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Recently, there has been great interest among vision researchers in developing computational models that predict the 
distribution of saccadic endpoints in naturalistic scenes. In many of these studies, subjects are instructed to view scenes 
without any particular task in mind so that stimulus-driven (bottom-up) processes guide visual attention. However, when-
ever there is a search task, goal-driven (top-down) processes tend to dominate guidance, as indicated by attention being 
systematically biased towards image features that resemble those of the search target. In the present study, we devise a 
top-down model of visual attention during search in complex scenes based on similarity between the target and regions of 
the search scene. Similarity is defined for several feature dimensions such as orientation or spatial frequency using a his-
togram-matching technique. The amount of attentional guidance across visual feature dimensions is predicted by a pre-
viously introduced informativeness measure. We use eye-movement data gathered from participants’ search of a set of 
naturalistic scenes to evaluate the model. The model is found to predict the distribution of saccadic endpoints in search 
displays nearly as accurately as do other observers’ eye-movement data in the same displays. 
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Introduction 
Visual search plays a key role in such everyday activities 

as finding a friend in a crowd or a favorite shirt in a clut-
tered closet. Due to the complexity of real-world scenes and 
the limited processing resources in our visual system, it is 
crucial for efficient search that it selectively processes the 
most relevant information for the given task. This selection 
is achieved by shifting our attention through the search 
space in a pattern that is closely followed by saccadic eye 
movements (Findlay, 2004; Motter & Holsapple, 2007).  

One of the most influential theories explaining how 
observers perform visual search tasks efficiently is Guided 
Search (Wolfe, 1994). According to this theory, we create, 
during pre-attentive scene processing, an "activation map" 
indicating likely target locations. During the subsequent 
search process, this map determines which regions of the 
scene will capture most attention. Both bottom-up (stimu-
lus-driven) and top-down (goal-driven) factors contribute to 
the attention map. 

Bottom-up activation is a target-independent effect, de-
termined solely by local visual properties of the search 
scene. For example, a single red blossom in a green field 
may draw more attention and gaze fixations than its sur-
roundings, regardless of the search target. Top-down activa-
tion, in contrast, depends upon the relationship between 
the target and search scene locations.  

Mechanisms of bottom-up activation have been well-
researched in psychophysical experiments in which subjects 
viewed natural scenes without being assigned any search 
task (e.g., Bruce & Tsotsos, 2006; Itti & Koch, 
2001; Parkhurst, Law & Niebur, 2002; for a review 
see Henderson, 2003). Moreover, there have been neurobi-
ological studies of bottom-up control of attention 
(e.g., Corbetta & Shulman, 2002; Palmer, 1999).  

Top-down factors have historically received compara-
tively little attention. Recent results, however, suggest that 
top-down processes play a dominant role in the guidance of 
visual search (e.g., Henderson, Brockmole, Castelhano & 
Mack, 2007; Peters & Itti, 2007; Pomplun, 2006; Zelinsky 
et al., 2006). An fMRI study has even provided first neuro-
physiological evidence for the existence of top-down activa-
tion maps in the visual system (Egner et al, 2008), further 
motivating an in-depth study of top-down factors guiding 
search.  

One type of top-down guidance is exerted by high-level, 
semantic or contextual information (Neider & Zelinsky, 
2006; Oliva, Wolfe & Arsenio, 2004). Here, our expecta-
tions about where objects belong in our environment guide 
our eye-movements as we search a scene for a known object. 
When searching a room for an electric outlet, for example, 
we are more likely to look along the lower regions of the 
walls than toward the ceiling. Torralba and colleagues de-
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veloped a model which seeks to quantify such high-level 
contextual effects on search (Torralba et al, 2006).  

In addition to these high-level factors, lower-level visual 
features in real-world scenes such as intensity and hue of 
the target systematically bias eye fixations during search 
toward scene regions that resemble target features (Hwang, 
Higgins & Pomplun, 2007; Pomplun, 2006). Intuitively, 
this seems to be a simple, straightforward mechanism: For 
instance, when searching for a red apple, our eye move-
ments will be drawn preferentially to red elements in the 
scene. The problem becomes complex when we consider 
that the target object is defined by multiple features along 
several dimensions, each of which may be shared by differ-
ent elements of the search space. This creates a competition 
among feature dimensions, and for maximal search effi-
ciency, the optimal weighting of dimensions in guiding 
search needs to be chosen. 

 Recently, several models of eye movements during 
search in real-world images have been proposed (Frintrop et 
al., 2005, Navalpakkam & Itti, 2006; Zelinsky, 2008). The 
most comprehensive model to date is the Target Acquisi-
tion Model (TAM) by Zelinsky (2008). It simulates an ob-
server’s retinal distribution of photo receptors to predict 
complete visual scan paths and the moment of target detec-
tion. Several measures indicate good correspondence in 
behavior between the model and actual human subjects, 
which is remarkable for a model making such detailed pre-
dictions. However, TAM does not address the abovemen-
tioned problem of weighting feature dimensions in the 
guidance of search.  

Other researchers did attempt to model aspects of low-
level, top-down contributions to real-world visual search 
based on the idea that top-down control works by weighting 
the feature-wise bottom-up saliency maps proposed by Itti 
and Koch (2000). In the model of Navalpakkam & Itti 
(2006), signal-to-noise ratios (SNRs) are assigned to features 
and feature dimensions for a given search scene based upon 
the distribution of low-level features in the target and the 
scene. These SNRs are then used to weight the contribu-
tion of features and dimensions during the integration of 
previously-created, bottom-up feature saliency maps (i.e., 
maps which show bottom-up activation in a scene for an 
individual feature dimension). The approach taken 
in Frintrop, Backer & Rome (2005), which models the well-
known “pop-out” effect that occurs in human search when 
a target is uniquely defined by a single feature within a 
scene, uses a normalization technique during feature map 
integration to heighten the guidance of dimensions along 
which the target is most distinctive.  

Although these studies implementing top-down weight-
ing of features by modulating bottom-up activation have 
made important contributions to the field, several issues 
must be addressed if we are to develop plausible models of 
human visual search. First, top-down factors are treated as 
merely tuning more fundamental, bottom-up effects. Given 
that top-down factors have been shown to be crucial in eve-
ryday search, we suggest that these factors ought to figure 

more prominently in computational models of visual search.  
This view is supported by recent studies showing that the 
influence of bottom-up factors on eye movements during 
search in static scenes is negligible (Henderson et al., 
2007; Zelinsky et al., 2006).  

Second, we maintain that these models make certain 
unrealistic assumptions about search. The model by Naval-
pakkam and Itti assumes that, prior to inspection of the 
search image, the distribution of visual features in the 
search scene has to be learned by the search agent to com-
pute the amount of noise or distracters in the scene. How-
ever, a complex learning process is unlikely to occur in the 
visual system before every search, as it would severely re-
duce search efficiency. It is more plausible that a fast, 
coarse mechanism using heuristics is responsible for biasing 
attention towards the most informative feature dimensions. 
For Frintrop’s model, the target location has to be known 
by the search agent—an unlikely scenario in the context of 
most everyday searches. 

Third, in these models, a composite saliency map for a 
given search image is computed by integrating feature sa-
liency maps in a disjunctive (i.e., additive) manner. As will 
be further discussed below, however, a conjunctive (i.e., 
multiplicative) approach to feature saliency integration best 
captures guidance of search by human observers.  

Finally, in neither study is the accuracy of these pro-
posed models in predicting human search behavior quanti-
tatively measured against empirical eye-movement data in 
real-world scenes. This lack of quantitative evaluation 
makes it impossible to objectively assess and compare the 
performance of different models.  

In this study, we extend previous work to propose and 
quantitatively evaluate a new model of top-down, low-level 
feature guidance during search, which attempts to address 
these concerns. The model employs top-down saliency 
maps (“similarity landscapes”) for individual feature dimen-
sions and estimates the informativeness of the those maps 
based on a previously introduced, computationally inex-
pensive measure (Hwang, Higgins & Pomplun, under re-
view). Since the computation of informativeness in a given 
feature dimension depends entirely on the shape of its top-
down saliency map, the model does not require any train-
ing or prior knowledge of the search space. We first analyze 
human eye-movement data gathered during search in natu-
ral scenes and demonstrate the relevance of the informa-
tiveness measure for predicting guidance patterns. Subse-
quently, we motivate our modeling approach and evaluate 
the model’s predictive power against the empirical eye-
movement data. 

Method 
Participants 

Thirty participants, 4 females and 26 males, completed 
this experiment. All were students or faculty members at 
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the University of Massachusetts Boston, aged between 19 to 
40 years old. Each participant was entitled to a $10 honora-
rium. 

Apparatus 
Eye movements were tracked and recorded using an SR 

research EyeLink II system. After calibration, the average 
error of visual angle in this system is 0.5˚. Its sampling fre-
quency is 500 Hz. Stimuli were presented on a 19-inch Dell 
P992 monitor. Its refresh rate was set to 85 Hz and its reso-
lution was set to 1280×1024 pixels. Participant responses 
were entered using a handset or game-pad. 

Materials 
A total of 160 photographs (800×800 pixels) of real-

world scenes, including landscapes, home interiors, and 
city scenes, were selected as stimuli (see Figure 1). In order 
to minimize the effects of semantic guidance, stimuli were 
randomly rotated by 90˚, 180˚ or 270˚.  When displayed 
on the screen, each stimulus covered 13.3˚×13.3˚ of visual 
angle.  

For each scene, a potential search target location of 
64×64 pixels (1˚×1˚ visual angle) was randomly chosen 
from the stimulus, excluding a center region of 192×192 
pixels. Potential targets were then inspected and those 
deemed uninformative (e.g., completely black or white) or 
semantically rich (containing identifiable objects) were re-
jected and assigned a new random position. Target loca-
tions were approximately evenly distributed over the search 
area except for the excluded central area. 

Procedure 
Participants viewed 4 blocks of 40 stimuli. For each tri-

al, the search target was displayed at the center of the 
screen on a black background for two seconds to allow sub-
jects to memorize the target. After this preview, the whole 
search display was shown and participants were asked to 
locate the target. If participants believed that they found 
the target location, they pressed a button on the game-pad 
while fixating on the location. If they were unable to locate 
the target in 7 seconds, the trial would time-out and the 
next trial would begin. 

 

Data Analysis 
Attentional landscapes 

It has been shown that eye movements and visual at-
tention are closely linked during visual search (Findlay, 
2004; Motter & Holsapple, 2007). Furthermore, low-level 
visual features are known to significantly guide eye move-
ments during search in real-world scenes (Pomplun, 2006). 
Therefore, it seems justified to use fixation distributions 
gathered from visual search tasks to study how natural low-

level visual features guide our visual attention during search 
tasks. 

Using the eye-movement data recorded during the vis-
ual search experiment, we constructed attentional landscapes. 
Assuming that attention is most likely guided by target fea-
tures during search, an attentional landscape is a result of 
integrated feature guidance, with peaks indicating regions 
that garner most attention. Since fixation duration is be-
lieved to depend on local information complexity rather 
than attentional guidance (Hooge & Erkelens, 
1999; Williams & Reingold, 2001), only the local density 
of fixations, regardless of their durations, determines the 
elevation of the attentional landscape. 

Based on these assumptions, all subjects’ fixation posi-
tions for each search display were collapsed. Subsequently, 
in order to account for the hypothesized size of the visual 
span, a 2D Gaussian function with standard deviation of 
64 pixels, representing about one degree of visual angle, 
was applied to the fixation distribution to obtain a fixation 
density map or attentional landscape (see Figure 1). Since 
in the present study all targets were of a particular, identical 
size, we assumed that the observers’ “attentional focus” op-
erated at the corresponding resolution.   

In constructing our attentional landscapes, we con-
trolled for two factors that may bias the fixation distribu-
tion. One of these arises from experimental design and the 
other is due to the natural search behavior of participants. 
First, since the experimental task was designed so that the 
subjects’ gaze always starts at the center of the search image 
and – in successful search - ends at the target location, fixa-
tion densities near the center of the image and the target 
location are inflated. In order to reduce this bias, the first 
three fixations and final three fixations were excluded from 
the analysis. 

 

 

Figure 1. Computation process for attentional landscapes. After 
accumulating fixations from all subjects, we apply a 2D Gaussian 
function. The attentional landscape is normalized as probability 
density function. 

 

Second, during search tasks under laboratory condi-
tions, our eye fixations are not only guided by the low-level 
display features but are also biased toward the center of a 
presented image (Tatler, 2007). In this study, we computed 
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the average fixation distribution across all subjects and all 
search displays. As expected, the resulting distribution 
showed elevated fixation density near the center of the im-
age. We controlled for this central bias by dividing each 
display’s unique attentional landscape by this overall fixa-
tion distribution (see Figure 2). 

 

 
      (a)                         (b)                 (c) 

Figure 2. Controlling for the natural search bias. Brighter areas 
indicate greater fixation density. (a) Combined fixation distribu-
tion across the 160 search tasks; (b) Fixation distribution in task 
#26; (c) Final attentional landscape for task #26 after controlling 
for the bias. 

 
Finally, fixation density maps were normalized so that 

the sum of elevation across the display was one. The result-
ing smooth landscapes approximate the 2D probability 
density function of human eye fixations falling onto specif-
ic locations in the displays during the search task.   

Similarity landscapes for feature dimensions 
Similarity landscapes are defined as distributions of 

target-display similarity across the search space in terms of 
each visual feature dimension, peaking where the image 
most closely resembles the target. For example, if the spatial 
frequencies of the target and a given location are very simi-
lar, this location will represent a peak in the spatial fre-
quency similarity map for this image.   

In our analysis we considered a total of eight low-level 
visual features (see below). Their similarity maps were gen-
erated by moving a target-sized window (64×64 pixels) over 
evenly distributed locations of each search image.  For each 
step, the window moved by 32 pixels so that it overlapped 
with one half of the previous location. Consequently, there 
were 23×23 locations for each search image (a total of 529 
positions). As discussed above, we assumed that the con-
stant target size in our study induced a corresponding visual 
span or “attentional focus” size. Consequently, our model 
operates exclusively at the target-size resolution, unlike oth-
er models that include multiple scales (e.g., Itti and Koch, 
2000).  

During this windowing process, each location’s similar-
ity to the target was independently computed for each of 
the eight selected dimensions. From the many different 
methods to compute similarity we chose a simple, robust 
histogram matching method called “Histogram Intersection 
Similarity Method (HISM)” (Swain & Ballard, 1991), 
which has been successfully used, for example, in image-

retrieval systems. With this method, similarity between tar-
get and local area was defined by an intersection of two 
histograms after both histograms were normalized so that 
their values ranged from zero to one (see Figure 3).  

 
 

    

Figure 3. Histogram Intersection Similarity Method (HISM). His-
tograms have eight bins and are normalized so that their mini-
mum value is 0 and their maximum value is 1. Histograms A 
(left) and B (right) are examples of target and local feature histo-
grams, respectively. Their intersection (center) consists of the 
smaller of the two values in corresponding bins. The size of the 
red area is our measure of similarity between target and local 
histograms. 

 
Similarity maps for each dimension were then created 

by assigning target-similarity values along the selected di-
mension to all locations. A 2D Gaussian function with a 
standard deviation of 1° was applied to the resulting maps, 
producing smooth distributions. Finally, the maps were 
normalized so that the sum of all similarity values over each 
map was one. For each image, we thus generated eight fea-
ture-similarity landscapes representing probability density 
functions for the given visual feature dimensions across the 
search image. The entire process is illustrated in Figure 4. 

 
 

 

Figure 4. Computing similarity landscapes for individual feature 
dimensions. After computing the local similarity values, we ap-
plied a 2D Gaussian function and normalized the sum of similari-
ty vales for each map to one.   
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The set of the eight feature dimensions used in this 
study was not optimized for model performance. Most like-
ly, more comprehensive and less redundant sets of feature 
dimensions could be defined. The current eight dimen-
sions were chosen simply based on their importance for the 
discrimination of color, direction, and complexity. Four 
dimensions were selected for color - red-green activation (R-
G), blue-yellow activation (B-Y), and luminance (L), based 
on the Derrington-Krauskopf-Lennie (DKL) color model 
(Lennie et al, 1984), and intensity, computed as the average 
of the three color components in the RGB space. Two di-
mensions for direction, orientation and luminance gradient, 
were also studied. We finally selected two dimensions for 
complexity, namely spatial frequency and intensity contrast.  

The DKL color model is thought to be perceptually 
plausible as it simulates the eye’s cone receptor sensitivity 
on three wave lengths (short, medium and long) and mod-
els the responses by its main double opponent cells, a red-
green type and a blue-yellow type, plus a luminance re-
sponse (Conway, 2001).  Details of the color-space conver-
sion process from the RGB color space to the DKL color 
model are explained in Appendix A. For color features, all 
pixels in the given patch (target or local area) were con-
verted to the DKL color space and their values were accu-
mulated in an 8-bin histogram for HISM computation. 

Orientation and frequency features were computed in 
the frequency domain. After a given patch was converted to 
the frequency domain using Fast Fourier Transform (FFT), 
its power spectrum was generated (see Figure 5a). However, 
there are two factors that need to be corrected before any 
histogram computation. The first factor is due to the na-
ture of the FFT computation. Since FFT assumes that the 
image is infinitely repeated, the power spectrum shows 
more power on the horizontal and vertical angles due to 
the square edge of the local patches (Gonzalez & Woods, 
2002). To reduce this effect, the power spectra were pre-
processed using the Blackman function. The second factor 
results from the general power distribution in real-world 
images, in which low-frequency bands typically have much 
greater power than high-frequency bands. To eliminate this 
imbalance, we normalized the power spectra by dividing 
them by the average power spectrum for the whole image 
set. 

The frequency histograms were computed in such a 
way that each bin contained the sum of power from one of 
eight equal-sized “donut” shapes. Therefore, each bin in the 
frequency histogram represents the normalized sum of 
power for a given frequency band (see Figure 5b). The 
orientation histograms were computed in a way similar to 
that of the frequency histograms, but power spectra were 
divided into 16 equal-sized “pie slices” and the power in 
each opposite-slice pair was summed to obtain a value for 
each bin in the orientation histogram (see Figure 5c).   

 

 

 (a)                                    (b)   (c) 

Figure 5. Histogram bin values for frequency and orientation 
were defined as the sum of power in one of eight equal-sized 
slices. (a) Power spectrum of target #26; (b) Example of the do-
nut-shape slicing method for computing frequency histograms; (c) 
Example of the pie-shape slicing method for computing orienta-
tion histograms. Due to the symmetry of the power spectra, the 
16 orientation slices resulted in only eight bin values. 

Intensity gradient is a surface orientation measure that 
is defined by the average intensity difference along eight 
directions. Each bin represents the strength of the intensity 
gradient in a given direction. For every location in the giv-
en clip, the differences in brightness between a center pixel 
and its eight neighboring pixels were accumulated in the 
corresponding bin. If the difference between the center 
pixel and a neighboring pixel was negative, the absolute 
difference value was summed in the bin that represented 
the opposite direction. Unlike the orientation variable, 
which is based on power spectra and is more strongly af-
fected by line orientations, this variable measures the over-
all intensity gradient of the clip. 

The final dimension, intensity contrast, was processed 
via scalar values instead of histograms. Intensity contrast 
was computed as the standard deviation of intensity across 
the 64×64 pixels in a given patch. Similarity in this dimen-
sion was computed as the negative absolute difference be-
tween the values for the target and the local patch. The re-
sulting similarity maps were normalized in the same way as 
the maps for the histogram-based dimensions. 

Feature-dimension guidance 
Feature-dimension guidance is a quantitative measure 

of the extent to which the visual features in a given dimen-
sion guide a subject’s attention during the course of the 
search task. If a target-similarity landscape generated for a 
given dimension –e.g. luminance– is highly predictive of 
the distribution of human eye movements during visual 
search, we can say that this dimension shows strong guid-
ance (Hwang, Higgins & Pomplun, 2007; Pomplun, 2006). 

In previous studies, guidance in real-world images has 
been measured by several computational methods such as 
the average elevation of fixation density on target features 
(Pomplun, 2006), Pearson correlation between attentional 
landscape and target-similarity landscape (Hwang, Higgins 
& Pomplun, 2007), and Receiver Operating Characteristic 
(ROC – e.g., Tatler, Baddeley & Gilchrist, 2005). While 
yielding intuitively interpretable results, the elevation me-
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thod is not an ideal standard for guidance analysis as its 
results strongly vary with the assumed number of features 
per dimension. Since both the Pearson and ROC methods 
do not require such assumption and provide useful and 
somewhat complementary measures, in the following we 
will use both of them for assessing guidance. The Pearson 
method reveals the degree to which the shape of a similarity 
landscape matches the shape of an attentional landscape 
across the display. It is important to notice, however, that 
attentional landscapes can be ill-defined in areas of ex-
tremely low fixation density. This potential source of noise 
does not affect the ROC technique, which emphasizes the 
correct prediction of attention peaks by the similarity land-
scapes and largely disregards the attention valleys.  

The Pearson measure is simply computed as the corre-
lation between the elevation of the attentional landscape 
and the target-similarity landscape for a given dimension at 
all 529 measurement locations per display. Perfect guidance 
by that dimension would be indicated by a value of one, 
whereas the absence of guidance would result in a value of 
zero. The ROC measure is perhaps best understood by 
analogy: Consider a three-dimensional landscape, such as a 
target-similarity landscape, being ‘flooded’ with water. An 
ROC value for a given feature dimension is then computed 
as follows: First, we flood its similarity landscape until it is 
completely submerged (i.e., from above, 0% of its area is 
visible). The landscape is then continuously drained so that 
1%, 2%, …, 100% of the landscape emerges from the water. 
For each water level, a subject’s eye fixations for the same 
image are projected onto the landscape and the proportion 
of the fixations visible –being located above the water level– 
is computed. After the computation of the visibility rate, we 
plot it as a function of the water level as shown in Figure 6. 
The resulting ROC value is the area under this function. 

 
(a)                             (b) 

Figure 6. Illustration of the ROC measure. The horizontal axis 
represents the proportion of visible (above-threshold) area at 
each threshold value. The vertical axis represents the proportion 
of fixations hitting the visible area. (a) Example of positive predic-
tor; (b) Example of chance-level predictor.  

 
For a chance-level predictor (no guidance), the ROC 

value is 0.5 and for the perfect predictor, the ROC value is 
one. However, in the present context, the theoretical upper 
limit of one is virtually impossible to reach because land-
scapes are smoothed by a Gaussian function. In order to 
find the practical upper limit of the ROC measure, we 

computed the ROC value of the attentional landscapes for 
all images as predictors of all subjects’ fixations. While this 
value is one without the Gaussian function, the actual re-
sult is 0.837 ± 0.050 (in the present work, ‘±’ always indi-
cates a mean value and its standard deviation). 

Using the Pearson and ROC measures, Figure 7 illu-
strates how well the target-similarity landscapes for the eight 
chosen dimensions predict the distribution of attention, 
that is, how strongly those dimensions guide search. Four 
guidance tiers are visible, which are (in descending order of 
guidance, with their Pearson and ROC values in paren-
theses): (1) Intensity (0.37, 0.66); (2) DKL R-G (0.33, 0.64), 
DKL B-Y (0.34, 0.64), and DKL L (0.31, 0.63); (3) contrast 
(0.26, 0.61) and gradient (0.29, 0.62); (4) frequency (0.20, 
0.58) and orientation (0.20, 0.58). All differences in guid-
ance between the tiers are significant for both the Pearson 
measure, all ts(159) > 2.51, ps < 0.05, and the ROC meas-
ure, all ts(159) > 2.88, ps < 0.05. Notice that, 
ing Pomplun (2006), all subjects’ data were combined for a 
useful computation of attentional landscapes. Consequent-
ly, statistical tests were computed across the 160 displays 
instead of the 30 subjects. In the following, unless other-
wise stated, all reported statistical tests and variables such as 
standard deviation and standard error were calculated 
across displays.  

  

 

 Figure 7. Results of visual features guidance using two different 
methods, Pearson correlation method and ROC method. Error 
bars indicate standard error of the mean 

Informativeness of feature dimensions  
In artificial search displays showing discrete search 

items with a small set of visual features, a phenomenon 
known as the distracter-ratio effect has been shown to bias 
eye-movement patterns (Shen, Reingold & Pomplun, 2000). 
It was found that our visual attention is preferentially 
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guided by those features of the target that are most distinc-
tive, i.e., that are shared by the fewest distracter items. For 
example, consider a search condition in which the target is 
a red horizontal bar and distracters may be either red ver-
tical bars or blue horizontal bars. As the proportion of red 
distracters increases, guidance along the other dimension –
orientation– rises. Therefore, the distracter-ratio effect re-
flects an optimization mechanism for guiding search that 
favors more informative stimulus dimensions. 

In the present study, we refined and extended the con-
cept of the distracter-ratio effect so that it can accommo-
date the target-distracter similarity in real-world search dis-
plays. Following our earlier study (Hwang, Higgins & Pom-
plun, under review), we mathematically defined the infor-
mativeness of a feature dimension as the proportion of a 
similarity landscape for which similarity-to-target is at most 
50% of its maximum for a given display 

Why use a 50% threshold? In Hwang, Higgins & Pom-
plun (under review), this value was chosen because intui-
tively it should be most sensitive to differences in informa-
tiveness. The resulting measure was shown to be a useful 
predictor of guidance across dimensions in a given display, 
and an excellent predictor for the average guidance by a 
given dimension across displays. For the present study, we 
therefore decided to use the same threshold. In addition, 
we used the current eye-movement data to analyze the de-
pendence of these findings on the choice of similarity thre-
shold. As Figure 8 illustrates, the average informativeness-
guidance correlation per dimension is maximized at thre-
shold values around 40% to 50% for both the Pearson and 
ROC guidance measures.  

  

Figure 8. Average correlation between informativeness and 
guidance across the eight feature dimensions for various similari-
ty thresholds. Both guidance measures (Pearson and ROC) re-
veal maximum correlation in the threshold range of approximate-
ly 40% to 50%. Curves indicate quadratic function fits, and error 
bars indicate standard error of the mean across dimensions. 

Another important aspect of informativeness with simi-
larity threshold of 50% is that there exists a strong positive 
correlation between average informativeness and average 
guidance across dimensions. An analysis of the present data 
shows only slight variation in this correlation for similarity 
thresholds between 10% and 60% (see Figure 9). Above 
this threshold range, correlation is rapidly broken. Con-
firming the results obtained in Hwang, Higgins & Pom-
plun (under review), the correlation coefficient between 
average informativeness and average guidance across the 
eight dimensions for a 50% threshold is very high for both 
the Pearson method (r = 0.98, p < 0.0001) and the ROC 
method (r = 0.96, p < 0.0005).  

   

Figure 9. Correlation coefficient between average informative-
ness and average guidance across the eight dimensions, shown 
as a function of the similarity threshold. For threshold up to 70%, 
there exists a strong positive correlation (r > 0.95). 

 

The present data support the intuitively proposed 50% 
threshold as a good choice for measuring informativeness 
when modeling top-down guidance of attention. At this 
threshold, there exist positive informativeness-guidance 
correlations (for both Pearson and ROC) for all feature 
dimensions, all ps < 0.005: intensity (0.32, 0.29), contrast 
(0.33, 0.23), gradient (0.58, 0.60), frequency (0.34, 0.36), 
orientation (0.32, 0.34), DKL R-G (0.43, 0.35), DKL B-Y 
(0.36, 0.43), and DKL L (0.51, 0.51). These results indicate 
adaptation of guidance to informativeness in individual 
trials (see Figure 10).  
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Figure 10. Correlation coefficient between informativeness and 
guidance for individual feature dimensions.  

The Model 
Integrating the similarity landsapes 

Our proposed model relies upon the correlation be-
tween informativeness and guidance across feature dimen-
sions. Since informativeness can be computed based on 
display and target information alone, this correlation 
enables us to –at least roughly– predict feature guidance 
across dimensions without requiring knowledge of human 
fixation data. These guidance values, in turn, tell us the 
contribution of a given similarity map to guiding search 
and can thus be used as weighting factors for the similarity 
maps’ integration into a top-down saliency map. 

Furthermore, if we assume that there are limited 
processing resources available during real-time information 
integration (e.g., Duncan & Humphreys, 1989), weighting 
values should be normalized using the following Equation 
1 so that the sum of weightings –i.e., processing resources– 
among all feature dimensions becomes one: 

Wd =  Id
Id∑   , (1)               

At first glance, Equation 3 seems inadequate because it 
implies that at locations with zero similarity to the target in 
one or more of the dimensions, the overall elevation will be 
zero as well. Consequently, in a standard conjunction 
search task (e.g., 

where Wd  is the final weight for feature dimension d 
and Id is the informativeness of feature dimension d for the 
current search task. 

The next question we need to ask is how this weighting 
should be applied for the integration of similarity land-
scapes. The currently most popular method for computing 
saliency maps is the weighted sum method (Frintrop et al, 
2005; Itti & Koch, 2000; Navalpakkam & Itti, 2006). It 
treats each feature dimension’s saliency contribution as 
independent signal propagation. Accordingly, the total sum 
of saliency strength is accumulated as if bottom-up saliency 
effects propagate separately along the visual pathway. Each 

saliency map is disjunctively summed while the given fea-
ture dimensio  weighti  is app ied: n’s ng l

Ex, y =  ∑ (Wd Sd, x, y   ,       (2) 

where Ex, y is the final saliency elevation at location (x, 
y) in search space and Sd, x,y is the similarity value at loca-
tion (x, y) in the similarity landscape for feature dimension 
d. 

However, for modeling search behavior, which is 
strongly determined by top-down guidance (Henderson et 
al., 2007; Zelinsky et al., 2006), we argue that the weighted 
sum method is not the most adequate way of integrating 
saliency across feature dimensions.  This view is based on 
the observation made in a previous study (Pomplun, 2006) 
that attentional landscapes typically contain only few peaks, 
while their elevation is near zero for most of the display 
area (see also Figures 1 and 2c). However, for individual 
dimensions, the distribution of saliency –i.e., target-
similarity– is usually less focused and differs among the 
dimensions (see Figure 11). Therefore, if attention were 
actually guided by the sum of top-down saliency across di-
mensions, we would expect to see less pronounced peaks 
and significant elevation throughout the display. As a more 
appropriate approach to solving the integration problem, 
we propose th eighted product method: e w

Ex, y=  ∏ (Sd, x, y
Wd          (3) 

This method considers features as an integrated set of 
characteristics that defines the target. In order to imple-
ment weighting of individual similarity maps, the weights 
in Equation 3 have to take the form of an exponent for the 
similarity value for each feature dimension. This exponen-
tial weighting results in the nice property that if a feature 
dimension is entirely uninformative, it will turn the similar-
ity value of the whole similarity map for that dimension 
into one. Therefore, that dimension will not contribute to 
guiding search.  

Wolfe, 1994), Equation 3 seems to predict 
that only the target object is salient and should be detected 
immediately, which contradicts empirical findings. Howev-
er, it is important to notice that due to factors such as noise 
in perception and memorization as well as the complexity 
of search images, target-similarity never drops to zero. 

The product method assumes the search task to de-
pend on feature matching in terms of a conjunctive opera-
tion among the feature dimensions. Since similarity maps 
and human fixation distribution maps are correlated, each 
similarity map approximates the probability of eye fixations 
on a given location guided by that feature. Since our simi-
larity maps are also normalized as probability mass func-
tions, integrating similarity maps using the AND operation 
approximates the probability distribution of eye fixations 
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across the search image. Our hypothesis is that the product 
method outperforms the “standard” sum method at pre-
dicting the overall shape of empirical attentional landscapes 
(few peaks, large areas with almost zero elevation). In the 
following section, the hypotheses underlying the concept of 
our proposed model (see Figure 11) are evaluated using the 
empirical eye-movement data.  

 

Figure 11.  Schematic of model operation. From the similarity 
landscapes, weighting across dimensions is computed based on 
informativeness. Afterwards, similarity landscapes are integrated 
using the weighted product method. 

Performance Evaluation 
Evaluation of weighting strategies 

In order to quantify our model’s predictive perfor-
mance, we applied the same methods that we used for 
computing overall feature guidance, namely the Pearson 
method and the ROC method. However, this time, instead 
of comparing the attentional landscapes and similarity 
landscapes, we compared the empirical attentional land-
scapes and the model-generated ones. To evaluate our pro-
posed approach of computing the weighted product of the 
informativeness of feature dimensions in individual dis-
plays, it is compared against the weighted sum method and 
alternative weighting strategies. It is important to notice 
that for none of these algorithms, including our proposed 
model, were any parameters fitted to empirical data. In-
stead, their implementation was based on straightforward 
assumptions in order for our analysis to reveal qualitative 
differences between approaches rather than the extent to 
which they can be fitted to match empirical data.   

Several strategies for choosing the weights across fea-
ture dimensions were tested. The Unit Weights (UW) case 
is a baseline strategy in which the similarity maps are inte-
grated using unit weighting. In other words, the contribu-
tions of all feature dimensions to the guidance of search are 
assumed to be equal. Any strategies whose performance 
does not significantly exceed the UW results are thus not 
useful for modeling guidance. The Average Pearson (AP), 
Average ROC (AR) and Average Informativeness (AI) cases 
utilize the dimension-wise average Pearson guidance, ROC 

guidance, and informativeness values, respectively, across 
all 160 displays as weights. These strategies assign the same 
pattern of weights regardless of the characteristics of the 
current search task. Clearly, the Pearson and ROC guid-
ance values cannot be part of any modeling approach, be-
cause they require empirical eye-movement data for their 
computation. They are included in this comparison as ref-
erence models whose performance could be achieved if 
Pearson and ROC values could be exactly predicted from 
display and target data alone. Finally, in the Individual 
Pearson (IP), Individual ROC (IR) and Individual Informa-
tiveness (II) cases, the weights are adjusted for every indi-
vidual task, representing adaptive, dimension-wise weight-
ing for each task. The II case represents our proposed mod-
eling approach. All performance data are computed using 
two different integration methods, the weighted sum and 
the weighted product, as discussed above. 

Even without looking at individual data points, the re-
sults in Figure 12a show us that guidance for integrated 
feature dimensions is clearly higher than previously com-
puted dimension-wise guidance values (see Figure 7). Disre-
garding the uninformed UW case, for integrated dimen-
sions, predictive performance is in the 0.40~0.48 range 
using the Pearson method and in the 0.67~0.70 range for 
the ROC method. In comparison, guidance by individual 
dimensions is in the 0.20~0.37 range for the Pearson me-
thod and in the 0.58~0.65 range using the ROC method. 
This performance boost is due to feature integration, sup-
porting the view that the human visual system uses cross-
dimensional information integration for search (Quinlan, 
2003). 

Moreover, the data indicate that the weighted product 
method performs significantly better than the weighted 
sum method when performance is measured using the 
Pearson method. The average difference across weighting 
strategies is 0.019 ± 0.007, and all of the individual differ-
ences are significant, all ts(159) > 8.36, ps < 0.001. Moreo-
ver, visual inspection of the final activation maps reveals 
that the weighted product method leads to “cleaner” maps 
in which the peaks are more condensed. This effect seems 
to be due to the fact that multiplication of similarity effec-
tively removes the noise peaks. However, as shown in Fig-
ure 12b, this difference between the two weighting me-
thods does not translate into a performance difference 
when performance is measured using the ROC method, all 
ts(159) < 1.70, ps > 0.09. As discussed above, ROC values 
depend more strongly on the location of the tallest peaks 
than on the overall distribution of fixations. The current 
data therefore suggest that while the product method and 
the sum method predict fixation peaks equally well, the 
product method is superior at predicting the overall distri-
bution of fixations. We will thus limit the following analy-
sis of the weighting strategies to the product method. 
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(a) 

 
(b) 

Figure 12. Performance of different weighting strategies meas-
ured by Pearson method (a) and ROC method (b). Weighting 
strategies: Unit Weights (UW), Average Pearson (AP), Average 
ROC (AR), Average Informativeness (AI), Individual Pearson (IP), 
Individual ROC (IR) and Individual Informativeness (II). In each 
case, performance is measured for both the weighted product 
approach and the weighted sum approach. Error bars indicate 
standard error. 

 
When comparing the different weighting strategies, we 

find that, for the Pearson measure, the average-based strate-
gies, AP (0.40), AR (0.41) and AI (0.40) outperform the 
UW strategy (0.38), all ts(159) > 3.30, ps < 0.005. This dif-
ference indicates that in natural search scenes, some feature 
dimensions are generally more informative than others, 
and incorporating this knowledge into the model leads to 
better prediction of search behavior. For example, intensity 
and color dimensions exert stronger guidance than other 
dimensions (see Figure 7). This bias in human observers 
can be either a result of long-term learning of informative-
ness of feature dimensions in natural scenes, or an evolu-
tionary specialization of the visual system for processing 
these dimensions. 

It must be noted, however, that for the ROC measure 
only the difference between UW (0.66) and AR (0.67) 
reaches significance, t(159) = 4.28, p < 0.001, while there 
are only tendencies for such differences between UW and 
AP (0.67), t(159) = 1.45, p = 0.15 , and between UW and 
AI (0.67), t(159) = 1.32, p = 0.19.  This finding, once again, 
can be attributed to the greater sensitivity of the Pearson 
measure to similarity in fixation density across the display.  

 If we compare the average-based weighting cases (UW, 
AP, AR and AI) with the individual (display by display) 
weighting cases, we find increased performance by the latter 
group for both measures: IP (Pearson: 0.48; ROC: 0.69), IR 
(0.47, 0.70) and II (0.43, 0.68), all ts(159) > 2.90, ps < 0.05. 
Therefore, it seems that in human observers feature-
dimension weighting is to a large extent dynamically as-
signed based on the current task (display-target pair) to 
maximize search performance.  

Again, it is important to notice that our proposed 
model is represented by the II strategy, whereas the IP and 
IR cases are based on empirical eye-movement data and are 
included for providing reference data only. Both the IP and 
the IR cases outperform the II strategy, both ts(159) > 6.77, 
ps < 0.001, indicating that a better prediction of guidance 
across dimensions could significantly improve the model. 
On the other hand, the II strategy performed better than 
any of the strategies that do not adapt their weights to indi-
vidual search tasks (UW, AP, AR, and AI), all ts(159) > 
4.10, ps < 0.001) on both Pearson and ROC measures. This 
result signifies that in our proposed model, the weighting 
of dimensions for individual displays based on our infor-
mativeness measure makes a significant contribution to the 
prediction of attentional guidance.  

The model’s predictive power 
The previous analyses have shown that the model 

meets its minimum requirement, that is, it predicts human 
performance above chance level. A more important ques-
tion, however, is: How close is the model to the optimal 
performance that any model could achieve? Since there is 
variance in behavior between individual observers, it is im-
possible for any model to predict every individual observ-
er’s behavior perfectly. For the following analysis, we used 
arguably the best predictor of subjects’ eye movements: 
other subjects’ eye movements in the same tasks.  

To evaluate how well the model predicts individual 
subjects’ eye movements, we let the model predict an atten-
tional landscape for each of the 160 tasks and compute the 
average ROC value for each individual subject’s fixations 
across these landscapes. For comparison, we repeated this 
procedure, but this time the landscapes were the actual at-
tentional landscapes based on the other 29 subjects’ collec-
tive data (all subjects except the one whose data are being 
predicted). These ROC data represent the approximate 
maximal performance any model can reach.  

As an additional measure for group predictions, the 
model was also compared to a group-to-group prediction in 
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which the 30 subjects were randomly divided into two 
groups of 15 subjects each. The attentional landscapes 
based on the first group’s collective fixations served as the 
predictor of the second group’s fixations. For comparison, 
the model also predicted the second group’s fixations.  

Figure 13 shows the predictive power of the subject 
population and our model for individual and group data. It 
demonstrates that our model’s predictive power for indi-
vidual subjects (0.67) is slightly lower, t(159) = 8.18, p < 
0.001, than the predictive power of the subject population 
(0.72). When we consider the group-wise prediction, the 
population’s predictive power (0.70) is slightly lower than 
for the individual data, t(159) = 6.36, p < 0.001, conceiva-
bly because the number of data points used to estimate the 
population is decreased in group-wise prediction. Converse-
ly, the model’s prediction power increases on group predic-
tion (0.68) compared to individual prediction, t(159) = 4.51, 
p < 0.001. These data suggest that, particularly for group 
prediction, the current model is quite close to the maximal 
performance that any model could reach. Given that our 
model only incorporates top-down control of attention and 
none of its parameters were fitted to optimize its output, 
this result supports the plausibility of our modeling ap-
proach. 

   
(a)                                                (b)  

Figure 13. Comparison of predictive power (ROC method) be-
tween our model and the subject population for individual and 
group data. (a) Prediction of individual data: Population is esti-
mated by the other subjects’ eye fixation data except the one 
that is predicted. (b) Prediction of group data: Population is esti-
mated by the other half of subject group’s fixation data. Error 
bars indicate standard error of the mean, and dotted lines indi-
cates the chance level (0.5).  

Conclusions 
Unlike other search models that focus on modeling an 

observer’s sequence of fixations (e.g., Najemnik and Geisler, 
2005; Zelinsky, 2008), the aim of this present modeling 
study was to predict, for a given target and real-world search 

display, the statistical distribution of fixations. An adequate 
model predicting such distribution could provide impor-
tant insight into the attentional mechanisms underlying 
search behavior. For this purpose, no parameters of the 
model were fitted to empirical data. All mechanisms, both 
the ones proposed for the model and alternative ones used 
for reference and comparison, were implemented in the 
most straightforward and naïve manner. This research 
strategy most likely failed to determine the maximal predic-
tive performance that the model could have reached if its 
parameters had been optimally tuned using empirical data. 
More importantly, however, this strategy allowed us to 
compare the key contributions of different mechanisms 
instead of their malleability toward producing specific, de-
sired data.    

Despite the omission of data fitting, the model we have 
presented here is able to predict the statistical distribution 
of human eye fixations during search in real-world images 
quite well. In particular, the accuracy of its prediction of 
combined data from multiple subjects was shown to be on-
ly slightly below the optimum that any model could achieve. 
This result was accomplished with relatively simple and 
straightforward means. First, a histogram matching tech-
nique was used to define the similarity between the target 
and the local display content along eight low-level stimulus 
dimensions. This similarity was assumed the main factor 
underlying the guidance of visual attention and eye move-
ments. Second, this guidance was thought to be biased to-
ward the most informative dimensions, as determined by a 
previously introduced informativeness measure (Hwang et 
al., under review). Third, the model’s predicted distribution 
of fixations was computed as the informativeness-weighted 
product of the target-similarity maps for individual stimulus 
dimensions.  

The evaluation of the model and its components has 
brought about some noteworthy findings. Regarding the 
informativeness measure, we demonstrated its robustness 
for a range of similarity thresholds and justified the earlier 
choice of a 50% threshold. Furthermore, the weighted 
product method for integrating the target-similarity maps 
was found to be more appropriate than the sum method 
used in previous studies (e.g., Frintrop et al., 
2005; Navalpakkam & Itti, 2006). While both methods 
predict the highest fixation peaks well, the current data 
suggest that the product method approximates the empiri-
cal fixation density distribution more closely.  Weighting 
the contribution of individual feature dimensions by their 
informativeness leads to a better prediction of subjects’ gaze 
behavior. Recomputing this weighting for the informative-
ness in every individual search display, as done in the pro-
posed model, leads to an even greater improvement than 
using static weights based on the average informativeness of 
dimensions across displays. These results suggest that 
weighting of feature dimensions is an integral mechanism 
for attentional control, and models without such mechan-
ism such as TAM (Zelinsky, 2008) could be further im-
proved by adding it.  The evaluation also showed that if the 
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guidance by individual dimensions could be predicted 
more reliably, a significantly better prediction of fixation 
distribution could be achieved.  

The current informativeness measure used for weight-
ing the contribution of different stimulus dimensions is 
simpler than other approaches, most notably the model of 
attentional tuning of visual features developed 
by Navalpakkam and Itti (2007). However, the performance 
of our informativeness measure in the current model sug-
gests that it may reflect a mechanism similar to the actual 
neural functions tuning cross-dimensional attention. It is 
reasonable to assume that the biological mechanisms have 
evolved to be simple and efficiently computable by a highly 
parallel neural network. Our informativeness measure 
meets these criteria. It does not require any training for 
specific search tasks or any prior knowledge about the tar-
get location. Once we are able to quantitatively compare 
different approaches on complex images, the nature of the 
underlying neural circuitry will become more amenable to 
analysis.   

As a first step toward comparability of visual search 
models, the evaluation of the current model was performed 
using two common quantitative measures: Pearson correla-
tion and ROC. Consequently, the present study yielded a 
wealth of quantitative performance data whose counter-
parts could easily be computed for other existing or future 
models of guidance during search. This opportunity could 
lead to the first useful, quantitative comparisons of visual 
search models, whose unattainability so far has most likely 
impeded the progress in this field of research.    

Notwithstanding its complete lack of bottom-up me-
chanisms, the present model yields close predictions of em-
pirical eye-movement data. This fact further supports the 
view that bottom-up control of attention does not contri-
bute significantly to visual search behavior in static scenes 
(Henderson et al., 2007; Zelinsky et al., 2006). In the light 
of the current data, the conceptualization of top-down con-
trol as a modulator of bottom-up signals as in the models 
by Frintrop et al. (2005) and Navalpakkam and Itti (2006) 
seems even harder to justify. 

One of the significant shortcomings of the current 
model is its assumption of a constant distribution of visual 
processing resources around fixation, simulated by a Gaus-
sian function of constant width. However, previous re-
search such as the Area Activation Model (AAM) 
by Pomplun, Shen & Reingold, 2003 suggested that this 
width is inversely correlated with the difficulty of the search 
task. Our future research will develop a predictor for task 
difficulty based on informativeness-related measures in or-
der to estimate the distribution of processing resources for 
individual search tasks. 

Another important limitation of the model in its 
present state is its restriction to search for exact visual pat-
terns of one particular size. In everyday search, we are typi-
cally looking for objects and need to recognize them in dif-
ferent orientations, at various visual angles, and under any 
conditions of lighting and partial occlusion. Often, we do 

not even search for a particular object but for an instance 
of some object category. An adequate model of search for 
object or object categories, in turn, needs to incorporate 
semantic and contextual effects (Neider & Zelinsky, 
2006; Oliva et al, 2004). The final goal for this line of re-
search is to integrate the current approach with the AAM 
concept and address these higher-level influences to derive 
a “general-purpose” model of attentional control during 
visual search.  

 

Appendix A 
RGB to DKL color conversion 

Deriving a color space conversion from the RGB to the 
DKL model requires more than one step because the DKL 
color model is based on the response curves for short, me-
dium and long wavelength. First, the RGB color compo-
nents are converted to the CIE XYZ color space using the 
following formula (Fairman, 1997): 
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Next, the CIE XYZ color space is converted to the LMS 
space using the chromatic adaptation matrix MCAT02 from 
the CIE CAM02 model (Fairchild, 2005): 
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Finally, the LMS color space can be converted to the 
DKL color model using the following three equations 
(Krauskopf et al., 1990): 
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where the R-G value models the red-green double op-
ponent cells in the retina, B-Y models the blue-yellow 
double opponent cells, and L represents luminance. From 
Equations 6, 7, and 8, we can compute the LMS to DKL 
conversion matrix as follows: 
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Since all three functions are linear, they can be ex-
pressed by multiplying the three matrices. The resulting 
matrix directly maps from RGB color space to DKL color 
space: 
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