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SUMMARY

A MODEL PREDICTIVE CONTROL TO GENERATOR

MAINTENANCE SCHEDULING

by

Uduakobong Edet Ekpenyong

Promoters: Prof. J. Zhang and Prof. X. Xia

Department: Electrical, Electronic and Computer Engineering

University: University of Pretoria

Degree: Master of Science (Applied) (Electrical Engineering)

keywords: Generator maintenance scheduling, generators, modelling, main-

tenance, optimisation, particle swarm optimisation, genetic algo-

rithm, model predictive control, swarm intelligence, control

The maintenance schedule of generators in power plants needs to match the electricity

demand and needs to ensure the reliability of the power plant at a minimum cost of

operation. In this study, a comparison is made between the modified generator mainte-

nance scheduling model and the classic generator maintenance scheduling model using

the reliability objective functions. Both models are applied to a 21-unit test system,

and the results show that the modified generator maintenance scheduling model gives

better and more reliable solutions than the regular generator maintenance scheduling

model. The better results of the modified generator maintenance scheduling model

are due the modified and additional constraints in the modified generator maintenance

scheduling model. Due to the reliable results of the modified generator maintenance

scheduling model, a robust model is formulated using the economic cost objective

function. The model includes modified crew and maintenance window constraints,

with some additional constraints such as the relationship constraints among the vari-

ables. To illustrate the robustness of the formulated GMS model, the maintenance of

the Arnot power plant in South Africa is scheduled with open-loop and closed-loop

controllers. Both controllers satisfy all the constraints but the closed-loop results are

better than the open-loop results.
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OPSOMMING

MODEL VOORSPELLENDE KONTROLE TE KRAGOPWEKKER

ONDERHOUDSKEDULE
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derhoud, optimalisering, partikel swerm optimalisering, genetiese

algoritme, model voorspellende kontrole, swerm intelligensie en

kontrole

Die onderhoudskedule vir kragopwekkers (OSK) in kragstasies moet kan voorsien in

die vraag na elektrisiteit en moet die betroubaarheid van die kragstasie teen ’n mini-

mum operasiekoste verseker. In hierdie studie word die betroubaarheidsdoelwitfunksie

gebruik om ’n gewysigde onderhoudskeduleringsmodel vir kragopwekkers te vergelyk

met die konvensionele onderhoudskeduleringsmodel. Beide modelle word toegepas op

’n 21-eenheid-toetsstelsel, en die resultate toon dat die gewysigde model ’n beter en

meer betroubare oplossing bied as die konvensionele model. Die beter resultate van

die gewysigde model is die gevolg van die gewysigde en bykomende beperkings in die

gewysigde model. As gevolg van die betroubare resultate van die gewysigde onder-

houdskeduleringsmodel word die koste-ekonomie-doelwitfunksie gebruik om ’n robu-

uste model te formuleer. Die model sluit gewysigde bemanning- en onderhoudven-

sterbeperkings in, met ’n paar bykomende beperkings soos die verhoudingsbeperkings

tussen die veranderlikes. Om die robuustheid van die geformuleerde OSK-model te

illustreer word die instandhouding van die Arnot kragstasie in Suid-Afrika geskeduleer

met oop- en geslotelus-beheerders. Beide beheerders voldoen aan al die beperkinge,

maar die geslotelusresultate is beter as die ooplusresultate.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

ii

 
 
 



TABLE OF CONTENTS

1 INTRODUCTION 1

1.1 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 RESEARCH APPROACH . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 DISPOSITION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 LITERATURE STUDY AND MOTIVATION 4

2.1 TERMINOLOGIES OF GENERATORMAINTENANCE SCHEDULING 4

2.1.1 Objective functions . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 GMS MODELLING . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 TECHNIQUES USED TO EVALUATE GMS PROBLEMS . . . . . . . 8

2.3.1 Classical mathematical optimisation techniques . . . . . . . . . 9

2.3.2 Neighbourhood search . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.3 Population based search . . . . . . . . . . . . . . . . . . . . . . 13

2.4 RATIONALE FOR THIS STUDY . . . . . . . . . . . . . . . . . . . . . 18

2.5 APPROACH FOR THE STUDY . . . . . . . . . . . . . . . . . . . . . 19

2.5.1 Hypothesis of study . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.2 Motivation for MPC approach . . . . . . . . . . . . . . . . . . . 19

2.5.3 Research process and modelling . . . . . . . . . . . . . . . . . . 21

2.5.4 How this approach addresses current issues . . . . . . . . . . . . 22

2.5.5 Limitations and challenges of selected approach . . . . . . . . . 23

2.6 CONTRIBUTION OF THE STUDY . . . . . . . . . . . . . . . . . . . 23

iii

 
 
 



TABLE OF CONTENTS

3 GENERATOR MAINTENANCE SCHEDULING MODEL 25

3.1 COMPARISON OF THE MGMS AND GMS MODELS . . . . . . . . . 25

3.2 ECONOMIC COST OBJECTIVE FUNCTION GMS MODEL . . . . . 29

3.2.1 Objective function . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.2 Relationship constraints . . . . . . . . . . . . . . . . . . . . . . 30

3.2.3 Maintenance Constraints . . . . . . . . . . . . . . . . . . . . . . 31

3.2.4 System Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.5 Transforming the open loop MGMS to closed loop MGMS using

MPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 VALIDATION OF THE PROPOSED GMS MODEL . . . . . . . . . . 36

4 APPLICATION OF THE GMS MODEL TO CASE STUDIES 37

4.1 21-UNIT TEST SYSTEM . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 ARNOT POWER PLANT OVERVIEW . . . . . . . . . . . . . . . . . 39

4.2.1 Assumptions for the MGMS Model . . . . . . . . . . . . . . . . 41

4.2.2 The open loop MGMS Model with PSO . . . . . . . . . . . . . 42

4.3 PARTICLE SWARM OPTIMISATION . . . . . . . . . . . . . . . . . . 42

4.3.1 Updating position and velocity . . . . . . . . . . . . . . . . . . 43

4.3.2 Advantage of proposed PSO method over the binary PSO . . . 47

4.4 CLOSED LOOP MGMS WITH PENALTY FUNCTION PSO . . . . . 47

4.5 CHOICE OF POPULATION SIZE AND NUMBER OF ITERATION . 48

4.6 CHOICE OF SWITCHING INTERVAL . . . . . . . . . . . . . . . . . 49

4.7 CHOICE OF MAINTENANCE HORIZON . . . . . . . . . . . . . . . . 49

4.8 SOLVING THE PROBLEM WITH MATLAB . . . . . . . . . . . . . . 49

5 SIMULATION RESULTS OF THE APPLIED GMS MODEL 51

5.1 EFFECT OF POPULATION SIZE AND NUMBER OF ITERATION . 51

5.2 TEST SYSTEM - A COMPARISON OF TWO GMS MODELS . . . . 53

5.3 CASE STUDY 2 - ANORT POWER PLANT . . . . . . . . . . . . . . 57

5.3.1 Open loop MGMS model . . . . . . . . . . . . . . . . . . . . . . 60

5.3.2 Closed loop MGMS model . . . . . . . . . . . . . . . . . . . . . 61

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

iv

 
 
 



TABLE OF CONTENTS

5.4 ROBUSTNESS OF THE MGMS MODEL . . . . . . . . . . . . . . . . 62

5.5 PRACTICALITY OF THE MGMS MODEL . . . . . . . . . . . . . . . 63

6 CONCLUSION AND RECOMMENDATIONS 65

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

v

 
 
 



CHAPTER 1

INTRODUCTION

This dissertation formulates a new optimisation model for generator maintenance

scheduling with the necessary constraints required. The open loop problem is solved

using particle swarm optimisation. This open loop problem is then transformed into a

closed loop problem using the model predictive control (MPC).

1.1 BACKGROUND

Modern power systems are experiencing increased demand for electricity with related

expansions in system size, which has resulted in lower reserve margins making the gen-

erator maintenance scheduling problem complicated. Concerns for high reliability, low

production cost and energy management in electricity generation plants has stimulated

interest in automated production, operation, transmission and schedule maintenance

of various machines in a generation plant [1].

The reliability of system operation and production cost in power plants are affected

by the maintenance outage of generators. Optimised maintenance schedules could

potentially defer some capital expenditure for new plants in times of tightening reserve

margins, and allow critical maintenance work to be done which might not otherwise
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CHAPTER 1 INTRODUCTION

be achieved. Therefore, maintenance scheduling is a significant part of the overall

operations scheduling problem [2].

Maintenance of generators in electricity generation plants takes a large percentage in

the operation cost of the plant because of this, scheduling of generators for maintenance

has become an important aspect in energy management and reliability in the power

system.

Generator maintenance scheduling (GMS) involves arranging generators in certain pe-

riods for preventive maintenance at a desired time and level so that the cost involved

are minimised, the generator life time is extended, and the system and other constraints

are satisfied [3].

There are generally two criteria that GMS problems are based on, economic cost and

reliability of the power plant. The economic cost objective is to minimise the total

operating cost. The reliability objective is to meet the required energy demand and

maintain reserve level of the power plant [1].

1.2 RESEARCH APPROACH

The objective of this research is to formulate a GMS model and derive an optimal

solution. The GMS model is to schedule generator maintenance that will reduce the

operational cost of the generator which includes, the maintenance cost while satisfying

all the necessary constraints involved.

The problem lies in finding a set of scheduling periods that minimise the total opera-

tional, production and maintenance cost, as well as meet the load demand and other

constraints over a given period of time. A study of the existing GMS models is done

and constraints missed in the historic GMS models are added to the new formulated

GMS problem.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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CHAPTER 1 INTRODUCTION

A comparison between the formulated GMS model and the classical reliability GMS

model is done using a case study of 21-unit test system. This comparison is to highlight

the effectiveness of the new GMS model when compared to other models.

An open loop optimisation model for the GMS problem is defined with all the necessary

constraints such as the maintenance and system constraints. This open loop model is

then transformed to the close loop GMS problem using model predictive control. The

generic open loop and closed loop models are then applied to a case study. The Arnot

power plant in Mpumalanga, South Africa is selected for this case study.

Particle swarm optimisation (PSO) technique is used to evaluate the open loop and

closed loop problem. Simulations of the results of the open loop and closed loop

evaluations are compared.

1.3 DISPOSITION

This Chapter introduces the background to the research problem and briefly describes

the research approach. In Chapter 2 the literature survey which includes, the de-

scription of the research problem, studies of different solution techniques that have

been applied to the GMS models, the research approach and the contributions of this

research are covered. Chapter 3 compares the reliability objective function modified

GMS (MGMS) model to the classical GMS model of [1], [4], [5] and the economic

cost objective function GMS problem is formulated with some modified and additional

constraints. In Chapter 4 the comparison of the MGMS and GMS models are applied

to a 21-unit case study and the economic cost GMS model is applied to the Arnot

power plant. Chapter 5 reports the simulated results of the two case studies. Chapter

6 concludes and makes recommendations for further research.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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CHAPTER 2

LITERATURE STUDY AND

MOTIVATION

This chapter covers the literature survey. It includes the study of existing work, the

research approach and the contributions of this research.

2.1 TERMINOLOGIES OF GENERATORMAINTENANCE SCHEDUL-

ING

Generator maintenance scheduling (GMS) involves arranging generators in certain pe-

riods for preventive maintenance at a desired security/reserve level so that the costs

involved are minimised and all the necessary constraints are fulfilled [1]-[6].

2.1.1 Objective functions

Objective functions are the performance indicators against which an optimisation prob-

lem solved. For optimisation problems it can be a minimisation, maximisation or even

a combination of both. There are generally two objective functions considered in GMS
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CHAPTER 2 LITERATURE STUDY AND MOTIVATION

problems, the economic cost and the system reliability. The latter objective is often

incorporated into the economic cost model [6]. There are constraints that the objective

functions are subjected to in order for the GMS problem to reach its optimal solution.

The constraints are similar for both objective functions.

2.1.1.1 Economic cost objective function

The economic cost function focuses on the minimisation of the operation cost for the

power plant while still producing the required output and satisfying all the constraints.

The operation cost can be divided into the production, maintenance and start up

cost [7]-[10].

2.1.1.2 Reliability objective function

The reliability objective function aims to maintain the capacity level of the generator at

a certain level with known parameters. It also tries to maximise the system reliability

under certain conditions of uncertainty [6], [11]-[21].

2.1.2 Constraints

Constraints are conditions that must be satisfied for an optimal solution to be achieved.

In optimisation problems these constraints can include equalities and inequalities.

2.1.2.1 Relationship constraints

The relationship constraints show that the variables in GMS problems are not necessar-

ily independent, they sometimes depends on each other in order to obtain an optimal

solution. An example is the relationship between the start up and maintenance vari-

ables in [10].

2.1.2.2 Maintenance constraints

Maintenance constraints ensure that once a generator is removed from the system for

maintenance, it completes the maintenance without interruptions, within the planning

horizon and utilises only the crew available for the period [13], [14]. As said earlier,

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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CHAPTER 2 LITERATURE STUDY AND MOTIVATION

the constraints for both economic cost and reliability are similar.

2.1.2.3 System constraints

System constraints are constraints of the power system that must be satisfied, such as

the demand and supply constraint and the generator limit [15], [16], [17].

2.2 GMS MODELLING

In modern power systems, the demand for electricity has greatly increased with related

expansions in power system size, which has resulted in higher numbers of generators and

lower reserve margins, making the generator maintenance scheduling (GMS) problem

a complex one. An optimal GMS reduces generation cost, increases system-operating

reliability, and extends generator life span [1], [18], [19].

A typical GMS problem considers a generator i in a power system that contains I

generators over a planning horizon of T periods. Each generator i must be maintained

within a duration Ni periods in the horizon without interruptions until the maintenance

is complete. The maintenance of generator i depends on the number of crew available

for the period t. However, these generators must produce generated output git that

must satisfy the demand Dt and maintain a reserve St for that time horizon while

not exceeding their rating limit. The aim of any GMS is to satisfy all these basic

constraints above and still schedule an optimal maintenance.

There are generally two categories of criteria for GMS problems, and they are: economic

cost and reliability of the system. The economic cost objective is to minimise the total

operating cost, which includes the cost of energy production and maintenance. The

reliability objective function is used to maximise the system’s reliability under some

conditions of uncertainty. This is carried out by the levelling of the reserve generation

over the entire operational planning period. It is very crucial to maintain proper level of

reserve margin between the supply i.e. the capacity of the generator and the estimated

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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load demand from the system’s reliability point of view. As such the reliability GMS

problem is solved by minimising the sum of squares of the reserve over the entire

operational planning period [1], [6]. The problem has a number of maintenance and

system constraints to be satisfied. The constraints include the maintenance window,

crew, and demand, constraints.

The economic objective function is used in [7]-[10], [20] to minimise the production cost

over the planning horizon. The planning horizon considered for maintenance scheduling

is often 52 weeks. The models have the maintenance, crew and demand constraints but

fail to include the generator maintenance limit which could prove problematic for the

energy planner when considering unit commitment or economic dispatch. The existing

models treat the variables as independent of each other.

The reliability objective function is used in to [1], [3], [11], [21], [4], [24] to minimise

the sum of squares of the reserve over the entire operational planning period. The

maintenance window and crew constraints are not formulated in the manner that de-

scribes the problem explicitly. For example, the mathematical representation of the

crew constraint in [25] does not specify the stages of maintenance for each interval.

The generator maintenance limit is considered in [26] when considering the maintenance

schedules of thermal power plants but failed to add the ramp rate constraint. The ramp

rate has not been added to any of the above mentioned models. The association of

the start up to maintenance variable is formulated in [10] but failed to consider the

relation between the start up and generated output.

A summary of GMS models with the constraints used is listed in Table 2.1. This

table shows that the GMS models of the literature and the constraints considered in

these models. From the table it can be seen that these models have not considered all

the constraints needed to make the problem robust. Hence, the formulation of a new

GMS model that will contain all the necessary variable relationship, maintenance and

system constraints. This GMS model should be able to handle the economic cost and

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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reliability criteria.

Table 2.1: Summary of the GMS model references

References objective constraints

Economic Reliability Relationship Maintenance System

[1] X X X

[3] X X X

[7] X X X

[8] X X X

[9] X X X X

[11] X X

[21] X X X X

[4] X X X

[24] X X X

[25] X X X

[28] X X X

2.3 TECHNIQUES USED TO EVALUATE GMS PROBLEMS

A variety of exact mathematical and heuristic techniques has been employed to solve

the GMS. Mathematical techniques are mainly based on dynamic programming, branch

and bound programming and implicit enumeration programming. The main problem

with these techniques is that the numerical solutions require extensive computational

efforts, which increases exponentially with the problem complexities. The size and

non-linearity of GMS problems make the mathematical techniques computationally

prohibitive [1], [3]. In order to obtain an approximate solution of a complex GMS, new

concepts have emerged in recent years. They include the decomposition techniques,

simulated annealing, tabu search, generic algorithm, and ant colony optimisation.

The comparison between differential evolution (DE) and particle swarm optimisation

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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CHAPTER 2 LITERATURE STUDY AND MOTIVATION

(PSO) algorithm are presented in [1]. The application of genetic algorithm to GMS

presented in [22] has been compared with, and confirmed to be superior to other con-

ventional algorithms such as heuristic approaches and branch and bound (B&B) in the

quality of solutions [11].

There are three broad categories for the evaluation of GMS optimisation problems.

They are: classical mathematical optimisation, neighbourhood search and population

search.

2.3.1 Classical mathematical optimisation techniques

2.3.1.1 Dynamic programming

Dynamic programming (DP) is used for sequencing problems. It is used in [4] to

minimise the production cost and schedule the exact period in the horizon that the

generators will start maintenance. The model used for this technique considers only

the reserve level and demand of the power plant. DP is not suitable for non-linear ob-

jective, and constraints of generator maintenance schedule as well as its computational

time grows prohibitively with problem size [7]. DP is not efficient in handling problems

with discrete variables such as the GMS problems, and the convergence to an optimal

solution depends on the chosen initial solution [9].

2.3.1.2 Branch and Bound

The branch and bound method carries out a systematic search in the space of all feasi-

ble solutions to find the maximum. It does this by partitioning the space of all feasible

solutions into smaller subsets and calculates an upper bound on the value of the ob-

jective function associated with the solutions that lie within a given subset. After each

partitioning, those subsets whose upper bound are less than the best known feasible

solution are excluded from further partitioning and are discarded. The partitioning

continues until the value of the objective function for the best feasible solution is not

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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CHAPTER 2 LITERATURE STUDY AND MOTIVATION

less than the upper bound of any subset. The best feasible solution is then the optimal

solution. The technique is used in [11] to obtain a scheduling using the maximisation

of reliability objective function.

The strength of this technique is the property of excluding infeasible and non-optimal

subsets from further search without them being fully expanded [23].

2.3.1.3 Implicit enumeration algorithm

Implicit enumeration is similar to branch and bound method. However, branching in

implicit enumeration is specific, since the branching variable has to be either 0 or 1.

Based on this fact, the branch and bounding process and determination of the node

infeasibility are highly simplified. Implicit enumeration has the same strengths and

weaknesses as branch and bound above. It is used as the solution technique for the

economic cost objective function in [28] where a penalty function is added to the model

for maintenance started too early or late.

2.3.2 Neighbourhood search

Neighbourhood search refers to those search methodologies where a single solution is

transformed over time by making use of predefined neighbourhood. There are two

neighbourhood search techniques that have been used in GMS.

2.3.2.1 Simulated Annealing

Simulated annealing (SA) assumes an analogy between the annealing of a metal and a

combinatorial optimisation problem. The name and inspiration come from annealing

in metallurgy, a technique involving heating and controlled cooling of a material to

increase the size of its crystals and reduce their defects. The heat causes the atoms to

become unstuck from their initial positions (a local minimum of the internal energy)

and wonder randomly through states of higher energy, the slow cooling gives them

more chances of finding configurations with lower internal energy than the initial one

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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CHAPTER 2 LITERATURE STUDY AND MOTIVATION

[29], [30], [32].

The components of the simulated annealing are basically as follows:

1. The description of the state space.

2. The score function.

3. The rules for the move set.

4. The acceptance function.

5. The annealing schedule.

In the annealing schedule, “annealing” is a thermal process for obtaining low energy

states of a solid in a heat bath. This process contains two steps:

1. Increasing the temperature of the heat bath to maximum value, at which the solid

melts. The solutions in the combinatorial optimisation problems are equivalent

to states of a physical system.

2. Carefully decreasing the temperature of the heat bath until the particles arrange

themselves in a ground state of the solid. The cost of the solution is equivalent

to the energy of the state.

A new solution is generated through a neighbourhood structure, a set of solution which

is “close” to the present solution, and a generation mechanism, selecting a new solution

from the neighbourhood of the present solution. SA is used in [8], [31] to minimise

economic cost and schedule start of maintenance. Due to its more advanced method

of optimisation than that of the classic mathematical method, reserve constraint is

included in the GMS model that is evaluated. Although SA produces near optimal

solutions, the computation time is very long compared to other optimisation techniques.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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2.3.2.2 Tabu search

Tabu search is defined as an algorithm which deals with cycling by temporarily for-

bidding moves that would return a solution recently visited. This is accomplished by

means of a tabu list which records the most recent solutions and prevents the search

from continuing with these non-feasible moves. This list can act as either regency-based

memory, where the list classifies solutions according to the length of time they have

spent in the list, or frequency-based memory, where the number of times a solution

occurs has an influence [32]. Tabu search starts at some initial solution then moves to a

neighbourhood solution. A neighbourhood solution is generated by a set of admissible

moves. At each iteration, the method moves to the best solution in the neighbourhood

of the current solution. The distinguishing characteristic of this technique is the tabu

list it keeps that prohibits the algorithm from moving to solutions that have certain

attributes. The most basic form of the Tabu search algorithm consists of the following:

1. A method for generating an initial solution.

2. A mechanism for generating a neighbouring solution of the current solution.

3. A function that measures the attractiveness of each neighbouring solution.

4. A Tabu list in order to prevent cycling and lead the search to unexplored regions

of the solution space.

5. An aspiration criterion.

6. Diversification scheme [32].

A more complex Tabu search algorithm is used in [21] to solve for the minimization of

the economic cost objective function. Although the Tabu search algorithm produces

better results than the implicit enumeration algorithm, the Tabu search algorithm still

has weaknesses similar to the SA.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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2.3.3 Population based search

Population based search is characterised by a population of candidate solution which

are adaptive over time. It is further divided into two groups: evolutionary search and

swarm intelligence.

2.3.3.1 Evolutionary search

Evolutionary search is based on natural genetic and evolution mechanism models of

genetic change in a population of individuals. In evolutionary search the candidate

solutions compete for survival. Some of the evolutionary search optimisation techniques

used in GMS problems are explained below.

Genetic algorithm (GA)

The GA is a search algorithm that is based on the concept of natural selection and ge-

netic inheritance. It searches for optimal solution of optimisation problems by manipu-

lating a population of strings (chromosome) that represent different potential solutions,

each corresponding to a sample point from the search space. A chromosome is a long,

complicated thread of deoxyribonucleic acid (DNA). Hereditary factors that determine

particular traits of an individual are strung along the length of these chromosomes, like

beads on a necklace. Each trait is coded by some combination of DNA there are four

bases, A (Adenine), C (Cytosine), T (Thymine) and G (Guanine). Like an alphabet in

a language, meaningful combinations of the bases produce specific instructions to the

cell.

GA’s search by simulating evolution, starting from an initial set of solutions or hy-

potheses, and generating successive “generations” of solutions. This particular branch

of artificial intelligence is inspired by the way living things evolved into more successful

organisms in nature. The main idea is survival also known as natural selection and

changes occur during reproduction. The chromosomes from the parents exchange ran-

domly by a process called crossover. Therefore, the offspring exhibit some traits of the

father and some traits of the mother. A rarer process called mutation also changes some

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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traits. Sometimes an error may occur during copying of chromosomes (mitosis) [33].

At each iteration, all the populations are evaluated based on their fitness, an individual

with a larger fitness has a higher chance of evolving into the next generation. The

coding of parameters helps the genetic operator to evolve the current state into the

next state with minimum computation. Although GA has been used to evaluate GMS

problems such as in [9], there are a few set backs to GA when GMS problems are

involved such as trapping into a local minimum [33]. Also implementation of GA are

expensive. The working principle in a basic GA is as follows:

1. Formulate initial population.

2. Randomly initialise population.

3. Evaluate objective function.

4. Find the fitness function.

5. Apply genetic operators which are, reproduction, crossover, and mutation.

6. Continue from 3 until stopping criteria is reached.

Differential evolution (DE)

Differential evolution is a method that optimises a problem by iteratively trying to

improve a candidate solution with regard to a given measure of quality. DE is used for

multidimensional real-valued functions but does not use the gradient of the problem

being optimised, which means DE does not require for the optimisation problem to be

differentiable as is required by classic optimisation methods such as gradient descent

and quasi-newton methods.

DE optimises a problem by maintaining a population of candidate solutions and cre-

ating new candidate solutions by combining existing ones according to its simple for-
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mulae, and then keeping whichever candidate solution has the best score or fitness on

the optimisation problem at hand. In this way the optimisation problem is treated as

a black box that merely provides a measure of quality given a candidate solution and

the gradient is therefore not needed [35].

It is used in [7] to evaluate a complex power systems problem which aims to reduce pro-

duction cost by combining GMS and economic dispatch in its model using an economic

cost objective function. The set backs of DE are similar to those of GA.

2.3.3.2 Swarm intelligence

Swarm intelligence is inspired by the social behaviour of animals such as birds to solve

optimization problems. There are two swarm intelligence techniques that have been

used in GMS problems. They are ant colony and particle swarm optimisation.

Ant colony optimisation (ACO)

The ACO technique is inspired by the foraging of ant colonies. ACO is adapted by

ants marking paths they have followed with pheromone, with these trails they are able

to communicate indirectly and find the shortest distance between their nest and the

food source when foraging for food [24], [36].

When adapting this search metaphor of ants to solve discrete combinatorial optimisa-

tion problems, artificial ants are considered to explore the search space of all possible

solutions. The ACO begins with random solutions within the decision space of the

problem. As the search progresses over discrete time intervals ants deposit pheromone

on the components of promising solutions. In this way, the environment of a decision

space is iteratively modified and the ACO search is gradually biased towards more

desirable regions of the search space, where optimal or near optimal solutions can be

found.

ACO is used in [24] to maintain the reliability of the power plants while scheduling

maintenance. It uses the reliability objective function by maximising the reliability of

the power plant within the planning horizon. This technique produces better solutions
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than some other techniques in terms of computational efficiency and quality when ap-

plied to optimisation problems. It cannot handle problems with continuous variables

like the GMS problem in this research [36].

Particle swarm optimisation (PSO)

PSO is inspired by the ability of flocks of birds, schools of fish, and herds of ani-

mals to adapt to their environment, find rich sources of food, and avoid predators by

implementing an “information sharing” approach, hence, developing an evolutionary

advantage [37]. PSO is an algorithm inspired by the social behaviour of birds flocking

or fish schooling, which is used for finding optimal regions of complex search spaces

though interaction of individuals in a population of particles. In PSO, a set of ran-

domly generated solutions (initial swarm) propagates in the design space towards the

optimal solution over a number of iterations (moves) based on large amount of infor-

mation about the design space that is assimilated and shared by all members of the

swarm.

PSO is similar to GA, they are both algorithms which start with a group of a randomly

generated population, and both have fitness values to evaluate the population. Both

update the population and search for the optimal solutions with random techniques.

However, PSO has memory and does not have genetic operators such as crossover and

mutation. PSO also updates itself with internal velocity. Information sharing in PSO

is significantly different to that of GA. In GA, chromosomes share information with

each other, so the whole population moves like one group towards an optimal area. In

PSO, only the best solution at that iteration gives out information to others [27]. The

flow chart showing the procedure of the PSO is found in Figure 2.1.

PSO is used in [3], [38], and [39] to evaluate the reliability objective function for

GMS problems. It is deduced from those studies that PSO has the ability to search

simultaneously, converge fast and preserve former history related to the maintenance

schedules. It can access on non linear problems such as GMS having many feasible

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

16

 
 
 



CHAPTER 2 LITERATURE STUDY AND MOTIVATION

yes

no

Evaluation of fitness of each 

particle in swarm

Initialisation of position and 

velocity of each particle in 

the swarm

Setup of control parameters

Iteration t = 1

Determination of the global 

best particle

Update the iteration counter 

Iteration t = t+1

Output of the global best 

particle

Determination of the 

personal best particles

Is the stopping 

criterion true?

End

Begin

Update position and velocity 

of each particle in swarm

Figure 2.1: Procedure of a classic PSO approach [40]

points. The algorithm is simple. It also has the ability to control the search spaces

global and local, to find the optimal solution The original PSO algorithm can evaluate

problems with only continuous variables. Modifications have been made to the original

algorithm so it can evaluate problems with mixed integer variables [3], [40].

There are variations of PSO used in optimisation problems. Some of those variants

are binary PSO, discrete PSO, modified discrete PSO [41] and penalty function mixed

integer PSO amongst others. In this research, modification to penalty function mixed

integer PSO algorithm is made. The modification is to ensure that the algorithm

evaluates the GMS problem with mixed integer variables. More on PSO is discussed

in Chapter 4.
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Figure 2.2: Summary of optimisation techniques

2.3.3.3 Hybrid optimisation techniques

Hybrid techniques combining genetic algorithm, simulated annealing and tabu search

have been used in [4], [23], [28], and [42] with reliability objective function to schedule

the start of maintenance and level reserve of the power system.

2.4 RATIONALE FOR THIS STUDY

All the techniques mentioned above only evaluate open loop optimisation problems,

there has been no consideration for future changes in the system after a solution has
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been obtained. All the models in the researched literature treat each variable as inde-

pendent but variables in GMS are dependent on each other. Some of the constraints

were incorrectly expressed. These flaws in GMS problem modelling brought about the

need to formulate a new GMS model.

There has been no study thus far on closed loop GMS problems. The open loop GMS

model is transformed to a closed loop model which will consider all the changes that

occur in the system and feed it back to the input. The solution obtained from the

closed loop model is more reliable than the open loop.

2.5 APPROACH FOR THE STUDY

2.5.1 Hypothesis of study

The hypothesis is that a new GMS model is formulated which contains all the necessary

constraints. This open loop GMS problem is solved using the particle swarm algorithm

and the problem is transformed to a closed loop problem using the model predictive

control.

2.5.2 Motivation for MPC approach

The motivation of this study is the need to schedule optimal maintenance for power

plants that will reduce the operational cost of the power plant. This is achieved by

formulating the GMS model. This GMS model contains all the necessary variables and

constraints. The optimal closed loop GMS model is implemented using MPC.

The main idea of MPC is to measure the plant output y(t), make some calculations

(including a state estimate x̂(t)) and deliver a new control action to the plant input

u(t), all the while trying to achieve some pre-specified objective. A basic MPC block
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model and timing of MPC can be seen in Figure 2.2 and 2.3 respectively which is found

is [43].

u(t)
y(t)

Plant

MPC

Observer

x(t) 

Figure 2.3: Block diagram of MPC
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Figure 2.4: Timing diagram of MPC

MPC has characteristics that are useful for obtaining optimal solutions for GMS. Some

of the characteristics are:

1. It is a closed loop technique that adapts to changes of the system.

2. Its convergence and easy implementation.

3. Its robustness and simplified model.

4. Stability against external disturbances.

5. It has reduced dimensions compared to the open loop techniques.
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6. It can be started and restarted at any time while an open loop controller must

be started at the correct simulated stated time.

7. It is a generic closed loop optimisation technique that is not applicable to a

specific optimisation problem [44], [45].

Based on the characteristics of MPC mentioned above and all the studies carried out

on past GMS approaches, using MPC in GMS problems will introduce a new era in

power system problems. MPC has been used successfully in resource allocation [45],

economic dispatch [46] and plant process allocations [47] problems. For this reason

MPC is used to transform the open loop GMS problem to a closed loop GMS problem.

2.5.3 Research process and modelling

The research comprises of the following sequential steps:

1. The existing GMS models are studied to identify the different approaches that

have been used to implement GMS, their achievements and shortcomings.

2. Modifications are made to the constraints of a classic reliability objective function

GMS model and applied to a case study of 21 unit test system. A comparison is

made between the modified GMS (MGMS) and the classic GMS models. Due to

more reliable results obtained by MGMS after the comparison, a new model is

formulated using the economic cost objective function.

3. An open loop GMS model using economic cost objective function is formulated.

This model has three variables: maintenance, start-up and generator output.

The necessary constraints are then added to the model. This GMS model is an

open loop non linear mixed integer optimisation problem.

4. Modifications to PSO are made [48] in order for the algorithm to evaluate the
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open loop GMS problem.

5. The open loop non-linear mixed integer optimisation problem is then evaluated

using one of the existing solution techniques: particle swarm optimisation (PSO).

6. A study of MPC is done.

7. The open loop problem is applied to a case study and compared with an existing

GMS model to test the feasibility of the formulated GMS model.

8. The open loop problem is transformed into a closed loop optimisation problem.

9. The open loop and closed loop problems are applied to a case study and solved

using the PSO and MPC approaches respectively.

10. The results of the open loop and closed loop problem are compared.

2.5.4 How this approach addresses current issues

1. Relationship constraints are important in maintenance scheduling and are added

to this study’s GMS model.

2. Constraints that were formulated incorrectly in existing GMS models are modi-

fied.

3. The selected approach affirms that GMS problems can be expressed as closed

loop optimisation problems.

4. The selected approach utilises a modified penalty function PSO algorithm for

evaluating open loop GMS problems.

5. The selected approach optimises with the maintenance period, for example one
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week interval.

6. The closed loop approach is a generic approach that is not specific to the op-

timisation problem. The only difference is the modelling of the optimisation

problem.

7. The selected approach determines the optimal schedule for maintenance over a

time period.

2.5.5 Limitations and challenges of selected approach

The limitations and challenges of this approach are:

1. The GMS model is simplified for simulation purposes and as a result, certain

factors are excluded for example, the effect of the transmission network on the

power plant during maintenance is not considered.

2. The design does not include the ageing of each generator with respect to time.

3. Modelling and optimisation of GMS models is challenging especially when taking

into consideration the constraints of the GMS model. Thus, this GMS model and

simulated results provide information as a guide for further applications.

4. The simulated results are limited to only the specified case studies. The aim is

to confirm the hypothesis by adding to the existing body of knowledge.

2.6 CONTRIBUTION OF THE STUDY

1. The major contribution to this research is the addition of the relationship con-

straints to the GMS model. This study proves that variables in the GMS model
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are not independent and as a result relationship constraints are added to the

model.

2. The maintenance window and crew constraints used in the models of [1]-[26], [28],

and [29] are also modified to ensure that the GMS model provides an accurate

mathematical representation of the problem.

3. The ramp rate and generator limit constraints are added to the proposed GMS

model.

4. The comparison of the proposed GMS model to the classical GMS model of [5]

shows the advantage of the modification and addition constraints to the proposed

GMS model which provides reliable solutions.

5. This study affirms that an MPC approach can be used to transform an open loop

GMS model to a closed loop GMS model.

6. This study validates all the unique characteristics of MPC as listed above.

7. This study proves that closed loop GMS models provide better solutions than

open loop GMS solutions.
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CHAPTER 3

GENERATOR MAINTENANCE

SCHEDULING MODEL

The purpose of this chapter is to compare the modified generator maintenance schedul-

ing (MGMS) model with the classic generator maintenance scheduling (GMS) model

in [1], [4] and [5]. Both the MGMS and GMS problems have the reliability objec-

tive functions. Then an economic cost objective function GMS problem is formulated

incorporating the modified constraints of the MGMS and adding some new constraints.

3.1 COMPARISON OF THE MGMS AND GMS MODELS

There are two basic types of objective functions in GMS problems: the economic

cost objective function and reliability objective function. The economic cost objective

function focuses on minimising the cost of operation of the power plant, while the

reliability objective function aims to maximise the systems reliability and maintain the

reserve of the power system at a certain level [24].

The reliability GMS problem is solved by minimising the sum of squares of the reserve

over the entire operational planning period [1], [4], [25]. The problem has a number of
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units and system constraints to be satisfied. The constraints include: the maintenance

window, crew, demand, and reserve constraints.

The GMS model in [1], [4], [5] is given below.

Min{
T
∑

t=1

(
I

∑

i=1

gi,t −
∑

i∈It

∑

k∈Si,t

xi,kgi,k −Dt)
2}, (3.1)

subject to
∑

t∈Ti

xi,t = 1 for all i = 1, 2, . . . , I, (3.2)

∑

i∈It

∑

k∈Si,t

xi,kMi,k ≤ At, for all t = 1, 2, . . . , T, (3.3)

I
∑

i=1

gi,t −
∑

i∈It

∑

k∈Si,t

xi,kgi,k ≥ Dt, for all t = 1, 2, . . . , T. (3.4)

The notations of (3.1)-(3.4) are defined below.

The MGMS model using the reliability objective function is given below.

Min{

T
∑

t=1

(
I

∑

i=1

gi,t −
∑

i∈It

Ni
∑

t=q

xi,tgi,t −Dt)
2}, (3.5)

subject to
T
∑

t=1

xi,t = Ni, for all i = 1, 2, . . . , I, (3.6)

T−Ni+1
∑

t=1

xi,txi,t+1 . . . xi,t+Ni−1 = 1, for all i = 1, 2, . . . , I, (3.7)

∑I

i=1(1− xi,t−1)xi,tM
1
i ≤ At,

∑I

i=1(1− xi,t−1)xi,txi,t+1M
2
i ≤ At+1,

...
...

...
∑I

i=1(1− xi,t−1)xi,t . . . xi,t+Ni−1M
q
i ≤ At+Ni−1,

for all t = 2, . . . , T −Ni + 1.

(3.8)

I
∑

i=1

gi,t −
∑

i∈It

Ni
∑

t=q

xi,tgi,t ≥ Dt, for all t = 1, 2, . . . , T, (3.9)
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gmin
i (1− xi,t) ≤ gi,t ≤ gmax

i (1− xi,t),

for all i = 1, 2, . . . , I, and t = 1, 2, . . . , T,
(3.10)

LR ≤ gi,t+1 − gi,t ≤ UR, for all i = 1, 2, . . . , I,

and t = 1, 2, . . . , T − 1,
(3.11)

where

t: Index of time periods, t = 1, 2, . . . , T .

T : Total number of planned horizons.

i Index of the number of generators i = 1, 2, . . . , I.

I: Total number of generators.

gi,t: Generating capacity for each generator [MW].

It: The set of indices of generators in maintenance at time t.

k: Index of start periods of maintenance for each generator k =

t, . . . , S.

Si,t: Set of start time periods k such that if the maintenance of generator

i starts at period k that generator will be in maintenance at period

t, Si,t = {k ∈ Ti : t−Ni + 1 ≤ k ≤ t}.

Ti: Set of periods when maintenance of generator i may start, Ti =

{t ∈ T : ei ≤ t ≤ li −Ni + 1}.

ei: Earliest period for generator i to start maintenance.

li: Latest period for generator i to start maintenance.

xi,k: Variable for the start of maintenance for each generator i at time

k. If generator i is on maintenance xi,k = 1, otherwise xi,k = 0.

Dt: Demand per time period.

Mi,k: Number of crew used for maintenance of generator i at time k.

At: Available number of crew at every time t.

Ni: Duration of maintenance on each generator i.

M q
i : Number of crew needed for the q-th stage of maintenance of each

generator, q = 1, 2, . . . , Ni.
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gmin
i : Minimum output electric power for each generator [MW].

gmax
i : Maximum output electric power for each generator [MW].

LR: Maximum down ramp rate per time period.

UR: Maximum up ramp rate per time period.

The minimisation problems of (3.1) and (3.5) are the sum of squares of the demand

and the power lost due to maintenance subtracted from the total generating capacity

of all the generators at that time period. The problems are subject to a number of

constraints.

The maintenance window of (3.6) ensures that each generator is maintained only once

during the planning horizon while (3.2) only defines the start of maintenance for each

generator. MGMS includes another constraint in the maintenance window which is

(3.7), it defines the exact periods that maintenance for each generator is considered

to start and finish without interruptions. The crew constraints are (3.3) and (3.8) for

the GMS and MGMS models respectively. The inequality of (3.8) provides a step by

step description of the crew needed at every stage of maintenance for each generator,

thereby always checking that the crew needed does not exceed the available crew at

every interval. The load constraint in (3.4) and (3.9) are the same for both models.

MGMS adds two new constraints which are the generator limit (3.10) and ramp rate

constraint (3.11). The addition of these constraints in the model provides an avenue for

the energy planner to consider unit commitment for the power system while schedul-

ing maintenance for the generators. The MGMS model incorporates the necessary

constraints and components needed to make maintenance scheduling feasible.

The case study for this comparison is explain in Chapter 4 and the simulated results

are explained in Chapter 5.
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3.2 ECONOMIC COST OBJECTIVE FUNCTION GMS MODEL

As it will be seen from Chapter 5, the modified constraints in the MGMS model

enhanced the ability of the MGMS model to produce more reliable solutions for the

test system than the classical GMS model. Thus the formulation of an economic cost

objective function MGMS problem incorporating the modified constraints and adding

some new constraints to show the robustness of the MGMS model is carried out in this

section.

A typical economic cost objective function GMS problem is heterogeneous with binary

variables [10] for example maintenance, start up, and continuous variables [7], [24], [38].

The objective function J of this model contains three variables: the maintenance state,

start up state and generation variable. This problem has a number of constraints to

satisfy which are divided into the relationship, maintenance and system constraints.

The relationship among variables has not been mentioned in any o the existing litera-

ture and as such the need to explain and show that the variables are not independent

of each other but rather all have a connection to one another in some way hence, the

relationship constraints. The maintenance constraints consist of the maintenance win-

dow and the crew constraint. Both constraints have been modified from the classical

formulations that have been used over the years. The system constraints ensure that

during maintenance the demand and reserve constraints are not violated. The ramp

rate constraint is added to the MGMS model to ensure that the ramp rate of each

generator is not violated for every time period.

3.2.1 Objective function

The GMS problem is to schedule maintenance and minimise the operational cost of

the power plant while producing enough electricity to meet the demand and other

constraints. The operational cost consists of the maintenance, start up and production

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

29

 
 
 



CHAPTER 3 GENERATOR MAINTENANCE SCHEDULING MODEL

cost. The objective function J in (3.12) contains three variables, the maintenance

state xi,t, start up state yi,t, and generated output gi,t, for which i = 1, 2, . . . , I,

t = 1, 2, . . . , T , ci, fi and ki are the cost of maintenance, start up and generation

respectively. xi,t is the maintenance variable of each generator. If generator i is on

maintenance at time t then, xi,t = 1, otherwise xi,t = 0. yi,t is the start up variable

of each generator. If generator i is started at time t then, yi,t = 1, otherwise yi,t = 0.

The addition of the start up variable to the objective function is emulate real life cases

where there is a substantial amount of money reserved specifically for the start up of

any generator in the power plant. The open loop economic cost objective function

GMS model is give below:

Min J =
I

∑

i=1

T
∑

t=1

cixi,t +
I

∑

i=1

T
∑

t=1

(fiyi,t + kigi,t), (3.12)

The objective function is subject to the relationship, maintenance and system con-

straints as explained in the subsequent subsections below.

3.2.2 Relationship constraints

The relationship constraints show that the variables in GMS problems are not inde-

pendent. Two of the relationship constraints are new constraints that have been added

to the GMS model, they have not been addressed in any of the existing literature.

3.2.2.1 Maintenance - start up relationship

xi,t + yi,t ≤ 1; for all i = 1, 2, . . . , I and t = 1, 2, . . . , T (3.13)

The constraint (3.13), shows that during maintenance of generator i, the generator can

not be started until maintenance is completed. A variation of this constraint is used

in [10].

3.2.2.2 Maintenance - generation relationship

(1− xi,t)gi,t = 0; for all i = 1, 2, . . . , I and t = 1, 2, . . . , T. (3.14)
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The equality of (3.14), shows that generator i can not generate electricity while it

undergoes maintenance.

3.2.2.3 Generation - start up relationship

yi,tsgn(gi,t)[1− sgn(gi,t−1)] + [1− yi,t][1− sgn(gi,t)][1− sgn(gi,t−1)]

+[1− yi,t][1− sgn(gi,t)]sgn(gi,t−1) + [1− yi,t]sgn(gi,t)sgn(gi,t−1) = 1,

for all t = 2, . . . , T,

(3.15)

where sgn(gi,t) is the sign value of the generated output of generator i at time t. If

sgn(gi,t) = 1 then there is a generated output from generator i, otherwise sgn(gi,t) =

0. The constraint in (3.15) gives the relationship between the start up of generator i

and the output power generated from it at every period. Equation (3.15) shows that

if the generator is producing electricity then it cannot be started at the same time.

Equations (3.14)-(3.15) are new constraints that are added to the show the relationship

among the variables of the GMS problem.

3.2.3 Maintenance Constraints

The maintenance constraints ensure that once a generator unit is removed from the

system for maintenance, it completes the maintenance continuously without interrup-

tions, within the planned horizon and utilises only the crew available for that time

period.

3.2.3.1 Maintenance window

This constraint indicates the start of maintenance on the generator and the duration

it will take for completion of the maintenance on that generator [6], [7], and [47].

I
∑

i=1

xi,t = 1; for all t =, 2, . . . , T, (3.16)

T
∑

t=1

xi,t = Ni; for all i = 1, 2, . . . , I, (3.17)
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T−Ni+1
∑

t=1

xi,txi,t+1 . . . xi,t+Ni−1 = 1, for all i = 1, 2, . . . , I, (3.18)

where Ni is the duration of maintenance on generator i.

The equality constraint in (3.16) means that once maintenance starts it will continue

till completion without interruptions this constraint is used in [6]. In (3.17) for every

generator i maintenance will take a duration of Ni periods this constraint is used

in [7], [47]. Equation (3.18) gives the specify duration for each stage of maintenance,

from start to finish, without interruptions for all the generators. This constraint is new

and is added to the model to specify the duration of maintenance for every generator.

3.2.3.2 Crew availability

The crew availability means that the number of crew needed to maintain a generator

at any period in time should be less than or equal to the available number of crew

at that time [1], [9], [48], and [26]. A modification to the existing constraint is given

below.

∑I

i=1(1− xi,t−1)xi,tM
1
i ≤ At,

∑I

i=1(1− xi,t−1)xi,txi,t+1M
2
i ≤ At+1,

...
...

...,
∑I

i=1(1− xi,t−1)xi,t . . . xi,t+Ni−1M
q
i ≤ At+Ni−1,

for all t = 2, . . . , T,

(3.19)

where M q
i is the number of crew needed for the q-th stage of maintenance of each

generator, q = 1, 2, . . . , Ni, At is the available number of crew at every time t.

3.2.4 System Constraints

In any power plant, there is a desire that the demand must be supplied under an

adequate reliability level, without exceeding the power limit imposed on the generator.
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The system constraints are conditions imposed on the system that must be satisfied in

order to accomplish this desire.

3.2.4.1 Demand constraint

The amount of output power that a generator produces at any period of time should

be equal to the demand required at that time [1]-[12], [26], [49]-[51].

I
∑

i=1

gi,t = Dt; for all t = 1, 2, . . . , T, (3.20)

where Dt is demand per time period.

3.2.4.2 Reserve constraint

A sufficient reserve is required from generator i at time t to maintain the system

reliability [6], [7]. This constraint is needed for two reasons: in the case of an unexpected

outage of a generator and in cases where the actual peak load is higher than the

forecast [52].
I

∑

i=1

gmax
i,t ≥ Dt + St, for all t = 1, 2, . . . , T, (3.21)

where St is the reserve per time period.

3.2.4.3 Generated power limit

This constraint is a safety margin for the generator to preserve the generator life [26].

gmin
i (1− xi,t) ≤ gi,t ≤ gmax

i (1− xi,t), for all i = 1, 2, . . . , I,

and t = 1, 2, . . . , T.
(3.22)

where gmin
i and gmax

i are the minimum and maximum output electric power for each

generator respectively.

3.2.4.4 Ramp rate constraint

The ramp rate for generator i must be satisfied as generated output changes from time

t to t + 1. The ramp rate constraint is a new constraint added to the GMS model
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to ensure that the ramp rates of the generators are not violated when considering

maintenance and general operations of the power plant.

−LR ≤ gi,t+1 − gi,t ≤ UR, for all t = 1, 2, . . . , T − 1, (3.23)

where LR and UR are the maximum down and up ramp rate respectively.

3.2.5 Transforming the open loop MGMS to closed loop MGMS using

MPC

The open loop MGMS problem is defined over the time period T with the optimisation

variables xi,1, yi,1, gi,1, . . . , xi,T , yi,T , gi,T , i = 1, 2, . . . , I. When the same MGMS

problem is considered over a time interval (m,m+ T ) then the optimisation variables

are changed into xi,m+1, yi,m+1, gi,m+1, . . . , xi,m+T , yi,m+T , gi,m+T , where m+1 ≤ t ≤

m+T +1 and i = 1, 2, . . . , I. In an MPC approach, a finite horizon control problem

is repeatedly solved and the applied to the system based on the obtained optimal open

loop solution.

The closed loop MGMS approach is defined with the same state model as the open

loop model in (3.12). Thus, the open loop GMS problem is transformed to a closed

loop problem as below. Given, I, T, DR, UR, Dt, Rt, let xi,t := xi,m+t, yi,t :=

yi,m+t, gi,t := gi,m+t, Dt = Dm+t, 1 ≤ t ≤ T − 1,

Min J =
∑I

i=1

∑m+T

t=m+1 cixi,t +
∑I

i=1

∑m+T

t=m+1(fiyi,t + kigi,t), (3.24)

The constraints for closed loop are the same as those of the open loop GMS model

in (3.13)-(3.23), the only difference is that the constraints for the closed loop GMS

problem are updated after each iteration is implemented. The optimal solution is

applied only in the first sampling period (m, m+1) and this solution is executed as the

input over the time period (m+1, m+2), thus a closed loop feedback is obtained.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

34

 
 
 



CHAPTER 3 GENERATOR MAINTENANCE SCHEDULING MODEL

The demonstration of how MPC controllers are implemented is explicitly explained

in [45]. The advantages of MPC in GMS problems include:

Reduced dimension: Consider a power plant with 100 generators, maintenance period

of 52 weeks, and sampling period of week with maintenance, start up and generated

output variables for each generator. The open loop GMS algorithm must solve an

optimisation problem of 100 x 52 x 3 = 15600 variables. However, each iteration step

of MPC algorithm, starts with an initial input, that is the optimal solution of the

previous iteration, and solves an optimisation problem of 100 x (52 - 1) x 3 = 15300

variables which reduces the dimension by 300 [46].

Robustness and simplified model : The MPC controller has traits that detect distur-

bances and make corrections automatically [45], [46].

Easy implementation: when the constraints are satisfied in the first sampling period,

the optimal solution at each step will converge to the optimal solution of the GMS

problem. This implies that, the GMS problem can be restarted at anywhere even after

interruptions while the open loop algorithm can not [46].

The closed loop problem is solved using the steps below.

Step 1 : Input all the initial parameters, input the maximum number of switching

intervals M and let m = 1.

Step 2 : Compute the open loop PSO optimal solution over (m,m + T ) to the

GMS problem in (3.24).

Step 3 : Apply the optimal solution to the plant in the sampling interval (m,m+

1T ) the remaining solutions are discarded.

Step 4: Let m = m+ 1 and go to Step 2.
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3.3 VALIDATION OF THE PROPOSED GMS MODEL

The open loop and closed loop model are solved with particle swarm optimisation

(PSO) algorithm. This optimisation technique is explained in Chapter 4. The generic

open loop and closed loop MGMS models are validated in Chapter 5 where these models

are applied to the Arnot power plant, South Africa. Both the applied open loop and

closed loop models are then simulated and compared with each other. The results show

that the applied closed loop model reduces operational cost more than the open loop

model within all the constraints of the model. The results also show that the MGMS

model satisfies all the constraints even with external disturbances.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

36

 
 
 



CHAPTER 4

APPLICATION OF THE GMS MODEL

TO CASE STUDIES

This chapter describes the two selected case studies. The generic GMS model from

Chapter 3 is applied to both studies.

4.1 21-UNIT TEST SYSTEM

The case study is a test system comprising of 21 generators over a planning period

of 52 weeks, this case study is obtained from the example in [1], [4], [5], [25]. During

this period, all 21 generators need to undergo maintenance. Data for the 21-unit test

system is given in Table 4.1.

Each generator is allowed to start maintenance anywhere within a 26 week period.

As shown in Table 4.1, generators are allowed to start maintenance either between

weeks 1 and 26 or between weeks 27 and 52. The number of generators considered for

maintenance It are generators 1 to 13 for weeks 1 to 26 and generators 14 to 21 for weeks

26 to 52. The earliest ei and latest li periods for maintenance on generators 1 to 13 are

weeks 1 and 26 respectively and the earliest ei and latest li periods for maintenance on
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generators 14 to 21 are weeks 27 and 52 respectively. To ensure that similar schedules

are compared, all generators are required to complete their maintenance by week 52.

This requires that each generator being maintained in the second half of the year to start

their maintenance before week 52−Ni, where Ni is the duration of the maintenance on

generator i, i = 1, 2, . . . , I. Thirteen generators begin their maintenance in the first

half of the year; the remaining eight generators begin their maintenance in the second

half of the year. The maximum generated output for all the generators
∑I

i=1 gi,t in

each week is given to be 5688MW/week.

In real world terms, the objective value which is the minimum sum of squares of reserve

(SSR) measures the reliability of the power system. The lower the values of the SSR,

the more uniformly distributed, and the higher the reliability [1]. The maintenance

outages for the generators in Table 4.1 are scheduled to minimise the SSR and satisfy

the following constraints:

1. Maintenance window: each generator must be maintained exactly once every 52

weeks without interruptions [4], [5], [25].

2. Crew constraint: the available crew At is 20 for every week [1], [4], [5]. A solu-

tion with a high reliability that is a low SSR but requiring some extra crew is

acceptable in a power plant. The flexibility for the crew constraints is given that

5% of total available man-weeks (TMW) which is 695 can be hired [5].

3. Load constraint: the system’s peak load Dt is 4739MW/week is used as the flat

load for the test problem [1], [4], [5].

4. The generator limit: The total minimum gmin
i and maximum gmax

i capacity for

all the generators per week are fixed to be the peal load which is 4739MW and

the capacity given in Table 4.1 respectively. These limits are fixed to illustrate

the usefulness of the generator limit constraint. In practise the minimum and

maximum generator limits are always percentages of the installed capacity of the

generator.
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In this case study the unit commitment of the generators is not considered hence, (3.11)

is not used. It is assumed that no generator is shut down due to unit commitment or

a forced outage.

In order to combat the violation of the crew constraint, the GMS model in [25] increased

the number of available crew to 40 and added an extra 6.5% spinning reserve to the peak

load. This adjustment to the case study ensured that the crew, load and maintenance

window were not violated. And as such a lower SSR is achieved and the TMW is not

considered.

The case study considered is to illustrate the robustness and feasibility of the GMS

model in Chapter 3 when compared to the GMS model in [5]. The simulations and

results are given and explained in Chapter 5.

4.2 ARNOT POWER PLANT OVERVIEW

Arnot power plant is located approximately 50km east of Middelburg in Mpumalanga,

South Africa. The plant consists of 6-thermal power generating units. Maintenance

is also done on three major sections of the plant. The seal oil section system, gas

control plant and main generator assembly [53]. For this dissertation, the maintenance

scheduling is focused on the main generator assembly. The constraints associated with

this power plant are:

1. The number of maintenance crew M q
i used for maintenance each week must be

less than or equal to the crew available At that week.

2. Once maintenance starts on a generator it cannot be interrupted until the main-

tenance is complete.

3. The total maximum generated output must be greater than or equal to the sum-

mation of the total demand and spinning reserve for the power system.
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Table 4.1: Data for the 21-unit test system
Unit Capacity(MW)

/ gmax
i

gmin
i Allowed

period

Maintenance

duration Ni

(Weeks)

Manpower (M q
i

or Mi,k) required

for each week

1 555 462 1-26 7 10 + 10 + 5 + 5

+ 5 + 5 + 3

2 180 150 1-26 2 15 + 15

3 180 150 1-26 1 20

4 640 533 1-26 3 15 + 15 + 15

5 640 533 1-26 3 15 + 15 + 15

6 276 230 1-26 10 3 + 2 + 2 + 2 +

2 + 2 + 2 + 2 +

2 + 3

7 140 117 1-26 4 10 + 10 + 5 + 5

8 90 75 1-26 1 20

9 76 63 1-26 2 15 + 15

10 94 78 1-26 4 10 + 10 + 10 +

10

11 39 32 1-26 2 15 + 15

12 188 152 1-26 2 15 + 15

13 52 43 1-26 3 10 + 10 + 10

14 555 462 27-52 5 10 + 10 + 10 +

5 + 5

15 640 533 27-52 5 10 + 10 + 10 +

10 + 10

16 555 462 27-52 6 10 + 10 + 10 +

5 + 5 + 5

17 76 63 27-52 3 10 + 15 + 15

18 58 48 27-52 1 20

19 48 40 27-52 2 15 + 15

20 137 114 27-52 1 15

21 469 392 27-52 4 10 + 10 + 10 +

10

Total 5688 4739

The operation cost of a power plant is broadly divided into three, the maintenance

cost, start up cost, and production cost. The production cost can be derived from the
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sum of squares of the fuel cost with equation (4.1)

kigi,t = 168(ai + bigi,t + cig
2
i,t) (4.1)

The maintenance cost is fixed at R 100,000 for each generator and the start up cost is

fixed at R 4,000,000 for the purpose of this study.

4.2.1 Assumptions for the MGMS Model

1. The system and transmission losses are neglected.

2. The system’s spinning reserve is 6.5% of the peak generated power.

3. All the generators are on the same priority level.

4. The maintenance schedule is done for the duration of one year, i.e. T = 52 weeks

5. The duration of maintenance Ni for each generator is 6 weeks.

6. Preventive maintenance must be done on each system at least once every 52

weeks without interruptions.

7. The available maintenance crew members At for each week is 15.

Table 4.2: Capacity ratings for 6-generators of Arnot power plant

Gen gmin gmax ai(R/h) bi(R/MWh) ci(R/MW 2h) LR UR

1 150 355 4655.7658 82.9456 0.034265 53 132

2 150 355 4655.7658 82.9456 0.034265 53 132

3 150 355 4655.7658 82.9456 0.034265 53 132

4 150 355 4655.7658 82.9456 0.034265 53 132

5 150 355 4655.7658 82.9456 0.034265 53 132

6 150 355 4655.7658 82.9456 0.034265 53 132
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4.2.2 The open loop MGMS Model with PSO

The generic open loop model in (3.2) applies to the Arnot power plant case study. The

generators have identical capacity rates. The ratings are shown in Table 4.2 above.

The constraints for the power plants are already included in the generic GMS model

therefore, modifications to the constraints of the model are not necessary. The objective

function in (3.12) consists of three variables, the maintenance on/off variable xi,t, the

start up on/off variable yi,t and the generated output variable gi,t. xi,t and yi,t are

binary variables while gi,t is a continuous variable. The constraints in (3.13)-(3.23) are

inequality and equality constraints which have some non-linear properties. Thus the

proposed GMS model is a mixed integer non linear optimisation problem. The problem

is solved with a penalty function mixed integer PSO.

4.3 PARTICLE SWARM OPTIMISATION

The particle swarm optimisation (PSO) is a population based search algorithm based

on the simulation of the social behaviour of birds within a flock. In PSO, individuals,

referred to as particles, are ‘flown’ through multidimensional search space [36], [37].

The PSO basic principle is based on the idea that each solution can be represented as

a particle in a swarm and each particle has a position of the particle and a velocity

vector [38].

Changes to the position of the particle within the search space are based on the social

- psychological tendency of individuals to emulate the success of other individuals.

The changes to a particle within the swarm are therefore influence by experience or

knowledge of its neighbours [36]. The best information p-best possessed by particles

and the optimal value g-best of the group are used to find the global optimal or quasi-

optimal solutions, to multi-modal functions with continuous variables, taking account

of the previous iteration.
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4.3.1 Updating position and velocity

The PSO algorithm defines d particles. Each particle corresponds to a possible position

x. These d particles are evaluated with an initial value. At the first loop k = 0, each

particle d with position xk
d is moved with the velocity vkd to the next position xk+1

d . The

detailed formula to define xk
d and the updating rule of the positions and velocities are

given below:

xk+1
d = xk

d + vk+1
d , (4.2)

vk+1
d = wvkd + c1r1(Pd(k)− xk

d) + c2r2(Pg − xk
d), (4.3)

where c1, c2 are positive acceleration constants used to scale the contribution of the

individual and social components respectively, r1 and r2 are random numbers on the

interval [0,1], w is the inertia term, Pd(k) is the best solution p-best achieved by the

particle d till the k-th iteration, Pg represents the best position g-best among Pd(k)

until now. Because Pg is selected among Pd(k), Pg is not updated until the better Pd(k)

appears. As a result, it is expected that the (local) search ability will be enhanced,

and fast convergence will be expected.

The position acceleration constants c1 and c2 are recommended to keep the following

relationship [37].

c1 + c2 ≤ 4 (4.4)

In this project c1 = c2 = 2 is used.

The inertia term, w often decreases linearly from 0.9 to 0.4 during each iteration [36]-

[39], [48]. Its values are set according to the equation below.

w = wmax −
k(wmax − wmin)

kmax

, (4.5)

where wmax and wmin is the maximum and minimum values of inertia term respectively

and kmax is the maximum number of iterations. From researched studies 0.9 and 0.4

are used as the wmax and wmin respectively.
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The original PSO algorithm [37] is applicable to the problems that are continuous with

no constraints. The GMS problem in Section 3 is a non linear mixed integer constrained

problem. The original PSO algorithm is revised to consider the discrete variables and

constraints for the GMS problem using the penalty function approach as explained in

[48] with a few modifications.

4.3.1.1 The penalty function method

There are several methods of handling constraints in optimisation problems; one of the

methods is the penalty function method. The penalty function method is motivated

by the idea to use unconstrained optimisation techniques to solve constrained problem.

The general penalty method for optimisation problem is obtained by adding a penalty

for infeasibility and forcing the solution to feasibility.

In general, a mixed integer non linear problem is described as follows

Minf(x), (4.6)

subject to

xL
i ≤ xc

i ≤ xU
i ; i = 1, 2, . . . , m, (4.7)

gu(x) ≤ 0; u = 1, 2, . . . , ncon, (4.8)

hp(x) = 0; p = 1, 2, . . . , con, (4.9)

where, x is the design variable which consist of binary xb
i and continuous xc

i variables, f

is the objective function of variable x, xL
i is the lower bound of continuous variable, xc

i

is the continuous variable, xU
i is upper bound of continuous variable, m is the number

of continuous variables, gu is the inequality behavioural constraints, u is the index

of the number of inequality constraints, ncon is the number of inequality constraints,

hp is the equality behavioural constraints, p is the index of the number of equality

constraints, con is the number of equality constraints.

The penalty function is to enable the binary variables xi transform to continuous

variables. The penalty function in [48] has been simplified to the equation below for
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binary variables.

Φ(x1, x2, . . . , xn) =
n

∑

i=1

1

2
{sin 2π(xi − 0.25) + 1} (4.10)

where, Φ is the binary penalty function, x1, x2, . . . , xn are the binary variables and

n is the number of binary variables.

The augmented objective function incorporates the penalty function in (4.10) and

behaviour constraints. Due to this transformation all variables can be treated as con-

tinuous variables. The mixed integer constrained problem transforms to minimisation

of the unconstrained augmented objective function.

F (x) = f(x) + sΦ(x) + r
ncon
∑

u=1

max [0, gu(x)] + r
con
∑

p=1

|hp(x)|, (4.11)

subject to

xL
i ≤ xc

i ≤ xU
i ; i = 1, 2, . . . , m, (4.12)

where, F is the augmented objective function of variable x, f is the objective function of

variable x, s is the penalty parameter which is determined by (4.13), Φ(x) is the binary

penalty function determined by (4.10), r is the penalty parameter for the behaviour

constraints it is usually a very large number in this case study 100000 is used.

s(k + 1) =







s(k)e[1+φ(Pg(k))] , if Cc > ε,

s(1) , if Cc ≤ ε,
(4.13)

where, k is the iteration indicator, Pg(k) is the best solution for the k-th iteration, s(1)

is the initial penalty parameter which is given by (4.15), Cc is the convergence equation

which is computed by (4.16), ε is small positive number.

The initial position of particle d is chosen at random, the penalty parameter is cal-

culated for every particle and the initial penalty parameter is determined from the

equation below. The purpose of s is to add an additional cumulative penalties to the

objective function, and thus enhance the ability of the algorithm to push the variable

toward the nearest whole number value.

sd = 1 + Φ(xd); d = 1, 2, . . . , D, (4.14)
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where sd is the penalty parameter for the d-th particle. The initial penalty parameter

s(1) is set to the smallest value among the sd.

s(1) = min{s1, s2, . . . , sD}. (4.15)

This approach is intended to provide multimodality to the augmented objective func-

tion, and to generate extrema, optimal solutions, near the discrete values.

Cc =
|F (Pg(k))− f(Pg(k))|

|F (Pg(k))|
. (4.16)

The components of P k
g can be expressed as follows:

Pg(k) =





xc

xb



 (4.17)

where xc = (x1, x2, . . . , xm)
T and xb = (xm+1, xm+2, . . . , xm+n)

T . The components of the

continuous variables xc are neglected and only the components of the binary variables

xb are adopted when the convergence equation (4.16) is evaluated.

4.3.1.2 The PSO algorithm

The PSO algorithm for evaluating mixed integer optimisation problems is discussed

below.

Step 1: Set the initial parameter,the number of particles d is set where d =

1, 2, . . . , D, the maximum number of iterations kmax, the iteration counter

k = 1. Also set the position xd and velocity vd at random for every particle,

where the positions xd are the variables xi,t, yi,t and gi, t

Step 2: Calculate the penalty function in (4.10) for all binary variables and the

initial penalty parameter s from (4.15) for every particle d.

Step 3: Evaluate the augmented objective function of the GMS problem from (4.11)

for every particle.

Step 4: Determine P k
d and Pg. Here P k

d is the value of x of particle d that gives

the minimum evaluated GMS result from initial iteration to the present

iteration. Pg is the value of x that gives the minimum evaluated result in

the whole swarm from initial iteration to the present iteration.
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Step 5: Evaluate the convergence equation in (4.16). If (4.16) is less than or equal

to ε, then a discrete valued is considered to exist near Pg and the penalty

parameter is reset to the initial value s(1), otherwise the penalty parameter

is updated using (4.13).

Step 6: Update the position and velocity of every particle by (4.2) and (4.3) respec-

tively. Calculate the inertia term in (4.3) by (4.5).

Step 7: Increase the iteration counter k to k = k + 1.

Step 8: Compare the iteration counter to the preset maximum number kmax. If

k ≤ kmax, then return the algorithm to Step 6. Otherwise output Pg as the

optimal solution and terminate the search.

4.3.2 Advantage of proposed PSO method over the binary PSO

The binary PSO handles the discrete variables easily; however, the search process of

binary PSO is stochastic [48]. The GMS problem is a mixed integer problem and

as such the binary PSO can not handle the continuous variable in the GMS model.

Therefore, the penalty function mixed integer PSO algorithm is the best fit for solving

the GMS optimisation problem.

4.4 CLOSED LOOP MGMS WITH PENALTY FUNCTION PSO

The closed loop GMS model is defined with the same model as equation (3.24). The

objective function is minimised subject to the constraints in equations (3.13)-(3.23)

over the prediction horizon [m,m + t], as described in section 3.2.5. This means that

the closed loop model is not a simple optimisation problem, but a series of optimisation

solutions with iterative implementations of obtained solutions.
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Figure 4.1: The flow chart of the penalty function PSO algorithm

4.5 CHOICE OF POPULATION SIZE AND NUMBER OF ITERATION

The particle size is chosen to be 30 and the maximum iteration 2500. These are chosen

as a trade off between the computational time and cost saving. The effect of the particle

size to the open loop GMS model is covered in Section 5.
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4.6 CHOICE OF SWITCHING INTERVAL

The control interval is the smallest discrete time increment for the GMS problem.

The control interval for the generated output gi,t is one hour, this is because the

ramp rate for each generator is considered hourly. The switching interval for the

maintenance variable xi,t is 1 week. The switching interval of 1 week is chosen instead

of 1 hour because there is no preventive maintenance activity that can be carried out

on a generator within 1 hour. This helps limit the number of variables and reduces

the work load of the optimization algorithm, the switching also interval coincides with

real life maintenance scheduling intervals.

4.7 CHOICE OF MAINTENANCE HORIZON

The maintenance control horizon is selected as 52 weeks for all of the simulations in

Chapter 5. This time horizon is used for both the closed loop and open loop evalua-

tions. There are no assumptions for the maintenance horizon since in real life cases all

maintenance scheduling have 52 weeks maintenance scheduling planning horizon.

4.8 SOLVING THE PROBLEM WITH MATLAB

The open loop and closed loop GMS optimization problems are solved with the Mat-

lab [54] environment. Matlab does not have any PSO programming function and as

such, the mixed integer PSO program is written using the M-file. An M-file is created

and edited in the Editor/Debugger Widow of the Matlab program.

PSO is a metaheuristic technique, it cannot necessarily guarantee that the solution

is optimal but it gives a very good approximation of the true optimal solution. The

algorithms written for the closed loop and open loop problems can be summarised from

the flow charts in Figure 4.1.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

49

 
 
 



CHAPTER 4 APPLICATION OF THE GMS MODEL TO CASE STUDIES

The Matlab environment is summarised in Table 4.3.

Table 4.3: The Matlab simulation environment

Component Description

Computer Intel C2Q Top End System

Processor Intel Core2, Quad CPU Q8200, 2.33Ghz

Random access memory 2GB

Operating system Windows XP

Matlab version Version 7.11.0.584 (R2010b)
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CHAPTER 5

SIMULATION RESULTS OF THE

APPLIED GMS MODEL

This chapter simulates and compares the GMS models that are defined in Chapter 3.

The comparison includes the effect of the population sizes and maximum iteration is

evaluated in Section 5.1 for the 21-unit test system. The proposed open loop MGMS

model is compared with the classical GMS model in [5] in Section 5.2. The open

loop and closed loop simulations of Arnot power plant MGMS is discussed in Section

5.3. The robustness of the GMS model is tested in Section 5.4. The practicality and

disadvantages of the MGMS model is explained in Section 5.5.

5.1 EFFECT OF POPULATION SIZE AND NUMBER OF ITERATION

Choosing the population size determines the diversity and search space for each particle.

More particles in the swarm provide a good uniform initialisation scheme but at the

expense of the computational complexity, as a result the search degrades to a parallel

random search. The number of iterations to reach a good solution is always problem

dependent. In this section the MGMS problem in Chapter 3.1 applied to the test system

in Chapter 4.1 is simulated with a different number of population sizes and iterations
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Table 5.1: Effect of population size and number of iterations on the open loop GMS

model

Iteration Population size Computational time (sec) Objective function (×105MW)

1500 10 150 234

1500 20 312.9 223.9

1500 30 494 224.5

1500 40 351 212.2

2500 10 249 251

2500 20 528.4 123.4

2500 30 811 104.7

2500 40 1136.8 104.69

3500 10 347.4 151

3500 20 722.8 108.7

3500 30 1145.3 104.6

3500 40 1590 104.6

over the 52 weeks period. The effect of the different population sizes is shown in Table

5.1. Figures 5.1 and 5.1 show the graphical representation of the results in Table 5.1.

Table 5.1 shows that the model generates similar results for the population of 30 and

40 particles at the 2500 and 3500 iterations. The population size of 30 particles does

not have an increased computational time as that of 40 particles population while it

still generates the same results. Note the number of iteration is used as a stopping

condition for the optimisation problems and as such the smaller the iteration value

used to obtain the best results the better. As such the population size of 30 particles

and 2500 iterations is chosen for both case studies. The chosen population size and

iteration ensures that the search space is utilise to the fullest without putting a strain

on the computation time and complexity. Figures 5.1 show the objective function

values of four different population sizes for case study 1. The population sizes of 30

and 40 particles give the minimum values under each iteration. The computational

time of all the population sizes considered is shown in Figures 5.1.
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Figure 5.1: Case study 1 - Comparison of population sizes for objective function values

5.2 TEST SYSTEM - A COMPARISON OF TWO GMS MODELS

The maintenance scheduling for the test system in Chapter 3 is simulated over a 52

weeks period. The test system is simulated with the data defined in Table 4.1. The

maintenance schedules for the modified GMS (MGMS) model, which is the formulated

GMS model in Chapter 3 is compared with the classic GMS model in [5] is given in

Table 5.2.

The MGMS problem is solved using the penalty function PSO algorithm explained

in Chapter 4. A population size of 30 particles is chosen. The results obtained are

compared to GMS results obtained in [5]. The MGMS model is simulated using the

PSO algorithm with c1 = c2 = 2 and w = decreasing linearly using the formulae in (4.5).

The generator maintenance schedule obtained for the 21-unit case study is presented in

Table 5.2. Table 5.2 shows that in week 1, generators 1 and 10 are on maintenance for

the MGMS model and generators 3, 10, and 13 are on maintenance for the GMS model.

A comparison is made between the MGMS and the GMS scheduling results and it can
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Figure 5.2: Case study 1 - Comparison of population sizes for computational time

be seen that the maintenance window constraints of (3.2) for the GMS model and (3.6)

and (3.7) for the MGMS model are satisfied. All the generators are maintained just

once during the planning horizon. Once maintenance on a generator begins it is not

interrupted until the allocated duration Ni of maintenance for that generator.

Table 5.3 summarises the objective function that is the SSR and the violation of the

TMW of the MGMS and GMS models. The maintenance schedules are given in Table

5.2. Figures 5.3(a) and 5.3(b) show the reserve margins for both models. The reserve

margins are non negative because the load constraints of (3.4) and (3.9) are satisfied

for both the GMS and the MGMS models respectively. The crew required for each

week is given in Figures 5.4(a) and 5.4(b) for the MGMS and GMS respectively. The

available generation for the MGMS is given in Figure 5.5.

As explained in Chapter 4, the power plant can hire 5% of TMW extra crew if the reli-

ability is cost effective. The GMS has the crew violation of 37 which is approximately

5% of the TMW. The MGMS has a crew violation of 10 which is approximately 1.4%

of the TMW. The SSR of the MGMS is 104.71 × 105 which is 21.5% less than the
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Table 5.2: Case study 1 - Maintenance schedules obtained by MGMS and GMS [5] for

the case study
Week no. Generator scheduled

for maintenance

Week no. Generator scheduled

for maintenance

MGMS GMS [5] MGMS GMS [5]

1 1, 10 3, 10, 13 27 18 16

2 1, 10 6, 10, 13 28 14 16

3 1, 10 6, 10, 13 29 14 16

4 1, 6, 10 6, 10 30 14 16

5 1, 6 6, 8 31 14 16

6 1, 6 6, 12 32 14 16

7 1, 6 6, 12 33 16 14

8 2, 6, 9 6, 9 34 16 14

9 2, 6, 9 6, 9 35 16 14

10 6, 12 13 6, 7 36 16, 17 14

11 6, 12 6, 7 37 16, 17 15

12 6, 13 2, 7 38 16, 17 17,18

13 6, 13 2, 7 39 19 17

14 13 1 40 19 17, 21

15 7 1 41 21 21

16 7 1,11 42 21 21

17 7, 11 1, 11 43 21 21

18 7, 11 1 44 21 20

19 4 1 45 - -

20 4 1 46 - 19

21 4 5 47 20 19

22 5 5 48 15 15

23 5 5 49 15 15

24 5 4 50 15 15

25 8 4 51 15 15

26 3 4 52 15 15

Table 5.3: Case study 1 - Solutions for the MGMS and GMS models

Evaluation solutions MGMS GMS

SSR (×105) 104.71 133.4

TMW 10 37

SSR of the GMS model as shown in Table 5.3. The trade off between the crew viola-

tion and higher reliability in the MGMS model is much better than that of the GMS
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Figure 5.3: Case study 1 - Reserve margin

model because the MGMS model requires a hired crew of 10 which is 27% less than the

crew needed in the GMS model. Thus the MGMS model provides a better economic

solution than the GMS model. The reason for the better solutions can be traced to
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the modification of the maintenance window (3.7) and the crew (3.8) constraints. The

addition of the generator limits (3.9) ensures that the load constraint is never violated

and thus reduces the SSR. Figure 5.5 is to illustrate the effectiveness of the generator

limits constraint.

5.3 CASE STUDY 2 - ANORT POWER PLANT

A population size of 30 particles and 2500 iterations are chosen to provide sufficient

range for the population taking into account the dimensionality and complexity of the

problem. The particle size ensures that the domain is examined but not at the expense

of the execution time. The parameter settings are c1 = c2 = 2, w is obtained from

(4.5). The open loop and closed loop results are compared to verify that the proposed

closed loop approach to MGMS problems can be applied.

The closed loop model minimises the operation cost of the power system while satisfying

all the constraints. In Table 5.4, it can be seen that the closed loop operation cost

results are less than the open loop results while generating more electricity. Although

both satisfy the demand constraint, the closed loop model satisfies the constraint at

lesser cost. Table 5.4 gives the values of the objective function values of the closed

loop and open loop MGMS models. Figure 5.6 shows the graphical representation of

the objective function values of the closed loop and open loop GMS models.

Table 5.4: Results for operation cost and electricity generation over 52 weeks

Attributes Closed loop Open loop

Operation cost (Rand) 7817300000 94981000000

Generated output (MW) 9965170 9426130

Reserve (MW) 3487809 3380154

Demand (MW) 4940000 4940000

Table 5.5 gives the maintenance schedule for the open loop and closed loop MGMS
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Figure 5.4: Case study 1 - Crew availability

problem for the Arnot power plant. The maintenance window constraints are satisfied

for both problems and the optimal maintenance schedule is obtained for both problems.

The model ensured that the condition that all the generators must be maintained at
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Figure 5.6: Case Study 2 - Objective function values of closed and open loop MGMS

least once within the planned horizon is also satisfied. Since there is no preference on

any generator to be maintained at a particular time the model scheduled the generators

that best satisfy all the constraints.
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Table 5.5: Maintenance schedule obtained for the closed loop and open loop model
Week Generator scheduled for

maintenance

Week Generator scheduled for

maintenance

Closed loop Open loop Closed loop Open loop

1 1 1 27 2 3

2 1 1 28 2 3

3 1 1 29 2 3

4 1 1 30 2 3

5 1 1 31 - 3

6 1 1 32 - 3

7 - 4 33 6 -

8 - 4 34 6 -

9 - 4 35 6 -

10 - 4 36 6 -

11 - 4 37 6 -

12 - 4 38 6 -

13 5 - 39 - -

14 5 - 40 - 6

15 5 - 41 - 6

16 5 - 42 - 6

17 5 - 43 - 6

18 5 - 44 - 6

19 4 - 45 - 6

20 4 - 46 - -

21 4 5 47 3 2

22 4 5 48 3 2

23 4 5 49 3 2

24 4 5 50 3 2

25 2 5 51 3 2

26 2 5 52 3 2

5.3.1 Open loop MGMS model

The open loop GMS model with penalty function PSO is simulated to get the bench-

mark for comparison with the closed loop GMS model that is proposed. The open loop

MGMS model is simulated over a 52 weeks period. The total cost of operation is given

in Table 4.1. The generated output for all the generators through out the 52 weeks

period is given in Figure 5.7.
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Figure 5.7: Case Study 2 - Open loop GMS model generated output

5.3.2 Closed loop MGMS model

The closed loop MGMS model with penalty function PSO is simulated over a 52 weeks

period. Figure 5.8 gives a comparison of the closed loop model to the open loop model.

The closed loop model is simulated for 7 iterations and the closed loop generated output

is compared to the open loop generated output, the closed loop model converges with

the open loop model at week 6. The advantage of the closed loop model is that it

produces higher generated output than the open loop model and yet still schedules

optimal maintenance through out the 52 weeks period.

Figure 5.9 gives a comparison of the reserves for both models. Table 5.4 and Figure 5.9

shows that the closed loop MGMS model has a higher reserve margin than the open

loop MGMS model. The significance of this reserve margin is that the higher the reserve

margin of a power plant the more reliable the plant is. Thus the proposed MGMS model

considers both the economic and reliability effects when scheduling maintenance.
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Figure 5.8: Case Study 2 - Closed loop MGMS model generated output
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Figure 5.9: Case Study 2 - Reserves of open loop and closed loop GMS models

5.4 ROBUSTNESS OF THE MGMS MODEL

This section evaluates the robustness of the closed loop MGMS model against distur-

bances in the model. Figures 5.10(a) and 5.10(b) show the results of the open loop

and closed loop MGMS models with a positive random disturbance on the generated
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output. That is,

Dt = 2r(n)Dt, (5.1)

where r(n) is a random number between 0 and 1. That means that the generated

output is altered with random disturbances. This disturbance is applied to the entire

52 weeks planned horizon. Figure 5.10(a) and 5.10(b) show that the generated output

gi,t does not exceed the generator limits and the peak demand is met for the open loop

and closed loop MGMS model respectively. This is important because in practical

application the electricity demand can change at any time. The MGMS model is

robust in the sense that when a disturbance is introduced into the system, the closed

loop model can still generate optimal schedules for the maintenance of the generators

in the power system.

5.5 PRACTICALITY OF THE MGMS MODEL

The main problem with the practicality of the MGMS model is the large objective

function values obtained from the simulations. For the reliability criterion the values

of the objective function are not as important as the generated output power. Thus,

this is not a major problem when scheduling maintenance. For the economic cost

criterion, the objective function which is to minimise the operational cost, the high

objective values do not help achieve this goal.

The reason for the high objective function values for the economic cost criterion is

because all the cost considered in the operation of the power plant. Models in [1]-[9],

[11]-[4], do not consider the start up cost.

However, the MGMS model schedules optimal maintenance for power plants. As in

the case of the test system, all the constraints are satisfied and the demand is met. In

the case of the economic cost objective function for the Arnot power plant, there trade

off between the high operational cost and high generated output which is not really

significant.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

63

 
 
 



CHAPTER 5 SIMULATION RESULTS OF THE APPLIED GMS MODEL

 

0 5 10 15 20 25 30 35 40 45 50 55
0

0.5

1

1.5

2

2.5

3

x 10
5

Number of weeks

G
e
n
e
ra

te
d
 o

u
tp

u
t 

(M
W

)

Demand Max. Gen. Open loop

(a) Open loop available generation with demand disturbance
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Figure 5.10: Case study 2 - Available generation with demand disturbance
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CHAPTER 6

CONCLUSION AND

RECOMMENDATIONS

This dissertation investigates the missing constraints in generator maintenance schedul-

ing (GMS) problems. A comparison is made between the modified GMS (MGMS) and

the GMS model of [5]. The GMS model using the reliability objective function solved

with the penalty function PSO is compared with the classical reliability objective func-

tion GMS model in [5]. The aim of this comparison is to test the effectiveness of the

formulated GMS model with other classical GMS models that have been used in the

existing literature.

Both models are applied to a case study of a 21-unit test system and the simulation

results are compared. The results show that Both models obtain maintenance schedules

for the case study which does not violate the maintenance window constraint. The

MGMS model produces a more reliable solution than the GMS model, this better

solution is due to the modification and addition of the maintenance window, crew and

generator limit constraints to the model. The results of the MGMS model offer a

feasible and practical solution that can be implemented in real time.

Due to the reliable results of the MGMS, a MGMS model is formulated using the
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economic cost objective function with some modified and additional constraints. The

model incorporates constraints that have been used in some existing literature with

new constraints that ensures that the MGMS model is robust. The new constraints

added include, the relationship, the generator limit and the ramp rate constraints. The

maintenance window and the crew constraints are modified to output better results.

The economic objective function MGMS model formulated in Chapter 3 is solved using

the penalty function PSO algorithm. The formulated economic cost objective function

MGMS model is used to schedule maintenance for the Arnot power plant, South Africa.

The simulations of the case study focuses on minimising the operation cost of the plant

while scheduling maintenance for the maintenance horizon of 52 weeks. The closed

loop and open loop of the formulated GMS problem are simulated and compared. The

simulation results show that both the closed loop and open loop MGMS models satisfy

the constraints imposed on the model. The closed loop model simulations produce

better results than the open loop MGMS model.

The effect of disturbances on the economic cost objective function MGMS model is

simulated for the open loop and closed loop PSO models. The results shows that the

MGMS model compensates for the disturbances and is still able to produce optimal

solutions. This shows that the MGMS model is robust and can adjust to disturbances

and produce optimal solutions.

The contribution of this research in the context of existing work are also discussed. In

summary the contributions are:

� the background that led to formulating a new MGMS model is explained,

� the comparison of two GMS models is carried out,

� the formulation of a new economic cost objective function MGMS model is done,
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� the effectiveness of the penalty function mixed integer PSO algorithm is shown,

� the effect of number of particle size and iterations on simulated results is dis-

cussed,

� the application of closed loop to generator maintenance scheduling using an MPC

approach is affirmed,

� the robustness of the MGMS model is demonstrated.

It is recommended that further research should be conducted on closed loop GMS

problems. The closed loop approach to GMS problems should be applied in real plant

scenario to identify the real-time challenges of implementation such as the physical

limitations of the generators. The GMS problem should be expanded to include network

and transmission maintenance using the MPC approach. It is also recommended that

the generator limit and rate of ageing for each generator is investigated to consider the

unit commitment of the power plant.
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