Approval (III)

17

def TravelApproval⇒
instance Amazon I S3⇐ % Added instance of Amazon.S3
out � Authenticate(credentials).
in � AccessKey(SessionAccessKey).
rec Loop. in � LogFlight(flightData).
out � PutObject(SessionAccessKey, travelClassbucket,flightData).Loop

|
instance AmericanAirlines I FlightAvailability⇐
··· % As before
|
instance DeltaAirlines I FlightAvailability⇐
··· % As before
|
in � TravelRequest(employee,flightData).
out � EmployeeTravelStatusRequest(employee).
in � EmployeeTravelStatusResponse(travelClass).
rec Start.

(
out � FlightRequestAA(flightAA, travelClass) |
out � FlightRequestDA(flightDA, travelClass) |
in � FlightResponseAA(flightAA,priceAA).
in � FlightResponseDA(flightDA,priceDA).
if (priceAA < priceDA) then

out � Prompt(f lightAA)
else
out � Prompt(flightDA)

|
in � Prompt(flight).
out � ClientCallBack(flight).
in � LogFlight(flight). % Line inserted
in � Done().(out � DoneAA() | out � DoneDA())
⊕
in � Retry().Start

)

Figure 10: Logging flight data to Amazon S3.

18

instance AmericanAirlines I FlightAvailability⇐
! in � FlightRequestAA(r,flightData, travelClass).
out � FlightDetails(flightData, travelClass).
in � FlightTicketCallBack(responseAA,priceAA).
r I [out � FlightResponseAA(responseAA,priceAA)]

|
instance DeltaAirlines I FlightAvailability⇐

! in � FlightRequestDA(r,flightData, travelClass).
out � FlightDetails(flightData, travelClass).
in � FlightTicketCallBack(responseDA,priceDA).
r I [out � FlightResponseDA(responseDA,priceDA)]

|
! def TravelApproval⇒

in � TravelRequest(employee,flightData).
here(context).
out � EmployeeTravelStatusRequest(context,employee).
in � EmployeeTravelStatusResponse(travelClass).
rec Start.

(
out � FlightRequestAA(context,flightData, travelClass) |
out � FlightRequestDA(context,flightData, travelClass) |
in � FlightResponseAA(flightAA,priceAA).
in � FlightResponseDA(flightDA,priceDA).
if (priceAA < priceDA) then

out � Prompt(f lightAA)
else

out � Prompt(flightDA)
|
in � Prompt(flight).

out � ClientCallBack(flight).
in � Done()
⊕
in � Retry().Start

)

Figure 11: Correlating Concurrent Conversations.

19

caller context.

Jn.S(x)Kout , instance n I S⇐
(out � args(x).!in � result(x).out � out(x))

Jn.S(x) = eK , n I [def S⇒
(in � args(x).JeKout |
!in � out(x).out � result(x))]

J f � x� gKout , [J f Kout1 |
!in � out1(x).(JgKout2 | ! in � out2(x).out � out(x))]

J f where x :∈ gKout , [(new x)(
J f Kout |
!in � out(x).out � out(x) |
try

JgKout2 | in � out2(y).throw x I [! out � val(y)]
catch 0)]

JxKout , x J [in � val(y).out � out(y)]
J f | gKout , J f Kout | JgKout

J0Kout , 0

We denote by JOKout the encoding of an Orc process O into a conversation calculus process.
The out parameter identifies the message label used to output the stream of values generated by
the Orc process. We consider that Orc’s site calls refer the name of the site, and use site calls for
both expressions and primitive site calls. The former are located on some given name and the
latter on site p. Since primitive site calls can only return a value one could consider a separate
case of the encoding for primitive site calls (by simply removing the replication).

Jp.S(x)Kout , instance p I S⇐ (out � args(x).in � result(x).out � out(x))

In accordance with the Orc semantics [16] we consider that primitive site calls interact with the
external environment. We can also encode the Orc’s processes resulting from interactions with
the external environment as follows

J?uK , u J [in � result(x).out � out(x)]
Jlet(c)K , out � out(c)

As for expression definitions we encode them as definitions available on sites that will be avail-
able internally to the system, hence we consider an Orc encoding to hold not only the encoding
of the Orc process itself but also the encoding of the expression definitions it uses.

To simplify presentation in the encoding of the where construct we assume that occurrences
of x in site calls n.S(x) in f are replaced by

[JxKout | in � out1(x).Jn.S(x)Kout2 | in � out2(x).out � out(x)]

We establish the following correspondence between Orc transition labels and Conversation
calculus transition labels, and denote by matchout the function from the first to (sequences of)

the second with an auxiliar parameter out. To simplify presentation we abbreviate
(νu)nIdef S⇒

uJ�args(c)⇒ with a single transition where the label results from the sequencing of the two labels
((νu)nIdef S,uJ�args(c))⇒ .

matchout(!c) , � out(c)
matchout(τ) , τ

matchout(n.S < c,u >) , ((νu)n I def S,u J� args(c))
matchout(u?c) , u J� result(c)

20

We establish an operational correspondence property between this encoding and the formal
semantics presented in [16].

Proposition 4.1 (Operational correspondence) Let O be an Orc process and D the set of ex-
pression definitions it uses and ñ the set of the names of the contexts where these expression
definitions are located. We have that any sequence of transitions O performs can be mimicked
by a sequence of matching transitions of (new ñ)(JOKout | JDK) and conversely. We abbreviate
(new ñ)(JOKout | JDK) with P0 and thus write

O l1−→ O1
l2−→ O2

l3−→ . . .
lk−→ Ok

lk+1−→ . . .
⇐⇒
P0

matchout(l1)⇒ P1
matchout(l2)⇒ P2

matchout(l3)⇒ . . .
matchout(lk)⇒ Pk

matchout(lk+1)⇒ . . .

4.11 Distributed Objects

Distributed objects are service based systems where the delegated tasks are simple actions,
e.g., processes that are known to terminate after performing some work, corresponding to the
object’s methods. In [6] we have introduced a distributed object calculus in order to study a
type system for concurrency control based on spatial logic, please see the above reference for a
detailed description of the calculus syntax and semantics. We show how such a model may be
represented using our primitives, as follows.

Jn.l(v)Kok , instance n I l⇐
(out � Args(v).in � Result(x).out � ok(x))

Ja?Kok , instance a I Read⇐ in � Value(x).out � ok(x)
Ja!(v)Kok , instance a I Write⇐ out � Value(v).out � ok(?)
Jlet xi = ei in f Kok , [Je1Kok1 | · · · | JenKokn |

in � ok1(x1). · · · .in � okn(xn).J f Kok |
in � ok(x).out � ok(x)]

Jnew
[
M

]
Kok , (new n)(n I [JMK | out � ok(n)]

Jl(x) = eK , def l⇒ (in � Args(x).JeKok | in � ok(x).out � Result(x))

We denote by JDKok the encoding of distribute object calculus process D into a conversation
calculus process. The ok parameter identifies the message label used to output the results of the
expressions.

4.12 Exceptions

We illustrate a few usage idioms for our exception handling primitives. In the first example,
the service Service is instantiated on site Server, and repeatedly re-launched on each failure –
failure will be signaled by exception throwing within the local protocol ClientProto, possibly
as a result of a remote message.

rec Restart.
try
instance Server I Service⇐ ClientProto

catch Restart

21

A possible scenario of remote exception throwing is illustrated below.

Server I [
def Interruptible⇒
in � StopRequest().out � UrgentStop().throw |
. . .ServiceProto . . .]

instance Server I Interruptible⇐
in � UrgentStop().throw |
. . .ClientProto . . .

Here, any remote endpoint instance of the Interruptible service may be interrupted by the ser-
vice protocol ServiceProto by dropping a message StopRequest inside the endpoint context. In
this example, such a message causes the endpoint to send an UrgentStop message to the other
(client side) endpoint, and then throwing an exception, which will cause abortion of the ser-
vice endpoint. On the other hand, the service invocation protocol will throw an exception at
the client endpoint upon reception of UrgentStop. Notice that this behavior will happen con-
currently with ongoing interactions between ServiceProto and ClientProto. In this example,
the exception issued in the server and client endpoints will have to be managed by appropriate
handlers in both sites. In the next example, no exception will be propagated to the service site,
but only to the remote client endpoint, and as a result of any exception thrown in the service
protocol ServiceProto.

Server I [
def Interruptible⇒
try

ServiceProto
catch out � UrgentStop().throw]

In the examples discussed above, the decision to terminate the ongoing remote interactions
is triggered by the service code. In the next example, we show a simple variation of the id-
ioms above, where the decision to kill the ongoing service instance is responsibility of the ser-
vice context. Here, any instance of the Interruptible service may be terminated by the service
provider by means of dropping a message KillRequest in the endpoint external context.

Server I [
def Interruptible⇒
try
in � KillRequest().throw | ServiceProto

catch out � UrgentStop().throw]

A simple example of a similar pattern in our last example on exceptions.

Server I [
def TimeBound⇒

in � TimeAllowed(delay).wait(delay).throw |
ServiceProto]

Here, any invocation of the TimeBound service will be allocated no more than delay time units
before being interrupted, where delay is a dynamic parameter value read from the current server
side context (we assume some extension of our sample language with a wait(t) primitive, with
the obvious intuitive semantics).

22

4.13 Compensations

Although well known in the context of transaction processing systems for quite a long time (see
e.g., [10]), the use of compensation as a mechanism to undo the effect of long running trans-
actions, and thus recover some properties of confined ACID transactions (at least consistency
and durability), is now frequently assumed to be the recovery mechanism of choice for aborted
transactions in distributed services. In this context, some confusion sometimes arises between
the notions of exception and compensation: obviously these are quite different and even inde-
pendent concepts. Exceptions are a mechanism to signal abnormal conditions during program
execution, while compensations are commands intended to undo the effects of previously suc-
cessfully completed tasks during a transaction. Sometimes, an exception mechanism may be a
useful tool to describe a compensation mechanism, but this does not need to be always the case.
Clearly, compensations are most useful as a structuring device to describe undoable actions, and
makes particular sense when the underlying process language is based on a concept of prim-
itive action. Given this understanding, it is not difficult to express a structured compensation
mechanism using our primitives.

We illustrate a possible approach by encoding the core fragment of the Compensating CSP
calculus presented in [5]. The starting point is the notion of basic action, here we consider a
basic action to be any process P,Q that, after successful completion, sends (only once) the mes-
sage ok to its environment. A basic action is always supposed to enjoy the following property: it
either executes successfully to completion, or it aborts. It the case of abortion, a basic action is
required not to perform any interesting relevant actions, except signaling abortion by throwing
an exception. Structured transactions are then defined from basic compensatable transactions
by composition under sequential and parallel composition operations. A basic compensatable
transaction is a pair P%Q where P and Q are basic actions. The intuition is that the basic action
Q is able to undo the effect of the P basic action, leading to a state that should be in some sense
equivalent to the state right before P was executed. By composing basic actions as explained,
one may then obtain a transaction T . A transaction T may then be encapsulated as a basic
action, by means of the operator 〈T 〉, enjoying the fundamental properties of a basic action
described above.

We may then present our encoding as show in Figure 12. We denote by JPKok the encoding
of basic actions, including closed transactions, represented by P, into a conversation calculus
process. The ok index represents the message label that signals the successful completion of the
basic action, while abortion of a basic action is signaled by throwing an exception. We denote
by JPPKok,ab,cm,cb the encoding of a compensatable transaction. We use ok to signal successful
completion and ab to signal abortion. With respect to compensation activation, cm is used
to trigger the current compensation, and cb to trigger compensations of previously completed
actions. A correctness proof of the encoding requires, we believe, a suitable characterization of
the effect of compensations.

Notice that we left open the encoding of basic actions other than closed transactions. How-
ever, it is not difficult to imagine how to represent a remote task invocation primitive, e.g.,

JnρsKok , instance nρs⇐ (out � ok.out � ok | out � ko.throw)

A matching remote service might then be defined by

def s⇒ (try (P | in � ok.out � ok) catch out � ko.throw)

where for the service code P we may consider any basic action (including a compensating
transaction). In this way we expect it to be rather straightforward to model general distributed
nested compensating transactions.

23

JP%QKok,ab,cm,cb , [try JPKok catch (out � ab.out � cb) |
in � ok.out � ok.(in � cm.JQKcb | in � cb.out � cb)]

JT1;T2Kok,ab,cm,cb , [JT1Kok1,ab1,cm1,cb | in � ab1.out � ab.in � cb.out � cb |
in � ok1.JT2Kok,ab,cm,cm1 |
in � ab.out � ab.in � cb.out � cb |
in � ok.out � ok.in � cm.out � cm]

JT1 | T2Kok,ab,cm,cb , [in � cb1.in � cb2.out � cb |
JT1Kok1,ab,cm1,cb1 |
JT2Kok2,ab,cm2,cb2 |
in � ok1.in � ok2.out � ok.
in � cm.(out � cm1 | out � cm2) |

in � ab.out � ab.
(in � ab | in � ok1.out � cm1 | in � ok2.out � cm2)]

JthrowwKok,ab,cm,cb , [out � ab.out � cb]
JskippKok,ab,cm,cb , [out � ok.in � cm.out � cb]
J〈T 〉Kok , [JT Kok,ab,cm,cb | in � ab.in � cb.throw | in � ok.out � ok]
Jtry T1 catch T2Kok,ab,cm,cb

1 , [JT1Kok1,ab1,cm1,cb1

in � ok1.out � ok.
in � cm.(out � cm1 | in � cb1.out � cb) |

in � ab1.in � cb1.
(JT2Kok2,ab2,cm2,cb2 |
in � ok2.out � ok.

in � cm.(out � cm2 | in � cb2.out � cb) |
in � ab2.in � cb2.out � ab.out � cb)]

Figure 12: An embedding of CCSP.

5 Behavioral Semantics

We define a compositional behavioral semantics of the conversation calculus by means of strong
bisimulation. The main technical results of this section are the proofs that strong and weak
bisimilarity are congruences for all the primitives of our calculus. This further ensures that our
syntactically defined constructions induce properly defined behavioral operators at the semantic
level.

Definition 5.1 A (strong) bisimulation is a symmetric binary relation R on processes such that,
for all processes P and Q, if PR Q, we have:

If P λ−→ P′ and bn(λ)∩ fn(Q) = /0 then there is a process Q′ such that Q λ−→ Q′ and P′R Q′.

We denote by ∼ (strong bisimilarity) the largest strong bisimulation.

Strong bisimilarity is an equivalence relation. We also have:

Theorem 5.2 Strong bisimilarity is a congruence for all operators.

1. P | stop∼ P.

1Late developments originate in a collaboration with Carla Ferreira, in particular the addition of the try-
catch encoding.

24

2. P | Q∼ Q | P.

3. If P∼ Q then P | R∼ Q | R.

4. If P∼ Q then !P∼ !Q.

5. If P∼ Q then (new a)P∼ (new a)Q.

6. If P∼ Q then throw.P∼ throw.Q.

7. If P{x�n} ∼ Q{x�n} for all n then here(x).P∼ here(x).Q.

8. If P∼ Q then out α(v).P∼ out α(v).Q.

9. If P{x�n} ∼ Q{x�n} for all n then in α(x).P∼ in α(x).Q.

10. If P∼ Q then try P catch R∼ try Q catch R.

11. If P∼ Q then try R catch P∼ try R catch Q.

12. If P∼ Q then n I [P]∼ n I [Q].

13. If P∼ Q then def s⇒ P∼ def s⇒ Q.

14. If P∼ Q then instance n ρ s⇒ P∼ instance n ρ s⇒ Q.

We consider weak bisimilarity defined as usual, denoted by ≈.

Theorem 5.3 Weak bisimilarity is a congruence for all operators.

Proof. Follows the lines of the proof of Theorem 5.2.

We also prove other interesting behavioral equations.

Proposition 5.4 The following equations hold up to strong bisimilarity.

1. If n 6= m then n I [(new m)P]∼ (new m)n I [P].

2. n I [P] | n I [Q]∼ n I [P | Q].

3. m I [n I [o I [P]]]∼ n I [o I [P]].

4. n I [stop]∼ stop.

5. n I [out ↑ l(ṽ).R]∼ out ↓ l(ṽ).n I [R].

6. n I [in ↑ l(x̃).R]∼ in ↓ l(x̃).n I [R] (n 6∈ x̃).

7. m I [n I [out � l(ṽ).P]]∼ n I [out � l(ṽ).m I [n I [P]]].

8. m I [n I [in � l(x̃).P]]∼ n I [in � l(x̃).m I [n I [P]]] (m,n 6∈ x̃).

9. m I [n I [out � l(ṽ).P]]∼ n I [out � l(ṽ).m I [n I [P]]].

10. m I [n I [in � l(x̃).P]]∼ n I [out � l(x̃).m I [n I [P]]] (m,n 6∈ x̃).

11. m I [n I [def s⇒ P]]∼ n I [def s⇒ P]

12. m I [n I [instance o ρ s⇐ P]]∼ n I [instance o ρ s⇐ P]

25

(Note: I or J)

For instance, Proposition 5.4(3) captures the local character of message-based communi-
cation in our model. The behavioral identities stated in Proposition 5.4 allow us to prove an
interesting normal form property, that contributes to illuminate the spatial structure of conver-
sation context systems. A guarded process is a process of the form out α(ṽ).P or in α(x̃).P,
here(x).P, instance n ρ s⇐ P, or def s⇒ P. We use G to range over parallel compositions
of guarded processes. We then have

Proposition 5.5 Let P be a process in the finite exception-free fragment. Then there exist sets
of guarded processes G̃, G̃′, G̃′′, sets of names ã, b̃, c̃, d̃, and roles ρ̃, ρ̃′, ρ̃′′ such that

P∼ (new ã)(G1 | . . . | Gt | b1 ρ1 [G′1] | . . . | b j ρ j

[
G′j

]
| c1 ρ′1 [d1 ρ′′1 [G′′1]] | . . . | ck ρ′k

[
dk ρ′′k

[
G′′k

]]
)

and where the sequences (bi,ρi) and (ci,ρ
′
i,di,ρ

′′
i) are pairwise distinct.

Intuitively, Proposition 5.5 states that any process (of the finite exception-free fragment of the
calculus) is behaviorally equivalent to a process where the maximum nesting of contexts is two.
The restriction to finite (replication-free) exception-free processes is sensible, if one just wants
to focus on the communication topology.

We interpret the normal form result as follows. A system is composed by several conver-
sation contexts. The upward (�) communication paths of a system may be seen as a graph,
where arcs connect processes to their caller contexts. As each such arc is uniquely defined by
its two terminal nodes, so is the communication structure of an arbitrary process defined (up to
bisimilarity) by a system of (at most) depth two.

6 Related work

Various calculi have been recently proposed with the aim to capture aspects of service-oriented
computation. At the root of each one, one finds different motivations and methodological ap-
proaches. Some intend to model artifacts of the web services technology, in order to develop
applied verification techniques (e.g., COWS [18], SOCK [11]), others were introduced in order
to demonstrate analysis techniques (e.g., [6, 7]), yet others have the goal of isolating prim-
itives for formalizing and programming service-oriented applications (SCC [2], SSCC [17],
CaSPiS [3]) just to refer a few.

The inspiration for the work presented here was motivated by previous developments around
SCC [2], a process calculus designed to model service-oriented computing introduced within
the Sensoria Project [14]. Our proposal inherits from [12] and SCC the presence of client-server
session establishment primitives. However, we end up following a fresh approach, based on the
notion of conversation context, and on a simple and flexible message-passing communication.
Our development of the concept of conversation context was initially motivated by the concept
of session (see [12]). We see conversation contexts as being more general than sessions, in the
same sense that coroutining may be seen as a generalization of the stricter procedure (stack-
oriented) call discipline. Moreover, the fact that in our model endpoint accesses may appear as
arbitrary interacting processes to their enclosing contexts makes them quite different from the
more familiar data streaming session endpoints.

Our up (�) communication primitive was introduced with the aim of expressing the inter-
action between nested conversation contexts, in particular, between service instances endpoints
and their callers, with loose-coupling in mind. Similar primitives have been already introduced

26

in ambient calculi, namely Seal [8], Boxed Ambients [4] and Box π [22]. Our computation
model is very different from those models (which are targeted at modeling migration and mo-
bility), as witnessed by Proposition 5.5. Hence, even if formally related to some primitives
introduced in [4, 8], at least when their reaction rules are considered in isolation, our commu-
nication primitives have very different consequences at the semantic level (for example, two �
messages can synchronize, just as long as they originate in subcontexts of the same context).

Primitives to deal with exceptional behavior (for example, closing sessions) are present in
several service calculi. Perhaps surprisingly, our exception mechanism, although clearly based
on the classical construct for functional languages, does not seem to have been much explored
in process calculi; we believe that it allows us to express many interesting exceptional behavior
situations.

We have demonstrated that our approach is expressive enough to capture Orc’s composition
operators; we expect that similar results may be established for calculi with related constructs,
such as streams and pipelines [17, 3], at least in the absence of types.

7 Concluding Remarks

We have presented a model for service-oriented computation, building on the identification of
some general aspects of service-based systems. We have instantiated our model by proposing
the conversation calculus, which incorporates abstractions of the several aspects involved by
means of carefully chosen programming language primitives. We have focused our presenta-
tion on a detailed justification of the concepts involved, on examples that illustrate the expres-
siveness of our model, and on the semantic theory for our calculus, based on a standard strong
bisimilarity. Our examples demonstrate how our calculus may express many service-oriented
idioms in a rather natural way. The behavioral semantics allowed us to prove several interesting
behavioral identities. Some of these identities suggested a normal form result that clarifies the
spatial communication topology of conversation calculus systems.

Conversation contexts are natural subjects for typing disciplines, in terms of the message
interchange patterns that may happen at their borders. We expect types specifying various
properties of interfaces, service contracts, endpoint session protocols, security policies, resource
usage, and service level agreements, to be in general assigned to context boundaries. One of the
most interesting challenges to be addressed by type systems for the conversation calculus is then
to discipline the delegation of conversation contexts according to quite strict usage disciplines,
allowing for the static verification of systems where several (not just two) partners join and
leave dynamically a conversation in a coordinated way.

Acknowledgments We thank our colleagues of the Sensoria Project for many discussions
about programming language concepts and calculi for service based computing.

References

[1] A. Alves and et al. Web Services Business Process Execution Language Version 2.0.
Technical report, OASIS, 2006.

[2] M. Boreale, R. Bruni, L. Caires, R. De Nicola, I. Lanese, M. Loreti, F. Martins, U. Monta-
nari, A. Ravara, D. Sangiorgi, V. Vasconcelos, and G. Zavattaro. SCC: a Service Centered
Calculus. In Proceedings of WS-FM 2006, 3rd International Workshop on Web Services
and Formal Methods, Lecture Notes in Computer Science. Springer-Verlag, 2006.

27

[3] M. Boreale, R. Bruni, R. De Nicola, and M. Loreti. A Service Oriented Process Calculus
with Sessioning and Pipelining. Technical report, 2007. Draft.

[4] M. Bugliesi, G. Castagna, and S. Crafa. Access Control for Mobile Agents: The Cal-
culus of Boxed Ambients. ACM Transactions on Programming Languages and Systems,
26(1):57–124, 2004.

[5] M. J. Butler, C. A. R. Hoare, and C. Ferreira. A Trace Semantics for Long-Running
Transactions. In A. E. Abdallah, C. B. Jones, and J. W. Sanders, editors, 25 Years Com-
municating Sequential Processes, volume 3525 of Lecture Notes in Computer Science,
pages 133–150. Springer, 2004.

[6] L. Caires. Spatial-Behavioral Types for Distributed Services and Resources. In U. Monta-
nari and D. Sanella, editors, Proceedings of the Second International Symposium on Trust-
worthy Global Computing, Lecture Notes in Computer Science. Springer-Verlag, 2006.

[7] M. Carbone, K. Honda, and N. Yoshida. Structured Global Programming for Communi-
cation Behavior. In R. De Nicola, editor, Proceedings of 16th European Symposium on
Programming (ESOP’07), Lecture Notes in Computer Science. Springer, 2007.

[8] G. Castagna, J. Vitek, and F. Z. Nardelli. The Seal Calculus. Information and Computa-
tion, 201(1):1–54, 2005.

[9] J. L. Fiadeiro, A. Lopes, and L. Bocchi. A Formal Approach to Service Component
Architecture. In M. Bravetti, M. N., and G. Zavattaro, editors, Web Services and Formal
Methods, Third International Workshop,WS-FM 2006, volume 4184 of Lecture Notes in
Computer Science, pages 193–213. Springer-Verlag, 2006.

[10] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan Kauf-
mann, 1993.

[11] C. Guidi, R. Lucchi, R. Gorrieri, N. Busi, and G. Zavattaro. SOCK: A Calculus for Service
Oriented Computing. In M. Bravetti, M. N., and G. Zavattaro, editors, Proceedings of
the 4th International Conference on Service-Oriented Computing (ICSOC 2006), volume
4294 of Lecture Notes in Computer Science, pages 327–338. Springer-Verlag, 2006.

[12] K. Honda, V. T. Vasconcelos, and M. Kubo. Language Primitives and Type Discipline
for Structured Communication-Based Programming. In C. Hankin, editor, ESOP’98, 7th
European Symposium on Programming,ETAPS’98, volume 1381 of Lecture Notes in Com-
puter Science, pages 122–138. Springer, 1998.

[13] Amazon.com Inc. Amazon Simple Storage Service Developer Guide, 2007.
http://docs.amazonwebservices.com/AmazonS3/2006-03-01/.

[14] IP Sensoria Project. website: http://www.sensoria-ist.eu/.

[15] M. B. Juric. A Hands-on Introduction to BPEL, 2006. Oracle (white paper).

[16] D. Kitchin, W. R. Cook, and J. Misra. A Language for Task Orchestration and Its Semantic
Properties. In C. Baier and H. Hermanns, editors, CONCUR 2006 - Concurrency Theory,
17th International Conference, volume 4137 of Lecture Notes in Computer Science, pages
477–491. Springer-Verlag, 2006.

28

[17] I. Lanese, V. T. Vasconcelos, F. Martins, and A. Ravara. Disciplining Orchestration and
Conversation in Service-Oriented Computing. In 5th International Conference on Soft-
ware Engineering and Formal Methods, pages 305–314. IEEE Computer Society Press,
2007.

[18] A. Lapadula, R. Pugliese, and F. Tiezzi. A Calculus for Orchestration of Web Services.
In R. De Nicola, editor, Proceedings of 16th European Symposium on Programming
(ESOP’07), Lecture Notes in Computer Science. Springer, 2007.

[19] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, Part I + II. Infor-
mation and Computation, 100(1):1–77, 1992.

[20] J. Misra and W. R. Cook. Computation Orchestration: A Basis for Wide-Area Computing.
Journal of Software and Systems Modeling, 2006.

[21] D. Sangiorgi and D. Walker. The π-calculus: A Theory of Mobile Processes. Cambridge
University Press, 2001.

[22] P. Sewell and J. Vitek. Secure Composition of Untrusted Code: Box π, Wrappers, and
Causality. Journal of Computer Security, 11(2):135–188, 2003.

29

A Proofs

Proof of auxiliar results to Theorem 5.2

Lemma A.1 Let P,Q be processes such that P∼ Q. Then throw.P∼ throw.Q.

Proof. Let us consider R defined as

R , {(throw.P,throw.Q) | P∼ Q} (A.1.1)

We show that R ∪ ∼ is a bisimulation by coinduction on the definition of bisimulation.
Let us consider (P,Q) ∈ R ∪ ∼. We must show that for every P′,λ such that

P λ−→ P′

then there exists Q′ such that
Q λ−→ Q′

and (P′,Q′) ∈ R ∪ ∼.
We must consider two different cases: either (P,Q) ∈ R or (P,Q) ∈∼.
If (P,Q) ∈∼ we directly have that there exists Q′ such that

Q λ−→ Q′

and (P′,Q′) ∈∼ and hence (P′,Q′) ∈ R ∪ ∼.
If (P,Q) ∈ R we have that P and Q are, by definition of R (A.1.1), of the form throw.P̄

and throw.Q̄, respectively, for some P̄, Q̄ such that

P̄∼ Q̄ (A.1.2)

We have that the only possible transition of throw.P̄ is

throw.P̄ throw−→ P̄

We also have that
throw.Q̄ throw−→ Q̄

From A.1.2 we conclude that (P̄, Q̄) ∈ R ∪ ∼ which completes the proof.

Lemma A.2 Let P,Q be processes such that P∼ Q. Then for any pair of location name α and
set of names ṽ it is the case that out α(ṽ).P∼ out α(ṽ).Q.

Proof. Let us consider R defined as

R , {(out α(ṽ).P,out α(ṽ).Q) | P∼ Q∧∀α, ṽ} (A.2.1)

We show that R ∪ ∼ is a bisimulation by coinduction on the definition of bisimulation.
Let us consider (P,Q) ∈ R ∪ ∼. We must show that for every P′,λ such that

P λ−→ P′

then there exists Q′ such that
Q λ−→ Q′

and (P′,Q′) ∈ R ∪ ∼.

30

We must consider two different cases: either (P,Q) ∈ R or (P,Q) ∈∼.
If (P,Q) ∈∼ we directly have that there exists Q′ such that

Q λ−→ Q′

and (P′,Q′) ∈∼ and hence (P′,Q′) ∈ R ∪ ∼.
If (P,Q) ∈ R we have that P and Q are, by definition of R (A.2.1), of the form out α(ṽ).P̄

and out α(ṽ).Q̄, respectively, for some α, ṽ, P̄, Q̄ such that

P̄∼ Q̄ (A.2.2)

We have that the only possible transition of out α(ṽ).P̄ is

out α(ṽ).P̄
α(ṽ)−→ P̄

We also have that

out α(ṽ).Q̄
α(ṽ)−→ Q̄

From A.2.2 we conclude that (P̄, Q̄) ∈ R ∪ ∼ which completes the proof.

Lemma A.3 Let P,Q be processes such that for all set of variables x̃ and set of names ṽ it
is the case that P{x̃�ṽ} ∼ Q{x̃�ṽ}. Then for any pair of location name α it is the case that
in α(x̃).P∼ in α(x̃).Q.

Proof. Let us consider R defined as

R , {(in α(x̃).P,in α(x̃).Q) | ∀x̃, ṽ . P{x̃�ṽ} ∼ Q{x̃�ṽ}} (A.3.1)

We show that R ∪ ∼ is a bisimulation by coinduction on the definition of bisimulation.
Let us consider (P,Q) ∈ R ∪ ∼. We must show that for every P′,λ such that

P λ−→ P′

then there exists Q′ such that
Q λ−→ Q′

and (P′,Q′) ∈ R ∪ ∼.
We must consider two different cases: either (P,Q) ∈ R or (P,Q) ∈∼.
If (P,Q) ∈∼ we directly have that there exists Q′ such that

Q λ−→ Q′

and (P′,Q′) ∈∼ and hence (P′,Q′) ∈ R ∪ ∼.
If (P,Q) ∈ R we have that P and Q are, by definition of R (A.3.1), of the form in α(x̃).P̄

and in α(x̃).Q̄, respectively, for some α, x̃, P̄, Q̄ such that for all ṽ it is the case that

P̄{x̃�ṽ} ∼ Q̄{x̃�ṽ} (A.3.2)

We have that in α(x̃).P̄ has for any ṽ a transition

in α(x̃).P̄
α(ṽ)−→ P̄{x̃�ṽ}

We also have that
in α(x̃).Q̄

α(ṽ)−→ Q̄{x̃�ṽ}
From A.3.2 we conclude that for any ṽ it is the case that (P̄{x̃�ṽ}, Q̄{x̃�ṽ}) ∈ R ∪ ∼ which
completes the proof.

31

Lemma A.4 Let P,Q be processes such that for any name n it is the case that P{x�n} ∼
Q{x�n}. Then for any ρ it is the case that here ρ(x).P∼ here ρ(x).Q.

Proof. Let us consider R defined as

R , {(here ρ(x).P,here ρ(x).Q) | ∀n . P{x�n} ∼ Q{x�n}} (A.4.1)

We show that R ∪ ∼ is a bisimulation by coinduction on the definition of bisimulation.
Let us consider (P,Q) ∈ R ∪ ∼. We must show that for every P′,λ such that

P λ−→ P′

then there exists Q′ such that
Q λ−→ Q′

and (P′,Q′) ∈ R ∪ ∼.
We must consider two different cases: either (P,Q) ∈ R or (P,Q) ∈∼.
If (P,Q) ∈∼ we directly have that there exists Q′ such that

Q λ−→ Q′

and (P′,Q′) ∈∼ and hence (P′,Q′) ∈ R ∪ ∼.
If (P,Q)∈R we have that P and Q are, by definition of R (A.4.1), of the form here ρ(x).P̄

and here ρ(x).Q̄, respectively, for some ρ,x, P̄, Q̄ such that for any name n it is the case that

P̄{x�n} ∼ Q̄{x�n} (A.4.2)

We have that here ρ(x).P̄ has for any name n a transition

here ρ(x).P̄
nρhere−→ P̄{x�n}

We also have that
here ρ(x).Q̄

nρhere−→ Q̄{x�n}

From A.4.2 we conclude that for any name n it is the case that (P̄{x�n}, Q̄{x�n}) ∈ R ∪ ∼
which completes the proof.

Lemma A.5 Let P,Q be processes such that P ∼ Q. Then for any name n it is the case that
n I [P]∼ n I [Q].

Proof. Let us consider R defined as

R , {(n I [P] ,n I [Q]) | P∼ Q} (A.5.1)

We show that R ∪ ∼ is a bisimulation by coinduction on the definition of bisimulation.
Let us consider (P,Q) ∈ R ∪ ∼. We must show that for every P′,λ such that

P λ−→ P′

then there exists Q′ such that
Q λ−→ Q′

and (P′,Q′) ∈ R ∪ ∼.
We must consider two different cases: either (P,Q) ∈ R or (P,Q) ∈∼.

32

If (P,Q) ∈∼ we directly have that there exists Q′ such that

Q λ−→ Q′

and (P′,Q′) ∈∼ and hence (P′,Q′) ∈ R ∪ ∼.
If (P,Q) ∈ R we have, by definition (A.5.1), that P and Q are of the form n I [P̄] and

n I
[
Q̄

]
, respectively, for some n, P̄, Q̄ such that

P̄∼ Q̄ (A.5.2)

We must consider eight different derivations for the transitions of n I [P], so we have that λ is
either derived from τ, or from throw, or from (ν̃o)mρλ′ such that λ′ 6= here, or from n I here,
or from (ν̃o)λ′←, or from (ν̃o)λ′↓, or from (ν̃o)λ′↑ or finally from (νc)def s.

(Case τ)
We have that

n I [P̄] τ−→ P̄′ (A.5.3)

where (A.5.3) is derived from
P̄ τ−→ P̄′ (A.5.4)

From (A.5.4) and (A.5.2) we have that there exists Q̄′ such that

Q̄ τ−→ Q̄′ (A.5.5)

and
P̄′ ∼ Q̄′ (A.5.6)

From (A.5.5) we can derive
n I

[
Q̄

] τ−→ n I
[
Q̄′

]
From (A.5.6) we conclude

(n I
[
P̄′

]
,n I

[
Q̄′

]
) ∈ R ∪ ∼

which completes the proof for this case.
(Case throw)
We have that

n I [P̄] throw−→ P̄′ (A.5.7)

where (A.5.7) is derived from
P̄ throw−→ P̄′ (A.5.8)

From (A.5.8) and (A.5.2) we have that there exists Q̄′ such that

Q̄ throw−→ Q̄′ (A.5.9)

and
P̄′ ∼ Q̄′ (A.5.10)

From (A.5.9) we can derive
n I

[
Q̄

] throw−→ Q̄′

From (A.5.10) we conclude
(P̄′, Q̄′) ∈ R ∪ ∼

which completes the proof for this case.
(Case ((ν̃o)mρλ′)

33

We have that
n I [P̄]

(ν̃o)mρλ′−→ n I
[
P̄′

]
(A.5.11)

where (A.5.11) is derived from

P̄
(ν̃o)mρλ′−→ P̄′ (A.5.12)

and λ′ 6= here. From (A.5.12) and (A.5.2) we have that there exists Q̄′ such that

Q̄
(ν̃o)mρλ′−→ Q̄′ (A.5.13)

and
P̄′ ∼ Q̄′ (A.5.14)

From (A.5.13) recalling that λ′ 6= here we can derive

n I
[
Q̄

] (ν̃o)mρλ′−→ n I
[
Q̄′

]
From (A.5.14) and by definition of R (A.5.1) we conclude

(n I
[
P̄′

]
,n I

[
Q̄′

]
) ∈ R ∪ ∼

which completes the proof for this case.
(Case n I here)
We have that

n I [P̄] τ−→ n I
[
P̄′

]
(A.5.15)

where (A.5.15) is derived from
P̄ nIhere−→ P̄′ (A.5.16)

From (A.5.16) and (A.5.2) we have that there exists Q̄′ such that

Q̄ nIhere−→ Q̄′ (A.5.17)

and
P̄′ ∼ Q̄′ (A.5.18)

From (A.5.17) we can derive
n I

[
Q̄

] τ−→ n I
[
Q̄′

]
From (A.5.18) and by definition of R (A.5.1) we conclude

(n I
[
P̄′

]
,n I

[
Q̄′

]
) ∈ R ∪ ∼

which completes the proof for this case.
(Case λ = (ν̃o)λ′←)
We have that

n I [P̄]
(ν̃o)nI·λ′←−→ n I

[
P̄′

]
(A.5.19)

where (A.5.19) is derived from

P̄
(ν̃o)λ′←−→ P̄′ (A.5.20)

From (A.5.20) and (A.5.2) we have that there exists Q̄′ such that

Q̄
(ν̃o)λ′←−→ Q̄′ (A.5.21)

34

and
P̄′ ∼ Q̄′ (A.5.22)

From (A.5.21) we can derive

n I
[
Q̄

] (ν̃o)nI·λ′←−→ n I
[
Q̄′

]
From (A.5.22) and by definition of R (A.5.1) we conclude

(n I
[
P̄′

]
,n I

[
Q̄′

]
) ∈ R ∪ ∼

which completes the proof for this case.
(Case λ = (ν̃o)λ′↓)
We have that

n I [P̄]
(ν̃o)nI·λ′↓−→ n I

[
P̄′

]
(A.5.23)

where (A.5.23) is derived from

P̄
(ν̃o)λ′↓−→ P̄′ (A.5.24)

From (A.5.24) and (A.5.2) we conclude that there exists Q̄′ such that

Q̄
(ν̃o)λ′↓−→ Q̄′ (A.5.25)

and
P̄′ ∼ Q̄′ (A.5.26)

From (A.5.25) we can derive

n I
[
Q̄

] (ν̃o)nI·λ′↓−→ n I
[
Q̄′

]
From (A.5.26) and by definition of R (A.5.1) we conclude

(n I
[
P̄′

]
,n I

[
Q̄′

]
) ∈ R ∪ ∼

which completes the proof for this case.
(Case λ = (ν̃o)λ′↑)
We have that

n I [P̄]
(ν̃o)λ′↓−→ n I

[
P̄′

]
(A.5.27)

where (A.5.27) is derived from

P̄
(ν̃o)λ′↑−→ P̄′ (A.5.28)

From (A.5.28) and (A.5.2) we conclude that there exists Q̄′ such that

Q̄
(ν̃o)λ′↑−→ Q̄′ (A.5.29)

and
P̄′ ∼ Q̄′ (A.5.30)

From (A.5.29) we can derive

n I
[
Q̄

] (ν̃o)λ′↓−→ n I
[
Q̄′

]
From (A.5.30) and by definition of R (A.5.1) we conclude

(n I
[
P̄′

]
,n I

[
Q̄′

]
) ∈ R ∪ ∼

35

which completes the proof for this case.
(Case λ = (νc)def s)
We have that

n I [P̄]
(νc)nIdef s−→ n I

[
P̄′

]
(A.5.31)

where (A.5.31) is derived from

P̄
(νc)def s−→ P̄′ (A.5.32)

From (A.5.32) and (A.5.2) we conclude that there exists Q̄′ such that

Q̄
(νc)def s−→ Q̄′ (A.5.33)

and
P̄′ ∼ Q̄′ (A.5.34)

From (A.5.33) we can derive

n I
[
Q̄

] (νc)nIdef s−→ n I
[
Q̄′

]
From (A.5.34) and by definition of R (A.5.1) we conclude

(n I
[
P̄′

]
,n I

[
Q̄′

]
) ∈ R ∪ ∼

which completes the proof for this last case.

Lemma A.6 Let P,Q be processes such that P ∼ Q. Then for any name n it is the case that
n J [P]∼ n J [Q].

Proof. Analogous to that of Lemma A.5.

Lemma A.7 Let P,Q be processes such that P ∼ Q. Then for any name s it is the case that
def s⇒ P∼ def s⇒ Q.

Proof. Let us consider R defined as

R , {(def s⇒ P,def s⇒ Q) | P∼ Q} (A.7.1)

We show that R ∪ ∼ is a bisimulation by coinduction on the definition of bisimulation.
Let us consider (P,Q) ∈ R ∪ ∼. We must show that for every P′,λ such that

P λ−→ P′

then there exists Q′ such that
Q λ−→ Q′

and (P′,Q′) ∈ R ∪ ∼.
We must consider two different cases: either (P,Q) ∈ R or (P,Q) ∈∼.
If (P,Q) ∈∼ we directly have that there exists Q′ such that

Q λ−→ Q′

and (P′,Q′) ∈∼ and hence (P′,Q′) ∈ R ∪ ∼.

36

If (P,Q) ∈ R we have that P and Q are, by definition of R (A.7.1), of the form def s⇒ P̄
and def s⇒ Q̄, respectively, for some name s and processes P̄, Q̄ such that

P̄∼ Q̄ (A.7.2)

We have that def s⇒ P̄ has for any c a possible transition

def s⇒ P̄
(νc)def s−→ c I [P̄]

which we only consider when the bound name generated does not occur in process Q, hence
c 6∈ fn(Q), accordingly to the definition of bisimulation. Given that c 6∈ fn(Q) we also have that

def s⇒ Q̄
(νc)def s−→ c I

[
Q̄

]
From (A.7.2) and considering Lemma A.5 we have that

(c I [P̄] ,c I
[
Q̄

]
) ∈∼

hence
(c I [P̄] ,c I

[
Q̄

]
) ∈ R ∪ ∼

which completes the proof.

Lemma A.8 Let P,Q be processes such that P∼ Q. Then for any names n,s it is the case that
instance n I s⇐ P∼ instance n I s⇐ Q.

Proof. Let us consider R defined as

R , {(instance n I s⇐ P,instance n I s⇐ Q) | P∼ Q} (A.8.1)

We show that R ∪ ∼ is a bisimulation by coinduction on the definition of bisimulation.
Let us consider (P,Q) ∈ R ∪ ∼. We must show that for every P′,λ such that

P λ−→ P′

then there exists Q′ such that
Q λ−→ Q′

and (P′,Q′) ∈ R ∪ ∼.
We must consider two different cases: either (P,Q) ∈ R or (P,Q) ∈∼.
If (P,Q) ∈∼ we directly have that there exists Q′ such that

Q λ−→ Q′

and (P′,Q′) ∈∼ and hence (P′,Q′) ∈ R ∪ ∼.
If (P,Q)∈R we have that P and Q are, by definition of R (A.8.1), of the form instance n I

s⇐ P̄ and instance n I s⇐ Q̄, respectively, for some names n,s and processes P̄, Q̄ such that

P̄∼ Q̄ (A.8.2)

We have that instance n I s⇐ P̄ has for any c a possible transition

instance n I s⇐ P̄
(νc)nIdef s−→ c J [P̄]

37

which we only consider when the bound name generated does not occur in process Q, hence
c 6∈ fn(Q), accordingly to the definition of bisimulation. Given that c 6∈ fn(Q) we also have that

instance n I s⇐ Q̄
(νc)nIdef s−→ c J

[
Q̄

]
From (A.8.2) and considering Lemma A.6 we have that

(c J [P̄] ,c J
[
Q̄

]
) ∈∼

hence
(c J [P̄] ,c J

[
Q̄

]
) ∈ R ∪ ∼

which completes the proof.

Lemma A.9 Let P,Q be processes such that P∼ Q. Then for any names n,s it is the case that
instance n J s⇐ P∼ instance n J s⇐ Q.

Proof. Analogous to that of Lemma A.8.

Lemma A.10 We have that P | stop∼ P, for any process P.

Proof. Let us consider R defined as

R , {(P | stop,P)}∪{(P,P)} (A.10.1)

We show that R is a bisimulation by coinduction on the definition of bisimulation.
Let us consider (P,Q) ∈ R . We must show that for every P′,λ such that

P λ−→ P′

then there exists Q′ such that
Q λ−→ Q′

and (P′,Q′) ∈ R .
We must consider two different cases: either (P,Q) ∈ {(P | stop,P)} or (P,Q) ∈ {(P,P)}.
If (P,Q) ∈ {(P,P)} we we directly have that for any transition P λ−→ P′ it is the case that

(P′,P′) ∈ R .
If (P,Q) ∈ {(P | stop,P)} we have that P is of the form Q | stop.
We consider two possible transitions of Q | stop: either λ 6= throw or λ = throw.
If λ 6= throw we have that there exists Q′ such that

Q | stop λ−→ Q′ | stop

derived from
Q λ−→ Q′

which along with (Q′ | stop,Q′) ∈ R completes the proof for this case.
If λ = throw we have that there exists Q′ such that

Q | stop throw−→ Q′

derived from
Q throw−→ Q′

38

which along with (Q′,Q′) ∈ R completes the proof for this case.
We now consider two possible transitions for Q: either λ 6= throw or λ = throw.
If λ 6= throw we have that there exists Q′ such that

Q λ−→ Q′

from which we can derive
Q | stop λ−→ Q′ | stop

which along with (Q′ | stop,Q′) ∈ R completes the proof for this case.
If λ = throw we have that there exists Q′ such that

Q throw−→ Q′

from which we can derive
Q | stop throw−→ Q′

which along with (Q′,Q′) ∈ R completes the proof for this last case.

Lemma A.11 Let P,Q be processes such that P ∼ Q. Then for any name n it is the case that
(new n)P∼ (new n)Q.

Proof. Let us consider R defined as

R , {((new n)P,(new n)Q) | P∼ Q} (A.11.1)

We show that R ∪ ∼ is a bisimulation by coinduction on the definition of bisimulation.
Let us consider (P,Q) ∈ R ∪ ∼. We must show that for every P′,λ such that

P λ−→ P′

then there exists Q′ such that
Q λ−→ Q′

and (P′,Q′) ∈ R ∪ ∼.
We must consider two different cases: either (P,Q) ∈ R or (P,Q) ∈∼.
If (P,Q) ∈∼ we directly have that there exists Q′ such that

Q λ−→ Q′

and (P′,Q′) ∈∼ and hence (P′,Q′) ∈ R ∪ ∼.
If (P,Q) ∈ R we have that P and Q are, by definition of R (A.11.1), of the form (new n)P̄

and (new n)Q̄, respectively, for some name n and processes P̄, Q̄ such that

P̄∼ Q̄ (A.11.2)

We have that (new n)P̄ has two possible transitions λ, distinguished by the occurrence of n as
an extruded name of λ or not.

If λ extrudes n we have that
(new n)P̄

(n)λ−→ P̄′ (A.11.3)

where (A.11.3) is derived from
P̄ λ−→ P̄′ (A.11.4)

39

and n ∈ out(λ). From (A.11.4) and (A.11.2) we conclude that there exists Q̄′ such that

Q̄ λ−→ Q̄′ (A.11.5)

and
P̄′ ∼ Q̄′ (A.11.6)

From (A.11.5) and the fact that n ∈ out(λ) we conclude that

(new n)Q̄
(n)λ−→ Q̄′

From (A.11.6) we directly have that

(P̄′, Q̄′) ∈ R ∪ ∼

which completes the proof for this case.
If λ does not extrude n we have that

(new n)P̄ λ−→ (new n)P̄′ (A.11.7)

where (A.11.7) is derived from
P̄ λ−→ P̄′ (A.11.8)

and n 6∈ out(λ). From (A.11.8) and (A.11.2) we conclude that there exists Q̄′ such that

Q̄ λ−→ Q̄′ (A.11.9)

and
P̄′ ∼ Q̄′ (A.11.10)

From (A.11.9) and the fact that n 6∈ out(λ) we conclude that

(new n)Q̄ λ−→ (new n)Q̄′

From (A.11.10) we conclude that

((new n)P̄′,(new n)Q̄′) ∈ R ∪ ∼

which completes the proof for this last case.

Lemma A.12 We have P | Q∼ Q | P, for any processes P,Q.

Proof. Let us consider R defined as

R , {((new ñ)(P | Q),(new ñ)(Q | P)) | ∀ñ}∪{(P,P)} (A.12.1)

We show that R is a bisimulation by coinduction on the definition of bisimulation.
Let us consider (P,Q) ∈ R . We must show that for every P′,λ such that

P λ−→ P′

then there exists Q′ such that
Q λ−→ Q′

and (P′,Q′) ∈ R .

40

We must consider two different cases: either (P,Q)∈ {((new ñ)(P | Q),(new ñ)(Q | P))} or
(P,Q) ∈ {(P,P)}.

If (P,Q) ∈ {(P,P)} we we directly have that for any transition P λ−→ P′ it is the case that
(P′,P′) ∈ R .

If (P,Q)∈{((new ñ)(P | Q),(new ñ)(Q | P))}we have that P and Q are of the form (new ñ)(P̄ | Q̄)
and (new ñ)(Q̄ | P̄), respectively, for some set of names ñ and processes P̄ and Q̄.

We must consider six different transitions for (new ñ)(P̄ | Q̄): either P̄ performs a transition
(either a throw or some other λ) or Q̄ performs a transition (again either a throw or some other
λ) or finally P̄ and Q̄ synchronize either by nρhere or by τ.

(Transition throw performed by P̄)
If P̄ performs a transition throw we have that

(new ñ)(P̄ | Q̄) throw−→ (new ñ)P̄′ (A.12.2)

where (A.12.2) is derived from
P̄ throw−→ P̄′ (A.12.3)

From (A.12.3) we can derive that

(new ñ)(Q̄ | P̄) throw−→ (new ñ)P̄′

which along with
((new ñ)P̄′,(new ñ)P̄′) ∈ R

completes the proof for this case.
(Transition λ performed by P̄)
If P̄ performs a transition λ, different from throw, we have that

(new ñ)(P̄ | Q̄) λ−→ (new ñ′)(P̄′ | Q̄) (A.12.4)

where (A.12.4) is derived from
P̄ λ′−→ P̄′ (A.12.5)

having λ = (ν̃n′′)λ′, i.e., label λ is obtained by placing a set of bound names in front of λ′, a
set that corresponds exactly to the names that λ′ extrudes that are restricted names contained in
ñ, hence ñ′′ = out(λ′)∩ ñ. Also we have that the resulting restricted name set ñ′ corresponds to
the initial one ñ minus the names extruded, hence (ν̃n′ = ñ / ñ′′). We also have that (bn(λ′)∩
fn(Q̄) = /0). Attending to these conditions on the restricted names from (A.12.5) we can derive
that

(new ñ)(Q̄ | P̄) λ−→ (new ñ′)(Q̄ | P̄′)

which along with
((new ñ′)(P̄′ | Q̄),(new ñ′)(Q̄ | P̄′)) ∈ R

completes the proof for this case.
(Transition throw performed by Q̄)
If Q̄ performs a transition throw we have that

(new ñ)(P̄ | Q̄) throw−→ (new ñ)Q̄′ (A.12.6)

where (A.12.6) is derived from
Q̄ throw−→ Q̄′ (A.12.7)

41

From (A.12.7) we can derive that

(new ñ)(Q̄ | P̄) throw−→ (new ñ)Q̄′

which along with
((new ñ)Q̄′,(new ñ)Q̄′) ∈ R

completes the proof for this case.
(Transition λ performed by Q̄)
If Q̄ performs a transition λ, different from throw, we have that

(new ñ)(P̄ | Q̄) λ−→ (new ñ′)(P̄ | Q̄′) (A.12.8)

where (A.12.8) is derived from
Q̄ λ′−→ Q̄′ (A.12.9)

having λ = (ν̃n′′)λ′, i.e., label λ is obtained by placing a set of bound names in front of λ′, a
set that corresponds exactly to the names that λ′ extrudes that are restricted names contained in
ñ, hence ñ′′ = out(λ′)∩ ñ. Also we have that the resulting restricted name set ñ′ corresponds to
the initial one ñ minus the names extruded, hence (ν̃n′ = ñ / ñ′′). We also have that (bn(λ′)∩
fn(Q̄) = /0). Attending to these conditions on the restricted names from (A.12.9) we can derive
that

(new ñ)(Q̄ | P̄) λ−→ (new ñ′)(Q̄′ | P̄)

which along with
((new ñ′)(P̄ | Q̄′),(new ñ′)(Q̄′ | P̄)) ∈ R

completes the proof for this case.
(Transition nρhere due to the synchronization of P̄ and Q̄)
We have that

(new ñ)(P̄ | Q̄)
nρhere−→ (new ñ,c)(P̄′ | Q̄′) (A.12.10)

where (A.12.10) is derived from

P̄
(νc)def s−→ P̄′ (A.12.11)

and
Q̄

(νc)nρdef s−→ Q̄′ (A.12.12)

From (A.12.11) and (A.12.12) we conclude (using the symmetric rule)

(new ñ)(Q̄ | P̄)
nρhere−→ (new ñ,c)(Q̄′ | P̄′)

which along with
((new ñ,c)(Q̄′ | P̄′),(new ñ,c)(Q̄′ | P̄′)) ∈ R

completes the proof for this case.
(Transition τ due to the synchronization of P̄ and Q̄)
We have that

(new ñ)(P̄ | Q̄) τ−→ (new ñ, ñ′)(P̄′ | Q̄′) (A.12.13)

where (A.12.13) is derived from

P̄
(ν̃n′)λ′−→ P̄′ (A.12.14)

and

Q̄
(ν̃n′)λ′−→ Q̄′ (A.12.15)

42

From (A.12.14) we can derive

P̄
(ν̃n′)λ′−→ P̄′ (A.12.16)

From (A.12.15) and (A.12.16) we conclude

(new ñ)(Q̄ | P̄) τ−→ (new ñ, ñ′)(Q̄′ | P̄′)

which along with
((new ñ, ñ′)(Q̄′ | P̄′),(new ñ, ñ′)(Q̄′ | P̄′)) ∈ R

completes the proof for this last case.

Lemma A.13 Let P,Q be processes such that P∼ Q. Then for any process R it is the case that
P | R∼ Q | R.

Proof. Let us consider R defined as

R , {((new ñ)(P | R),(new ñ)(Q | R)) | P∼ Q∧∀ñ,R} (A.13.1)

We show that R ∪ ∼ is a bisimulation by coinduction on the definition of bisimulation.
Let us consider (P,Q) ∈ R ∪ ∼. We must show that for every P′,λ such that

P λ−→ P′

then there exists Q′ such that
Q λ−→ Q′

and (P′,Q′) ∈ R ∪ ∼.
We must consider two different cases: either (P,Q) ∈ R or (P,Q) ∈∼.
If (P,Q) ∈∼ we directly have that there exists Q′ such that

Q λ−→ Q′

and (P′,Q′) ∈∼ and hence (P′,Q′) ∈ R ∪ ∼.
If (P,Q)∈R we have that P and Q are, by definition of R (A.13.1), of the form (new ñ)(P̄ | R)

and (new ñ)(Q̄ | R), respectively, for some set of names ñ and processes R, P̄, Q̄ such that

P̄∼ Q̄ (A.13.2)

We must consider six different transitions for (new ñ)(P̄ | R): either P̄ performs a transition
(either a throw or some other λ) or R performs a transition (again either a throw or some other
λ) or finally P̄ and R synchronize, either by nρhere or by τ.

(Transition throw performed by P̄)
If P̄ performs a transition throw we have that

(new ñ)(P̄ | R) throw−→ (new ñ)P̄′ (A.13.3)

where (A.13.3) is derived from
P̄ throw−→ P̄′ (A.13.4)

From (A.13.4) and (A.13.2) we conclude that there exists Q̄′ such that

Q̄ throw−→ Q̄′ (A.13.5)

43

and
P̄′ ∼ Q̄′ (A.13.6)

From (A.13.5) we can derive

(new ñ)(Q̄ | R) throw−→ (new ñ)Q̄′

From (A.13.6) and considering Lemma A.11 we conclude

((new ñ)P̄′,(new ñ)Q̄′) ∈ R ∪ ∼

which completes the proof for this case.
(Transition λ performed by P̄)
If P̄ performs a transition λ, different from throw, we have that

(new ñ)(P̄ | R) λ−→ (new ñ′)(P̄′ | R) (A.13.7)

where (A.13.7) is derived from
P̄ λ′−→ P̄′ (A.13.8)

having λ = (ν̃n′′)λ′, i.e., label λ is obtained by placing a set of bound names in front of λ′, a
set that corresponds exactly to the names that λ′ extrudes that are restricted names contained in
ñ, hence ñ′′ = out(λ′)∩ ñ. Also we have that the resulting restricted name set ñ′ corresponds to
the initial one ñ minus the names extruded, hence (ν̃n′ = ñ / ñ′′). We also have that (bn(λ′)∩
fn(R) = /0). From (A.13.8) and (A.13.2) we conclude that there exists Q̄′ such that

Q̄ λ′−→ Q̄′ (A.13.9)

and
P̄′ ∼ Q̄′ (A.13.10)

Attending to conditions on the restricted names above from (A.13.9) we can derive

(new ñ)(Q̄ | R) λ−→ (new ñ′)(Q̄′ | R)

From (A.13.10) and by definition of R (A.13.1) we conclude

((new ñ′)(P̄′ | R),(new ñ′)(Q̄′ | R)) ∈ R ∪ ∼

which completes the proof for this case.
(Transition throw performed by R)
If R performs a transition throw we have that

(new ñ)(P̄ | R) throw−→ (new ñ)R′ (A.13.11)

where (A.13.11) is derived from
R throw−→ R′ (A.13.12)

From (A.13.12) we can derive

(new ñ)(Q̄ | R) throw−→ (new ñ)R′

We directly have that
((new ñ)R′,(new ñ)R′) ∈ R ∪ ∼

44

which completes the proof for this case.
(Transition λ performed by R)
If R performs a transition λ, different from throw, we have that

(new ñ)(P̄ | R) λ−→ (new ñ′)(P̄ | R′) (A.13.13)

where (A.13.13) is derived from
R λ′−→ R′ (A.13.14)

having λ = (ν̃n′′)λ′, i.e., label λ is obtained by placing a set of bound names in front of λ′, a
set that corresponds exactly to the names that λ′ extrudes that are restricted names contained in
ñ, hence ñ′′ = out(λ′)∩ ñ. Also we have that the resulting restricted name set ñ′ corresponds to
the initial one ñ minus the names extruded, hence (ν̃n′ = ñ / ñ′′). We also have that (bn(λ′)∩
fn(P̄) = /0). We are interested only in the transitions λ such that bn(λ)∩ fn((new ñ)(Q̄ | R)) = /0

which gives us that the extruded restricted names must not occur in (new ñ)(Q̄ | R), hence n′′∩
fn((new ñ)(Q̄ | R)) = /0, and also that the bound names of λ′ also do not occur in (new ñ)(Q̄ | R),
hence

bn(λ′)∩ fn((new ñ)(Q̄ | R)) = /0 (A.13.15)

From (A.13.15) we conclude that

bn(λ′)∩ (fn(Q̄) / ñ) = /0 (A.13.16)

Considering λ = (ν̃n′′)λ′ we can be sure that

bn(λ′)∩ ñ = /0 (A.13.17)

otherwise we could not have derived (A.13.13) from (A.13.14).
Finally from (A.13.16) and (A.13.3) we conclude

bn(λ′)∩ fn(Q) = /0 (A.13.18)

From (A.13.14) and (A.13.18) attending to conditions on the restricted names above we can
derive

(new ñ)(Q̄ | R) λ−→ (new ñ′)(Q̄ | R′)

By definition of R (A.13.1) we conclude

((new ñ′)(P̄ | R′),(new ñ′)(Q̄ | R′)) ∈ R ∪ ∼

which completes the proof for this case.
(Transition nρhere due to a synchronization of P̄ and R)
We have that

(new ñ)(P̄ | R)
nρhere−→ (new ñ,c)(P̄′ | R′) (A.13.19)

where (A.13.19) is either derived from

P̄
(νc)def s−→ P̄′ (A.13.20)

and

R
(νc)nρdef s−→ R′ (A.13.21)

or from

P̄
(νc)nρdef s−→ P̄′ (A.13.22)

45

and
R

(νc)def s−→ R′ (A.13.23)

assuming that name c does not occur as a free name of Q to simplify presentation - otherwise
we could derive the same transition up to some α-conversion on the resulting processes

(new ñ,c′)(P̄′{c�c′} | R′{c�c′})

using “fresh” name c′, in such way ensuring this assumption.
We consider the first case where the derivation occurs from (A.13.20) and (A.13.21), being

the proof for the latter case analogous. From (A.13.20) (A.13.2) we conclude that there exists
Q̄′ such that

Q̄
(νc)def s−→ Q̄′ (A.13.24)

and
P̄′ ∼ Q̄′ (A.13.25)

From (A.13.24) and (A.13.21) we can derive

(new ñ)(Q̄ | R)
nρhere−→ (new ñ,c)(Q̄′ | R′)

From (A.13.25) and by definition of R (A.13.1) we conclude

((new ñ,c)(P̄′ | R′),(new ñ,c)(Q̄′ | R′)) ∈ R

which completes the proof for this last case.
(Transition τ due to a synchronization of P̄ and R)
Finally we consider the case when P̄ and R synchronize. We have that

(new ñ)(P̄ | R) τ−→ (new ñ, ñ′)(P̄′ | R′) (A.13.26)

where (A.13.26) is derived from

P̄
(ν̃n′)λ−→ P̄′ (A.13.27)

and

R
(ν̃n′)λ−→ R′ (A.13.28)

assuming that names in ñ′ and the bound names of λ do not occur as free names of Q to simplify
presentation - otherwise we could derive the same transition up to some α-conversion on the
label λ{ñ′�ñ′′} and on the resulting processes

(new ñ, ñ′′)(P̄′{ñ′�ñ′′} | R′{ñ′�ñ′′})

using “fresh” names ñ′′, in such way ensuring this assumption. Baring in mind that bn((ν̃n′)λ)∩
fn(Q) = /0, from (A.13.27) and (A.13.2) we conclude that there exists Q̄′ such that

Q̄
(ν̃n′)λ−→ Q̄′ (A.13.29)

and
P̄′ ∼ Q̄′ (A.13.30)

From (A.13.29) and (A.13.28) we can derive

(new ñ)(Q̄ | R) τ−→ (new ñ, ñ′)(Q̄′ | R′)

From (A.13.30) and by definition of R (A.13.1) we conclude

((new ñ, ñ′)(P̄′ | R′),(new ñ, ñ′)(Q̄′ | R′)) ∈ R

which completes the proof for this last case.

46

Lemma A.14 Let P,Q be processes such that P∼ Q. Then for any process R it is the case that
try P catch R∼ try Q catch R.

Proof. Let us consider R defined as

R , {(try P catch R,try Q catch R) | P∼ Q∧∀R} (A.14.1)

We show that R ∪ ∼ is a bisimulation by coinduction on the definition of bisimulation.
Let us consider (P,Q) ∈ R ∪ ∼. We must show that for every P′,λ such that

P λ−→ P′

then there exists Q′ such that
Q λ−→ Q′

and (P′,Q′) ∈ R ∪ ∼.
We must consider two different cases: either (P,Q) ∈ R or (P,Q) ∈∼.
If (P,Q) ∈∼ we directly have that there exists Q′ such that

Q λ−→ Q′

and (P′,Q′) ∈∼ and hence (P′,Q′) ∈ R ∪ ∼.
If (P,Q)∈R we have that P and Q are, by definition of R (A.14.1), of the form try P̄ catchR

and try Q̄ catch R, respectively, for some processes R, P̄, Q̄ such that

P̄∼ Q̄ (A.14.2)

We must consider two possible transitions of try P̄ catch R: either P̄ triggers a throw or
some λ different from throw.

If P̄ triggers a throw we have

try P̄ catch R τ−→ R | P̄′ (A.14.3)

where (A.14.3) is derived from
P̄ throw−→ P̄′ (A.14.4)

From (A.14.4) and (A.14.2) we conclude that there exists Q̄′ such that

Q̄ throw−→ Q̄′ (A.14.5)

and
P̄′ ∼ Q̄′ (A.14.6)

From (A.14.5) we can derive
try Q̄ catch R τ−→ R | Q̄′

From (A.14.6) and considering Lemma A.13 we conclude

(R | P̄′,R | Q̄′) ∈ R ∪ ∼

which concludes the proof for this case.
If P̄ triggers a transition λ different from throw we have

try P̄ catch R λ−→ try P̄′ catch R (A.14.7)

47

where (A.14.7) is derived from
P̄ λ−→ P̄′ (A.14.8)

and λ 6= throw. From (A.14.7) and (A.14.2) we conclude that there exists Q̄′ such that

Q̄ λ−→ Q̄′ (A.14.9)

and
P̄′ ∼ Q̄′ (A.14.10)

From (A.14.9) we can derive

try Q̄ catch R λ−→ try Q̄′ catch R

and from (A.14.10) and by definition of R (A.14.1) we conclude that

(try P̄′ catch R,try Q̄′ catch R) ∈ R ∪ ∼

which completes the proof for this last case.

Lemma A.15 Let P,Q be processes such that P∼ Q. Then for any process R it is the case that
try R catch P∼ try R catch Q.

Proof. Let us consider R defined as

R , {(try R catch P,try R catch Q) | P∼ Q∧∀R} (A.15.1)

We show that R ∪ ∼ is a bisimulation by coinduction on the definition of bisimulation.
Let us consider (P,Q) ∈ R ∪ ∼. We must show that for every P′,λ such that

P λ−→ P′

then there exists Q′ such that
Q λ−→ Q′

and (P′,Q′) ∈ R ∪ ∼.
We must consider two different cases: either (P,Q) ∈ R or (P,Q) ∈∼.
If (P,Q) ∈∼ we directly have that there exists Q′ such that

Q λ−→ Q′

and (P′,Q′) ∈∼ and hence (P′,Q′) ∈ R ∪ ∼.
If (P,Q)∈R we have that P and Q are, by definition of R (A.15.1), of the form tryR catch P̄

and try R catch Q̄, respectively, for some processes R, P̄, Q̄ such that

P̄∼ Q̄ (A.15.2)

We must consider two possible transitions of try R catch P̄: either R triggers a throw or
some λ different from throw.

If R triggers a throw we have

try R catch P̄ τ−→ P̄ | R′ (A.15.3)

where (A.15.3) is derived from
R throw−→ R′ (A.15.4)

48

From (A.15.4) we can derive
try R catch Q̄ τ−→ Q̄ | R′

From (A.15.2) and considering Lemma A.13 we conclude

(P̄ | R′, Q̄ | R′) ∈ R ∪ ∼

which concludes the proof for this case.
If R triggers a transition λ different from throw we have

try R catch P̄ λ−→ try R′ catch P̄ (A.15.5)

where (A.15.5) is derived from
R λ−→ R′ (A.15.6)

and λ 6= throw. From (A.15.6) we can derive

try R catch Q̄ λ−→ try R′ catch Q̄

and from (A.1.2) and by definition of R (A.1.1) we conclude that

(try R′ catch P̄,try R′ catch Q̄) ∈ R ∪ ∼

which completes the proof for this last case.

Lemma A.16 Let P,Q be processes such that P∼ Q. Then it is the case that !P∼ !Q.

Proof. Let us consider R defined as

R , {P1 | !P2 ∼ Q1 | !Q2 | P1 ∼ Q1∧P2 ∼ Q2} (A.16.1)

We show that R ∪ ∼ is a bisimulation by coinduction on the definition of bisimulation.
Let us consider (P,Q) ∈ R ∪ ∼. We must show that for every P′,λ such that

P λ−→ P′

then there exists Q′ such that
Q λ−→ Q′

and (P′,Q′) ∈ R ∪ ∼.
We must consider two different cases: either (P,Q) ∈ R or (P,Q) ∈∼.
If (P,Q) ∈∼ we directly have that there exists Q′ such that

Q λ−→ Q′

and (P′,Q′) ∈∼ and hence (P′,Q′) ∈ R ∪ ∼.
If (P,Q)∈R we have that P and Q are, by definition of R (A.16.1), of the form P1 | !P2 and

Q1 | !Q2, respectively, for some processes P1,P2,Q1,Q2 such that

P1 ∼ Q1 (A.16.2)

and
P2 ∼ Q2 (A.16.3)

49

We must consider all possible transitions of P1 | !P2: either P1 triggers a transition, on either
a throw or on some other label, or one of the copies of !P2 triggers a transition, again either on
a throw or on some other label, or a synchronization takes place: either one of the copies of !P2
synchronizes with P1 or two copies of !P2 synchronize.

(Transition throw triggered by P1)
We have that

P1 | !P2
throw−→ P′1 (A.16.4)

where (A.16.4) is derived from
P1

throw−→ P′1 (A.16.5)

From (A.16.2) and (A.16.5) we conclude that there exists Q1
′ such that

Q1
throw−→ Q′1 (A.16.6)

and
P1
′ ∼ Q1

′ (A.16.7)

From (A.16.6) we conclude
Q1 | !Q2

throw−→ Q′1

From (A.16.7) we directly have that

(P′1,Q
′
1) ∈ R ∪ ∼

which concludes the proof for this case.
(Transition λ triggered by P1)
We have that

P1 | !P2
λ−→ P′1 | !P2 (A.16.8)

where (A.16.8) is derived from
P1

λ−→ P′1 (A.16.9)

From (A.16.2) and (A.16.9) we conclude that there exists Q1
′ such that

Q1
λ−→ Q′1 (A.16.10)

and
P1
′ ∼ Q1

′ (A.16.11)

From (A.16.10) we conclude
Q1 | !Q2

λ−→ Q′1 | !Q2

Considering (A.16.11) and (A.16.3), by definition of R (A.16.1) we conclude

(P′1 | !P2,Q′1 | !Q2) ∈ R ∪ ∼

which concludes the proof for this case.
(Transition throw triggered by one of the copies of !P2)
We have that

P1 | !P2
throw−→ P′2 (A.16.12)

where (A.16.12) is derived from
P2 | !P2

throw−→ P′2 (A.16.13)

50

and (A.16.13) is derived from
P2

throw−→ P′2 (A.16.14)

From (A.16.3) and (A.16.14) we conclude that there exists Q2
′ such that

Q2
throw−→ Q′2 (A.16.15)

and
P2
′ ∼ Q2

′ (A.16.16)

From (A.16.15) we conclude
Q2 | !Q2

throw−→ Q′2 (A.16.17)

and from (A.16.17) we conclude
Q1 | !Q2

throw−→ Q′2

From (A.16.16) we directly have that

(P′2,Q
′
2) ∈ R ∪ ∼

which concludes the proof for this case.
(Transition λ triggered by one of the copies of P2)
We have that

P1 | !P2
λ−→ P1 | P2

′ | !P2 (A.16.18)

where (A.16.18) is derived from
P2 | !P2

λ−→ P′2 | !P2 (A.16.19)

and (A.16.19) is derived from
P2

λ−→ P′2 (A.16.20)

From (A.16.3) and (A.16.20) we conclude that there exists Q2
′ such that

Q2
λ−→ Q′2 (A.16.21)

and
P2
′ ∼ Q2

′ (A.16.22)

From (A.16.21) we conclude
Q2 | !Q2

λ−→ Q′2 | !Q2 (A.16.23)

and from (A.16.23) we conclude

Q1 | !Q2
λ−→ Q1 | Q′2 | !Q2

From (A.16.22) and (A.16.2), building on Lemma A.13 we conclude

P1 | P′2 ∼ Q1 | Q′2 (A.16.24)

From (A.16.24) and (A.16.3), by definition of R (A.16.1) we conclude

(P1 | P′2 | !P2,Q1 | Q′2 | !Q2) ∈ R ∪ ∼

which concludes the proof for this case.
(Synchronization between P1 and one of the copies of !P2)

51

We have that
P1 | !P2

τ−→ (new ñ)(P′1 | P2
′) | !P2 (A.16.25)

where (A.16.25) is derived from

P1 | P2 | !P2
τ−→ (new ñ)(P′1 | P2

′) | !P2 (A.16.26)

and (A.16.26) is derived from

P1 | P2
τ−→ (new ñ)(P′1 | P2

′) (A.16.27)

and (A.16.27) is derived from

P1
(ν̃n)λ−→ P′1 (A.16.28)

and

P2
(ν̃n)λ−→ P′2 (A.16.29)

From (A.16.2) and (A.16.28) we conclude that there exists Q1
′ such that

Q1
(ν̃n)λ−→ Q′1 (A.16.30)

and
P1
′ ∼ Q1

′ (A.16.31)

From (A.16.3) and (A.16.29) we conclude that there exists Q2
′ such that

Q2
(ν̃n)λ−→ Q′2 (A.16.32)

and
P2
′ ∼ Q2

′ (A.16.33)

From (A.16.30) and (A.16.32) we conclude

Q1 | Q2
τ−→ (new ñ)(Q′1 | Q′2) (A.16.34)

and from (A.16.34) we conclude

Q1 | Q2 | !Q2
τ−→ (new ñ)(Q′1 | Q′2) | !Q2 (A.16.35)

and finally from (A.16.35) we conclude

Q1 | !Q2
τ−→ (new ñ)(Q′1 | Q′2) | !Q2

From (A.16.31) and (A.16.33), building on Lemma A.13 we conclude

P′1 | P′2 ∼ Q′1 | Q′2 (A.16.36)

and from (A.16.36) and considering Lemma A.11 we conclude

(new ñ)(P′1 | P′2)∼ (new ñ)(Q′1 | Q′2) (A.16.37)

From (A.16.37) and (A.16.3), by definition of R (A.16.1) we conclude

((new ñ)(P′1 | P′2) | !P2,(new ñ)(Q′1 | Q′2) | !Q2) ∈ R ∪ ∼

which concludes the proof for this case.

52

(Synchronization between two copies of !P2)
We have that

P1 | !P2
τ−→ P1 | (new ñ)(P′2 | P2

′′) | !P2 (A.16.38)

where (A.16.38) is derived from

P1 | P2 | P2 | !P2
τ−→ P1 | (new ñ)(P′2 | P2

′′) | !P2 (A.16.39)

and (A.16.39) is derived from

P2 | P2
τ−→ (new ñ)(P′2 | P2

′′) (A.16.40)

and (A.16.40) is derived from

P2
(ν̃n)λ−→ P′2 (A.16.41)

and

P2
(ν̃n)λ−→ P′′2 (A.16.42)

From (A.16.3) and (A.16.41) we conclude that there exists Q2
′ such that

Q2
(ν̃n)λ−→ Q′2 (A.16.43)

and
P2
′ ∼ Q2

′ (A.16.44)

From (A.16.3) and (A.16.42) we conclude that there exists Q2
′′ such that

Q2
(ν̃n)λ−→ Q′′2 (A.16.45)

and
P2
′′ ∼ Q2

′′ (A.16.46)

From (A.16.43) and (A.16.45) we conclude

Q2 | Q2
τ−→ (new ñ)(Q′2 | Q′′2) (A.16.47)

and from (A.16.47) we conclude

Q1 | Q2 | Q2 | !Q2
τ−→ Q1 | (new ñ)(Q′2 | Q′′2) | !Q2 (A.16.48)

and finally from (A.16.48) we conclude

Q1 | !Q2
τ−→ Q1 | (new ñ)(Q′2 | Q′′2) | !Q2

From (A.16.44) and (A.16.46), building on Lemma A.13 we conclude

P′2 | P′′2 ∼ Q′2 | Q′′2 (A.16.49)

and from (A.16.49) and considering Lemma A.11 we conclude

(new ñ)(P′2 | P′′2)∼ (new ñ)(Q′2 | Q′′2) (A.16.50)

From (A.16.50) and (A.16.2), building on Lemma A.13 we conclude

P1 | (new ñ)(P′2 | P′′2)∼ Q1 | (new ñ)(Q′2 | Q′′2) (A.16.51)

From (A.16.51) and (A.16.3), by definition of R (A.16.1) we conclude

(P1 | (new ñ)(P′2 | P′′2) | !P2,Q1 | (new ñ)(Q′2 | Q′′2) | !Q2) ∈ R ∪ ∼

which concludes the proof for this case.

53

Proof of auxiliar results to Proposition 5.4

Lemma A.17 We have (new m̃)(n I [P])∼ n I [(new m̃)(P)] for any process P and names n, m̃
such that n 6∈ m̃.

Proof. Let us consider R defined as

R , {((new m̃)(n I [P]),n I [(new m̃)(P)]) | ∀P,n, m̃ . n 6∈ m̃}∪{(P,P)} (A.17.1)

We show that R is a bisimulation by coinduction on the definition of bisimulation.
Let us consider (P,Q) ∈ R . We must show that for every P′,λ such that

P λ−→ P′

then there exists Q′ such that
Q λ−→ Q′

and (P′,Q′) ∈ R .
We must consider two different cases: either

(P,Q) ∈ {((new m̃)(n I [P]),n I [(new m̃)(P)]) | ∀P,n, m̃ . n 6∈ m̃}

or (P,Q) ∈ {(P,P)}.
If (P,Q) ∈ {(P,P)} we directly have that (P′,P′) ∈ {(P,P)} and hence (P′,P′) ∈ R .
Otherwise we have that P and Q are of the form (new m̃)(n I [P̄]) and n I [(new m̃)(P̄)],

respectively, for some process P̄ and names n, m̃ such that n 6∈ m̃.
We have that all possible transitions of (new m̃)(n I [P̄]) are triggered by P̄ so we have that

(new m̃)(n I [P̄]) λ−→ (new m̃′)P̄′ (A.17.2)

where (A.17.2) is derived from
n I [P̄] λ′−→ P̄′ (A.17.3)

having λ = (ν̃m′′)λ′, i.e., label λ is obtained by placing a set of bound names in front of λ′, a
set that corresponds exactly to the names that λ′ extrudes that are restricted names contained in
m̃, hence m̃′′ = out(λ′)∩ m̃. Also we have that the resulting restricted name set m̃′ corresponds
to the initial one m̃ minus the names extruded, hence (ν̃m′ = m̃ / m̃′′).

We have that (A.17.3) is derived from one of either seven distinct cases: either from a
throw, or from a (ν̃o)mρλ′′, where λ′′ 6= here, or from n I here, or from (ν̃o)λ′′←, or from
(ν̃o)λ′′↓ or (ν̃o)λ′′↑ or finally from (νc)def s.

We must also consider all possible transitions of n I [(new m̃)P̄] which proof we omit given
that it follows similar lines.

(Case throw)
We have that

(new m̃)(n I [P̄]) throw−→ (new m̃)P̄′ (A.17.4)

where (A.17.4) is derived from
n I [P̄] throw−→ P̄′ (A.17.5)

and (A.17.5) is derived from
P̄ throw−→ P̄′ (A.17.6)

From (A.17.6) we can derive
(new m̃)P̄ throw−→ (new m̃)P̄′ (A.17.7)

54

From (A.17.7) we derive
n I [(new m̃)P̄] throw−→ (new m̃)P̄′

By definition of R (A.17.1) we have that

((new m̃)P̄′,(new m̃)P̄′) ∈ R

which completes the proof for this case.
(Case (ν̃o)mρλ′′)
We have that

(new m̃)(n I [P̄])
(ν̃m′′)(ν̃o)mρλ′′−→ (new m̃′)(n I

[
P̄′

]
) (A.17.8)

where out(λ′′)∩ m̃ = m̃′′ and m̃′ = m̃ / m̃′′.
(A.17.8) is derived from

n I [P̄]
(ν̃o)mρλ′′−→ n I

[
P̄′

]
(A.17.9)

and (A.17.9) is derived from

P̄
(ν̃o)mρλ′′−→ P̄′ (A.17.10)

and λ′′ 6= here. From (A.17.10) and recalling that out(λ′)∩ m̃ = m̃′′ and m̃′ = m̃ / m̃′′ we can
derive

(new m̃)P̄
(ν̃m′′)(ν̃o)mρλ′′−→ (new m̃′)P̄′ (A.17.11)

From (A.17.11) and noting that λ′′ 6= here we derive

n I [(new m̃)P̄]
(ν̃m′′)(ν̃o)mρλ′′−→ n I

[
(new m̃′)P̄′

]
By definition of R (A.17.1) we have that

((new m̃′)(n I
[
P̄′

]
),n I

[
(new m̃′)P̄′

]
) ∈ R

which completes the proof for this case.
(Case n I here)
We have that

(new m̃)(n I [P̄]) τ−→ (new m̃)(n I
[
P̄′

]
) (A.17.12)

where (A.17.12) is derived from

n I [P̄] τ−→ n I
[
P̄′

]
(A.17.13)

and (A.17.13) is derived from
P̄ nIhere−→ P̄′ (A.17.14)

From (A.17.14) and recalling that n 6∈ m̃ we can derive

(new m̃)P̄ nIhere−→ (new m̃)P̄′ (A.17.15)

From (A.17.15) we derive

n I [(new m̃)P̄] τ−→ n I
[
(new m̃)P̄′

]
By definition of R (A.17.1) we have that

((new m̃)(n I
[
P̄′

]
),n I

[
(new m̃)P̄′

]
) ∈ R

55

which completes the proof for this case.
(Case (ν̃o)λ′′←)
We have that

(new m̃)(n I [P̄])
(ν̃m′′)(ν̃o)nI·λ′′←−→ (new m̃′)(n I

[
P̄′

]
) (A.17.16)

where out(λ′′)∩ m̃ = m̃′′ and m̃′ = m̃ / m̃′′.
(A.17.16) is derived from

n I [P̄]
(ν̃o)nI·λ′′←−→ n I

[
P̄′

]
(A.17.17)

and (A.17.17) is derived from

P̄
(ν̃o)λ′′←−→ P̄′ (A.17.18)

From (A.17.18) and out(λ′′)∩ m̃ = m̃′′ and m̃′ = m̃ / m̃′′ we derive

(new m̃)P̄
(ν̃m′′)(ν̃o)λ′′←−→ (new m̃′)P̄′ (A.17.19)

From (A.17.19) we can derive

n I [(new m̃)P̄]
(ν̃m′′)(ν̃o)nI·λ′′←−→ n I

[
(new m̃′)P̄′

]
By definition of R (A.17.1) we have that

((new m̃′)(n I
[
P̄′

]
),n I

[
(new m̃′)P̄′

]
) ∈ R

which completes the proof for this case.
(Case (ν̃o)λ′′↓)
We have that

(new m̃)(n I [P̄])
(ν̃m′′)(ν̃o)nI·λ′′↓−→ (new m̃′)(n I

[
P̄′

]
) (A.17.20)

where out(λ′′)∩ m̃ = m̃′′ and m̃′ = m̃ / m̃′′.
(A.17.20) is derived from

n I [P̄]
(ν̃o)nI·λ′′↓−→ n I

[
P̄′

]
(A.17.21)

and (A.17.21) is derived from

P̄
(ν̃o)λ′′↓−→ P̄′ (A.17.22)

From (A.17.22) and out(λ′′)∩ m̃ = m̃′′ and m̃′ = m̃ / m̃′′ we derive

(new m̃)P̄
(ν̃m′′)(ν̃o)λ′′↓−→ (new m̃′)P̄′ (A.17.23)

From (A.17.23) we can derive

n I [(new m̃)P̄]
(ν̃m′′)(ν̃o)nI·λ′′↓−→ n I

[
(new m̃′)P̄′

]
By definition of R (A.17.1) we have that

((new m̃′)(n I
[
P̄′

]
),n I

[
(new m̃′)P̄′

]
) ∈ R

which completes the proof for this case.

56

(Case (ν̃o)λ′′↑)
We have that

(new m̃)(n I [P̄])
(ν̃m′′)(ν̃o)λ′′↓−→ (new m̃′)(n I

[
P̄′

]
) (A.17.24)

where out(λ′′)∩ m̃ = m̃′′ and m̃′ = m̃ / m̃′′.
(A.17.24) is derived from

n I [P̄]
(ν̃o)λ′′↓−→ n I

[
P̄′

]
(A.17.25)

and (A.17.25) is derived from

P̄
(ν̃o)λ′′↑−→ P̄′ (A.17.26)

From (A.17.26) and out(λ′′)∩ m̃ = m̃′′ and m̃′ = m̃ / m̃′′ we derive

(new m̃)P̄
(ν̃m′′)(ν̃o)λ′′↑−→ (new m̃′)P̄′ (A.17.27)

From (A.17.27) we can derive

n I [(new m̃)P̄]
(ν̃m′′)(ν̃o)λ′′↑−→ n I

[
(new m̃′)P̄′

]
By definition of R (A.17.1) we have that

((new m̃′)(n I
[
P̄′

]
),n I

[
(new m̃′)P̄′

]
) ∈ R

which completes the proof for this case.
(Case (νc)def s)
We have that

(new m̃)(n I [P̄])
(νc)nIdef s−→ (new m̃)(n I

[
P̄′

]
) (A.17.28)

where (A.17.28) is derived from

n I [P̄]
(νc)nIdef s−→ n I

[
P̄′

]
(A.17.29)

and {c,n,s}∩ m̃ = /0.
(A.17.29) is derived from

P̄
(νc)def s−→ P̄′ (A.17.30)

From (A.17.30) and {c,n,s}∩ m̃ = /0 we derive

(new m̃)P̄
(νc)def s−→ (new m̃)P̄′ (A.17.31)

From (A.17.31) we can derive

n I [(new m̃)P̄]
(νc)nIdef s−→ n I

[
(new m̃)P̄′

]
By definition of R (A.17.1) we have that

((new m̃)(n I
[
P̄′

]
),n I

[
(new m̃)P̄′

]
) ∈ R

which completes the proof for this last case.

Lemma A.18 We have (new m̃)(n J [P])∼ n J [(new m̃)(P)] for any process P and names n, m̃
such that n 6∈ m̃.

57

Proof. Analogous to that of Lemma A.17.

Lemma A.19 We have n I [P] | n I [Q]∼ n I [P | Q], for any name n and processes P,Q.

Proof. Let us consider R defined as

R , {((new m̃)(n I [P] | n I [Q]),n I [(new m̃)(P | Q)]) | ∀P,Q,n, m̃ . n 6∈ m̃} (A.19.1)

We show that R ∪ ∼ is a bisimulation by coinduction on the definition of bisimulation.
Let us consider (P,Q) ∈ R ∪ ∼. We must show that for every P′,λ such that

P λ−→ P′

then there exists Q′ such that
Q λ−→ Q′

and (P′,Q′) ∈ R ∪ ∼.
We must consider two different cases: either (P,Q) ∈ R or (P,Q) ∈∼.
If (P,Q) ∈∼ we directly have that there exists Q′ such that

Q λ−→ Q′

and (P′,Q′) ∈∼ and hence (P′,Q′) ∈ R ∪ ∼.
If (P,Q)∈R we have that P and Q are, by definition of R (A.19.1) of the form (new m̃)(n I

[P̄] | n I
[
Q̄

]
) and (new m̃)(n I

[
P̄ | Q̄

]
), respectively, for some name n and set of names m̃ and

processes P̄, Q̄ such that n 6∈ m̃.
We must consider three distinct cases for the derivation of the transition of (new m̃)(n I

[P̄] | n I
[
Q̄

]
): it is either triggered by P̄ or by Q̄ or by a synchronization of P̄ and Q̄.

(Transition triggered by P̄)
We have that the transition λ can be derived from a throw or from a (ν̃o)mρλ′, where

λ′ 6= here, or from n I here, or from (ν̃o)λ′←, or from (ν̃o)λ′↓ or from (ν̃o)λ′↑ or finally from
(νc)def s.

(Case throw)
We have that

(new m̃)(n I [P̄] | n I
[
Q̄

]
) throw−→ (new m̃)P̄′ (A.19.2)

where (A.19.2) is derived from

n I [P̄] | n I
[
Q̄

] throw−→ P̄′ (A.19.3)

and (A.19.3) is derived from
n I [P̄] throw−→ P̄′ (A.19.4)

and (A.19.4) is derived from
P̄ throw−→ P̄′ (A.19.5)

From (A.19.5) we can derive
P̄ | Q̄ throw−→ P̄′ (A.19.6)

and from (A.19.7) we conclude

(new m̃)(P̄ | Q̄) throw−→ (new m̃)(P̄′) (A.19.7)

58

From (A.19.7) we derive

n I
[
(new m̃)(P̄ | Q̄)

] throw−→ (new m̃)P̄′

We directly have that
((new m̃)P̄′,(new m̃)P̄′) ∈ R ∪ ∼

which completes the proof for this case.
(Case (ν̃o)mρλ′)
We have that

(new m̃)(n I [P̄] | n I
[
Q̄

]
)

(ν̃m′′)(ν̃o)mρλ′−→ (new m̃′)(n I
[
P̄′

]
| n I

[
Q̄

]
) (A.19.8)

where m̃′′ corresponds to the set of names extruded by λ′ contained in m̃ and m̃′ the remaining
set of restricted names, being that (A.19.8) is derived from

n I [P̄] | n I
[
Q̄

] (ν̃o)mρλ′−→ n I
[
P̄′

]
| n I

[
Q̄

]
(A.19.9)

and (n((ν̃o)mρλ′) / m̃′′)∩ m̃ = /0.
(A.19.9) is derived from

n I [P̄]
(ν̃o)mρλ′−→ n I

[
P̄′

]
(A.19.10)

and bn((ν̃o)mρλ′)∩ fn(n I
[
Q̄

]
) = /0.

(A.19.10) is derived from

P̄
(ν̃o)mρλ′−→ P̄′ (A.19.11)

and it is the case that λ′ 6= here. From (A.19.11) and from the fact that bn((ν̃o)mρλ′)∩ fn(Q) =
/0 we can derive

P̄ | Q̄ (ν̃o)mρλ′−→ P̄′ | Q̄ (A.19.12)

We have that out(λ′)∩ m̃ = m̃′′ and m̃′ = m̃ / m̃′′ hence from (A.19.12) we can derive

(new m̃)(P̄ | Q̄)
(ν̃m′′)(ν̃o)mρλ′−→ (new m̃′)(P̄′ | Q̄) (A.19.13)

From (A.19.13) considering that λ′ 6= here we derive

n I
[
(new m̃)(P̄ | Q̄)

] (ν̃m′′)(ν̃o)mρλ′−→ n I
[
(new m̃′)(P̄′ | Q̄)

]
By definition of R (A.19.1) we have that

((new m̃′)(n I
[
P̄′

]
| n I

[
Q̄

]
),n I

[
(new m̃′)(P̄′ | Q̄)

]
) ∈ R ∪ ∼

which completes the proof for this case.
(Case n I here)
We have that

(new m̃)(n I [P̄] | n I
[
Q̄

]
) τ−→ (new m̃)(n I

[
P̄′

]
| n I

[
Q̄

]
) (A.19.14)

where (A.19.14) is derived from

n I [P̄] | n I
[
Q̄

] τ−→ n I
[
P̄′

]
| n I

[
Q̄

]
(A.19.15)

and (A.19.15) is derived from
n I [P̄] τ−→ n I

[
P̄′

]
(A.19.16)

59

and (A.19.16) is derived from
P̄ nIhere−→ P̄′ (A.19.17)

From (A.19.17) we can derive
P̄ | Q̄ nIhere−→ P̄′ | Q̄ (A.19.18)

From (A.19.18) noting that n 6∈ m̃ we can derive

(new m̃)(P̄ | Q̄) nIhere−→ (new m̃)(P̄′ | Q̄) (A.19.19)

From (A.19.19) we conclude

n I
[
(new m̃)(P̄ | Q̄)

] τ−→ n I
[
(new m̃)(P̄′ | Q̄)

]
By definition of R (A.19.1) we have that

((new m̃)(n I
[
P̄′

]
| n I

[
Q̄

]
),n I

[
(new m̃)(P̄′ | Q̄)

]
) ∈ R ∪ ∼

which completes the proof for this case.
(Case (ν̃o)λ′←)
We have that

(new m̃)(n I [P̄] | n I
[
Q̄

]
)

(ν̃m′′)(ν̃o)nI·λ′←−→ (new m̃′)(n I
[
P̄′

]
| n I

[
Q̄

]
) (A.19.20)

where m̃′′ corresponds to the set of names extruded by λ′ contained in m̃ and m̃′ the remaining
set of restricted names, being that (A.19.20) is derived from

n I [P̄] | n I
[
Q̄

] (ν̃o)nI·λ′←−→ n I
[
P̄′

]
| n I

[
Q̄

]
(A.19.21)

and (n((ν̃o)n I ·λ′←) / m̃′′)∩ m̃ = /0.
(A.19.21) is derived from

n I [P̄]
(ν̃o)nI·λ′←−→ n I

[
P̄′

]
(A.19.22)

and bn((ν̃o)n I ·λ′←)∩ fn(n I
[
Q̄

]
) = /0.

(A.19.22) is derived from

P̄
(ν̃o)λ′←−→ P̄′ (A.19.23)

From (A.19.23) and from the fact that bn((ν̃o)λ′←)∩ fn(Q) = /0 we can derive

P̄ | Q̄ (ν̃o)λ′←−→ P̄′ | Q̄ (A.19.24)

Considering (n((ν̃o) ← λ′) / m̃′′) ∩ m̃ = /0 and out(λ′) ∩ m̃ = m̃′′ and m̃′ = m̃ / m̃′′, from
(A.19.24) we can derive

(new m̃)(P̄ | Q̄)
(ν̃m′′)(ν̃o)λ′←−→ (new m̃′)(P̄′ | Q̄) (A.19.25)

From (A.19.25) we conclude

n I
[
(new m̃)(P̄ | Q̄)

] (ν̃m′′)(ν̃o)nI·λ′←−→ n I
[
(new m̃′)(P̄′ | Q̄)

]
By definition of R (A.19.1) we have that

((new m̃′)(n I
[
P̄′

]
| n I

[
Q̄

]
),n I

[
(new m̃′)(P̄′ | Q̄)

]
) ∈ R ∪ ∼

60

which completes the proof for this case.
(Case (ν̃o)λ′↓)
We have that

(new m̃)(n I [P̄] | n I
[
Q̄

]
)

(ν̃m′′)(ν̃o)nI·λ′↓−→ (new m̃′)(n I
[
P̄′

]
| n I

[
Q̄

]
) (A.19.26)

where m̃′′ corresponds to the set of names extruded by λ′ contained in m̃ and m̃′ the remaining
set of restricted names, being that (A.19.26) is derived from

n I [P̄] | n I
[
Q̄

] (ν̃o)nI·λ′↓−→ n I
[
P̄′

]
| n I

[
Q̄

]
(A.19.27)

and (n((ν̃o)n I ·λ′↓) / m̃′′)∩ m̃ = /0.
(A.19.27) is derived from

n I [P̄]
(ν̃o)nI·λ′↓−→ n I

[
P̄′

]
(A.19.28)

and bn((ν̃o)n I ·λ′↓)∩ fn(n I
[
Q̄

]
) = /0.

(A.19.28) is derived from

P̄
(ν̃o)λ′↓−→ P̄′ (A.19.29)

From (A.19.29) and from the fact that bn((ν̃o)λ′↓)∩ fn(Q) = /0 we can derive

P̄ | Q̄ (ν̃o)λ′↓−→ P̄′ | Q̄ (A.19.30)

Considering (n((ν̃o) ↓ λ′) / m̃′′)∩m̃ = /0 and out(λ′)∩m̃ = m̃′′ and m̃′= m̃ / m̃′′, from (A.19.30)
we can derive

(new m̃)(P̄ | Q̄)
(ν̃m′′)(ν̃o)λ′↓−→ (new m̃′)(P̄′ | Q̄) (A.19.31)

From (A.19.31) we conclude

n I
[
(new m̃)(P̄ | Q̄)

] (ν̃m′′)(ν̃o)nI·λ′↓−→ n I
[
(new m̃′)(P̄′ | Q̄)

]
By definition of R (A.19.1) we have that

((new m̃′)(n I
[
P̄′

]
| n I

[
Q̄

]
),n I

[
(new m̃′)(P̄′ | Q̄)

]
) ∈ R ∪ ∼

which completes the proof for this case.
(Case (ν̃o)λ′↑)
We have that

(new m̃)(n I [P̄] | n I
[
Q̄

]
)

(ν̃m′′)(ν̃o)λ′↓−→ (new m̃′)(n I
[
P̄′

]
| n I

[
Q̄

]
) (A.19.32)

where m̃′′ corresponds to the set of names extruded by λ′ contained in m̃ and m̃′ the remaining
set of restricted names, being that (A.19.32) is derived from

n I [P̄] | n I
[
Q̄

] (ν̃o)λ′↓−→ n I
[
P̄′

]
| n I

[
Q̄

]
(A.19.33)

and (n((ν̃o)λ′↓) / m̃′′)∩ m̃ = /0.
(A.19.33) is derived from

n I [P̄]
(ν̃o)λ′↓−→ n I

[
P̄′

]
(A.19.34)

and bn((ν̃o)λ′↓)∩ fn(n I
[
Q̄

]
) = /0.

61

(A.19.34) is derived from

P̄
(ν̃o)λ′↑−→ P̄′ (A.19.35)

From (A.19.35) and from the fact that bn((ν̃o)λ′↑)∩ fn(Q) = /0 we can derive

P̄ | Q̄ (ν̃o)λ′↑−→ P̄′ | Q̄ (A.19.36)

Considering (n((ν̃o) ↑ λ′) / m̃′′)∩m̃ = /0 and out(λ′)∩m̃ = m̃′′ and m̃′= m̃ / m̃′′, from (A.19.36)
we can derive

(new m̃)(P̄ | Q̄)
(ν̃m′′)(ν̃o)λ′↑−→ (new m̃′)(P̄′ | Q̄) (A.19.37)

From (A.19.37) we conclude

n I
[
(new m̃)(P̄ | Q̄)

] (ν̃m′′)(ν̃o)λ′↓−→ n I
[
(new m̃′)(P̄′ | Q̄)

]
By definition of R (A.19.1) we have that

((new m̃′)(n I
[
P̄′

]
| n I

[
Q̄

]
),n I

[
(new m̃′)(P̄′ | Q̄)

]
) ∈ R ∪ ∼

which completes the proof for this case.
(Case (νc)def s)
We have that

(new m̃)(n I [P̄] | n I
[
Q̄

]
)

(νc)nIdef s−→ (new m̃)(n I
[
P̄′

]
| n I

[
Q̄

]
) (A.19.38)

where (A.19.38) is derived from

n I [P̄] | n I
[
Q̄

] (νc)nIdef s−→ n I
[
P̄′

]
| n I

[
Q̄

]
(A.19.39)

and n((νc)n I def s)∩ m̃ = /0.
(A.19.39) is derived from

n I [P̄]
(νc)nIdef s−→ n I

[
P̄′

]
(A.19.40)

and bn((νc)n I def s)∩ fn(n I
[
Q̄

]
) = /0.

(A.19.40) is derived from

P̄
(νc)def s−→ P̄′ (A.19.41)

From (A.19.41) and from the fact that bn((νc)def s)∩ fn(Q) = /0 we can derive

P̄ | Q̄ (νc)def s−→ P̄′ | Q̄ (A.19.42)

Considering (n((νc)def s)∩ m̃ = /0, from (A.19.42) we can derive

(new m̃)(P̄ | Q̄)
(νc)def s−→ (new m̃)(P̄′ | Q̄) (A.19.43)

From (A.19.43) we conclude

n I
[
(new m̃)(P̄ | Q̄)

] (νc)nIdef s−→ n I
[
(new m̃)(P̄′ | Q̄)

]
By definition of R (A.19.1) we have that

((new m̃)(n I
[
P̄′

]
| n I

[
Q̄

]
),n I

[
(new m̃)(P̄′ | Q̄)

]
) ∈ R ∪ ∼

62

which completes the proof for this last case.
(Transition triggered by Q̄)
The proof follows similar lines to that of the transitions triggered by P̄.
(Synchronization between P̄ and Q̄)
We must consider three distinct cases that allow for the synchronization to take place: either

the processes are communicating at their upper level (↑), or they are communicating at their
level (↓), or they synchronize on at least one propagated located label.

(Case upper level)
We have that

(new m̃)(n I [P̄] | n I
[
Q̄

]
) τ−→ (new m̃, õ)(n I

[
P̄′

]
| n I

[
Q̄′

]
) (A.19.44)

where (A.19.44) is derived from

n I [P̄] | n I
[
Q̄

] τ−→ (new õ)(n I
[
P̄′

]
| n I

[
Q̄′

]
) (A.19.45)

and (A.19.45) is derived from

n I [P̄]
(ν̃o)λ′↓−→ n I

[
P̄′

]
(A.19.46)

and

n I
[
Q̄

] (ν̃o)λ′↓−→ n I
[
Q̄′

]
(A.19.47)

We have that (A.19.46) is derived from

P̄
(ν̃o)λ′↑−→ P̄′ (A.19.48)

and (A.19.47) is derived from

Q̄
(ν̃o)λ′↑−→ Q̄′ (A.19.49)

From (A.19.48) and (A.19.49) we conclude

P̄ | Q̄ τ−→ (new õ)(P̄′ | Q̄′) (A.19.50)

From (A.19.50) we conclude

(new m̃)(P̄ | Q̄) τ−→ (new m̃, õ)(P̄′ | Q̄′) (A.19.51)

and finally from (A.19.51) we conclude

n I
[
(new m̃)(P̄ | Q̄)

] τ−→ n I
[
(new m̃, õ)(P̄′ | Q̄′)

]
(A.19.52)

By definition of R (A.19.1) we conclude

((new m̃, õ)(n I
[
P̄′

]
| n I

[
Q̄′

]
),n I

[
(new m̃, õ)(P̄′ | Q̄′)

]
) ∈ R ∪ ∼

which completes the proof for this case.
(Case process level)
We have that

(new m̃)(n I [P̄] | n I
[
Q̄

]
) τ−→ (new m̃, õ)(n I

[
P̄′

]
| n I

[
Q̄′

]
) (A.19.53)

where (A.19.53) is derived from

n I [P̄] | n I
[
Q̄

] τ−→ (new õ)(n I
[
P̄′

]
| n I

[
Q̄′

]
) (A.19.54)

63

and (A.19.54) is derived from

n I [P̄]
(ν̃o)nI·λ′↓−→ n I

[
P̄′

]
(A.19.55)

and

n I
[
Q̄

] (ν̃o)nI·λ′↓−→ n I
[
Q̄′

]
(A.19.56)

We have that (A.19.55) is derived from

P̄
(ν̃o)λ′↓−→ P̄′ (A.19.57)

and (A.19.56) is derived from

Q̄
(ν̃o)λ′↓−→ Q̄′ (A.19.58)

From (A.19.57) and (A.19.58) we conclude

P̄ | Q̄ τ−→ (new õ)(P̄′ | Q̄′) (A.19.59)

From (A.19.59) we conclude

(new m̃)(P̄ | Q̄) τ−→ (new m̃, õ)(P̄′ | Q̄′) (A.19.60)

and finally from (A.19.60) we conclude

n I
[
(new m̃)(P̄ | Q̄)

] τ−→ n I
[
(new m̃, õ)(P̄′ | Q̄′)

]
(A.19.61)

By definition of R (A.19.1) we conclude

((new m̃, õ)(n I
[
P̄′

]
| n I

[
Q̄′

]
),n I

[
(new m̃, õ)(P̄′ | Q̄′)

]
) ∈ R ∪ ∼

which completes the proof for this case.
(Case located label)
We have that

(new m̃)(n I [P̄] | n I
[
Q̄

]
) τ−→ (new m̃, õ)(n I

[
P̄′

]
| n I

[
Q̄′

]
) (A.19.62)

where (A.19.62) is derived from

n I [P̄] | n I
[
Q̄

] τ−→ (new õ)(n I
[
P̄′

]
| n I

[
Q̄′

]
) (A.19.63)

and (A.19.63) is derived from

n I [P̄]
(ν̃o)rρλ−→ n I

[
P̄′

]
(A.19.64)

and

n I
[
Q̄

] (ν̃o)rρλ−→ n I
[
Q̄′

]
(A.19.65)

We have that (A.19.64) is derived from either

P̄
(ν̃o)rρλ−→ P̄′ (A.19.66)

or from
P̄

(ν̃o)λ−→ P̄′ (A.19.67)

64

in which case r = n and ρ =I. We also have that (A.19.65) is either derived from

Q̄
(ν̃o)rρλ−→ Q̄′ (A.19.68)

or from

Q̄
(ν̃o)λ−→ Q̄′ (A.19.69)

in which case r = n and ρ =I. We consider the combinatory of the four distinct cases: ei-
ther (A.19.66) and (A.19.68) are true, or (A.19.66) and (A.19.69) are true, or (A.19.67) and
(A.19.68) are true, or finally (A.19.67) and (A.19.69) are true.

In the first case we have (A.19.66) and (A.19.68) from which we conclude

P̄ | Q̄ τ−→ (new õ)(P̄′ | Q̄′) (A.19.70)

From (A.19.70) we conclude

(new m̃)(P̄ | Q̄) τ−→ (new m̃, õ)(P̄′ | Q̄′) (A.19.71)

In the second case we have (A.19.67) and (A.19.68) from which we conclude

P̄ | Q̄ nIhere−→ (new õ)(P̄′ | Q̄′) (A.19.72)

From (A.19.72) we conclude

(new m̃)(P̄ | Q̄) nIhere−→ (new m̃, õ)(P̄′ | Q̄′) (A.19.73)

In the third case we have (A.19.67) and (A.19.68) from which we conclude

P̄ | Q̄ nIhere−→ (new õ)(P̄′ | Q̄′) (A.19.74)

From (A.19.74) we conclude

(new m̃)(P̄ | Q̄) nIhere−→ (new m̃, õ)(P̄′ | Q̄′) (A.19.75)

The fourth case has already been proven given that λ must be either be a ↑ label or a ↓ being the
proof for these cases shown above (it is not possible that two← not located synchronize after
being located at the same context, and service instantiation is always a located label).

Finally either from (A.19.71) or (A.19.73) or (A.19.75) we conclude

n I
[
(new m̃)(P̄ | Q̄)

] τ−→ n I
[
(new m̃, õ)(P̄′ | Q̄′)

]
(A.19.76)

By definition of R (A.19.1) we conclude

((new m̃, õ)(n I
[
P̄′

]
| n I

[
Q̄′

]
),n I

[
(new m̃, õ)(P̄′ | Q̄′)

]
) ∈ R ∪ ∼

which completes the proof for this last case.
(Symmetry)
We must now consider the same three distinct cases for the derivation of the transition of

n I
[
(new m̃)(P̄ | Q̄)

]
: it is either triggered by P̄ or by Q̄ or by a synchronization of P̄ and Q̄. We

ommit the proofs for the first two, given that they follow similar lines to what was shown above,
and show the proof for the case of the synchronization. We consider the now four different cases
that allow for a synchronization to take place: either the processes are trying to communicate

65

at their level, or at their upper level, or a synchronization takes places on two located labels or
finally on a located label and an unlocated label.

(Case upper level)
We have that

n I
[
(new m̃)(P̄ | Q̄)

] τ−→ n I
[
(new m̃, õ)(P̄′ | Q̄′)

]
(A.19.77)

where (A.19.77) is derived from

(new m̃)(P̄ | Q̄) τ−→ (new m̃, õ)(P̄′ | Q̄′) (A.19.78)

and (A.19.78) is derived from

P̄ | Q̄ τ−→ (new õ)(P̄′ | Q̄′) (A.19.79)

(A.19.79) is derived from

P̄
(ν̃o)λ′↑−→ P̄′ (A.19.80)

and

Q̄
(ν̃o)λ′↑−→ Q̄′ (A.19.81)

From (A.19.80) we conclude

n I [P̄]
(ν̃o)λ′↓−→ n I

[
P̄′

]
(A.19.82)

and from (A.19.81) we conclude

n I
[
Q̄

] (ν̃o)λ′↓−→ n I
[
Q̄′

]
(A.19.83)

From (A.19.82) and (A.19.83) we conclude

n I [P̄] | n I
[
Q̄

] τ−→ (new õ)(n I
[
P̄′

]
| n I

[
Q̄′

]
) (A.19.84)

and finally from (A.19.84) we conclude

(new m̃)(n I [P̄] | n I
[
Q̄

]
) τ−→ (new m̃, õ)(n I

[
P̄′

]
| n I

[
Q̄′

]
) (A.19.85)

By definition of R (A.19.1) we conclude

((new m̃, õ)(n I
[
P̄′

]
| n I

[
Q̄′

]
),n I

[
(new m̃, õ)(P̄′ | Q̄′)

]
) ∈ R ∪ ∼

which completes the proof for this case.
(Case process level)
We have that

n I
[
(new m̃)(P̄ | Q̄)

] τ−→ n I
[
(new m̃, õ)(P̄′ | Q̄′)

]
(A.19.86)

where (A.19.86) is derived from

(new m̃)(P̄ | Q̄) τ−→ (new m̃, õ)(P̄′ | Q̄′) (A.19.87)

and (A.19.87) is derived from

P̄ | Q̄ τ−→ (new õ)(P̄′ | Q̄′) (A.19.88)

66

(A.19.88) is derived from

P̄
(ν̃o)λ′↓−→ P̄′ (A.19.89)

and

Q̄
(ν̃o)λ′↓−→ Q̄′ (A.19.90)

From (A.19.89) we conclude

n I [P̄]
(ν̃o)nI·λ′↓−→ n I

[
P̄′

]
(A.19.91)

and from (A.19.90) we conclude

n I
[
Q̄

] (ν̃o)nI·λ′↓−→ n I
[
Q̄′

]
(A.19.92)

From (A.19.91) and (A.19.92) we conclude

n I [P̄] | n I
[
Q̄

] τ−→ (new õ)(n I
[
P̄′

]
| n I

[
Q̄′

]
) (A.19.93)

and finally from (A.19.93) we conclude

(new m̃)(n I [P̄] | n I
[
Q̄

]
) τ−→ (new m̃, õ)(n I

[
P̄′

]
| n I

[
Q̄′

]
) (A.19.94)

By definition of R (A.19.1) we conclude

((new m̃, õ)(n I
[
P̄′

]
| n I

[
Q̄′

]
),n I

[
(new m̃, õ)(P̄′ | Q̄′)

]
) ∈ R ∪ ∼

which completes the proof for this case.
(Case synchronization on complete labels)
We have that

n I
[
(new m̃)(P̄ | Q̄)

] τ−→ n I
[
(new m̃, õ)(P̄′ | Q̄′)

]
(A.19.95)

where (A.19.95) is derived from

(new m̃)(P̄ | Q̄) τ−→ (new m̃, õ)(P̄′ | Q̄′) (A.19.96)

and (A.19.96) is derived from

P̄ | Q̄ τ−→ (new õ)(P̄′ | Q̄′) (A.19.97)

(A.19.97) is derived from

P̄
(ν̃o)rρλ−→ P̄′ (A.19.98)

and

Q̄
(ν̃o)rρλ−→ Q̄′ (A.19.99)

From (A.19.98) we conclude

n I [P̄]
(ν̃o)rρλ−→ n I

[
P̄′

]
(A.19.100)

and from (A.19.99) we conclude

n I
[
Q̄

] (ν̃o)rρλ−→ n I
[
Q̄′

]
(A.19.101)

From (A.19.100) and (A.19.101) we conclude

n I [P̄] | n I
[
Q̄

] τ−→ (new õ)(n I
[
P̄′

]
| n I

[
Q̄′

]
) (A.19.102)

67

and finally from (A.19.102) we conclude

(new m̃)(n I [P̄] | n I
[
Q̄

]
) τ−→ (new m̃, õ)(n I

[
P̄′

]
| n I

[
Q̄′

]
) (A.19.103)

By definition of R (A.19.1) we conclude

((new m̃, õ)(n I
[
P̄′

]
| n I

[
Q̄′

]
),n I

[
(new m̃, õ)(P̄′ | Q̄′)

]
) ∈ R ∪ ∼

which completes the proof for this case.
(Case synchronization on incomplete labels)
We have that

n I
[
(new m̃)(P̄ | Q̄)

] τ−→ n I
[
(new m̃, õ)(P̄′ | Q̄′)

]
(A.19.104)

where (A.19.104) is derived from

(new m̃)(P̄ | Q̄) nIhere−→ (new m̃, õ)(P̄′ | Q̄′) (A.19.105)

and (A.19.105) is derived from

P̄ | Q̄ nIhere−→ (new õ)(P̄′ | Q̄′) (A.19.106)

(A.19.106) is derived from

P̄
(ν̃o)λ−→ P̄′ (A.19.107)

and

Q̄
(ν̃o)nI λ−→ Q̄′ (A.19.108)

From (A.19.107) we conclude

n I [P̄]
(ν̃o)nIλ−→ n I

[
P̄′

]
(A.19.109)

and from (A.19.108) we conclude

n I
[
Q̄

] (ν̃o)nIλ−→ n I
[
Q̄′

]
(A.19.110)

From (A.19.109) and (A.19.110) we conclude

n I [P̄] | n I
[
Q̄

] τ−→ (new õ)(n I
[
P̄′

]
| n I

[
Q̄′

]
) (A.19.111)

and finally from (A.19.111) we conclude

(new m̃)(n I [P̄] | n I
[
Q̄

]
) τ−→ (new m̃, õ)(n I

[
P̄′

]
| n I

[
Q̄′

]
) (A.19.112)

By definition of R (A.19.1) we conclude

((new m̃, õ)(n I
[
P̄′

]
| n I

[
Q̄′

]
),n I

[
(new m̃, õ)(P̄′ | Q̄′)

]
) ∈ R ∪ ∼

which completes the proof for this last case.

Lemma A.20 We have n J [P] | n J [Q]∼ n J [P | Q], for any name n and processes P,Q.

Proof. Analogous to that of Lemma A.19.

Lemma A.21 We have that m I [n I [o I [P]]]∼ n I [o I [P]] , for any names m,n,o.

68

Proof. Let us consider R defined as

R , {(m I [n I [o I [P]]] ,n I [o I [P]]) | ∀m,n,o}∪{(P,P)} (A.21.1)

We show that R is a bisimulation by coinduction on the definition of bisimulation.
Let us consider (P,Q) ∈ R . We must show that for every P′,λ such that

P λ−→ P′

then there exists Q′ such that
Q λ−→ Q′

and (P′,Q′) ∈ R .
We must consider two different cases: either (P,Q) ∈ {(P,P)} or not.

If (P,Q) ∈ {(P,P)} we we directly have that for any transition P λ−→ P′ it is the case that
(P′,P′) ∈ R .

Otherwise we have that P and Q are of the form m I [n I [o I [P̄]]] and n I [o I [P̄]] ,
respectively, for some m,n,o, P̄.

We must consider seven different derivations for the transitions of m I [n I [o I [P̄]]] , so
we have that λ is either derived from throw, or from (ν̃p)qρλ′ such that λ′ 6= here, or from
o I here, or from (ν̃p)λ′←, or from (ν̃p)λ′↓, or from (ν̃p)λ′↑ or finally from (νc)def s.

(Case throw)
We have that

m I [n I [o I [P̄]]] throw−→ P̄′ (A.21.2)

where (A.21.2) is derived from
n I [o I [P̄]] throw−→ P̄′ (A.21.3)

and (A.21.3) is derived from
o I [P̄] throw−→ P̄′ (A.21.4)

and (A.21.4) is derived from
P̄ throw−→ P̄′ (A.21.5)

By definition of R (A.21.1) we have that

(P̄′, P̄′) ∈ R

which along with (A.21.3) completes the proof for this case.
(Case ((ν̃p)qρλ′)
We have that

m I [n I [o I [P̄]]]
((ν̃p)qρλ′−→ m I

[
n I

[
o I

[
P̄′

]]]
(A.21.6)

where (A.21.6) is derived from

n I [o I [P̄]]
((ν̃p)qρλ′−→ n I

[
o I

[
P̄′

]]
(A.21.7)

and (A.21.7) is derived from

o I [P̄]
((ν̃p)qρλ′−→ o I

[
P̄′

]
(A.21.8)

and (A.21.8) is derived from

P̄
((ν̃p)qρλ′−→ P̄′ (A.21.9)

69

By definition of R (A.21.1) we have that

(m I
[
n I

[
o I

[
P̄′

]]]
,n I

[
o I

[
P̄′

]]
) ∈ R

which along with (A.21.7) completes the proof for this case.
(Case o I here)
We have that

m I [n I [o I [P̄]]] τ−→ m I
[
n I

[
o I

[
P̄′

]]]
(A.21.10)

where (A.21.10) is derived from

n I [o I [P̄]] τ−→ n I
[
o I

[
P̄′

]]
(A.21.11)

and (A.21.11) is derived from
o I [P̄] τ−→ o I

[
P̄′

]
(A.21.12)

and (A.21.12) is derived from
P̄ oIhere−→ P̄′ (A.21.13)

By definition of R (A.21.1) we have that

(m I
[
n I

[
o I

[
P̄′

]]]
,n I

[
o I

[
P̄′

]]
) ∈ R

which along with (A.21.11) completes the proof for this case.
(Case (ν̃p)λ′←)
We have that

m I [n I [o I [P̄]]]
(ν̃p)oI·λ′←−→ m I

[
n I

[
o I

[
P̄′

]]]
(A.21.14)

where (A.21.14) is derived from

n I [o I [P̄]]
(ν̃p)oI·λ′←−→ n I

[
o I

[
P̄′

]]
(A.21.15)

and (A.21.15) is derived from

o I [P̄]
(ν̃p)oI·λ′←−→ o I

[
P̄′

]
(A.21.16)

and (A.21.16) is derived from

P̄
(ν̃p)λ′←−→ P̄′ (A.21.17)

By definition of R (A.21.1) we have that

(m I
[
n I

[
o I

[
P̄′

]]]
,n I

[
o I

[
P̄′

]]
) ∈ R

which along with (A.21.15) completes the proof for this case.
(Case (ν̃p)λ′↓)
We have that

m I [n I [o I [P̄]]]
(ν̃p)oI·λ′↓−→ m I

[
n I

[
o I

[
P̄′

]]]
(A.21.18)

where (A.21.18) is derived from

n I [o I [P̄]]
(ν̃p)oI·λ′↓−→ n I

[
o I

[
P̄′

]]
(A.21.19)

70

and (A.21.19) is derived from

o I [P̄]
(ν̃p)oI·λ′↓−→ o I

[
P̄′

]
(A.21.20)

and (A.21.20) is derived from

P̄
(ν̃p)λ′↓−→ P̄′ (A.21.21)

By definition of R (A.21.1) we have that

(m I
[
n I

[
o I

[
P̄′

]]]
,n I

[
o I

[
P̄′

]]
) ∈ R

which along with (A.21.19) completes the proof for this case.
(Case (ν̃p)λ′↑)
We have that

m I [n I [o I [P̄]]]
(ν̃p)nI·λ′↓−→ m I

[
n I

[
o I

[
P̄′

]]]
(A.21.22)

where (A.21.22) is derived from

n I [o I [P̄]]
(ν̃p)nI·λ′↓−→ n I

[
o I

[
P̄′

]]
(A.21.23)

and (A.21.23) is derived from

o I [P̄]
(ν̃p)λ′↓−→ o I

[
P̄′

]
(A.21.24)

and (A.21.24) is derived from

P̄
(ν̃p)λ′↑−→ P̄′ (A.21.25)

By definition of R (A.21.1) we have that

(m I
[
n I

[
o I

[
P̄′

]]]
,n I

[
o I

[
P̄′

]]
) ∈ R

which along with (A.21.23) completes the proof for this case.
(Case (νc)def s)
We have that

m I [n I [o I [P̄]]]
(νc)oIdef s−→ m I

[
n I

[
o I

[
P̄′

]]]
(A.21.26)

where (A.21.26) is derived from

n I [o I [P̄]]
(νc)oIdef s−→ n I

[
o I

[
P̄′

]]
(A.21.27)

and (A.21.27) is derived from

o I [P̄]
(νc)oIdef s−→ o I

[
P̄′

]
(A.21.28)

and (A.21.28) is derived from

P̄
(νc)def s−→ P̄′ (A.21.29)

By definition of R (A.21.1) we have that

(m I
[
n I

[
o I

[
P̄′

]]]
,n I

[
o I

[
P̄′

]]
) ∈ R

which along with (A.21.27) completes the proof for this last case.

71

Lemma A.22 We have that mρ1 [nρ2 [oρ3 [P]]] ∼ nρ2 [oρ3 [P]] , for any names m,n,o and po-
larities ρ1,ρ2,ρ3.

Proof. Analogous to the proof of Lemma A.21

Lemma A.23 We have nρ [stop]∼ stop.

Proof. The result is a direct outcome of the fact that neither of the systems has transitions.

Lemma A.24 We have n I [out ↑ l(ṽ).R]∼ out ↓ l(ṽ).n I [R].

Proof. Let us consider R defined as

R , {(n I [out ↑ l(ṽ).R] ,out ↓ l(ṽ).n I [R]) | ∀n, l, ṽ,R}∪{(P,P)} (A.24.1)

We show that R is a bisimulation by coinduction on the definition of bisimulation.
Let us consider (P,Q) ∈ R . We must show that for every P′,λ such that

P λ−→ P′

then there exists Q′ such that
Q λ−→ Q′

and (P′,Q′) ∈ R .
We must consider two different cases: either (P,Q) ∈ {(n I [out ↑ l(ṽ).R] ,out ↓ l(ṽ).n I

[R])} or (P,Q) ∈ {(P,P)}.
If (P,Q) ∈ {(P,P)} we we directly have that for any transition P λ−→ P′ it is the case that

(P′,P′) ∈ R .
If (P,Q) ∈ {(n I [out ↑ l(ṽ).R] ,out ↓ l(ṽ).n I [R])} we have that P is of the form n I

[out ↑ l(ṽ).R] and Q is of the form out ↓ l(ṽ).n I [R], for some process R and names n, ṽ and
label l.

We must consider the only possible transition of n I [out ↑ l(ṽ).R]:

n I [out ↑ l(ṽ).R]
↓l(ṽ)−→ n I [R] (A.24.2)

where (A.24.2) is derived from

out ↑ l(ṽ).R
↑l(ṽ)−→ R (A.24.3)

We can derive a matching transition to (A.24.2) of out ↓ l(ṽ).n I [R] (which is also the only
possible one it can perform)

out ↓ l(ṽ).n I [R]
↓l(ṽ)−→ n I [R] (A.24.4)

By definition of R (A.24.1) we directly have that

(n I [R] ,n I [R]) ∈ R

which completes the proof.

Lemma A.25 We have n J [out ↑ m(ṽ).R]∼ out ↓ m(ṽ).n J [R].

Proof. Analogous to that of Lemma A.24.

72

Lemma A.26 We have n I [in ↑ m(x̃).R]∼ in ↓ m(x̃).n I [R] (n 6∈ x̃).

Proof. Analogous to that of Lemma A.24.

Lemma A.27 We have n J [in ↑ m(x̃).R]∼ in ↓ m(x̃).n J [R] (n 6∈ x̃).

Proof. Analogous to that of Lemma A.24.

Lemma A.28 We have m I [n I [out � l(ṽ).R]]∼ n I [out � l(ṽ).m I [n I [R]]].

Proof. Let us consider R defined as

R , {(m I [n I [out � l(ṽ).R]] ,n I [out � l(ṽ).m I [n I [R]]]) | ∀n,m, ṽ, l,R}∪ ∼ (A.28.1)

We show that R is a bisimulation by coinduction on the definition of bisimulation.
Let us consider (P,Q) ∈ R . We must show that for every P′,λ such that

P λ−→ P′

then there exists Q′ such that
Q λ−→ Q′

and (P′,Q′) ∈ R .
We must consider two different cases: either (P,Q)∈{(m I [n I [out � l(ṽ).R]] ,n I [out � l(ṽ).m I [n I [R]]])}

or (P,Q) ∈∼.
If (P,Q) ∈∼ we directly have that there exists Q′ such that

Q λ−→ Q′

and (P′,Q′) ∈∼ and hence (P′,Q′) ∈ R ∪ ∼.
If (P,Q) ∈ {(m I [n I [out � l(ṽ).R]] ,n I [out � l(ṽ).m I [n I [R]]])} we have that P is of

the form m I [n I [out � l(ṽ).R]] and Q is of the form n I [out � l(ṽ).m I [n I [R]]], for some
process R and names n,m, ṽ and label l.

We must consider the only possible transition of m I [n I [out � l(ṽ).R]]:

m I [n I [out � l(ṽ).R]]
nI↓l(ṽ)−→ m I [n I [R]] (A.28.2)

We can derive a matching transition to (A.28.2) of n I [out � l(ṽ).m I [n I [R]]] (which is also
the only possible one it can perform)

n I [out � l(ṽ).m I [n I [R]]]
nI↓l(ṽ)−→ n I [m I [n I [R]]] (A.28.3)

By definition of R (A.28.1) and Lemma A.22 we have that

(m I [n I [R]] ,n I [m I [n I [R]]]) ∈ R

which completes the proof.

Lemma A.29 We have m ρ1 [n ρ2 [out � l(ṽ).R]]∼ n ρ2 [out � l(ṽ).m ρ1 [n ρ2 [R]]].

Proof. Analogous to that of Lemma A.28.

Lemma A.30 We have m I [n I [in � l(x̃).P]]∼ n I [in � l(x̃).m I [n I [P]]] (m,n 6∈ x̃).

73

Proof. Analogous to that of Lemma A.28.

Lemma A.31 We have m ρ1 [n ρ2 [in � l(x̃).P]]∼ n ρ2 [in � l(x̃).m ρ1 [n ρ2 [P]]] (m,n 6∈ x̃).

Proof. Analogous to that of Lemma A.28.

Lemma A.32 We have m I [n I [out � l(ṽ).R]]∼ n I [out � l(ṽ).m I [n I [R]]].

Proof. Let us consider R defined as

R , {(m I [n I [out � l(ṽ).R]] ,n I [out � l(ṽ).m I [n I [R]]]) | ∀n,m, ṽ, l,R}∪∼ (A.32.1)

We show that R is a bisimulation by coinduction on the definition of bisimulation.
Let us consider (P,Q) ∈ R . We must show that for every P′,λ such that

P λ−→ P′

then there exists Q′ such that
Q λ−→ Q′

and (P′,Q′) ∈ R .
We must consider two different cases: either (P,Q) ∈ {(m I [n I [out � l(ṽ).R]] ,n I

[out � l(ṽ).m I [n I [R]]])} or (P,Q) ∈∼.
If (P,Q) ∈∼ we directly have that there exists Q′ such that

Q λ−→ Q′

and (P′,Q′) ∈∼ and hence (P′,Q′) ∈ R ∪ ∼.
If (P,Q) ∈ {(m I [n I [out � l(ṽ).R]] ,n I [out � l(ṽ).m I [n I [R]]])} we have that P is

of the form m I [n I [out � l(ṽ).R]] and Q is of the form n I [out � l(ṽ).m I [n I [R]]], for
some process R and names n,m, ṽ and label l.

We must consider the only possible transition of m I [n I [out � l(ṽ).R]]:

m I [n I [out � l(ṽ).R]]
nI←l(ṽ)−→ m I [n I [R]] (A.32.2)

We can derive a matching transition to (A.32.2) of n I [out � l(ṽ).m I [n I [R]]] (which is also
the only possible one it can perform)

n I [out � l(ṽ).m I [n I [R]]]
nI←l(ṽ)−→ n I [m I [n I [R]]] (A.32.3)

By definition of R (A.32.1) and Lemma A.22 we have that

(m I [n I [R]] ,n I [m I [n I [R]]]) ∈ R

which completes the proof.

Lemma A.33 We have m ρ1 [n ρ2 [out � l(ṽ).R]]∼ n ρ2 [out � l(ṽ).m ρ1 [n ρ2 [R]]].

Proof. Analogous to that of Lemma A.32.

Lemma A.34 We have m I [n I [in � l(x̃).P]]∼ n I [in � l(x̃).m I [n I [P]]] (m,n 6∈ x̃).

Proof. Analogous to that of Lemma A.32.

74

Lemma A.35 We have m ρ1 [n ρ2 [in � l(x̃).P]]∼ n ρ2 [in � l(x̃).m ρ1 [n ρ2 [P]]] (m,n 6∈ x̃).

Proof. Analogous to that of Lemma A.32.

Lemma A.36 We have m I [n I [def s⇒ R]]∼ n I [def s⇒ R].

Proof. Let us consider R defined as

R , {(m I [n I [def s⇒ R]] ,n I [def s⇒ R]) | ∀n,m,s,R}∪ ∼ (A.36.1)

We show that R is a bisimulation by coinduction on the definition of bisimulation.
Let us consider (P,Q) ∈ R . We must show that for every P′,λ such that

P λ−→ P′

then there exists Q′ such that
Q λ−→ Q′

and (P′,Q′) ∈ R .
We must consider two different cases: either (P,Q)∈{(m I [n I [def s⇒ R]] ,n I [def s⇒ R])}

or (P,Q) ∈∼.
If (P,Q) ∈∼ we directly have that there exists Q′ such that

Q λ−→ Q′

and (P′,Q′) ∈∼ and hence (P′,Q′) ∈ R ∪ ∼.
If (P,Q) ∈ {(m I [n I [def s⇒ R]] ,n I [def s⇒ R])} we have that P is of the form m I

[n I [def s⇒ R]] and Q is of the form n I [def s⇒ R], for some process R and names n,m
and label s.

We must consider the only possible transition of m I [n I [def s⇒ R]]:

m I [n I [def s⇒ R]]
(νc)nIdef s−→ m I [n I [c I [R]]] (A.36.2)

We can derive a matching transition to (A.36.2) of n I [def s⇒ R] (which is also the only
possible one it can perform)

n I [def s⇒ R]
(νc)nIdef s−→ n I [c I [R]] (A.36.3)

By definition of R (A.36.1) and Lemma A.22 we have that

(m I [n I [c I [R]]] ,n I [c I [R]]) ∈ R

which completes the proof.

Lemma A.37 We have m ρ1 [n ρ2 [def s⇒ R]]∼ n ρ2 [def s⇒ R].

Proof. Analogous to that of Lemma A.36.

Lemma A.38 We have m I [n I [instance o ρ s⇐ R]]∼ n I [instance o ρ s⇐ R].

75

Proof. Let us consider R defined as

R , {(m I [n I [instance o ρ s⇐ R]] ,n I [instance o ρ s⇐ R]) | ∀n,m,o,s,R}∪ ∼
(A.38.1)

We show that R is a bisimulation by coinduction on the definition of bisimulation.
Let us consider (P,Q) ∈ R . We must show that for every P′,λ such that

P λ−→ P′

then there exists Q′ such that
Q λ−→ Q′

and (P′,Q′) ∈ R .
We must consider two different cases: either (P,Q)∈{(m I [n I [instance o ρ s⇐ R]] ,n I

[instance o ρ s⇐ R])} or (P,Q) ∈∼.
If (P,Q) ∈∼ we directly have that there exists Q′ such that

Q λ−→ Q′

and (P′,Q′) ∈∼ and hence (P′,Q′) ∈ R ∪ ∼.
If (P,Q)∈{(m I [n I [instance o ρ s⇐ R]] ,n I [instance o ρ s⇐ R])}we have that P

is of the form m I [n I [instance o ρ s⇐ R]] and Q is of the form n I [instance o ρ s⇐ R],
for some process R and names n,m,o, role ρ and label s.

We must consider the only possible transition of m I [n I [instance o ρ s⇐ R]]:

m I [n I [instance o ρ s⇐ R]]
(νc)o ρ def s−→ m I [n I [c J [R]]] (A.38.2)

We can derive a matching transition to (A.38.2) of n I [instance o ρ s⇐ R] (which is also
the only possible one it can perform)

n I [instance o ρ s⇐ R]
(νc)o ρ def s−→ n I [c J [R]] (A.38.3)

By definition of R (A.38.1) and Lemma A.22 we have that

(m I [n I [c J [R]]] ,n I [c J [R]]) ∈ R

which completes the proof.

Lemma A.39 We have m ρ1 [n ρ2 [instance o ρ3 s⇐ R]]∼ n ρ2 [instance o ρ3 s⇐ R].

Proof. Analogous to that of Lemma A.38.

Proposition 5.5 proof

Proof. We proceed by induction on the number of guarded processes. In the proof we implicitly
consider Theorem 5.2. Consider that P is of the form

nρ1 [. . .mρ2 [oρ3 [G | P1] | P2] . . . | P3] | P′ (A.39.1)

for some guarded process G, processes P1,P2, . . . ,P3,P′, names n, . . . ,m,o, and roles ρ1, . . . ,ρ2,ρ3.
Considering Proposition 5.4(2) and (A.39.1) we have that

nρ1 [. . .mρ2 [oρ3 [G | P1] | P2] . . . | P3] | P′
∼

nρ1 [. . .mρ2 [oρ3 [G] | oρ3 [P1] | P2] . . . | P3] | P′
(A.39.2)

76

We apply the split (5.4(2)) as in (A.39.2) repeatedly up to top level and obtain

nρ1 [. . .mρ2 [oρ3 [G | P1] | P2] . . . | P3] | P′
∼

nρ1 [. . .mρ2 [oρ3 [G]] . . .]
| nρ1 [. . .mρ2 [oρ3 [P1] | P2] . . . | P3] | P′

(A.39.3)

After which we consider Proposition 5.4(3) repeatedly and obtain

nρ1 [. . .mρ2 [oρ3 [G | P1] | P2] . . . | P3] | P′
∼

mρ2 [oρ3 [G]]
| nρ1 [. . .mρ2 [oρ3 [P1] | P2] . . . | P3] | P′

(A.39.4)

By i.h. on
nρ1 [. . .mρ2 [oρ3 [P1] | P2] . . . | P3] | P′ (A.39.5)

we obtain there exists a process P̄ such that P̄ is in normal form and

P̄∼ nρ1 [. . .mρ2 [oρ3 [P1] | P2] . . . | P3] | P′ (A.39.6)

From (A.39.4) and (A.39.6) we conclude

nρ1 [. . .mρ2 [oρ3 [G | P1] | P2] . . . | P3] | P′
∼

mρ2 [oρ3 [G]] | P̄
(A.39.7)

We now must ensure uniqueness of the sequence (m,ρ2,o,ρ3). We have that if there exists such
a sequence in P̄ then it is unique since P̄ is in normal form. Let us consider there exists P̄′ and
G′ such that P̄ is of the form

P̄′ | mρ2
[
oρ3

[
G′

]]
(A.39.8)

From (A.39.7) and (A.39.8) we conclude

mρ2 [oρ3 [G]] | P̄∼
mρ2 [oρ3 [G]] | P̄′ | mρ2 [oρ3 [G′]]

(A.39.9)

From (A.39.9) and Proposition 5.4(2) we conclude

mρ2 [oρ3 [G]] | P̄′ | mρ2 [oρ3 [G′]]∼
mρ2 [oρ3 [G] | oρ3 [G′]] | P̄′ (A.39.10)

Again considering Proposition 5.4(2), from (A.39.10) we conclude

mρ2 [oρ3 [G] | oρ3 [G′]] | P̄′ ∼
mρ2 [oρ3 [G | G′]] | P̄′ (A.39.11)

The uniqueness of the (n,ρ) sequences is proved in the same way. From (A.39.11) and (A.39.10)
and (A.39.9) and (A.39.8) and (A.39.7) we conclude

nρ1 [. . .mρ2 [oρ3 [G | P1] | P2] . . . | P3] | P′
∼

mρ2 [oρ3 [G | G′]] | P̄′
(A.39.12)

which completes the proof.

77

Proof of auxiliar results to Proposition 4.1

We consider the semantics of Orc as defined in the following table (from [16]).

u fresh

p.S(c)
p.S<c,u>−→ ?u

?u u?c−→ let(c) let(c) !c−→ 0

f l−→ f ′ l 6=!c

f � x� g l−→ f ′� x� g

f !c−→ f ′

f � x� g τ−→ (f ′� x� g) | (g{x�c})

f l−→ f ′

f | g l−→ f ′ | g

f l−→ f ′ l 6=!c

g where x :∈ f l−→ g where x :∈ f ′

g l−→ g′

f | g l−→ f | g′
g l−→ g′

g where x :∈ f l−→ g′ where x :∈ f

{n.S(x) = e} ∈ D

n.S(c) τ−→ e{x�c}
f !c−→ f ′

g where x :∈ f τ−→ g{x�c}

We prove some auxiliar results.

Lemma A.40 Let O be an orc process. We have that for any sequence of transitions λ̃ such that

JOKout
λ1−→ . . .

λk−1−→ P′
λk−→ . . .

Then for any i ∈ 1, . . . ,k, . . . we have that either λi = τ or λ is a located transition label and
out 6∈ fn(λ) or λi = � out(c), for some c.

Proof. (Sketch) In JOKout all contexts are either anonymous or their name is restricted. Re-
stricted and anonymous contexts do not hold any observable behavior on � or � labels. This
leaves out � transition labels that become � when crossing a context barrier, which we can ver-
ify to always occur along with the out parameter in JOKout: hence JOKout may hold � out(c)
transitions, for some name c.

We must also consider def transitions of JOKout. We have that the all the possible behaviors
that originate from a site call are (νu)n I def S, for some n and S, u J← args(c) for some u,c,
and u J← result(c) for some c (which are all located transition labels where out does not occur)
and finally � out(c) for some c.

Lemma A.41 Let O be an orc process. We have that

JOKa ≈ JOKb{b�a}

Proof. Direct from the definition of the encoding.

Lemma A.42 Let O be an Orc process. We have that

JOKout ≈out [JOKout1 | ! in � out1(x).out � out(x)]

78

Proof. (Sketch) Let us consider every possible transition of JOKout.
By Lemma A.40 we have that JOKout holds transitions that hold either τ as transition label,

or a located transition label λ where the parameter out does not ocurr, or � out(c) for some name
c.

For the case of a τ transition we can also derive a τ transition for JOKout1 , considering
Lemma A.41. For the case of located transition label, where the encoding parameter does not
occur, we can also derive a matching transition of JOKout1 .

For the case of a � out(c) we have that JOKout1 has a � out1(c) transition and hence after

one τ step [JOKout1 | ! in � out1(x).out � out(x)] may exhibit a � out(c) transition (
�out(c)⇒). The

proof of the symmetric cases is analogous.

Lemma A.43 Let f ,g be a Orc processes. We have that

[J f Kout1 | ! in � out1(x).(JgKout2 | ! in � out2(x).out � out(x))
| Jg{x�c}Kout2 | ! in � out2(x).out � out(x)]
≈out

[J f Kout1 | ! in � out1(x).(JgKout2 | ! in � out2(x).out � out(x))]
| Jg{x�c}Kout

Proof. Follows the lines of the proof of Lemma A.42.
We denote by C [·] a conversation calculus process term with the occurrence of a hole ·, and

C [P] the term obtained by replacing the hole with process P.

Lemma A.44 Let f be an Orc process. We have that

(new a)(C [a J [! in � result(x).out � out(x)]]
| a I [J f Kout | ! in � out(x).out � result(x)])

≈
C [J f Kout]

Proof. (Sketch) Follows the lines of Lemma A.42. Process J f Kout can either interact with the
external environment (by means of located transition labels) or internally evolve or output in
out. Interactions with the external environment and internal evolutions can take place regardless
of the placement of the process J f Kout in the term. Outputs in out are forwarded to the endpoint
that outputs in out in the environment defined by its placement in the term, hence acting the
same as the process J f Kout with the same placement in the term.

Lemma A.45 Let P be a process such that the only possible observations over P hold transition
labels located at nρ, for a specific name n and some role ρ. Then we have that

(new n)P≈ stop

Proof. The result is immediate. (new n)P has no observable behavior.

Lemma A.46 We have
JOKout{x�c} ≈ JO{x�c}Kout

Proof. By induction on the structure of O. We prove the interesting case of the where construct.
We have that

J f where x :∈ gK , [(new x)(J f Kout | ! in � out(x).out � out(x) |
try

JgKout2 | in � out2(y).throw x I [! out � val(y)]
catch stop)]

(A.46.1)

79

where in J f Kout all free occurrence of x in sub expressions h such that x immediately occurs in
h (for instance h is n.S(x)) are encoded with a one time unfolding as follows

JhKout , [JxKout1 | in � out1(x).JhKout2 | ! in � out2(x).out � out(x)] (A.46.2)

Considering (A.46.2) we prove that

[(new x)(J f Kout | ! in � out(x).out � out(x) | x I [! out � val(c)])]≈ J f{x�c}Kout

(A.46.3)
For the case that f is a where, or a pipeline, or a parallel composition the result is direct by
i.h. and the congruence property of ≈ (Theorem 5.3). The two remaining cases are site and
expression call, which are analogous to prove so we show only site call. So we have that f is of
the form n.S(x). We have that

f{x�c}= n.S(c) (A.46.4)

In accordance with (A.46.2) we have

J f Kout , [JxKout1 | in � out1(x).J f Kout2 | ! in � out2(x).out � out(x)] (A.46.5)

From (A.46.3) and (A.46.5) and considering f is n.S(x) we obtain, by expanding J f Kout and
JxKout1 and f , that

[(new x) ([x J [in � val(y).out � out1(y)] |
in � out1(x).Jn.S(x)Kout2 | ! in � out2(x).out � out(x)] |
! in � out(x).out � out(x) | x I [! out � val(c)])]

(A.46.6)

We then have that the only possible behavior of (A.46.6) is

[(new x) ([x J [in � val(y).out � out1(y)] |
in � out1(x).Jn.S(x)Kout2 | ! in � out2(x).out � out(x)] |
! in � out(x).out � out(x) | x I [! out � val(c)])]

τ⇒
[[Jn.S(x)Kout2{x�c} | ! in � out2(x).out � out(x)] |
! in � out(x).out � out(x) | (new x)(x I [! out � val(c)])]

(A.46.7)

Considering Lemma A.45 we have

[[Jn.S(x)Kout2{x�c} | ! in � out2(x).out � out(x)] |
! in � out(x).out � out(x) | (new x)(x I [! out � val(c)])]
≈
[[Jn.S(x)Kout2{x�c} | ! in � out2(x).out � out(x)] |
! in � out(x).out � out(x)]

(A.46.8)

Considering Lemma A.42 we have

[[Jn.S(x)Kout2{x�c} | ! in � out2(x).out � out(x)] |
! in � out(x).out � out(x)]
≈
[Jn.S(x)Kout{x�c} | ! in � out(x).out � out(x)]

(A.46.9)

And again considering Lemma A.42 we have

[Jn.S(x)Kout{x�c} | ! in � out(x).out � out(x)]
≈
Jn.S(x)Kout{x�c}

(A.46.10)

By i.h. we have
Jn.S(x)Kout{x�c} ≈ Jn.S(c)K (A.46.11)

which completes the proof for this case.

80

Proof of Lemma A.47

Lemma A.47 Let O be an Orc process and D the definitions of the expressions used by O and
ñ the names of the sites where the expressions are defined. We have

O τ−→ O′ =⇒ (new ñ)(JOKout | JDK) τ⇒≈ (new ñ)(JO′Kout | JDK)

O !c−→ O′ =⇒ (new ñ)(JOKout | JDK)
�out(c)⇒ ≈ (new ñ)(JO′Kout | JDK)

O
p.S<c,u>−→ O′ =⇒ (new ñ)(JOKout | JDK)

(νu)pIdef S⇒ uJ�args(c)⇒ ≈ (new ñ)(JO′Kout | JDK)

O u?c−→ O′ =⇒ (new ñ)(JOKout | JDK)
uJ�result(c)⇒ ≈ (new ñ)(JO′Kout | JDK)

Proof. We proceed by induction on the derivation of the transition labels. Throughout the proof
we implicitly use the congruence property of ≈ (Theorem 5.3) and the result of Lemma A.44.

(Case f � x� g τ−→ f ′� x� g)
We have

f � x� g τ−→ f ′� x� g (A.47.1)

where (A.47.1) is derived from
f τ−→ f ′ (A.47.2)

We have that

J f � x� gKout , [J f Kout1 | ! in � out1(x).(JgKout2 | ! in � out2(x).out � out(x))] (A.47.3)

By i.h. on (A.47.2) we conclude

(new ñ)(J f Kout1 | JDK) τ⇒≈ J f ′Kout1 | JDK (A.47.4)

From (A.47.3) and (A.47.4) we derive

(new ñ)(J f � x� gKout | JDK)
τ⇒≈

(new ñ)([J f ′Kout1 | ! in � out1(x).(JgKout2 | ! in � out2(x).out � out(x))] | JDK)
(A.47.5)

which completes the proof for this case.
(Case f � x� g τ−→ (f ′� x� g) | g{x�c})
We have

f � x� g τ−→ (f ′� x� g) | g{x�c} (A.47.6)

where (A.47.6) is derived from
f !c−→ f ′ (A.47.7)

We have that

J f � x� gKout , [J f Kout1 | ! in � out1(x).(JgKout2 | ! in � out2(x).out � out(x))] (A.47.8)

By i.h. on A.47.7 we have

(new ñ)(J f Kout1 | JDK)
�out1(c)⇒ ≈ (new ñ)(J f ′Kout1 | JDK) (A.47.9)

From (A.47.8) and (A.47.9) we derive

(new ñ)(J f � x� gKout | JDK) τ⇒≈
(new ñ)([J f ′Kout1 | ! in � out1(x).(JgKout2 | ! in � out2(x).out � out(x))

| Jg{x�c}Kout2 | ! in � out2(x).out � out(x)] | JDK)
(A.47.10)

81

From (A.47.10) and Lemma A.43 we conclude

(new ñ)(J f � x� gKout | JDK) τ⇒≈
(new ñ)([J f ′Kout1 | ! in � out1(x).(JgKout2 | ! in � out2(x).out � out(x))]

| Jg{x�c}Kout | | JDK)
(A.47.11)

which completes the proof for this case.
(Case f where x :∈ g τ−→ f where x :∈ g′)
We have

f where x :∈ g τ−→ f where x :∈ g′ (A.47.12)

where (A.47.12) is derived from
g τ−→ g′ (A.47.13)

We have that

J f where x :∈ gKout , [(new x)(
J f Kout |
!in � out(x).out � out(x) |
try

JgKout2 | in � out2(y).throw x I [! out � val(y)]
catch 0)]

(A.47.14)
By i.h. on A.47.13 we have

(new ñ)(JgKout2 | JDK) τ⇒≈ (new ñ)(Jg′Kout2 | JDK) (A.47.15)

From (A.47.14) and (A.47.15) we derive

(new ñ)(J f where x :∈ gKout | JDK)
τ⇒≈

(new ñ)(
[(new x)(

J f Kout |
!in � out(x).out � out(x) |
try

Jg′Kout2 | in � out2(y).throw x I [! out � val(y)]
catch 0)]

| JDK)

(A.47.16)

which completes the proof for this case.
(Case f where x :∈ g τ−→ f ′ where x :∈ g)
We have

f where x :∈ g τ−→ f ′ where x :∈ g (A.47.17)

where (A.47.17) is derived from
f τ−→ f ′ (A.47.18)

We have that

J f where x :∈ gKout , [(new x)(
J f Kout |
!in � out(x).out � out(x) |
try

JgKout2 | in � out2(y).throw x I [! out � val(y)]
catch 0)]

(A.47.19)

82

By i.h. on A.47.18 we have

(new ñ)(J f Kout | JDK) τ⇒≈ (new ñ)(J f ′Kout | JDK) (A.47.20)

From (A.47.19) and (A.47.20) we derive

(new ñ)(J f where x :∈ gKout | JDK)
τ⇒≈

(new ñ)(
[(new x)(

J f ′Kout |
!in � out(x).out � out(x) |
try

JgKout2 | in � out2(y).throw x I [! out � val(y)]
catch 0)]

| JDK)

(A.47.21)

which completes the proof for this case.
(Case f where x :∈ g τ−→ f{x�c})
We have

f where x :∈ g τ−→ f{x�c} (A.47.22)

where (A.47.22) is derived from
g !c−→ g′ (A.47.23)

We have that

J f where x :∈ gKout , [(new x)(
J f Kout |
!in � out(x).out � out(x) |
try

JgKout2 | in � out2(y).throw x I [! out � val(y)]
catch 0)]

(A.47.24)
By i.h. on A.47.23 we have

(new ñ)(JgKout2 | JDK)
�out2(c)⇒ ≈ (new ñ)(Jg′Kout2 | JDK) (A.47.25)

From (A.47.24) and (A.47.25) we derive

(new ñ)(J f where x :∈ gKout | JDK)
τ⇒≈

(new ñ)(
[(new x)(

J f Kout |
!in � out(x).out � out(x) |
try

Jg′Kout2 | throw x I [! out � val(c)]
catch 0)]

| JDK)

(A.47.26)

83

From (A.47.26) we derive

(new ñ)(J f where x :∈ gKout | JDK) τ⇒≈ (new ñ)([(new x)(
J f Kout |
!in � out(x).out � out(x) |
x I [! out � val(c)])] | JDK)

(A.47.27)

From (A.47.27) and considering Lemma A.46 we conclude

(new ñ)(J f where x :∈ gKout | JDK) τ⇒≈ (new ñ)(J f{x�c}K | JDK) (A.47.28)

which completes the proof for this case.

(Case f | g λ−→ f ′ | g)
We have

f | g λ−→ f ′ | g (A.47.29)

where (A.47.29) is derived from
f λ−→ f ′ (A.47.30)

We have that
J f | gKout , J f Kout | JgKout (A.47.31)

By i.h. on (A.47.30) we conclude

(new ñ)(J f Kout | JDK) λ⇒≈ (new ñ)(J f ′Kout | JDK) (A.47.32)

From (A.47.31) and (A.47.32) we derive

(new ñ)(J f | gKout | JDK) λ⇒≈ (new ñ)(J f ′Kout | JgKout | JDK) (A.47.33)

which completes the proof for this case.

(Case f | g λ−→ f | g′)
We have

f | g λ−→ f | g′ (A.47.34)

where (A.47.34) is derived from
g λ−→ g′ (A.47.35)

We have that
J f | gKout , J f Kout | JgKout (A.47.36)

By i.h. on (A.47.35) we conclude

(new ñ)(JgKout | JDK) λ⇒≈ (new ñ)(Jg′Kout | JDK) (A.47.37)

From (A.47.36) and (A.47.37) we derive

(new ñ)(J f | gKout | JDK) λ⇒≈ (new ñ)(J f Kout | Jg′Kout | JDK) (A.47.38)

which completes the proof for this case.
(Case let(c) !c−→ 0)
We have

let(c) !c−→ 0 (A.47.39)

84

We have that
Jlet(c)Kout , out � out(c) (A.47.40)

From (A.47.40) we conclude

(new ñ)(Jlet(c)Kout | JDK)
�out(c)⇒ ≈ (new ñ)(J0Kout | JDK) (A.47.41)

which completes the proof for this case.
(Case ?u u?c−→ let(c))
We have

?u u?c−→ let(c) (A.47.42)

We have that
J?uKout , u J [in � result(x).out � out(x)] (A.47.43)

We derive that

(new ñ)(J?uKout | JDK)
uJ�result(c)⇒ ≈ (new ñ)(u J [out � out(c)] | JDK) (A.47.44)

From (A.47.44) and considering Proposition 5.4(5) and 5.4(4) we conclude

(new ñ)(J?uKout | JDK)
uJ�result(c)⇒ ≈ (new ñ)(out � out(c) | JDK) (A.47.45)

which completes the proof for this case.

(Case p.S(c)
p.S<c,u>−→ ?u)

We have
p.S(c)

p.S<c,u>−→ ?u (A.47.46)

where u is fresh. We have that

Jp.S(c)Kout , instance p I S⇐ (out � args(c).in � result(x).out � out(x)) (A.47.47)

Considering (A.47.47) we derive

(new ñ)(Jp.S(c)K | JDK)
(νu)pIdef S⇒ ≈
(new ñ)(u J [out � args(c).in � result(x).out � out(x)] | JDK)
uJ�args(c)⇒ ≈
(new ñ)(u J [in � result(x).out � out(x)] | JDK)

(A.47.48)

which completes the proof for this case.
(Case n.S(c) τ−→ e{x�c})
We have

n.S(c) τ−→ e{x�c} (A.47.49)

We have that

Jp.S(c)Kout , instance n I S⇐ (out � args(c).! in � result(x).out � out(x)) (A.47.50)

We have that in D there is an association between n.S(x) and e hence in JDK there is Jn.S(x) = eK
which is encoded as follows

Jn.S(x) = eK , n I [! def S⇒ (in � args(x).JeKout | ! in � out(x).out � result(x))]
(A.47.51)

85

and we have that n ∈ ñ. We derive that

(new ñ)(Jn.S(c)Kout | JDK)
τ⇒≈

(new ñ)
((new a)(a J [! in � result(x).out � out(x)]

| a I [JeKout{x�c} | ! in � out(x).out � result(x)])
| JDK)

(A.47.52)

From (A.47.52) and considering Lemma A.44 we have

(new ñ)(Jn.S(c)Kout | JDK) τ⇒≈ (new ñ)(JeKout{x�c} | JDK) (A.47.53)

which completes the proof for this last case.

Proof of Lemma A.48

Lemma A.48 Let O be an Orc process and D the definitions of the expressions used by O and
ñ the names of the sites where the expressions are defined. We have

(new ñ)(JOKout | JDK) τ−→ (new ñ)(P | JDK) =⇒ O τ−→ O′∧
(new ñ)(P | JDK) τ⇒≈ (new ñ)(JO′Kout | JDK)

(new ñ)(JOKout | JDK)
�out(c)−→ (new ñ)(P | JDK) =⇒ O !c−→ O′∧

(new ñ)(P | JDK) τ⇒≈ (new ñ)(JO′Kout | JDK)

(new ñ)(JOKout | JDK)
(νu)pIdef S−→ (new ñ)(P | JDK) =⇒ O

p.S<c,u>−→ O′∧

(new ñ)(P | JDK)
uJ�args(c)⇒ ≈ (new ñ)(JO′Kout | JDK)

(new ñ)(JOKout | JDK)
uJ�result(c)−→ (new ñ)(P | JDK) =⇒ O u?c−→ O′∧

(new ñ)(P | JDK) τ⇒≈ (new ñ)(JO′Kout | JDK)

Proof. We proceed by induction on the definition of the encoding.
(Case J f � x� gKout)
We consider the possible transitions of

(new ñ)([J f Kout1 | ! in � out1(x).(JgKout2 | ! in � out2(x).out � out(x))] | JDK) (A.48.1)

(Case J f Kout1
τ−→ P)

We have

(new ñ)([J f Kout1 | ! in � out1(x).(JgKout2 | ! in � out2(x).out � out(x))] | JDK)
τ−→

(new ñ)([P | ! in � out1(x).(JgKout2 | ! in � out2(x).out � out(x))] | JDK)
(A.48.2)

where (A.48.2) is derived from

(new ñ)(J f Kout1 | JDK) τ−→ (new ñ)(P | JDK) (A.48.3)

By i.h. on (A.48.3) we have that
f τ−→ f ′ (A.48.4)

and
(new ñ)(P | JDK) τ⇒≈ (new ñ)(J f ′Kout1 | JDK) (A.48.5)

86

From (A.48.4) we derive
f � x� g τ−→ f ′� x� g (A.48.6)

From (A.48.5) we derive

(new ñ)([P | ! in � out1(x).(JgKout2 | ! in � out2(x).out � out(x))] | JDK)
τ⇒≈

(new ñ)([J f ′Kout1 | ! in � out1(x).(JgKout2 | ! in � out2(x).out � out(x))] | JDK)
(A.48.7)

which completes the proof for this case.

(Case J f Kout1
�out(c)−→ P)

We have

(new ñ)([J f Kout1 | ! in � out1(x).(JgKout2 | ! in � out2(x).out � out(x))] | JDK)
τ−→

(new ñ)([P | ! in � out1(x).(JgKout2 | ! in � out2(x).out � out(x)) |
JgKout2{x�c} | ! in � out2(x).out � out(x)] | JDK)

(A.48.8)

where (A.48.8) is derived from

(new ñ)(J f Kout1 | JDK)
�out(c)−→ (new ñ)(P | JDK) (A.48.9)

By i.h. on (A.48.9) we have that
f !c−→ f ′ (A.48.10)

and
(new ñ)(P | JDK) τ⇒≈ (new ñ)(J f ′Kout1 | JDK) (A.48.11)

From (A.48.10) we derive

f � x� g τ−→ (f ′� x� g) | (g{x�c}) (A.48.12)

From (A.48.11) we derive

(new ñ)([P | ! in � out1(x).(JgKout2 | ! in � out2(x).out � out(x)) |
JgKout2{x�c} | ! in � out2(x).out � out(x)] | JDK)

τ⇒≈
(new ñ)([J f ′Kout1 | ! in � out1(x).(JgKout2 | ! in � out2(x).out � out(x)) |

JgKout2{x�c} | ! in � out2(x).out � out(x)] | JDK)

(A.48.13)

From (A.48.13) and considering Lemma A.43 we conclude

(new ñ)([P | ! in � out1(x).(JgKout2 | ! in � out2(x).out � out(x)) |
JgKout2{x�c} | ! in � out2(x).out � out(x)] | JDK)

τ⇒≈
(new ñ)([J f ′Kout1 | ! in � out1(x).(JgKout2 | ! in � out2(x).out � out(x))] |

JgKout{x�c} | JDK)

(A.48.14)

which completes the proof for this case.

(Case J f Kout1
(νu)pIdef S−→ P)

We have

(new ñ)([J f Kout1 | ! in � out1(x).(JgKout2 | ! in � out2(x).out � out(x))] | JDK)
(νu)pIdef S−→
(new ñ)([P | ! in � out1(x).(JgKout2 | ! in � out2(x).out � out(x))] | JDK)

(A.48.15)

87

where (A.48.15) is derived from

(new ñ)(J f Kout1 | JDK)
(νu)pIdef S−→ (new ñ)(P | JDK) (A.48.16)

By i.h. on (A.48.16) we have that

f
p.S<c,u>−→ f ′ (A.48.17)

and

(new ñ)(P | JDK)
(νu)J�args(c)⇒ ≈ (new ñ)(J f ′Kout1 | JDK) (A.48.18)

From (A.48.17) we derive
f � x� g

p.S<c,u>−→ f ′� x� g (A.48.19)

From (A.48.18) we derive

(new ñ)([P | ! in � out1(x).(JgKout2 | ! in � out2(x).out � out(x))] | JDK)
(νu)J�args(c)⇒ ≈
(new ñ)([J f ′Kout1 | ! in � out1(x).(JgKout2 | ! in � out2(x).out � out(x))] | JDK)

(A.48.20)

which completes the proof for this case.

(Case J f Kout1
uJ�result(c)−→ P)

We have

(new ñ)([J f Kout1 | ! in � out1(x).(JgKout2 | ! in � out2(x).out � out(x))] | JDK)
uJ�result(c)−→
(new ñ)([P | ! in � out1(x).(JgKout2 | ! in � out2(x).out � out(x))] | JDK)

(A.48.21)

where (A.48.21) is derived from

(new ñ)(J f Kout1 | JDK)
uJ�result(c)−→ (new ñ)(P | JDK) (A.48.22)

By i.h. on (A.48.22) we have that
f u?c−→ f ′ (A.48.23)

and
(new ñ)(P | JDK) τ⇒≈ (new ñ)(J f ′Kout1 | JDK) (A.48.24)

From (A.48.23) we derive
f � x� g u?c−→ f ′� x� g (A.48.25)

From (A.48.24) we derive

(new ñ)([P | ! in � out1(x).(JgKout2 | ! in � out2(x).out � out(x))] | JDK)
τ⇒≈

(new ñ)([J f ′Kout1 | ! in � out1(x).(JgKout2 | ! in � out2(x).out � out(x))] | JDK)
(A.48.26)

which completes the proof for this case.
(Case J f | gKout)
We consider the possible transitions of

(new ñ)(J f Kout | JgKout | JDK) (A.48.27)

that result from observations over J f K being the case for observations over JgK analogous to
prove.

88

(Case J f Kout
τ−→ P)

We have
(new ñ)(J f Kout | JgKout | JDK)

τ−→
(new ñ)(P | JgKout | JDK)

(A.48.28)

where (A.48.28) is derived from

(new ñ)(J f Kout1 | JDK) τ−→ (new ñ)(P | JDK) (A.48.29)

By i.h. on (A.48.29) we have that
f τ−→ f ′ (A.48.30)

and
(new ñ)(P | JDK) τ⇒≈ (new ñ)(J f ′Kout1 | JDK) (A.48.31)

From (A.48.30) we derive
f | g τ−→ f ′ | g (A.48.32)

From (A.48.31) we derive
(new ñ)(P | JgKout | JDK)
τ⇒≈

(new ñ)(J f ′Kout | JgKout | JDK)
(A.48.33)

which completes the proof for this case.

(Case J f Kout
�out(c)−→ P)

We have
(new ñ)(J f Kout | JgKout | JDK)
�out(c)−→
(new ñ)(P | JgKout | JDK)

(A.48.34)

where (A.48.34) is derived from

(new ñ)(J f Kout1 | JDK)
�out(c)−→ (new ñ)(P | JDK) (A.48.35)

By i.h. on (A.48.35) we have that
f !c−→ f ′ (A.48.36)

and
(new ñ)(P | JDK) τ⇒≈ (new ñ)(J f ′Kout1 | JDK) (A.48.37)

From (A.48.36) we derive
f | g !c−→ f ′ | g (A.48.38)

From (A.48.37) we derive
(new ñ)(P | JgKout | JDK)
τ⇒≈

(new ñ)(J f ′Kout | JgKout | JDK)
(A.48.39)

which completes the proof for this case.

(Case J f Kout
(νu)pIdef S−→ P)

We have
(new ñ)(J f Kout | JgKout | JDK)
(νu)pIdef S−→
(new ñ)(P | JgKout | JDK)

(A.48.40)

89

where (A.48.40) is derived from

(new ñ)(J f Kout1 | JDK)
(νu)pIdef S−→ (new ñ)(P | JDK) (A.48.41)

By i.h. on (A.48.41) we have that

f
p.S<c,u>−→ f ′ (A.48.42)

and

(new ñ)(P | JDK)
uJargs(c)⇒ ≈ (new ñ)(J f ′Kout1 | JDK) (A.48.43)

From (A.48.42) we derive
f | g p.S<c,u>−→ f ′ | g (A.48.44)

From (A.48.43) we derive
(new ñ)(P | JgKout | JDK)
uJargs(c)⇒ ≈
(new ñ)(J f ′Kout | JgKout | JDK)

(A.48.45)

which completes the proof for this case.

(Case J f Kout
uJ�result(c)−→ P)

We have
(new ñ)(J f Kout | JgKout | JDK)
uJ�result(c)−→
(new ñ)(P | JgKout | JDK)

(A.48.46)

where (A.48.46) is derived from

(new ñ)(J f Kout1 | JDK)
uJ�result(c)−→ (new ñ)(P | JDK) (A.48.47)

By i.h. on (A.48.47) we have that
f u?c−→ f ′ (A.48.48)

and
(new ñ)(P | JDK) τ⇒≈ (new ñ)(J f ′Kout1 | JDK) (A.48.49)

From (A.48.48) we derive
f | g u?c−→ f ′ | g (A.48.50)

From (A.48.49) we derive
(new ñ)(P | JgKout | JDK)
τ⇒≈

(new ñ)(J f ′Kout | JgKout | JDK)
(A.48.51)

which completes the proof for this case.
(Case J f where x :∈ gKout)
We consider the possible transitions of

(new ñ)([(new x)(
J f Kout |
!in � out(x).out � out(x) |
try

JgKout2 | in � out2(y).throw x I [! out � val(y)]
catch 0)]

| JDK)

(A.48.52)

90

(Case J f Kout
τ⇒ P)

We have

(new ñ)([(new x)(
J f Kout |
!in � out(x).out � out(x) |
try

JgKout2 | in � out2(y).throw x I [! out � val(y)]
catch 0)]

| JDK)
τ⇒

(new ñ)([(new x)(
P |
!in � out(x).out � out(x) |
try

JgKout2 | in � out2(y).throw x I [! out � val(y)]
catch 0)]

| JDK)

(A.48.53)

where (A.48.53) is derived from

(new ñ)(J f Kout | JDK) τ⇒ (new ñ)(P | JDK) (A.48.54)

By i.h. on (A.48.54) we have
f τ−→ f ′ (A.48.55)

and
(new ñ)(P | JDK) τ⇒≈ (new ñ)(J f ′Kout | JDK) (A.48.56)

From (A.48.55) we derive

f where x :∈ g τ−→ f ′ where x :∈ g (A.48.57)

From (A.48.56) we conclude

(new ñ)([(new x)(
P |
!in � out(x).out � out(x) |
try

JgKout2 | in � out2(y).throw x I [! out � val(y)]
catch 0)]

| JDK)
τ⇒≈

(new ñ)([(new x)(
J f ′Kout |
!in � out(x).out � out(x) |
try

JgKout2 | in � out2(y).throw x I [! out � val(y)]
catch 0)]

| JDK)

(A.48.58)

which completes the proof for this case.

91

(Case J f Kout
�out(c)⇒ P)

We have

(new ñ)([(new x)(
J f Kout |
!in � out(x).out � out(x) |
try

JgKout2 | in � out2(y).throw x I [! out � val(y)]
catch 0)]

| JDK)
�out(c)⇒
(new ñ)([(new x)(

P |
!in � out(x).out � out(x) |
try

JgKout2 | in � out2(y).throw x I [! out � val(y)]
catch 0)]

| JDK)

(A.48.59)

where (A.48.59) is derived from

(new ñ)(J f Kout | JDK)
�out(c)⇒ (new ñ)(P | JDK) (A.48.60)

By i.h. on (A.48.60) we have
f !c−→ f ′ (A.48.61)

and
(new ñ)(P | JDK) τ⇒≈ (new ñ)(J f ′Kout | JDK) (A.48.62)

From (A.48.61) we derive

f where x :∈ g !c−→ f ′ where x :∈ g (A.48.63)

From (A.48.62) we conclude

(new ñ)([(new x)(
P |
!in � out(x).out � out(x) |
try

JgKout2 | in � out2(y).throw x I [! out � val(y)]
catch 0)]

| JDK)
τ⇒≈

(new ñ)([(new x)(
J f ′Kout |
!in � out(x).out � out(x) |
try

JgKout2 | in � out2(y).throw x I [! out � val(y)]
catch 0)]

| JDK)

(A.48.64)

which completes the proof for this case.

92

(Case J f Kout
(νu)pIdef S⇒ P)

We have

(new ñ)([(new x)(
J f Kout |
!in � out(x).out � out(x) |
try

JgKout2 | in � out2(y).throw x I [! out � val(y)]
catch 0)]

| JDK)
(νu)pIdef S⇒
(new ñ)([(new x)(

P |
!in � out(x).out � out(x) |
try

JgKout2 | in � out2(y).throw x I [! out � val(y)]
catch 0)]

| JDK)

(A.48.65)

where (A.48.65) is derived from

(new ñ)(J f Kout | JDK)
(νu)pIdef S⇒ (new ñ)(P | JDK) (A.48.66)

By i.h. on (A.48.66) we have

f
p.S<c,u>−→ f ′ (A.48.67)

and

(new ñ)(P | JDK)
uJ�args(c)⇒ ≈ (new ñ)(J f ′Kout | JDK) (A.48.68)

From (A.48.67) we derive

f where x :∈ g
p.S<c,u>−→ f ′ where x :∈ g (A.48.69)

From (A.48.68) we conclude

(new ñ)([(new x)(
P |
!in � out(x).out � out(x) |
try

JgKout2 | in � out2(y).throw x I [! out � val(y)]
catch 0)]

| JDK)
uJ�args(c)⇒ ≈
(new ñ)([(new x)(

J f ′Kout |
!in � out(x).out � out(x) |
try

JgKout2 | in � out2(y).throw x I [! out � val(y)]
catch 0)]

| JDK)

(A.48.70)

93

which completes the proof for this case.

(Case J f Kout
uJ�result(c)⇒ P)

We have

(new ñ)([(new x)(
J f Kout |
!in � out(x).out � out(x) |
try

JgKout2 | in � out2(y).throw x I [! out � val(y)]
catch 0)]

| JDK)
uJ�result(c)⇒
(new ñ)([(new x)(

P |
!in � out(x).out � out(x) |
try

JgKout2 | in � out2(y).throw x I [! out � val(y)]
catch 0)]

| JDK)

(A.48.71)

where (A.48.71) is derived from

(new ñ)(J f Kout | JDK)
uJ�result(c)⇒ (new ñ)(P | JDK) (A.48.72)

By i.h. on (A.48.72) we have
f u?c−→ f ′ (A.48.73)

and
(new ñ)(P | JDK) τ⇒≈ (new ñ)(J f ′Kout | JDK) (A.48.74)

From (A.48.73) we derive

f where x :∈ g u?c−→ f ′ where x :∈ g (A.48.75)

From (A.48.74) we conclude

(new ñ)([(new x)(
P |
!in � out(x).out � out(x) |
try

JgKout2 | in � out2(y).throw x I [! out � val(y)]
catch 0)]

| JDK)
τ⇒≈

(new ñ)([(new x)(
J f ′Kout |
!in � out(x).out � out(x) |
try

JgKout2 | in � out2(y).throw x I [! out � val(y)]
catch 0)]

| JDK)

(A.48.76)

94

which completes the proof for this case.
(Case JgKout2

τ⇒ P)
We have

(new ñ)([(new x)(
J f Kout |
!in � out(x).out � out(x) |
try

JgKout2 | in � out2(y).throw x I [! out � val(y)]
catch 0)]

| JDK)
τ⇒

(new ñ)([(new x)(
J f Kout |
!in � out(x).out � out(x) |
try

P | in � out2(y).throw x I [! out � val(y)]
catch 0)]

| JDK)

(A.48.77)

where (A.48.77) is derived from

(new ñ)(JgKout2 | JDK) τ⇒ (new ñ)(P | JDK) (A.48.78)

By i.h. on (A.48.78) we have
g τ−→ g′ (A.48.79)

and
(new ñ)(P | JDK) τ⇒≈ (new ñ)(Jg′Kout2 | JDK) (A.48.80)

From (A.48.79) we derive

f where x :∈ g τ−→ f where x :∈ g′ (A.48.81)

From (A.48.80) we conclude

(new ñ)([(new x)(
J f Kout |
!in � out(x).out � out(x) |
try

P | in � out2(y).throw x I [! out � val(y)]
catch 0)]

| JDK)
τ⇒≈

(new ñ)([(new x)(
J f ′Kout |
!in � out(x).out � out(x) |
try

JgKout2 | in � out2(y).throw x I [! out � val(y)]
catch 0)]

| JDK)

(A.48.82)

which completes the proof for this case.

95

(Case JgKout2
�out2(c)⇒ P)

We have

(new ñ)([(new x)(
J f Kout |
!in � out(x).out � out(x) |
try

JgKout2 | in � out2(y).throw x I [! out � val(y)]
catch 0)]

| JDK)
τ⇒

(new ñ)([(new x)(
J f Kout |
!in � out(x).out � out(x) |
x I [! out � val(c)])]

| JDK)

(A.48.83)

where (A.48.83) is derived from

(new ñ)(JgKout2 | JDK)
�out2(c)⇒ (new ñ)(P | JDK) (A.48.84)

By i.h. on (A.48.84) we have
g !c−→ g′ (A.48.85)

and
(new ñ)(P | JDK) τ⇒≈ (new ñ)(Jg′Kout2 | JDK) (A.48.86)

From (A.48.85) we derive
f where x :∈ g τ−→ f{x�c} (A.48.87)

From Lemma A.46 we conclude

(new ñ)([(new x)(
J f Kout |
!in � out(x).out � out(x) |
x I [! out � val(c)])]

| JDK)
≈ (new ñ)(J f Kout{x�c} | JDK)

(A.48.88)

which completes the proof for this case.

(Case JgKout2
(νu)pIdef S⇒ P)

96

We have

(new ñ)([(new x)(
J f Kout |
!in � out(x).out � out(x) |
try

JgKout2 | in � out2(y).throw x I [! out � val(y)]
catch 0)]

| JDK)
(νu)pIdef S⇒
(new ñ)([(new x)(

J f Kout |
!in � out(x).out � out(x) |
try

P | in � out2(y).throw x I [! out � val(y)]
catch 0)]

| JDK)

(A.48.89)

where (A.48.89) is derived from

(new ñ)(JgKout2 | JDK)
(νu)pIdef S⇒ (new ñ)(P | JDK) (A.48.90)

By i.h. on (A.48.90) we have

g
p.S<c,u>−→ g′ (A.48.91)

and

(new ñ)(P | JDK)
uJ�args(c)⇒ ≈ (new ñ)(Jg′Kout2 | JDK) (A.48.92)

From (A.48.91) we derive

f where x :∈ g
p.S<c,u>−→ f where x :∈ g′ (A.48.93)

From (A.48.92) we conclude

(new ñ)([(new x)(
J f Kout |
!in � out(x).out � out(x) |
try

P | in � out2(y).throw x I [! out � val(y)]
catch 0)]

| JDK)
uJ�args(c)⇒ ≈
(new ñ)([(new x)(

J f Kout |
!in � out(x).out � out(x) |
try

Jg′Kout2 | in � out2(y).throw x I [! out � val(y)]
catch 0)]

| JDK)

(A.48.94)

which completes the proof for this case.

97

(Case JgKout2
uJ�result(c)⇒ P)

We have

(new ñ)([(new x)(
J f Kout |
!in � out(x).out � out(x) |
try

JgKout2 | in � out2(y).throw x I [! out � val(y)]
catch 0)]

| JDK)
uJ�result(c)⇒
(new ñ)([(new x)(

J f Kout |
!in � out(x).out � out(x) |
try

P | in � out2(y).throw x I [! out � val(y)]
catch 0)]

| JDK)

(A.48.95)

where (A.48.95) is derived from

(new ñ)(JgKout2 | JDK)
uJ�result(c)⇒ (new ñ)(P | JDK) (A.48.96)

By i.h. on (A.48.96) we have
g u?c−→ g′ (A.48.97)

and
(new ñ)(P | JDK) τ⇒≈ (new ñ)(Jg′Kout2 | JDK) (A.48.98)

From (A.48.97) we derive

f where x :∈ g u?c−→ f where x :∈ g′ (A.48.99)

From (A.48.98) we conclude

(new ñ)([(new x)(
J f Kout |
!in � out(x).out � out(x) |
try

P | in � out2(y).throw x I [! out � val(y)]
catch 0)]

| JDK)
τ⇒≈

(new ñ)([(new x)(
J f Kout |
!in � out(x).out � out(x) |
try

Jg′Kout2 | in � out2(y).throw x I [! out � val(y)]
catch 0)]

| JDK)

(A.48.100)

which completes the proof for this case.

98

(Case Jp.S(c)Kout)
We consider the possible transitions of

(new ñ)(instance p I S⇐ (out� args(c).in� result(x).out � out(x)) | JDK) (A.48.101)

We have that

(new ñ)(instance p I S⇐ (out � args(c).in � result(x).out � out(x)) | JDK)
(νu)pIdef S⇒
(new ñ)(u J [out � args(c).in � result(x).out � out(x)] | JDK)

(A.48.102)
We have that

p.S(c)
p.S<c,u>−→ ?u (A.48.103)

We derive

(new ñ)(u J [out � args(c).in � result(x).out � out(x)] | JDK)
uJ�args(c)⇒ ≈
(new ñ)(J?uKout | JDK)

(A.48.104)

which completes the proof for this case.
(Case J?uKout)
We consider the possible transitions of

(new ñ)(u J [in � result(x).out � out(x)] | JDK) (A.48.105)

We have
(new ñ)(u J [in � result(x).out � out(x)] | JDK)
uJ�result(c)⇒
(new ñ)(u J [out � out(c)] | JDK)

(A.48.106)

We have that
?u u?c−→ let(c) (A.48.107)

Considering Proposition 5.4(5) and 5.4(4) we conclude

(new ñ)(u J [out � out(c)] | JDK)≈ (new ñ)(Jlet(c)Kout | JDK) (A.48.108)

which completes the proof for this case.
(Case Jlet(c)Kout)
We consider the possible transitions of

(new ñ)(out � out(x) | JDK) (A.48.109)

We have

(new ñ)(out � out(x) | JDK)
�out(c)⇒ (new ñ)(stop | JDK) (A.48.110)

We have that
let(c) !c−→ 0 (A.48.111)

Since J0Kout , stop the proof for this case is complete.
(Case Jn.S(c)Kout)

99

We consider the possible transitions of

(new ñ)(instance n I S⇐ (out� args(c).! in� result(x).out � out(x)) | JDK) (A.48.112)

We have that n.S(x) = e is defined in D, which is encoded by

Jn.S(x) = eK , n I [! def S⇒ (in � args(x).JeKout | ! in � out(x).out � result(x))]
(A.48.113)

Considering (A.48.113) we derive

(new ñ)(instance n I S⇐ (out � args(c).! in � result(x).out � out(x)) | JDK)
τ⇒

(new ñ)((new a)(a J [! in � result(x).out � out(x)]
| a I [JeKout{x�c} | ! in � out(x).out � result(x)]) | JDK)

(A.48.114)
We have that

n.S(c) τ−→ e{x�c} (A.48.115)

From Lemma A.44 we conclude

(new ñ)((new a)(a J [! in � result(x).out � out(x)]
| a I [JeKout{x�c} | ! in � out(x).out � result(x)]) | JDK)

≈
(new ñ)(JeKout{x�c} | JDK)

(A.48.116)

which completes the proof for this last case.

Proof of Proposition 4.1

Proof. We start by proving the =⇒ direction. We have

O l1−→ O1
l2−→ O2

l3−→ . . .
lk−→ Ok

lk+1−→ . . . (A.48.117)

From (A.48.117) and Lemma A.47 we conclude

P0
matchout(l1)⇒ P1 (A.48.118)

and
P1 ≈ (new ñ)(JO1Kout | JDK) (A.48.119)

Again from (A.48.117) and Lemma A.47 we conclude

(JO1Kout | JDK)
matchout(l2)⇒ P′2 (A.48.120)

and
P′2 ≈ (new ñ)(JO2Kout | JDK) (A.48.121)

From (A.48.119) and (A.48.120) we conclude

P1
matchout(l2)⇒ P2 (A.48.122)

and
P2 ≈ P′2 (A.48.123)

100

From (A.48.121) and (A.48.123) we have

P2 ≈ (new ñ)(JO2Kout | JDK) (A.48.124)

We have that (A.48.122) and (A.48.124) are obtained from (A.48.118) and (A.48.119), and
can be used as premises as (A.48.118) and (A.48.119) were. Following this reasoning we can
proceed indefinitely and obtain

P0
matchout(l1)⇒ P1

matchout(l2)⇒ P2
matchout(l3)⇒ . . .

matchout(lk)⇒ Pk
matchout(lk+1)⇒ . . . (A.48.125)

Proof for the⇐= direction follows analogously from Lemma A.48.

101

