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Abstract The combination of different desirable characteristics and situation-depen-
dent behavior cause the design of adaptive cruise control (ACC) systems to be time
consuming and tedious. This chapter presents a systematic approach for the design
and tuning of an ACC, based on model predictive control (MPC). A unique feature
of the synthesized ACC is its parameterization in terms of the key characteristics
safety, comfort and fuel economy. This makes it easy and intuitive to tune, even
for nonexperts in (MPC) control, such as the driver. The effectiveness of the design
approach is demonstrated using simulations for some relevant traffic scenarios.

1 Introduction

Adaptive cruise control (ACC) is an extension of the classiccruise control (CC),
which is a widespread functionality in modern vehicles. Starting in the late 1990s
with luxury passenger cars, ACC functionality is now available in a number of com-
mercial passenger cars as well as trucks. The objective of CCis to control the longi-
tudinal vehicle velocity by tracking a desired velocity determined by the driver. Only
the throttle is used as an actuator. ACC extends CC functionality by automatically
adapting the velocity if there is a preceding vehicle, usingthe throttle as well as the
brake system. Commonly, a radar is used to detect preceding vehicles, measuring
the distancexr and the relative velocityvr between the vehicles. Hence, besides CC
functionality, ACC enables also automatic following of a predecessor. In Figure 1,
a schematic representation of the working principle of ACC is shown.
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Fig. 1 The ACC-equipped
host vehicle, driving with
velocity vh and acceleration
ah, automatically follows
a preceding target vehicle,
driving with velocityvt.
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Considering the automatic-following functionality, ACC systems typically con-
sist of two parts: a vehicle-independent part and a vehicle-dependent part [13]. In
Figure 2, a schematic representation of the ACC control loopis shown. The vehicle-
independent part determines a desired acceleration/deceleration profile for the ve-
hicle. The vehicle-dependent part ensures tracking of thisprofile via actuation of
the throttle and the brake system throughuth andubr, respectively. The latter part
can thus be regarded as a controller for the longitudinal vehicle acceleration. As
every vehicle has different dynamics, this part is vehicle dependent. The distancexr

and relative velocityvr = vt − vh with respect to the preceding vehicle are measured
using a radar.

Fig. 2 Schematic represen-
tation of an ACC control
loop.
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Focusing on the vehicle-independent part, the primary control objective is to en-
sure following of a preceding vehicle. Considering the corresponding driving be-
havior, ACC systems are generally designed to have specific key characteristics,
such as safety, comfort, fuel economy, traffic-flow efficiency and minimizing emis-
sions [18]. In general, however, these characteristics typically impose contradictory
control objectives and constraints, complicating the controller design. For instance,
to ensure safe following, the system should be agile, requiring high acceleration
and deceleration levels, which is not desirable considering comfort or fuel econ-
omy [10]. To account for different characteristics, a weighted optimization can be
employed. For example, a model predictive control (MPC) approach can be adopted,
which also facilitates constraint satisfaction [3, 9].

Besides the contradictory desirable characteristics, driver acceptance of the sys-
tem requires ACC behavior to mimic human driving behavior tosome extent [4].
Apart from the fact that human driving behavior is driver specific and time varying,
it is also situation dependent [10, 19, 20]. The desired situation dependency of the
designs give rise to many tuning variables, which makes the design and tuning time
consuming and error prone.

In this chapter, the design of an ACC is presented, accounting for the contradic-
tory characteristics and the many tuning variables. The focus is on the design of the
vehicle-independent part of the automatic-following functionality. The contribution



Model Predictive Control Approach to Design a Parameterized Adaptive Cruise Control 3

is the design of an ACC, which is parameterized by the key characteristics safety,
comfort and fuel economy, with at most one tuning variable for each characteristic.
The setting of the ACC can then easily be changed, possibly even by the driver.

The organization of this chapter is as follows. The problem formulation and the
setup are presented in Sections 2 and 3. The parameterization and results are dis-
cussed in Section 4. Finally, conclusions and an outlook on future work are given.

2 Problem Formulation

The problem formulation involves parameterization of the ACC, based on the cho-
sen key characteristics.

2.1 Quantification Measures

In this research, safety, comfort and fuel economy are chosen as the key character-
istics of the desired behavior of an ACC. Considering safety, however, we note that
the ACC is not a safety system such as an emergency braking or acollision avoid-
ance system. ACC is primarily a comfort system that incorporates safety in the sense
that appropriate driving actions within surrounding traffic are guaranteed. To enable
quantification of the key characteristics, desirable properties of these characteristics,
so-called quantification measures, have to be defined.

Typically, the safety of a traffic situation increases for increasing inter-vehicle
distance and decreasing relative velocity. Hence, regarding safety, the inter-vehicle
distance and the relative velocity will be used as quantifications measures [11]. Re-
garding comfort, the (peak) acceleration and (peak) jerk levels will be used as quan-
tification measures [8, 16]. Concerning fuel consumption, especially the average
velocity and the deceleration time are important measures [6, 15]. Both measures
are influenced by the acceleration and deceleration levels.Hence, regarding fuel
economy, these levels will be used as quantification measures.

2.2 Parameterization

This research presents the design of a parameterized ACC, with, in the end, only a
few design parameters, that are directly related to the key characteristics of the be-
havior of the ACC. The limited number of intuitive tuning variables enables quick
and easy adaptation of the ACC to different desirable driving behavior. Importantly,
these variables can also be used by nonexperts in (MPC) control, like the average
driver, to change the behavior of the ACC system to the driver’s own wishes. En-
abling the driver to set these variables, really makes the ACC easily adjustable.
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Correspondingly, the design parametersPs, Pc andPf are defined, indicating to
what extent the driving behavior of an ACC-controlled vehicle is either safe, com-
fortable or fuel economic, withPs∈ [0,1], Pc ∈ [0,1] andPf ∈ [0,1]. IncorporatingPs,
Pc andPf in the controller design yields a parameterized ACC, i.e., ACC(Ps,Pc,Pf),
with Ps, Pc andPf as tuning variables directly related to the behavior of the ACC.
The systematic approach presented here, makes it possible to redesign the system
relatively easy, and reduces the amount of time-consuming and error-prone trial-
and-error techniques in the design. Although, focus lies here on safety, comfort and
fuel economy, the approach is general and can be adopted for any characteristics,
e.g., traffic flow efficiency or minimizing emissions.

3 Model Predictive Control Problem Setup

In this section, the control problem formulation is discussed.

3.1 Modeling

A model predictive control (MPC) synthesis is adopted to design the ACC. The
MPC synthesis requires a model of the relevant dynamics to use as a prediction
model. Consider again the control structure as presented inFigure 2. Focusing on
the design of the vehicle-independent control part, the model should cover the longi-
tudinal host vehicle dynamics, the vehicle-dependent control part and the longitudi-
nal relative dynamics, which are measured by the radar. Assuming that the vehicle-
dependent control part ensures perfect tracking of the desired accelerationah,d(t),
the internal vehicle dynamics and the vehicle-dependent control part together can
be modeled by a single integrator, relating the host vehiclevelocity vh(t) and the
(desired) accelerationah(t) = ah,d(t). The continuous-time equations, modeling the
dynamics, are given by:







xr(t) = xr(0)+
∫ t
0 vr(τ)dτ

vr(t) = vr(0)+
∫ t
0 ar(τ)dτ

vh(t) = vh(0)+
∫ t
0 ah(τ)dτ

(1)

wherexr(t) the relative position,vr(t) = vt(t)− vh(t) the relative velocity,ar(t) =
at(t)− ah(t) the relative acceleration,vh(t) the host vehicle velocity, andah(t) the
host vehicle acceleration at timet ∈ R

+. The values ofxr(t) andvr(t) are measured
by the radar and measurements ofvh(t) andah(t) are available. As the acceleration
of the target vehicleat(t) is unknown, it is, for now as a nominal case, assumed to
be zero in the MPC prediction model, yieldingar(t) = −ah(t). In the end,at(t) acts
as a disturbance on the closed loop system.
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MPC is commonly designed and implemented in the discrete-time domain.
Therefore, the continuous-time equations (1) are converted into a discrete-time
model via exact discretization with sample timeTs, and using a zero-order-hold as-
sumption onah(t). The signals are considered at the sampling timest = k Ts where
k ∈ N represents the discrete time steps:

x(k +1) = Ax(k)+ Bah(k) k ∈ N (2)

wherex(k) = (xr(k),vr(k),vh(k))T , with some slight abuse of notation, and

A =





1 Ts 0
0 1 0
0 0 1



 , B =





− 1
2T 2

s
−Ts

Ts



 (3)

Considering the control structure as presented in Figure 2,the host vehicle acceler-
ationah(k) = ah,d(k) can be regarded as the control input. Furthermore, as all states
of x(k) are measured, the output equation becomesy(k) = x(k), k ∈ N, yielding:

M :

{

x(k +1) = Ax(k)+ Bu(k)
y(k) = x(k)

k ∈ N (4)

with u(k) = ah(k) andA andB as defined in (3).
Finally, the input-output modelM (4) is converted into an increment input-

output (IIO) modelMe [7]. This enforces integral behavior, i.e., enabling a nonzero
control outputu(k) for zero errore(k), thus providing the possibility to prevent
steady state errors in, for example, the following distance. The IIO model is given
by:

Me :

{

xe(k +1) = Aexe(k)+ Beδu(k)
ye(k) = xe(k)

k ∈ N (5a)

wherexe(k) = (xT (k),u(k− 1))T is the new state vector,δu(k) = u(k)− u(k− 1)
the new control input, and

Ae =









1 Ts 0 − 1
2T 2

s
0 1 0 −Ts

0 0 1 Ts

0 0 0 1









, Be =









0
0
0
1









(5b)

are the new model matrices. The modelMe (5) will be used as the MPC prediction
model for the vehicle-independent control part in the remainder of this chapter.

3.2 Control Objectives and Constraints

Typically, the primary control objective of an ACC amounts to following a target
vehicle at a desired distancexr,d(k). Often, a so-called desired time headwaythw,d is
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used to define this desired distance, yielding

xr,d(k) = xr,0 + vh(k)thw,d (6)

with xr,0 a constant representing the desired distance at standstill, and the desired
time headwaythw,d a measure for the time it takes to reach the current position of
the preceding vehicle if the host vehicle continues to drivewith its current velocity,
i.e., for constantvh(k). Correspondingly, the tracking error at discrete timek ∈ N is
defined ase(k) = xr,d(k)− xr(k). Hence, the primary control objective, denoted as
O1, comes down to minimizing the absolute tracking error|e(k)|, k ∈ N.

Besides the primary control objectiveO1, several secondary objectives as well
as constraints, related to the key characteristics safety,comfort and fuel economy,
have to be included. These secondary objectives and constraints are based on the
quantification measures discussed in Section 2.1: the absolute value of the relative
velocity |vr(k)| and the peak values of the host vehicle acceleration|ah(k)| and the
jerk, which will be denoted by| jh(k)|, should be kept small. Furthermore, the rel-
ative position should always be positive, i.e.,xr(k) > 0, and the absolute values
of the acceleration of the host vehicle|ah(k)| and the absolute value of the jerk
| jh(k)| are constrained. The constraints on the acceleration and the jerk are given by
ah,min =−3.0ms−2 [17], ah,max(vh(k)) = ah,0−αvh(k), and| jh(k)| ≤ jh,max, where
jh,max, ah,0 andα are appropriately chosen positive constants. The parameter α will
allow to decreaseah,max for increasingvh(k). The IIO model accommodates the
constraint on| jh(k)|, using the variation in the control outputδu(k) as a measure
for the jerk jh(k). Correspondingly, the constraint on the jerk is transformed into
|δu(k)| ≤ jh,max.

Summarizing, the constraints are given by:

C :







0 < xr(k)
ah,min ≤ u(k) ≤ ah,max(vh(k))

|δu(k)| ≤ jh,max

k ∈ N (7)

whereu(k) = ah,d(k) = ah(k).

3.3 Control Problem / Cost Criterion Formulation

As we use MPC, a cost criterionJ, which is minimized over a prediction hori-
zon Ny, has to be defined. The future system states are predicted using the model
Me (5) and the current statexe(k|k) := xe(k) at discrete time stepk as initial
condition. This yields the predicted statesxe(k + n|k) and the predicted track-
ing error e(k + n|k), n = 0,1, . . . ,Ny for a selected input sequenceδU(k|k) =
(

δu(k|k), . . . ,δu(k + Ny−1|k)
)T , starting at discrete time stepk. Based on the pre-

diction of the future system states, the minimization problem yields an optimal con-
trol sequence, subject to constraints (7) on the inputs and outputs.
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The cost criterion is typically formulated as a linear or as aquadratic criterion.
To solve the corresponding optimization problem results ina linear program (LP)
or a quadratic program (QP). Finding the solution of an LP is less computation-
ally demanding than the corresponding solution of a QP, although this can also be
done efficiently. The tuning of linear formulations, however, suffers from practical
drawbacks, which explains why MPC is often formulated usinga quadratic crite-
rion [7, 14]. We will use the quadratic criterion:

J(δU(k|k),xe(k)) = ∑Ny

n=1

[

ξ T (k + n|k)Qξ(k + n|k)
]

+

+∑Nu−1
n=0

[

δuT (k + n)Rδu(k + n)
]

(8)

with ξ (k+n|k) , (e(k+n|k),vr(k+n|k),ah(k+n|k))T a column vector incorporat-
ing the primary and secondary control objectives, withah(k + n|k) = u(k + n|k),
and Q = diag(Qe,Qvr ,Qah) and R = Qjh the weights on the tracking error and
the secondary control objectives. Furthermore,Ny and Nu denote the output and
the control horizon, respectively, whereNu ≤ Ny. Moreover, forNu ≤ n < Ny the
control signal is kept constant, i.e.,δu(k + n|k) = 0 for Nu ≤ n < Ny. Finally,
u(k + n|k) = u(k + n−1|k)+ δu(k + n|k), for n ≥ 0.

Given a full measurement of the statexe(k) of the modelMe (5) at the current
timek, the MPC optimization problem at timek is formulated as

minimize
δU(k|k)

J(δU(k|k),xe(k)) (9)

subject to the dynamicsMe (5)

the constraintsC (7)

The controller will be implemented in a receding horizon manner, meaning that at
every time stepk, an optimal future input sequenceδU∗(k|k)= (δu∗(k|k), . . . ,δu∗(k+
Ny−1|k))T is computed in the sense of the minimization problem (9). Thefirst com-
ponent of this vector,δu∗(k|k), is used to compute the new optimal control output
u∗(k) = u(k−1)+ δu∗(k|k). Thisu∗(k) is applied to the system, i.e.,u(k) = u∗(k),
after which the optimization (9) is performed again for the updated measured state
xe(k +1) = (xT (k +1),u(k))T .

4 Controller Design

The final controller design, the implementation, and simulation results are presented
in this section.



8 G.J.L. Naus, J. Ploeg, M.J.G. Van de Molengraft, W.P.M.H. Heemels and M. Steinbuch

4.1 Parameterization

The MPC controller design incorporates all quantification measures regarding safety
and comfort. This yields a significant number of MPC tuning parameters, given by
the desired time headwaythw,d, the constraints on the acceleration and jerk,ah,min,
ah,max and jh,max, respectively, the weightsQ = diag(Qe,Qvr ,Qah) andR = Qjh, and
the control and prediction horizonsNu andNy.

Using affine relationships between the MPC tuning parameters on the one hand
and the ACC design parameters for safety,Ps, for comfort,Pc, and for fuel econ-
omy,Pf , on the other hand, the MPC tuning parameters are explicitlyrelated to the
key characteristics safety, comfort, and fuel economy. In this way, the MPC tuning
parameters are all determined as a function of these three essential design param-
eters. The setting of these design parameters indicates to what extent the driving
behavior is either safe, comfortable or fuel economic, withPs∈ [0,1], Pc ∈ [0,1] and
Pf ∈ [0,1]. Due to space limitations, we will not discuss in detail how these affine
relationships are actually constructed, see [12].

In this specific case in which we considered comfort, safety and fuel economy as
key characteristics, it can be assumed that the key characteristics are complemen-
tary: the design of the relationships between the MPC tuningparameters and the
ACC design parameters indicates a decrease in comfort of thedriving for increas-
ing safety, and vice versa. For example, small accelerationand jerk peak values,
indicating a high level of comfort, induce a long time to steady state, which is not
desirable regarding safety. Furthermore, the quantification measures chosen to in-
dicate comfort, are similar to those indicating fuel economy. Consequently, in this
case, a single parameterP ∈ [0,1] results:

P = Pc, Ps = 1−P, Pf = P, P ∈ [0,1] (10)

If other characteristics would be considered in the design,typically more design
parameters would remain in the end.

Parameterization of the ACC with safety, comfort and fuel economy amounts to
incorporating in the original optimization problem (9) therelationships between the
MPC tuning parameters,thw,d, ah,min, ah,max, jh,max, Q, R, Nu andNy, and the design
parameters,Ps, Pc andPf , accounting for (10). This yields

minimize
δU(k|k)

J(P,δU(k|k),xe(k)) (11)

subject to the dynamicsMe (5)

the constraintsC (7)

whereC = C (P) as a result of the parameterization. Changing the behavior of the
ACC system comes down to adjustingP. Allowing the driver to changeP ∈ [0,1],
enables him to influence the behavior of the controller focusing on either safe, or
comfortable and fuel economic driving, depending on the driver’s own desire.
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4.2 Implementation Issues

The total controller design is implemented via the Multi Parametric Toolbox [5].
Online solving of the optimization problem (9) at each time step yields an implicit
solution. Solving (9) as a multi-parametric quadratic program (mpQP) with param-
eter vectorxe enables an explicit form of the solution by offline optimization. The
resulting explicit controller inherits all stability and performance properties of the
implicit controller and has the form of a piecewise affine (PWA) state feedback
law [1, 2]. Solving the mpQP, provides a setXf ⊆ R

nx , with nx the dimension ofxe,
of states for which the constrained optimization problem (9) is feasible. Since the
control law is given by a PWA state feedback law, the feasiblesetXf is partitioned
into R polyhedral regionsRi , i = 1, . . . ,R, such that

Xf =
R
⋃

i=1

Ri (12)

where intRi ∩ intRj = /0, for i = 1, . . . ,R, j = 1, . . . ,R andi 6= j. At time stepk, the
optimal inputδu∗(k|k) is then given by

δu∗(k|k) = Fixe(k)+ fi , for xe(k) ∈ Ri, i = 1, . . . ,R (13)

To compute the control input at discrete time stepk ∈ N, (13) has to be evaluated.
Regarding the explicit solution, the most time-consuming part is determination

of the regionRi that containsxe(k). However, online tuning is prohibited by the
offline optimization. As a solution, one might store variousexplicit controllers for
a finite number of valuesP ∈ n/N for n = 0,1,2, . . . ,N. For implementation of the
implicit controller, solving an optimization in every timestep is required. Hence,
the computational demand depends on the available solver, which is not desirable
targeting industrial acceptance. However,P can be changed online in a continuous
manner. Depending on the system requirements, one may adopteither solution.

4.3 Results

To illustrate the influence of varyingP ∈ [0,1], simulations are performed for some
relevant traffic scenarios using an explicit controller. For a finite number of values
N = 10 for P, the number of regions in the explicit ACC laws ranges from 110 to
120. In Figures 3 and 4 the results ofthe approach of a vehicle at standstill anda
negative cut-in scenario for different settingsP∈ {0.2,0.5,0.8}are shown, showing
the proper working of the parameterization. By changing thesetting of the design
parameterP ∈ [0,1], the behavior of the ACC system changes, with respect to the
comfort, the safety and the fuel economy of the resulting driving action.

In Figure 3, the results ofthe approach of a vehicle at standstill are shown. At
13s, the vehicle at standstill is detected by the radar, which has a range of 180 m.
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Before that, no vehicle is detected. The following behaviorof the ACC system be-
comes more comfortable as well as more fuel economic for increasingP. Firstly, the
deceleration peaks decrease, and secondly, the total deceleration time increases. As
a result, the average velocity decreases, which is beneficial regarding fuel economy.

A negative cut in scenario involves the cut in of a vehicle driving with a velocity
vt(k) < vh(k) at an inter-vehicle distancexr(k) < xr,d(k), see Figure 4: at 20s, a
vehicle cuts in 30m in front of the host vehicle with a velocity of 50kmh−1, while
the host vehicle is driving at 80kmh−1. Before that, no preceding vehicle is detected
and, hence, no distance is measured. From a safety point of view, direct reaction
and substantial braking are required, disregarding the setting of P, i.e., comfort or
fuel-economy-related measures. The results in Figure 4 indeed show this behavior,
indicating that safe behavior is guaranteed for any value ofP. Furthermore, the
results show that for decreasingP the desired steady state distance increases, which
is a result of the parameterizationthw,d = thw,d(P), and is desirable regarding safety.

5 Conclusions and Future Work

In this chapter, a systematic procedure to design an ACC is presented, which is di-
rectly parameterized by the key characteristics safety, comfort and fuel economy of

Fig. 3 The distancexr, the
host vehicle velocityvh and
the accelerationah, corre-
sponding tothe approach of
a vehicle at standstill. The
solid black, the dashed black
and the solid gray lines show
the results for increasing
P ∈ {0.2,0.5,0.8}.
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Fig. 4 The distancexr, the
host vehicle velocityvh and
the accelerationah, corre-
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The solid black, the dashed
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the ACC behavior. The goal of the parameterization of the ACCis to reduce the time
it takes to tune the system and to enable the tuning for nonexperts in (MPC) control,
such as the driver. This requires that the tuning should be simple and intuitive with
only a few design parameters that are directly related to thekey characteristics of
the ACC. To this end, the corresponding design parametersPs, Pc andPf are defined.
Due to the generality of the approach, other characteristics can be straightforwardly
incorporated in the design, using the same systematic design procedure.

The approach is based on (explicit) MPC. The parameterized ACC is obtained
by carefully mapping the many tuning parameters of the MPC setup to the three
design parametersPs, Pc andPf only, which, in this specific case, could be united
in one design parameterP. Simulations have shown the proper functioning of the
parameterized ACC for some relevant traffic scenarios. Changing the behavior of
the system by changing the setting of the design parameterP, has proven to work in
a desired manner.

Future research will focus on experiments, and on extendingthe two-vehicle
model to multiple vehicles. Taking vehicle-to-vehicle communication into account
too, allows for the design of so-called cooperative ACC (CACC) systems. The com-
munication provides additional information concerning the surrounding traffic in
addition to the radar data, which can be very beneficial to thesystem behavior.
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