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A Model Predictive Control Approach to

Microgrid Operation Optimization
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Abstract— Microgrids are subsystems of the distribution grid,
which comprises generation capacities, storage devices, and
controllable loads, operating as a single controllable system either
connected or isolated from the utility grid. In this paper, we
present a study on applying a model predictive control approach
to the problem of efficiently optimizing microgrid operations
while satisfying a time-varying request and operation constraints.
The overall problem is formulated using mixed-integer linear
programming (MILP), which can be solved in an efficient way by
using commercial solvers without resorting to complex heuristics
or decompositions techniques. Then, the MILP formulation leads
to significant improvements in solution quality and computational
burden. A case study of a microgrid is employed to assess the
performance of the online optimization-based control strategy
and the simulation results are discussed. The method is applied
to an experimental microgrid located in Athens, Greece. The
experimental results show the feasibility and the effectiveness of
the proposed approach.

Index Terms— Microgrids, mixed logical dynamical systems,
mixed-integer linear programming (MILP), model predictive
control (MPC), optimization.

I. INTRODUCTION

T
HE NEED to satisfy in sustainable ways, the increasing

energy demand requires active energy distribution net-

works, i.e., distribution networks with the possibility of bidi-

rectional power flows controlling a combination of distributed

energy resources (DERs), such as distributed generators (DGs)

and renewable energy devices. In this scenario, the microgrid

concept is a promising approach. It is an integrated energy

system consisting of interconnected loads and DERs, which

can operate in parallel with the grid or in an intentional

island mode, see [1] and [2]. A typical microgrid com-

prises: 1) storage units; 2) DGs, which are controllable units;
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3) renewable energy resources (RESs), which are noncontrol-

lable devices; and 4) controllable loads, which can be curtailed

(or shed) when it is more convenient. In addition, a microgrid

can purchase and sell power to and from its energy suppliers.

One of the main motivations behind using microgrids is that

they are capable of managing and coordinating DGs, storages,

and loads in a more decentralized way reducing the need for

the centralized coordination and management [3]. Hence, the

optimization of the microgrid operations is extremely impor-

tant in order to cost efficiently manage its energy resources

[2], [4].

In this scenario, new modeling requirements are needed,

e.g., storage modeling must be incorporated into the operation

planning problem in order to coordinate storage use with RESs

generation and energy prices, and address the complexity

of the charging/discharging schedule [5]. It is important to

notice that there are no current modeling tools including

controllable loads and energy storage modeling in a smart grid

environment [6].

Notice further that a complete formulation of microgrid

optimal operation planning problem includes modeling of

storages, demand side policies for controllable loads [demand

side management (DSM)], power exchange with the utility

grid. Microgrid modeling needs both continuous (such as

storage charge/discharge rates) and discrete (such as ON/OFF

states of DGs and DSM controlled loads) decision variables,

and the problem is generally formulated as a mixed integer

nonlinear problem (MINLP) (see [7]–[9]), for which there is

no exact solution technique.

Another relevant aspect in microgrid management, which

further complicates it, is coping with uncertainty in the energy

demand, RESs generation and energy prices.

The modeling capabilities and the computational advances

of mixed integer problem (MIP) algorithms, have led several

independent system operators and regional transmission orga-

nizations to implement MIP-based solution methods in order to

find a better solution to solve day-ahead and real-time market

problems [10]; namely, not solving unit commitment problems

to complete optimality can cause several issues [11].

Therefore, it is necessary to find a tractable formulation of

the microgrid operation optimization problem, which includes

the specific key features of a microgrid.

In this paper, we tackle the optimal operation planning of

a microgrid. This problem aims at minimizing the overall

microgrid operating costs to meet predicted load demand of

a certain period (typically one day) while satisfying com-

plex operational constraints, such as the energy balance, and

1063-6536 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



1814 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 22, NO. 5, SEPTEMBER 2014

controllable generators minimum operation time and minimum

stop time.

A. Literature Review

Due to the microgrid optimization problem complexity and

because of the large economic benefits that could result from

its improved solution, considerable attention is being devoted

to the development of better optimization algorithms and

suitable modeling frameworks. Metaheuristics and heuristics

have been proposed to solve the power dispatch problem

for microgrids, such as genetic algorithms [12], evolutionary

strategies, and tabu search algorithms [13].

Studies have suggested that microgrids can achieve high

performance through: 1) advanced control algorithms account-

ing for system uncertainty and based on predicted future

conditions; 2) deployment of demand response; 3) optimal

use of storage devices in order to compensate the physical

imbalances; and 4) applying optimal instead of heuristic-

based approaches (see [14]– [17] and the references therein).

Typically the proposed approaches either are computationally

intensive and not suitable for real-time applications, or can

produce suboptimal solutions, see [17]–[19]. Further, in the

aforementioned works, either the optimization problem stays

nonlinear or other important features, such as minimum up

and down times and demand side programs, are neglected. For

instance, in [20] the microgrid optimization problem is tackled

by solving several MINLPs (e.g., one separate problem for unit

commitment, one for storage management, and so on).

Recently, model predictive control (MPC) has drawn the

attention of the power system community due to several

factors [21]: 1) it is based on future behavior of the system and

predictions, which is attractive for systems greatly dependent

on demand and renewable energy generation forecasts; 2) it

provides a feedback mechanism, which makes the system

more robust against uncertainty; and 3) it can handle power

system constraints, such as generator capacity and ramp rate

constraints. An MPC method has been commonly proposed

to solve the unit commitment problem with wind power

generation (see [22]). Further, an MPC-based dynamic voltage

and var control scheme has just been developed for reactive

power control, in order to avoid unstable voltage conditions

in microgrids, especially during islanded mode operation with

no support from the utility grid [23].

Some works can be found in the literature that address

MPC for optimal dispatch in power systems. The authors

in [24] model a combined cycle power plant by utiliz-

ing hybrid systems in order to describe both the continu-

ous/discrete dynamics and the switching between different

operating conditions. Then the plant operations are econom-

ically optimized through MPC by taking into account the

time variability of both prices and electricity/steam demands.

Ferrari–Trecate et al. [24] propose an MPC algorithm to

solve the economic dispatch problem with large presence of

intermittent resources. However, many microgrid key features,

such as demand side programs, storages and ON/OFF gener-

ators status are not considered. In [26] and [27], an MPC

is applied to managing the energy flows inside a household

system equipped with a microcombined heat and power unit.

In addition, the household can buy and sell electricity from/to

the energy supplier and heat and electricity can be stored in

specific storage devices. Hooshmand et al. [28] and Xia et al.

[29] apply an MPC framework to solve the dynamic economic

dispatch, which aims at minimizing the generation cost over a

particular time interval (the dispatch interval). Then, the goal

is to decide the power dispatch in order to meet the demand

at minimum cost subject to limits on power generation and

ramp rates.

In [30], a supervisory control system via MPC is designed

for a wind/solar energy generation system, which computes the

power references for the wind and solar subsystems at each

sampling time while minimizing a suitable cost function. The

power references are sent to two local controllers, which drive

the two subsystems to the requested power references. In [31],

the centralized supervisory MPC controller is replaced with

two distributed supervisory MPC controllers, each responsi-

ble for providing optimal reference trajectories to the local

controller of the corresponding subsystem. The supervisory

optimization problem solved is nonlinear and nonconvex,

and several issues are not addressed, e.g., system startup or

shut down.

In [32], an energy management system based on a rolling

horizon strategy is proposed for an islanded microgrid com-

prising photovoltaic (PV) panels, two wind turbines, a diesel

generator, and an energy storage system. The problem includes

several nonlinear constraints associated with the modeling the

two controllable units (the diesel generator and the storage

system). The nonlinear constraints are approximated by piece-

wise linear models and the optimization problem is solved

using mixed-integer linear programming (MILP), yielding

suboptimal solutions.

Eventually, we would like to remark that when storage

elements are considered, generally the storage is modeled as a

discrete-time first-order system with two continuous variables

representing charging and discharging power multiplied by

suitable, and different, charging and discharging efficiencies.

That approach does not rule out the possibility that the optimal

solution contemplates simultaneous charging and discharging

of the storage, a physically unrealizable policy. Such outcome

may occur as the mathematical consequence of unpredicted

RES generated power surplus, bounds on the exchanged power

with the utility grid, and costs of the storage level. This

issue has been never discussed in the corresponding studies.

Because of the different multiplicative factor in charging and

discharging, one continuous variable, which can take both

positive and negative values, cannot represent correctly the

storage behavior. Similarly the interaction with the utility grid

should be modeled so as to prevent simultaneous selling and

purchasing under certain market circumstances.

B. Main Assumptions

In a microgrid control structure, several aspects should

be addressed, whose requirements involve different control

approaches and different time scales: 1) fast electrical control

of the phase, frequency, and voltage of individual components
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on time scales of seconds or less and 2) unit commitment

and economic dispatch of all generating units and storages,

RES generation and load forecasting, demand-side optimiza-

tion, and energy exchanges with the utility grid on longer

time scales (e.g., hours). Thus, a reasonable approach is to

develop a hierarchical control structure; a centralized, high

level controller is on the top of the hierarchy, while the second

level includes load controllers and DERs controllers [33]. The

aim of the high level control algorithm is to generate suitable

set points for all sources and storages so that economically

optimized power dispatch will be performed and a given

demand is met. The local controllers have to guarantee that

the system tracks the power reference values.

We point out the following.

1) In a hierarchy of controllers, we aim at a high level

optimization of microgrid operations; voltage stability,

power quality, and frequency are supposed to have

higher priority and to be controlled at the lower control

level. Remarkably, we focus our study on the grid-

connected mode, which implies that the frequency of

the microgrid is maintained within a tight range by the

utility grid. Further, by limiting the line capacity in the

optimization problem, the steady-state power quality is

preserved, i.e., our approach does not violate the voltage

limits according to the grid and does not cause line

congestion.

2) The high level controller deals with the long-term behav-

ior of the system and is very weakly dependent on the

transient behavior of the fast dynamics. Then, a steady-

state assumption for microgrid components can be safely

made without much loss of accuracy.

3) The microgrid high level controller has knowledge of

the managed network; it knows the existing generation

capacity, storage capacity, network constraints, market

energy prices, and bilateral contracts.

4) The microgrid operator is the unique entity in charge

of management, aimed at optimizing profits. It can

take economic decisions, such as to sell or buy energy

depending on local generation capabilities and costs and

the energy prices.

5) Due to constant sampling time �T = tk+1 − tk , there

exists a constant ratio between energy and power at each

interval.

C. Main Contributions

We present a control-oriented approach to microgrid model-

ing and high level optimization and propose the use of MPC in

combination with MILP [34], [35]. The microgrid operations

are decided on the basis of predictions of future behavior of the

system and renewable power generation and demand forecasts.

To guarantee a feasible behavior for storage and grid

interaction (e.g., nonsimultaneous charging and discharging,

buying, and selling), we utilize the approach described in

[36] and use the mixed logical dynamical framework. We

would like to remark that in the proposed problem formulation,

only generators’ fuel consumption and emission functions are

approximated in case they must be expressed as nonlinear

functions, which is not always needed for microgrid compo-

nents. We assume nonlinear generators’ fuel consumption and

emission functions in order to state the problem formulation

as general as possible.

In our approach, we strove to include as many details as

possible, and to use and maintain the microgrid optimization

problem solvable without resorting to any decomposition tech-

niques or heuristics. Further, we modeled the generators tech-

nical and physical features by using a number of constraints

and variables as low as possible.

Further, a feedback mechanism is introduced (MPC), which

compensates for the uncertainty in microgrid operations asso-

ciated with: 1) the RES power outputs; 2) the time-varying

load; and 3) time-varying energy prices. In addition, since

the optimum is reached in a reasonable computation time, a

shorter sampling time can be used (e.g. 15 min, rather than

30 or 60), which allows to compute more accurate and

effective solutions.

This paper extends the preliminary study presented in [37]

by: 1) discussing experimental results obtained from a micro-

grid located in Athens, Greece; 2) including further simulation

results and a comparison with a heuristic algorithm; and 3) tak-

ing the costs of the power exchanged with the storage unit into

account in the objective function. In addition, renewable power

generation and demand forecasts are computed.

In summary, our contributions are: 1) the development of

a novel model of the overall microgrid system adopting a

formalized modeling approach, which is suitable to be used in

online optimization schemes; 2) the development of an MPC

scheme for minimizing the microgrid running costs; 3) the

presentation of simulation results showing the effectiveness

of the proposed optimization routine; and 4) application of

the method to an experimental microgrid located in Athens,

Greece, and the estimation of all the parameters and costs

required to carry out the experiments.

D. Outline

This paper is further organized as follows: 1) the microgrid

system is described and the microgrid modeling approach

is outlined in Section II; 2) the operations optimization is

then described in Section III; 3) some simulation results

are discussed in Sections IV and V and in Section VI the

experimental results are presented; and 4) finally, conclusions

are drawn in Section VII.

E. Nomenclature

The forecasts, the parameters and the decision variables

used in the proposed formulation are described, respectively,

in Tables I–III, where, for simplicity, we omit the subscript i

when referring to the i th unit.

We remark that the fuel consumption cost for a DG unit is

traditionally assumed to be a quadratic function of the form

CDG(P) = a1 P2 + a2 P + a3.

In the following sections, vectors and matrices are denoted

in bold.
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TABLE I

PARAMETERS

TABLE II

FORECASTS

TABLE III

DECISION AND LOGICAL VARIABLES

II. SYSTEM DESCRIPTION, MODELING,

AND CONSTRAINTS

Here, we briefly describe the key features of the microgrid

architecture considered in this paper and associate a possible

modeling setup with the goal of maintaining the problem

tractable and suitable for real-time computation.

A. Loads

We consider two types of loads:

1) critical loads, i.e., demand levels related to essential

processes that must be always met;

2) controllable loads, i.e., loads that can be reduced or shed

during supply constraints or emergency situations (e.g.,

standby devices, day-time lighting).

In demand response programs, the customers specify level

of curtailment of the controllable loads. The controllable loads

have a preferred level, but their magnitude is flexible so

that the demand level can be lowered when it is convenient

or necessary (e.g., in islanded mode). This leads to users’

discomfort, hence a certain cost is associated with the load

curtailment/shedding (a penalty for the microgrid). We define

a continuous-valued variable, 0 ≤ βc(k) ≤ 1, associated to

each controllable load c and to each sampling time k. This

variable represents the percentage of preferred power level to

be curtailed at time k in order to keep the microgrid opera-

tions feasible (e.g., in islanded mode) or more economically

convenient. If no curtailment is allowed at a certain time k̂,

an equality constraint can be set, βc(k̂) = 0.

B. Storage Dynamics

For a storage unit, denoting by xb(k) the level of the energy

stored at time k (divided by �T ) and by Pb(k) the power

exchanged with the storing device at time k, we consider the

following discrete time model of a storage unit:

xb(k + 1) = xb(k) + ηPb(k) − x sb (1)

where

η =

{

ηc, if Pb(k) > 0 (charging mode)

1/ηd , otherwise (discharging mode)
(2)

with 0 < ηc, ηd < 1.

The charging and discharging efficiencies account for the

losses and xsb denotes a constant stored energy degradation

in the sampling interval. If the power exchanged at time k,

Pb(k), is greater than zero, this will be charging the storage

device, otherwise the storage device will be discharged.

Using the standard approach described in [36], we intro-

duce a binary variable δb(k) and an auxiliary variable

zb(k) = δb(k)Pb(k) to model the following logical condition

and the storage dynamics:

Pb(k) ≥ 0 ⇐⇒ δb(k) = 1 (3)

and

xb(k + 1) =

{

xb(k) + ηc Pb(k) − x sb, if δb(k) = 1

xb(k) + 1/ηd Pb(k) − x sb, otherwise

then, we express the logical conditions as mixed integer linear

inequalities. By collecting such inequalities, we can rewrite

the storage dynamics and the corresponding constraints in the

following compact form (the interested reader is referred to

[36] for guiding details):

xb(k + 1) = xb(k) + (ηc − 1/ηd)zb(k) + 1/ηd Pb(k) − x sb

subject to E1
bδb(k) + E2

bzb(k) ≤ E3
b Pb(k) + E4

b (4)

where the column vectors E1
b, E2

b, E3
b, E4

b are easily

derived from the six mixed integer linear inequalities modeling

the if…then conditions described in (3) and the auxiliary

variable

zb(k) = δb(k)Pb(k) (5)

which hides a nonlinearity. The mixed integer inequalities are

provided in the Appendix C, (18) and (19) with m = −Cb,
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M = Cb , f (k) = Pb(k), and δ = δb(k). For example,

the logical condition (3) can be rewritten as [see (18) in

Appendix C]

{

Cbδb(k) ≤ Pb(k) + Cb

−(Cb + ε)δb(k) ≤ −Pb(k) − ε.
(6)

Then, the first two elements of the column vectors in (4)

are

Eb
1

′

=
[

Cb − (Cb + ε) · · ·
]

Eb
2

′

= [0 0 · · · ]

Eb
3

′

= [1 − 1 · · · ]

Eb
4

′

=
[

Cb − ε · · ·
]

.

The other elements are obtained by imposing the inequalities

(19) of Appendix C to the variable zb(k), with f (k) = Pb(k)

and δ = δb(k). Further details are provided in the Appendixes.

The balance between energy production and consumption

must be met at each time k, so the following equality constraint

is imposed:

Pb(k) =

Ng
∑

i=1

Pi (k) + Pres(k) + Pg(k)

−

Nl∑

j=1

D j (k) −

Nc∑

h=1

[1 − βh(k)]Dc
h(k). (7)

If we collect all decision variables in the vector u(k) and all

known disturbances (obtained by forecasts) in the vector w(k),

we can rewrite Pb(k) as follows:

Pb(k) = F
′
(k)u(k) + f

′
w(k) (8)

with

u(k) =
[

P
′
(k) Pg(k) β

′
(k) δ

′
(k)

]′

∈ R
Nu × {0, 1}Ng

w(k) =
[

Pres(k) D
′
(k) Dc ′

(k)
]′

∈ R
Nw

where Nu = Ng + 1 + Nc , Nw = 1 + Nl + Nc; P(k),

δ(k), D(k), Dc(k), and β(k) are column vectors containing,

respectively, all the power levels, the generators OFF-/ON-

states, the critical demand, the power levels of the controllable

loads, and the curtailments. The vectors F
′
(k) and f

′
are

provided in Appendix A.

Thus, the storage level can be expressed as an affine function

by substituting (8) in (4) as follows:

xb(k + 1) = xb(k) + (ηc − 1/ηd)zb(k)

+1/ηd [F
′
(k)u(k) + f

′
w(k)] − x sb. (9)

C. Interaction With the Utility Grid

When grid connected, the microgrid can sell and purchase

energy from/to the utility grid. By following the same pro-

cedure outlined above, we introduce a binary variable δg(k)

and an auxiliary variable Cg(k) to model the possibility either

to purchase from or to sell energy to the utility grid. The

following logical statements hold:

Pg(k) ≥ 0 ⇐⇒ δg(k) = 1

and

Cg(k) =

{

cP(k)Pg(k), if δg(k) = 1

cS(k)Pg(k), otherwise

again, we express the if … then conditions as mixed inte-

ger linear inequalities. Then, the purchasing/selling microgrid

behavior can be expressed by the following mixed integer

linear inequalities in a compact form:

E1
gδg(k) + E2

gCg(k) ≤ E3
g(k)Pg(k) + E4

g. (10)

The column vectors E1
g, E2

g, E3
g(k), E4

g are provided in

Appendix A. The matrix E3
g(k) is generally time-varying due

to the time varying energy prices. We recall that the interaction

with the utility grid is allowed only when the microgrid is in

grid-connected mode.

D. Generator Operating Conditions

The operating constraints, at each sampling time k, on the

minimum amount of time for which a controllable generation

unit must be kept ON/OFF (minimum up/down times) can be

expressed by the following mixed integer linear inequalities

without resorting to any additional variable:

δi (k) − δi (k − 1) ≤ δi (τ ), (OFF/ON switch)

δi (k − 1) − δi (k) ≤ 1 − δi (τ ), (ON/OFF switch) (11)

with i = 1, . . . , Ng , τ = k + 1, . . . , min(k + T
up
i − 1, T )

whether we consider the constraints on the minimum up time

or τ = k + 1, . . . , min(k + T down
i − 1, T ) otherwise.

Consider, for instance, the i th unit at time step k̂, with

δi (k̂ − 1) = 0, meaning that the unit was OFF during the

previous sampling period. If the value 1 is assigned to the

optimization variable δi (k̂), the first T
up

i −1 constraints in (11)

will force all the binary optimization variables corresponding

to the unit ON-/OFF-state to be equal to 1 for the next T
up

i −1

sampling times. Namely, for T
up

i = 3

δi (k̂) − δi (k̂ − 1) ≤ δi (k̂ + 1)

δi (k̂) − δi (k̂ − 1) ≤ δi (k̂ + 2) (12)

which forces the right-hand side of the inequalities (12) to be

equal to 1 in order to satisfy the constraints.

We also model the DG unit startup and shutdown behavior

in order to account for the corresponding costs. For this reason,

two auxiliary variables, SUi (k) and SDi (k) are introduced,

representing, respectively, the startup and the shutdown cost

for the i th DG generation unit at time k. These auxiliary

variables must satisfy the following mixed integer linear

constraints:

SUi (k) ≥ cSU
i (k)[δi(k) − δi (k − 1)]

SDi (k) ≥ cS D
i (k)[δi(k − 1) − δi (k)]

SUi (k) ≥ 0

SDi (k) ≥ 0 (13)

with i = 1, . . . , Ng (see [38] and the references therein).
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III. OPTIMIZATION PROBLEM

The microgrid optimal operational planning consists in tak-

ing decisions on how to optimally schedule internal production

by generators, storage, as well as controllable loads, to cover

the microgrid demand and minimize the generators’ running

costs and the cost of imported electricity from the utility grid

in the next hours or day. At every time step, the microgrid

controller must take high level decisions about:

1) when should each generation unit be started and stopped

(unit commitment);

2) how much should each unit generate to meet this load

at minimum cost (economic dispatch);

3) when should the storage device be charged or dis-

charged;

4) when and how much energy should be purchased from

or sold to the utility grid (when the microgrid is in the

grid-connected mode);

5) curtailment schedule (which controllable loads must be

shed/curtailed and when);

6) how much energy has to be stored.

Using the modeling approach of Section II, the problem can

be formulated as a MILP optimization problem, which gener-

ates an optimal plan. This plan will be subject to uncertainty,

the model will be imperfect, the system state will not evolve

as predicted. The single MILP is an open loop solution, which

does not account for these uncertainties. A possible remedy

is to embed MILP optimizations within an MPC framework,

so that a feedback control law can be implemented and the

uncertainty can be potentially compensated. In absence of

uncertainty, these two solutions coincide.

In order to formulate the MPC problem, we next define the

cost function associated with the MILP.

A. Linear Approximation of Fuel Consumption Cost

Function

Since experience has shown that mixed integer linear

programs are computationally more efficient than quadratic

programs [39], the fuel cost function of a DG generator,

CDG(P) = a1 P2 + a2 P + a3 is approximated by the max

of affine functions without introducing binary variables [40]

CDG(P) ≈ max
j=1,...,n

{S j P + s j } = ‖SP + s‖∞ (14)

where P is the generated power, and S and s are obtained by

linearizing the function at n points (the subscript j extracts

the j th row of S and s).

B. Cost Function

Microgrid economic optimization is achieved by choos-

ing an objective function representing the operating costs

to be minimized. The following quadratic function includes

costs associated with energy production and startup and shut-

down decisions, along with possible earnings and curtailment

penalties:

T −1
∑

k=0

Ng
∑

i=1

[CDG
i (Pi (k)) + O Mi δi (k) + SUi (k) + SDi (k)]

+OMb [2zb(k) − Pb(k)] + Cg(k) + ρc

Nc∑

h=1

βh(k)Dc
h(k)

(15)

where k is the time instant, T is the length of the prediction

horizon, and 2zb(k) − Pb(k) models the absolute value of the

power exchanged with the storage unit using (5) and (8). We

remark that it is possible to consider also operative and main-

tenance costs of the i th DG unit that depend on the generated

power; in this case, the term O Mi Pi (k) must be added in the

objective function. The term OMb [2zb(k) − Pb(k)] reduces

charging and discharging frequency. We recall that Cg(k) can

be negative, i.e., energy is sold to the utility grid, representing

an earning for the microgrid system.

In order to write the cost functional in a more compact

form, we introduce, for each time k, the auxiliary variable

σi (k), which accounts for approximation of the i th DG unit

generation costs, and the vector z(k), which collects all the

auxiliary variables as follows:

z(k) =
[

σ
′
(k) Cg(k) SU

′
(k) SD

′
(k) zb(k)

]′

∈ R
3Ng+2

where σ (k), SU(k), and SD(k) are column vectors containing,

respectively, all the σi (k), the generators startup and shut-

down costs, respectively. In addition, we denote by uT −1
k the

input sequence uT −1
k = (u(k), . . . , u(k + T − 1)) designed at

time k, where u(k) has been introduced in (8).

Then, the cost functional can be rewritten as

T −1
∑

k=0

[cu
′
(k)u(k) − OMbF

′
(k)u(k) − OMbf

′
w(k) + cz

′
z(k)]

where the term −OMbF(k)u(k)−OMbf
′
w(k) is derived from

the term −OMb Pb(k) in (15), with Pb(k) given by (8); the

column vectors cz and cu are given in Appendix A.

C. Capacity and Terminal Constraints

To pose the final MILP optimization problem, additional

operational constraints must be met

xb
min ≤ xb(k) ≤ xb

max (16a)

Pi,min δi (k) ≤ Pi (k) ≤ Pi,max δi (k) (16b)

|Pi (k + 1) − Pi (k)| ≤ Ri,max δi (k) (16c)

βh,min ≤ βh(k) ≤ βh,max (16d)

with i = 1, . . . , Ng and h = 1, . . . , Nc . The constraints above

model the physical bounds on the storage device (16a), the

power flow limits of the DG units (16b) and their ramp up

and ramp down rates (16c), the bounds on controllable loads

curtailments (16d).

Note that the binary variable δi (k) will be equal to 1 if the

power Pi (k) generated from the i th DG unit at time k is strictly

positive and equal to 0 if Pi (k) = 0. When Pi,min = 0, a wrong
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assignment of the δi (k) variable in the inequality (16b) can

be avoided by assigning to Pi,min a very small positive

value.

D. Model Predictive Control Problem

In this section, we formulate the MPC optimization problem

whose solution yields a trajectory of inputs and states into the

future that satisfy the dynamics and constraints of microgrid

operations while optimizing some given criteria. In terms of

microgrid control, this means that, at the current point in time,

an optimal plan is formulated (usually for the 24 h) based

on predictions of the upcoming demand, production from

renewable energy units and energy prices. Only the first sample

of the input sequence is implemented, and subsequently the

horizon is shifted. At the next sampling time, the new state of

the system is measured or estimated, and a new optimization

problem is solved using this new information. By this reced-

ing horizon approach, the new optimal plan can potentially

compensate for any disturbance that has meanwhile acted on

the system. In order to present the MPC policy, we denote by

xb(k + j |k), with j > 0, the state at time step k + j predicted

at time k employing the storage model (9).

At each time step k, given an initial storage state xb
k and

a time duration T , the MPC scheme computes the optimal

control sequence uT −1
k solving the following finite-horizon

optimal control problem:

J (xb
k ) = min

uT −1
k

T −1
∑

j=0

[cu
′
(k + j)u(k + j) + cz

′
z(k + j)

− OMbF
′

(k+ j)u(k+ j) − OMbf
′

w(k+ j)]

subject to

storage model (9) in the variable xb(·|k);

constraints (10), (11), (13);

constraints (16);

Si · Pi (k + j) + si ≤ σi (k + j); i = 1 . . . Ng

xb(k|k) = xb(k) (17)

where Si and si are defined in (14). We recall that the vector

of disturbances profiles, w(k + j), is assumed to be known

over the prediction horizon, for j = 0, . . . , T − 1; thus, the

term OMbf
′
w(k + j) in the objective function does not affect

the optimal solution.

According to the receding horizon strategy, only the first

element of the optimal sequence u(k) is applied. The opti-

mization problem (17) is repeated at time k + 1, with the new

measured/estimated state xb
k+1|k+1 = xb

k+1. By doing so, a

feedback policy is designed.

Note that in the MPC scheme, applied in this paper, the

controller makes its control decision by assuming that the

predictions are correct (i.e., certainty equivalence).

E. Initial Conditions

At each time k, the system model is initialized to the

measured/estimated current state of the microgrid components,

i.e., the storage current energy level, loads, ON-/OFF-state and

power levels generated by the noncontrollable generation units.

Fig. 1. Scheme of microgrid considered in simulations.

TABLE IV

GENERATOR PARAMETERS

F. Solving the Optimization Problem

The MPC optimization problem is a MILP problem. The

branch-and-bound techniques are mostly applied to MILP

problems [41], [42]. The main advantage of the branch and

bound method is that if a solution is reached, the solution is

known to be globally optimal.

G. Implementation Details

The formulation presented in Section III-F was implemented

using MATLAB. We used ILOG’s CPLEX 12.0 [43] (an

efficient solver based on the branch-and-bound algorithm) to

solve the MILP optimizations. All computations are done on

an Intel Core 2 Duo CPU, 2 GHz.

IV. SIMULATION SETUP

The microgrid we consider in the simulations is shown in

Fig. 1; it is in a grid-connected mode and comprises PV panels

with maximum power of 16 kW and four DG units. An energy

storage is included, bounded between 25 and 250 kWh and

with maximal charge and discharge rates, respectively, 150 and

−150 kW. The charge and discharge efficiencies are both equal

to 0.9. Table IV describes the DG units parameters, based on

data provided in [38] and [44]. The microgrid is connected

to the utility grid, so power can be bought or sold. The daily

spot prices (from the EEX, European Energy Exchange, on

a certain day) are shown in Fig. 2. For simulation study, we

chose a sampling time of 1 h and a prediction horizon of 24 h.

Simulations are performed over one day.

A. Control Strategies Comparison

We compare the following strategies for the microgrid

optimization problem.

1) Heuristic: This is the heuristic algorithm described

below in Section IV-A1.

2) MILP: It is the open loop solution obtained by solving

a single MILP problem.
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Fig. 2. Spot energy prices over 24 h.

3) MPC-MILP: It is the feedback control law computed

through the MPC control scheme. As said before, in

MPC-MILP a certainty equivalence approach is applied,

meaning that the predictions are assumed to be perfect in

the MPC problem, i.e., unaffected by errors. The uncer-

tainty is then compensated by the feedback mechanism.

4) Benchmark: The 24-h horizon plan obtained by solving

the optimization problem assuming no errors in fore-

casts, which means that the scheduler knows all the

actual values for loads and RES generation over the

whole prediction horizon. The benchmark can never be

achieved but it provides an ideal value to evaluate a

strategy against.

When the MILP and MPC-MILP strategies are applied, we

also include in the strategy evaluation the cost of purchasing

the necessary amount of energy from the utility grid in case

there is demand surplus due to wrong predictions of load and

RES power generation. We further consider the 24-h horizon

plans obtained when a 250-kWh storage is employed.

1) Heuristic Algorithm: We had in mind to compare the

proposed approach with a heuristic microgrid management

algorithm but, to the best of our knowledge, none has been

proposed in the literature so far, nor are we aware of practical

approaches to the problem, beyond straightforward balancing

of supplied and demanded powers, which takes into no account

the economical side of the problem. Hence, we propose one

here.

For simplicity’s sake, we assume no maintenance, startup

and shutdown costs. In addition, no storage unit is utilized,

so that dynamics have not to be accounted for. The loads are

all critical loads. By doing so, the possible combinations of

power inputs can be more easily handled (also by a human

operator); namely, the microgrid operator can decide about the

DG unit generation and the interaction with the utility grid. In

addition to that the minimum up and down times are assumed

to be equal to 1 sampling time. The capacity constraints are

considered, although we assume that the bilateral contract

between the microgrid and the utility grid will ensure the

energy balance to be always achievable, meaning that the

microgrid operator will be always allowed to purchase from or

Fig. 3. Forecasted and actual PV power generation over 24 h.

sell to the utility grid the necessary amount of energy. Finally,

we assume that a turned-on DG unit will be always generating

the maximum available power.

The heuristic algorithm consists of three steps, applied

at each sampling time; these steps are illustrated in

Appendix B.

B. Forecasts

In order to apply the control strategy described in

Section III, renewable power and demand forecasts have to

be computed. The renewable power and demand data series

generally exhibit high-frequency fluctuations and peak shift-

ing, also influenced by meteorological factors, such as outside

temperature and irradiance. Therefore, it is a relatively hard

task to capture the dynamics of these series and fit a model

out of the given data set. Broadly exploited methodologies

for nonlinear forecasting are neural networks (NNs) [45] and

support vector machines (SVMs). The latter is a powerful

statistical method aiming at capturing the underlying structure

in a data set based on input training data [46], [47]; recently,

the SVM technique is being successfully applied to demand

forecasting and for predicting renewable generation [48], [49].

In this paper, we apply least-square SVMs for regression

(support vector regression) with a moving time window to

forecast the renewable power generation and the demand

for the day ahead. See Appendix C for an outline of the

algorithm and further details on forecasting in simulations and

experiments.

Examples of renewable power production profiles and daily

demand employed in the optimization routine are shown,

respectively, in Figs. 3 and 4.

V. SIMULATION RESULT

Figs. 5 and 6 show, respectively, the power exchanged with

the utility grid and the DG unit power generation obtained by

applying the different strategies without storage. It is shown

that the MPC-MILP leads to a more efficient utilization of the

DG units and a larger amount of energy is sold to the utility

grid.
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Fig. 4. Forecasted and actual demand over 24 h.

Fig. 5. DG units power generation over 24 h. (a) Heuristic. (b) MPC-MILP.

Table V reports the performance of the described strategies

for microgrid operation optimization without storage utiliza-

tion. It shows that the cost increment with respect to the

Fig. 6. Purchased/sold energy over 24 h. (a) Heuristic. (b) MPC-MILP.

TABLE V

COMPARISON OF MICROGRID OPERATION OPTIMIZATION

STRATEGIES WITHOUT STORAGE

benchmark is 8.6% for the heuristic algorithm and only 0.5%

for the proposed algorithm.

Consider now the possibility to employ the 250-kWh storage

unit. Fig. 7 shows the storage utilization during the planning

horizon. Table VI shows that the storage makes the microgrid

more economically efficient. It is also reported that MILP

without feedback action yields poor results, due to the uncer-

tainties in the demand and in the PV power generation. Fig. 8

shows that the MPC-MILP strategy yields less violations of

the storage capacity constraints with respect to MILP; the

figure also shows that the MPC-MILP strategy produces in

both cases a solution close to the benchmark. As the storage

level cannot be less than the storage minimum capacity, the
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Fig. 7. Energy stored over 24 h.

TABLE VI

COMPARISON OF MICROGRID OPERATION OPTIMIZATION

STRATEGIES WITH STORAGE

Fig. 8. Usage of storage under different strategies (negative values mean the
storage would lend energy, not possible in the real case).

correction action is to buy from the utility grid the amount

of energy needed to lead the storage level to its minimum

capacity value.

A. Computational Complexity

It is well known that MILP problems are NP complete

and their computational complexity mainly depends on the

number of integer variables [39], [50]. We investigated the

computational burden of the MILP optimization problems to

be solved online, in order to assess the feasibility of the pro-

posed approach. We considered the case study reported above,

by using different prediction horizons T . At each time instant,

an MILP problem is solved. Table VII reports the computation

times (average and worst case) needed for solving the MILPs

as well as the problem sizes as the prediction horizon grows.

The computation times increase as the prediction horizon T

TABLE VII

COMPUTATION TIMES

Fig. 9. Experimental microgrid setup.

becomes longer. However, the solution to the optimization

problem took at most 24.3 s, a time much shorter than the

sampling time of 1 h. A longer prediction horizon would not

usually provide an improvement because the forecasts degrade

as time increases, but Table VII shows that the computational

burden can be affordable. This can also mean that the sampling

time could be reduced at the cost of a negligible increase of

computational effort. Actually, the experiments were run with

a 15-min sampling period.

VI. EXPERIMENTAL RESULT

The experimental validation of the control algorithm was

performed at the Center for Renewable Energy Sources

and Saving (CRES), Pikermi-Athens, Greece. We consider a

15-min sampling period and the experiments are run over 6 h.

The facility used for this purpose is the experimental microgrid

of CRES comprising the following units (Fig. 9).

1) RES: Two PV units with maximum power 1.1 and

2.5 kW.

2) DG units: One proton exchange membrane fuel cell of

5 kW and a battery storage used in order to simulate

the operation of a CHP unit. The maximum power of

the CHP was selected to 2 kW. The operative and main-

tenance costs of the fuel cell are 0.16AC per sampling

period (15 min). The operative and maintenance costs

of the CHP are 0.01AC per kW generated.

3) Storage unit: One battery storage system with 40-kWh

maximum capacity and 2.5-kW maximum power. The

charge and discharge efficiencies are both equal to 0.8.

We assume that the battery never discharges below 75%

of its maximum capacity. The operative and maintenance

costs of the battery are 0.0784AC per kWh exchanged

without associated inverter costs.
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Fig. 10. Spot energy prices over 24 time steps (6 h) (all experiments).

4) Loads: A bank of resistive loads was used. Specifically,

the loads were divided into two groups (critical and flex-

ible) each of which was programmed through a specific

load curve with 10-min sampling time. According to

the control set points, an amount of the controllable load

was curtailed while the maximum load consumption was

about 9 kW.

All units were interconnected through the microgrid

three-phase power line to the public grid.

Low level controllers for microgrid components were avail-

able.

1) A local integrator was employed to regulate the battery

inverter frequency according to the active power set

point.

2) A local integrator was used for the µ-CHP inverter.

3) The fuel cell unit was regulated by using a local inte-

grator and a comparator with the mean power reference

value.

4) Concerning the load bank, a local controller selected

the most appropriate combination of resistors, which

provided the closest consumption value according to the

set point.

The control algorithm was implemented on a PC interfaced

with the microgrid SCADA system through the local area

network.

All data used in experiments are realistic, based on measure-

ments, datasheets, and market prices. Loads follow a realistic

profile derived from real consumption measurements in a real

microgrid. The daily spot prices are shown in Fig. 10.

The results of three experiments are presented.

1) Experiment 1: The microgrid is operated without high-

level control.

2) Experiment 2: The microgrid operations are managed by

the MPC-MILP control scheme with a planning horizon

of 24 steps.

3) Experiment 3: The microgrid operations are managed by

the MPC-MILP control scheme with a planning horizon

of 72 steps.

The experiments are run from 9 A.M. to 3 P.M., so the PV

units generate some power at all time steps (1 kW on average).

Fig. 11. Battery usage over 24 time steps (6 h). (a) Experiment 1 (no MPC).
(b) Experiment 2 (MPC over 24 time steps).

During all the three experiments, the system is operated

with the same consumption profiles. The ultimate purpose of

Experiment 1 is the power balance between production and

consumption. In other words, the system operated so as to

minimize the power/energy flow to and from the public grid.

This is the fundamental concept of microgrids since they are

designed so as to exploit as much as possible the benefits of

DERs [2].

The battery is heavily employed in Experiment 1; much less

utilized in Experiment 2 and not utilized at all in Experiment 3

due to its high maintenance costs (Fig. 11). A smaller amount

of power needs to be purchased from the utility grid during

Experiment 1 compared with the experiments run with the

high level controller (Figs. 12 and 13). Further the fuel cell

is utilized in Experiment 1 (Fig. 14), while it is always

OFF during the experiments with high-level control because of

its large operative and maintenance costs and its low efficiency

in electrical power generation. It would be likely utilized in

case the thermal demand and the emissions were included in

the problem formulation.

The CHP unit is always run at its maximum power in these

experiments.

The total cost for Experiment 1 is 27.4AC, for Experi-

ment 2 is 19.6AC, and for Experiment 3 is 17.9AC. Then, the
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Fig. 12. Energy exchanged with the utility grid over 24 time steps (6 h).
(a) Experiment 2 (MPC over 24 time steps). (b) Experiment 3 (MPC over
72 time step).

Fig. 13. Energy exchanged with the utility grid over 24 time steps (6 h) for
Experiment 1 (no MPC).

MPC-MILP strategy yields a 28.5% saving with T = 24 and

a 34.7% saving with a longer prediction horizon, T = 72.

Curtailments are usually penalized since they lead to user

discomfort; so they are not performed unless strictly conve-

nient or necessary. Hence, all experiments run with a penalty

on curtailments ρc equal to 0.5, show no curtailment. We ran

Fig. 14. Fuel cell power generation for Experiment 1 (no MPC).

Fig. 15. Curtailments over 24 time steps (6 h).

another experiment over 24 steps reducing ρc to 0.1 in the

last hour and Fig. 15 shows how the optimization algorithm

uses this relaxation. The economic saving with respect to the

experiment with ρc = 0.5 is not significant because the PV

power generation during this experiment was much smaller, so

a larger amount of energy needed to be bought from the utility

grid. A tradeoff between cost and demand peak reduction and

user comfort can be achieved by tuning the parameter ρc.

It is worth mentioning that under some circumstances the

actual power values deviated from the setpoints due to the

following reasons.

1) The battery storage inverter presented power derating

when overheated. This led to a power reduction. As a

result, the microgrid covered the deficit by absorbing

power from the public grid.

2) The second battery system, which was used to simulate

the CHP unit, presented at specific moments a deep

discharge rate due to the bad battery state of health.

Because of this, it was necessary to manually reverse

the power for small intervals of 15 min. This, despite

not being counted as energy absorption, was considered

as zero production intervals, leading to deviation from

the setpoints. By using a better battery can sort this

issue out.
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3) In some experiments, the weather conditions led to

reduced power from the PV and hence to deviation from

the predicted power.

VII. CONCLUSION

In this paper, we propose a novel mixed integer linear

approach on modeling and optimization of microgrids. We

bring into account unit commitment, economic dispatch,

energy storage, sale and purchase of energy to/from the

main grid, and curtailment schedule. First, we assume per-

fect knowledge of the microgrid state, renewable resources

production, future loads, and so on, which is useful to solve

the optimization problem. Further, to cope with inevitable

disturbances and forecast errors, we embed this into an MPC

framework. The proposed approach was investigated on an

experimental microgrid located in Athens, Greece. Experimen-

tal results show that our MPC-MILP control scheme is able

to economically optimize the microgrid operations and save

money compared with the current practice. The results also

evidence that a tradeoff between demand peak reduction and

user comfort can be achieved through allowable curtailments.

Future work will focus on relaxing our assumptions so as

to include state estimation and uncertainty modeling. Finally,

heat recovery capabilities and reactive power are not consid-

ered in the microgrid modeling and problem formulation to

limit its complexity. We are aware of their importance and their

incorporation into the proposed control framework is under

current study.

APPENDIX A

MATRICES

Eb
1

′

=
[

Cb − (Cb + ε) Cb Cb − Cb − Cb
]

Eb
2

′

= E
g

2

′

= [0 0 1 − 1 1 − 1]

Eb
3

′

= [1 − 1 1 − 1 0 0]

Eb
4

′

=
[

Cb − ε Cb Cb 0 0
]

E
g
1

′

=
[

T g − (T g + ε) Mg Mg − Mg − Mg
]

E
g

3

′

(k) =
[

1 − 1 cP(k) − cP(k) cS(k) − cS(k)
]

E
g

4

′

=
[

T g − ε Mg Mg 0 0
]

where Mg = maxk(c
P(k), cS(k)) · T g , ε is a small tolerance

(typically the machine precision)

F
′
(k) = [1 . . . 1

︸ ︷︷ ︸

Ng

1 . . . Dc
i (k) . . .

︸ ︷︷ ︸

Nc

0 . . . 0
︸ ︷︷ ︸

Ng

]

f
′
= [1 −1 · · · − 1

︸ ︷︷ ︸

Nl

−1 · · · − 1
︸ ︷︷ ︸

Nc

]

cz
′
= [1 . . . 1

︸ ︷︷ ︸

Ng

1 1 . . . 1
︸ ︷︷ ︸

2·Ng

2 · OMb]

cu(k)
′
= [0 . . . 0

︸ ︷︷ ︸

Ng

1 . . . ρi (k)Dc
i (k) . . .

︸ ︷︷ ︸

Nc

. . . O Mi . . .
︸ ︷︷ ︸

Ng

].

APPENDIX B

STEPS OF THE HEURISTIC ALGORITHM

The heuristic algorithm consists of the following steps.

1) The difference between the power generated from all the

RES units and the actual load is computed. The power

generated from the renewable energy sources is then

always utilized to satisfy the demand. If the difference

is positive, the power surplus is sold to the utility grid,

the time step is incremented by one and the algorithm

goes back to step 1; otherwise it proceeds to step 2.

2) If the cost to purchase the demand deficit from the

utility grid is smaller than the minimum cost among

the DG unit generating costs, the deficit will be filled

by purchasing the corresponding amount of energy from

the utility grid, the time step is incremented by one and

the algorithm goes back to step 1; otherwise it proceeds

to step 3.

3) The DG units are turned on from the cheapest to the

most expensive one until the demand surplus is covered.

Since the DG units are run at their maximum power

capacity, it is likely to have power surplus once the total

demand is met; then the corresponding energy is sold to

the utility grid; the time step is incremented by one and

the algorithm goes back to step 1.

APPENDIX C

BACKGROUND

In this section, we briefly introduce some basic concepts

employed in the control strategy design.

A. Mixed Integer Linear Programming

In a microgrid system continuous and discrete-valued

dynamics interact. The physical quantities, such as energy

and power flows, can be represented by continuous variables,

while the discrete features of microgrid components (e.g., the

ON/OFF status of the DGs, the storage charging/discharging

state, and the minimum up and down time constraints) can

be captured by using binary decision variables. In addition,

the behavior of a microgrid system and its components can

be described by both differential or difference equations (e.g.,

storage dynamics) and logical statements, i.e., statements of

the form if …then …else. Since we are interested in model

predictive control, we need to construct a prediction model

of the system. In [36], it is shown how to cast a logical

statement of a given form into linear mixed-integer constraints,

i.e., constraints involving both continuous and discrete-valued

variables. In the following, we will provide some example,

taken from [36], of equivalences between logical statements

and linear mixed-integer constraints; the statement

f (k) ≥ 0 ⇐⇒ δ = 1

is true if and only if

{

−mδ ≤ f (k) − m

−(M + ε)δ ≤ − f (k) − ε
(18)
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similarly

y = δ f (k) is equivalent to

⎧

⎪
⎪
⎨

⎪
⎪
⎩

y ≤ Mδ

y ≥ mδ

y ≤ f (k) − m(1 − δ)

y ≥ f (k) − M(1 − δ)

(19)

where f is a function upper and lower bounded by M and m,

respectively, δ is a binary variable, y is a real variable, and

ε is a small tolerance (typically the machine precision). The

tolerance ε is needed to transform a constraint of the form

y < 0 into y ≤ 0, since MILP solving algorithms only handle

nonstrict inequalities.

B. SVR Training Algorithm

The training algorithm of a SVR involves a quadratic

optimization program, which provides a unique solution and

does not require the random initialization of weights, as in

training of NNs. The training data set is defined as follows:

{xi , yi }, i = 1, . . . , N

where N is the number of samples, xi , yi are real-valued

input patterns and corresponding outputs, respectively. The

SVR training algorithm aims at finding a nonlinear mapping

φ(x) of the input data x and then solving a linear regression

problem in this feature space. The function representing the

relationship between the output and input is

yi =

N
∑

i=1

wiφ(xi ) + bi (20)

where for each sample i , bi is the scalar thresholds and wi

is the weight coefficient. Then, the parameters wi and bi are

estimated by solving the following convex regression problem

in this feature space:

min
w,b,ξ,ξ∗

0.5wT w + C

N
∑

i=1

(ξ + ξ∗)

s.t.

yi − wT φ(xi ) − bi ≤ ǫ + ξ∗

wT φ(xi ) + bi − yi ≤ ǫ + ξ

ξ, ξ∗ ≥ 0, i = 1 . . . N (21)

where the parameter C is the regularization parameter, which

assigns penalty to the errors and determines a tradeoff between

the flatness of the regression function and the training error,

ξ and ξ∗ are the slack variables of the upper and the lower

bound of the training vector, and ǫ is the residual tolerance.

All the forecasts are obtained by MATLABs SVM toolbox,

a LS-SVM training and simulation environment written in

C-code [51]. Patterns are updated by adding the most recent

actual value and the oldest value is dropped, and the forecasts

for the next T sampling periods are computed.
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