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ABSTRACT Autonomous vehicle path tracking accuracy and vehicle stability can hardly be accomplished
by one fixed control frame in various conditions due to the changing vehicle dynamics. This paper presents
a model predictive control (MPC) path-tracking controller with switched tracking error, which reduces the
lateral tracking deviation and maintains vehicle stability for both normal and high-speed conditions.
The design begins by comparing the performance of three MPC controllers with different tracking error.
The analyzing results indicate that in the steady-state condition the controller with the velocity heading
deviation as the tracking error significantly improves the tracking accuracy. Meanwhile, in the transient
condition, by substituting the steady-state sideslip for real-time sideslip to compute the velocity heading
deviation, the tracking overshoot can be reduced. To combine the strengths of these two methods, an MPC
controller with switched tracking error is designed to improve the performance in both steady-state and
transient conditions. The regime condition of a vehicle maneuver and the switching instant are determined
by a fuzzy-logic-based condition classifier. Both normal and aggressive driving scenarios with the vehicle
lateral and longitudinal acceleration combination of 5 m/s2 and 8 m/s2 are designed to test the proposed
controller through CarSim-Simulink platform. The simulation results show the improved performance of the
MPC controller with switched tracking error both in tracking accuracy and vehicle stability in both scenarios.

INDEX TERMS Autonomous vehicles, path tracking, predictive control, switched tracking error, condition
classifier.

I. INTRODUCTION

Autonomous vehicle technology aims to increase driving
safety, reduce traffic congestion and emissions, and improve
energy efficiency [1]–[4]. Path tracking is a basic part of
the vehicle control module to execute the predefined path
from the motion planning layer by determining the desired
actuating input to correct tracking errors [5]. To track the path
accurately and steadily, the tracking error representation and
control algorithms are of vital importance.
Several kinds of tracking errors have been used in the

design of path tracking controller. In some simple geometric
tracking controllers, such as pure pursuit [6], the steering
angle is directly determined from the lateral deviation through
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the geometrical relationship between the vehicle and the
desired path.

For the controllers based on kinematic and dynamic model,
an explicit tracking error representation is usually needed to
describe the relative position of the vehicle to the desired
path. The most extensive tracking error used in the kine-
matic model based controllers is expressed with the error
in longitudinal and lateral directions and orientation error in
the global frame [7]–[9]. This method is suitable for robots
and low speed vehicles. However, when the speed goes up,
the tracking accuracy and vehicle stability of this class of
controllers cannot be maintained due to the ignorance of
vehicle dynamics.

Several kinds of tracking error representations are used
with dynamic vehicle model to realize path tracking at high
speed. Yaw rate error and lateral deviation are one of the
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FIGURE 1. Velocity heading deviation and vehicle heading deviation. U is
vehicle velocity, β is sideslip, 1ψ is the vehicle heading deviation, 1φ is
the velocity heading deviation.

popular states to represent tracking error.Multiple approaches
are proposed to steer the vehicle yaw rate to the desired
reference value to achieve path tracking [10]–[14]. Since the
yaw rate is directly related to the vehicle yaw stability, it is
easy to keep the vehicle steady through this model. However,
the desired reference value is the solution to a kinematic
model or a steady-state bicycle model. Using this value as
a reference input would ignore the natural transient dynamics
of the vehicle [15], [16], which could lead to a poor tracking
accuracy in some conditions. Some other states, such as
sideslip, steering angle or a combination, are also used as
the desired references [15]–[19], and they will face the same
problem.
Another common way to formulate the tracking error is

utilizing the vehicle heading deviation instead of yaw rate
error to maintain the vehicle travel orientation, and con-
trollers based on this tracking error model are designed
to force the vehicle heading deviation to zeros [20]–[25].
Chuan Hu etc. References [26], [27] designed a robust
controller that can minimize vehicle heading and lateral
deviations under disturbances and uncertainties. Brown etc.
Reference [28] presented a path tracking controller based
on model predictive control (MPC) to minimize the vehicle
heading deviation, and the controller could achieve stabi-
lization and obstacle avoidance simultaneously. A simple
but effective feedback-feedforward steering controller using
vehicle heading deviation as control output was proposed
in [29], and the controller could keep a lower complexity
and maintain stability even at the handling limits. However,
choosing the vehicle heading deviation as a control output
may not always minimize the lateral deviation effectively,
especially when the sideslip is high, as shown in Figure 1.
The vehicle heading deviation and lateral deviation cannot be
made to zero at steady-state simultaneously [17], [30].
To eliminate the steady-state tracking error, the vehicle

velocity heading deviation, which is the deviation of the
vehicle travelling orientation and path heading, as shown
in Figure 1, is applied to model the tracking error.
Werling et al. [31] presented a steering controller that
can track the velocity heading and validated the controller
through the experiment with a low friction coefficient.
Kapania and Gerdes [17] explained that zero steady-state
lateral deviation requires the vehicle velocity vector to be
tangent to the path, which means the vehicle velocity heading
deviation to be zero. But the experiment results show that the
designed feedback controller based on the velocity heading
deviationwould spin out at limits of handling. Tomaintain the

stability margins, the steady-state sideslip instead of real-time
sideslip is used in the final controller, and the performance
was demonstrated through experiment. Although the vehicle
stability is improved by combining steady-state sideslip in the
vehicle heading deviation, the tracking accuracy in steady-
state condition is not as good as that of using real-time
sideslip, which is due to the transient dynamics is ignored
when computing the steady-state sideslip.

Variety of control algorithms have been used in path track-
ing design, including classical algorithms. [32], [33], robust
algorithms [34], [35], optimal algorithms [36], [37], etc.
Recently, model predictive control (MPC) has become the
most attractive method in the control of autonomous vehicles,
due to the capability of systematically including system con-
straints and future predictions in the design procedure, which
is perfect for dealing with vehicle stability constraints as well
as changing vehicle and tire dynamics [4], [28], [38]–[40].
Besides, the inherent robustness of MPC guarantees the sys-
tem robustness to some degree [38], [41].

Most of the existing path-tracking controllers are designed
based on a fixed tracking error representation. However,
in the presence of the changing vehicle dynamics under var-
ious conditions, these controllers may not guarantee a high
performance in a certain scenario. Inspired by the research
in [17], this paper designs a MPC controller that takes the
velocity heading deviation as the tracking error, and the real-
time sideslip and the steady-state sideslip are switched to
compute the velocity heading deviation in the steady-state
and transient condition, respectively. A fuzzy-logic based
condition classifier is developed to indicate the regime condi-
tion and the switching instant. The main contributions of this
paper include that: 1) the deficiencies and strengths of using
steady-state sideslip and real-time sideslip to compute veloc-
ity heading deviation as the tracking error is analyzed, and the
necessity of a switched tracking error is clarified; 2) a vehicle
condition classifier is constructed based on fuzzy-logic to
classify the vehiclemaneuver into the steady-state or transient
condition; 3) based on the condition classifier, an MPC path
tracking controller with switched tracking error is proposed,
which is capable of reducing tracking error and maintain-
ing vehicle stability in steady-state and transient conditions,
simultaneously.

The configuration of this paper is as follows. The vehi-
cle dynamic model, a linearized tire model and tracking
error model are presented in section II. The control problem
about using different tracking error as control output is stated
in section III. The fuzzy-logic based condition classifier and
the detailed MPC path tracking controller with a switched
tracking error design are presented in section IV, and simula-
tion is conducted in section V. Finally, Section VI concludes
the paper with a brief discussion of the results.

II. DYNAMIC MODELING

A. VEHICLE LATERAL DYNAMIC MODEL

In this paper, a single-track ‘bicycle’ model including lat-
eral and yaw motion is applied to capture the tracking
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FIGURE 2. Bicycle model schematic.

performance and handling stability, shown in Figure 2. The
front steering angle δ is the only actuation. To make the
optimization problem of δ convex, the longitudinal speed
Ux over the prediction horizon is assumed to be constant.
Whereas an external speed controller will be used to track
the desired speed profile.
Under the constant speed and small angle assumptions and

using Newton’s theorem, the sideslip angle β and yaw rate r
are described by the equations of motion:

β̇ =
Fyf + Fyr

mUx
− r (1)

ṙ =
aFyf − bFyr

Izz
(2)

where m and Izz are the vehicle mass and yaw inertia.
Fy[f,r] is the lateral tire force of the front and rear axle. a and
b is the distance from the center of gravity to the front and
rear axles respectively.

B. TIRE MODEL

Neglecting vertical load transfer and using the Fiala brush tire
model, the lateral tire force Fy[f,r] is modeled as a function of
tire slip angle α[f,r]:

Fy[f ,r] = ftire(α)

=



























−Cα tanα +
C2
α

3µFz
|tanα| tanα

−
C3
α

27µ2F2
z

tan3 α, |α| < arctan

(

3µFz
Cα

)

−µFzsgnα, otherwise

(3)

where µ is the coefficient of friction, Fz is the vertical
force, α is the tire slip angle, and Cα is the tire cornering
stiffness.

FIGURE 3. The linear approximation of brush tire model. ᾱr is the tire slip
angle at time k ; ᾱr,ss is the assumed steady-state tire slip angle at step NP
over the prediction horizon; F̄r and F̄r,ss are the corresponding lateral
force.

The tire slip angles αf and αr, under small angle approxi-
mations, can be expressed as:

αf = β +
ar

Ux
− δ (4)

αr = β −
br

Ux
(5)

In order to simplify the nonlinearity between tire slip
angle and lateral force, and taking the saturation of the tire
into account, the front lateral force Fyf is considered as the
control input of the model [28]. The Fyf generated by the
MPC optimization can be mapped to the desired δ by

δ = β +
ar

Ux
− f −1

tire (Fyf ) (6)

where f −1
tire (Fyf ) is the inverted tire model, which can calculate

the tire slip from tire force through numerical method.
The rear tire force is determined by linearizing

Equation (3) through the method proposed in [4]. The method
assumes that the tire cornering stiffness keeps constant in the
MPC prediction horizon NP, as shown in Figure 3.

The steady-state solution of rear tire force to
Equation (1-2) is expressed as:

F̄r,ss =
ma

L
U2
x κ (7)

where κ is the curvature of the desired path at the position of
time k .

The equivalent cornering stiffness over prediction horizon
can be written as:

C̄r =
(F̄r,ss − F̄r)

ᾱr,ss − ᾱr
, i = 0, . . . ,NP − 1 (8)

The approximate expression of the predicted rear tire lat-
eral force is:

Fyr(k + i) = F̄r − C̄r(αr(k + i) − ᾱr), i = 0, . . . ,NP − 1

(9)

where αr(k + i) is the predicted rear tire slip angle which can
be calculated by Equation (5).
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C. TRACKING ERROR REPRESENTATION

Using the vehicle’s center of gravity as the control reference
point, the tracking error between the vehicle and the relative
point on the desired path can be represented by two states:
lateral deviation e, vehicle heading deviation 1ψ , as shown
in Figure 2. The vehicle heading deviation can be expressed
as:

1ψ = ψ − ψr (10)

where ψ is the vehicle heading, ψr is the heading of the path.
Besides, as mentioned in the introduction, the deviation

between the vehicle travelling orientation and the path head-
ing can be represented by the velocity heading deviation,
which is yielded as:

1φ = 1ψ + β (11)

Substitute steady-state sideslip βss for real-time sideslip β,
and yield the substituted velocity heading deviation:

1φs = 1ψ + βss (12)

To make it clear, the substituted velocity heading deviation
is not the steady-state velocity heading deviation. In fact,
the value of the steady-state velocity heading deviation is
zero.
The steady-state sideslip βss can be obtained from

Equation (3), (5) and (7) as:

βss = f −1
tire (F

ss
yr ) + bκ (13)

From Equation (13) above, we can notice that βss is a
function of path curvature κ and vehicle speed Ux. Since
both κ and Ux are known at each sampling instant, βss can
be seen as a priori.
Making the small angle approximation for β and 1ψ , the

derivatives of 1ψ and e can be obtained:

1ψ̇ = r − Uxκ (14)

ė = Ux(β +1ψ) (15)

The system state space can be yielded fromEquations (1-2)
and (10-15) as follows:

ẋ = At
cx(t) + BtFyfFyf(t) + Btκκ(t) + dtᾱr (16)

yj = Ct
jx + dtj , j = 1, 2, 3. (17)

where x =
[

β r 1ψ e
]T is the state vector; y1 =

[

1ψ e
]T , y2 =

[

1φ e
]T , y3 =

[

1φs e
]T is the tracking

error and also as control output; and

At
c =

















−2C̄r

mUx

2C̄rb

mU2
x

− 1 0 0

2C̄rb

Izz
−
2C̄rb

2

IzzUx
0 0

0 1 0 0
Ux 0 Ux 0

















, BtFyf =















2

mUx
2a

Izz
0
0















,

Btκ =









0
0

−Ux
0









, dtᾱr =

















2(F̄r + C̄rᾱr)

mUx

−
2b(F̄r + C̄rᾱr)

Izz
0
0

















,

Ct
1 =

[

0 0 1 0
0 0 0 1

]

, dt1 = 0,

Ct
2 =

[

1 0 1 0
0 0 0 1

]

, dt2 = 0,

Ct
3 = Ct

1, dt3 =
[

βss 0
]T
.

Using the zero-order hold discretization method, we can
get the discrete system model:

x(k + 1) = Acx(k) + BFyfFyf(k) + Bκκ(k) + dᾱr (18)

yj(k) = Cjx(k) + dj, j = 1, 2, 3. (19)

III. MPC CONTROLLER DESIGN AND TRACKING ERROR

COMPARISON

In the design of path tracking controller for autonomous
vehicle, the most two important objectives we need to con-
sider are (1) good handling and stability; (2) high tracking
accuracy. Given three different kinds of tracking error yj
(j = 1, 2, 3.), now we design the MPC controller and com-
pare the performance of these tracking error.

A. MPC CONTROLLER DESIGN

1) VEHICLE STABILITY CONSTRAINTS

The design of vehicle stability constraints is defined by the
bounds of two vital indicators of vehicle stability. Under
the assumptions of steady-state cornering and the given tire
model, the bounds of β and r reflect the maximum capabili-
ties of the vehicle’s tires [28].
The maximum steady-state yaw rate can be expressed as

follows:

rmax =
gµ

Ux
(20)

where g is the gravity.
The vehicle sideslip β when the rear tires approach satura-

tion is:

βss,max = αr,sat +
br

Ux
(21)

where

αr,sat = tan−1(3
mgµ

Cαr

a

a+ b
) (22)

The constraints defined by (20) and (21) can be concisely
expressed as the inequality:

|Hvx| ≤ Gv (23)

2) MPC FORMULATION

Central to the MPC controller is to solve a convex optimiza-
tion problem at each time step to find an optimal sequence of
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future input:

Fyf(k) = [Fkyf,F
k+1
yf , . . . ,F

k+NC−1
yf ]T (24)

where NC is the control horizon.
For each tracking error yj (j = 1, 2, 3.), the optimization

problem can be formulated as follows:

min
U(k)

JNP =

k+NP−1
∑

i=k

(yij)
TQyij +

k+NC−1
∑

i=k

1F iyfR1F
i
yf + Wεv

(25)

subject to model Equation (18) and (19):
∣

∣

∣
Hvx

i
∣

∣

∣
≤ Gv + εv, i = k, . . . , k + NC − 1 (26)

1F iyf = F iyf − F i−1
yf , i = k, . . . , k + NC − 1 (27)

∣

∣

∣
1F iyf

∣

∣

∣
≤ 1Fyf,max, i = k, . . . , k + NC − 1 (28)

1F iyf = 0, i = k + NC, k + NC + 1, . . . , k + NP − 1

(29)
∣

∣

∣
F iyf

∣

∣

∣
≤ Fyf,max, i = k, . . . , k + NC − 1 (30)

where U(k) = [Fyf(k), εv]T , and εv is a non-negative slack
variable used to ensure the optimization problem is always
feasible. NP is the prediction horizon and NP > NC, Q, R
and W are weighting matrices of appropriate dimensions.
1Fyf,max and Fyf,max are the slew rate capabilities and the
maximum lateral force.
The optimal front lateral force input F∗

yf(k) can be obtained
through the first element of the optimal solution sequence
U∗(k). The steering angle δ that will be applied to the
vehicle could be obtained by mapping from F∗

yf(k) through
Equation (6).

In order to accurately capture the propagation of β and r
at a high frequency, the sampling time Ts is set to be 0.02s.
The value of control horizon NC, predictive horizon NP and
weighting matrices were obtained through iteratively tuning
by the principles mentioned in [42], [43]:

NC = 15,NP = 50, Q =

[

1000 0
0 5

]

, R = 10,

W =
[

10 10 10 10
]

(31)

B. TRACKING ERROR COMPARISON

Figure 4 shows results from using the different tracking error
yj (j = 1, 2, 3.) as control output of the MPC controller
to track the desired path with a constant curvature κ =

0.02 m−1, given a lateral acceleration of ay = 6 m/s. The
initial value of lateral deviation e and heading deviation 1ψ
are 0.5 m and 0.
It can be seen from Figure 4(a) the path tracking over-

shoots and steady-state errors of the original controller (y1 =
[

1ψ e
]T ) are both significant. A comparison of the two

ameliorated controllers shows that the controller with βss
(y3 =

[

1φs e
]T ) has a better performance in the transient

FIGURE 4. Simulation results of MPC controllers with different control
output. (a) Lateral deviation. (b) Yaw rate.

response, whereas the controller with β (y2 =
[

1φ e
]T ) has

the lower static tracking error. The yaw rate responses of the
original controller and the controller with βss are analogous as
shown in Figure 4(b). However, the overshoot and oscillation
of yaw rate controlled by the controller with β are higher than
the other two controllers.

A detailed explanation for the tracking improvement using
the velocity heading deviation 1φ instead of the vehicle
heading deviation 1ψ as the tracking error can be found
in [17]. Here we discuss the influence addressed by a different
form of sideslip on vehicle maneuvers.

The tracking error ‖1ψ + βss‖ and ‖1ψ + β‖ are forced
to converge to zero due to the cost function in both MPC
controllers. In the first form, the heading deviation 1ψ is
forced to converge to -βss as t → ∞, whereas in the second
form1ψ is forced to converge to −β. As β is also a variable,
so the desired equilibrium of1ψ is unfixed at a specific time.
This is why the yaw rate oscillation of the second controller
is higher in the transient condition.

On the other hand, the steady-state value is the desired state
response produced by a reference model which is built under
the steady-state and zero tracking error assumption. Due to
the neglecting of some vehicle travelling and tracking charac-
teristics such as acceleration of the vehicle, lateral deviation,
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FIGURE 5. The structure of the MPC controller with switched tracking error.

FIGURE 6. The control process of the switched MPC controller.

vertical load transfer and track width, the value produced by
the reference model can be significantly different with real-
time value.When the vehicle is travelling in the quasi-steady-
state or steady-state condition (constant curvature), the static
tracking error of the controller with βss cannot be eliminated
due to the difference between the desired value and the real-
time value of the side slip.
In order to improve the yaw oscillation and tracking perfor-

mance in both transient condition and steady-state condition,
a controller with switched tracking error should be designed.

IV. DESIGN OF THE MPC CONTROLLER WITH

SWITCHED TRACKING ERROR

In section III, the deficiency of taking different tracking error
as the control output is analyzed, and the simulation result
indicates that a fixed tracking error is not applicable to all
conditions. Therefore, in this section, anMPC controller with
switched tracking error is constructed by means of switching
the tracking error y =

[

1φ e
]T and y =

[

1φs e
]T , which

will be determined by a fuzzy classifier. The structure of the
controller is shown in Figure 5.
Figure 6 shows the control process of the MPC controller

with switched tracking error. When the choosing variables
are big enough, which indicates the vehicle is travelling in a
transient condition, the fuzzy classifier will switch the track-
ing error to y =

[

1φs e
]T . When the variables converge

to the neighborhood of the origin, the vehicle reaches in
quasi-steady-state condition, and the controller switches to
the tracking error y =

[

1φ e
]T .

A. CONDITION CLASSIFICATION

The vehicle maneuvers cannot always possible be classified
into transient or steady-state conditions clearly and precisely,
especially in the intermediate phase [44]. The variables and
the limits used to classify the maneuvers can be various due
to the various purposes of the classification.

To determine the appropriate variables to characterize the
vehicle lateral dynamics generated by transient and steady-
state responses, simulation through MATLAB and CarSim
are implemented. The desired path used in the simulation is
a 2.3 km CarSim default path with a wide range of curvature.
The controller with β and controller with βss proposed in
section III are used respectively, and both of the controllers
track the entire path at a lateral acceleration of 5m/s2, 6m/s2,
7m/s2, 8m/s2, 9m/s2 once. The root-mean-square (RMS) val-
ues for vehicle states are computed to capture the nature of
the vehicle maneuvers.

Yaw acceleration ṙ , lateral jerk J , velocity heading
deviation 1φ and the rate of change of velocity heading
deviation 1φ̇ are chosen as the condition classification vari-
ables. The variations in lateral dynamics generated by vehicle
acceleration/braking meanwhile cornering can be reflected
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FIGURE 7. The better performance points percentage contrast of two
controllers in different segments.

FIGURE 8. The membership function for the fuzzy-logic algorithm.

in the RMS value of lateral jerk and yaw acceleration. The
RMS value of velocity heading deviation and the rate of
change of velocity heading deviation can provide the infor-
mation concerning the dynamics variation in advance, which
is caused by the changing path curvature with respect to the
influence of the changing speed.

The interval between zero and the maximum of the
RMS value of each variable [0,max(vi)] is divided into
10 equal segments of width1vi (i = 1, 2, 3, 4 corresponding
to ṙ , J , 1φ, 1φ̇). We compare the lateral tracking deviation
of two controllers at the same position of the desired path
in corresponding cases and obtain all the points with bet-
ter tracking performance. Based on the distribution of these
points, the percentage of each controller in every segment of
each variable is calculated, as shown in Figure 7.
Figure 7 shows that the increased RMS value leads to a

higher percentage of the controller with βss for all the vari-
ables, providing feasibility for classifying vehicle conditions.
As an example, when the RMS value for yaw acceleration
is lower than 1v1, the majority points (more than 70%)
are conducted by controller with β, indicating a steady-state
condition; beyond 41v1 the majority points are conducted by
controller with βss, and the variation of lateral jerk is consid-
ered large enough to produce a transient maneuver. Between
1v1 and 41v1 the performance of two controllers is close,
and it is assumed to be an intermediate condition. The limits
to divide the RMS values into three phases for other variables
can be obtained using the same criterion.
A fuzzy-logic algorithm with trapezoidal fuzzification

function is employed to handle the non-deterministic nature
of the intermediate phase, as shown in Figure 8. A member-
ship degree in range 0-1 is determined to classify a maneu-
ver. The values of L1 and L2 are obtained from the analysis
above, as reported in table 1. Below L1 (membership func-
tion = 0) the maneuver is considered completely stationary;
beyond L2 (membership function = 1) the maneuver is con-
sidered fully transient; between L1 and L2, the membership
degree linearly passes from 0 to 1.
A ‘condition indicator’ α is computed as a weighted mean

of the membership degree of four variables to indicate the
condition, as shown in Figure 9. Table 1 lists the weights
of four variables. The signal of velocity heading deviation
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FIGURE 9. Fuzzy-logic scheme to determine the condition indicator.

TABLE 1. The limits of rate of change and weights of variables for
condition classification.

and its rate of change is directly related to the tracking error
and can provide information around both vehicle dynam-
ics and path curvature, and the weight is sensibly higher.
To characterize the vehicle dynamics properly and avoid
high-frequency switching, the buffer time Tb for condition
classifier is set as 0.2 s, as the frequency of vehicle dynamics
is about 7 Hz [44].

B. MPC CONTROLLER WITH SWITCHED TRACKING ERROR

With the classifier of the vehicle condition, the MPC
controller with switched tracking error based on the
Equation (25-30) can be formulated as follows:

1) For time k , check the condition of the vehicle.
if n <10 (Tb/Ts)

set n = n+ 1;
set α(k) = α(k-1);

else
update α(k) using the algorithm in Figure 9;
set n = 0;

end.
2) Optimization: Find the optimal U(k), such that the

following optimization problem is solved:

min
U(k)

JNP (y,U(k)) (32)

subject to Equation (18-19), (26-30), and

yi=
[

1φi ei
]T
, i=k, . . . , k+NP−1 for α(k)<0.5,

yi=
[

1φis e
i
]T
, i=k, . . . , k+NP − 1 for α(k)≥0.5.

3) Receding horizon control

F∗
yf(k) =

[

1 0 . . . 0
]

U∗(k) (33)

TABLE 2. Parameter values of the vehicle and path.

Calculate the steering angle δ from F∗
yf(k) through

Equation (6), and apply to the vehicle.
4) Set k = k + 1, and update system states, input, output

and state-space equations (18).

Repeat steps 1)-4) until k reaches its predefined value.

V. SIMULATION AND RESULTS

In order to verify the effectiveness of the proposed controller,
simulation is conducted via MATLAB/Simulink and CarSim,
which includes a validated high-fidelity full-vehicle dynam-
ics model. The parameters of the vehicle and path are listed
in Table 2.
The desired path for the vehicle to track is a 1.5 km

racing road designed by the method proposed in [45] and
the path is parameterized as a curvature profile that varies
with distance along the path, as shown in Figure 10. The
curvature varies between -0.014 m−1 and 0.025 m−1. Four
different controllers are compared: the original controller
(y1 =

[

1ψ e
]T ), the controller with β(y3 =

[

1φ e
]T ),

the controller with βss (y3 =
[

1φs e
]T ), and the pro-

posed controller with switched tracking error developed in
section IV is to be tested.
Normal driving and aggressive driving scenarios are dis-

cussed in this part. The lateral and longitudinal acceleration
combination ac is often used as the criteria of driving style
and comfort, which can be obtained by:

ac =

√

a2x + a2y (34)

where ax and ay is the longitudinal and lateral acceleration,
respectively.
Generally, when driving speed goes up, the human drivers

will reduce ac to attain comforts [46], [47]. However, ac is
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FIGURE 10. The desired path for tracking control test. (a) Overhead plot
of the desired path. (b) Curvature as a function of distance along the path.

TABLE 3. Comparison of control results of different controllers.

assumed to be constant for each scenario in this paper. This
does not make it less convincing, since a specified upper
value of ac for each scenario is used to generate the speed
profile [46], [47]. The value of ac for normal/aggressive driv-
ing is set as 5/8 m/s2, and the peak longitudinal deceleration
is -5/-8 m/s2 and peak lateral acceleration is 5/8 m/s2. The
desired speed profile Uxd is generated based on the curva-
ture of the predefined path by the optimal method proposed
in [48], which considers the jerk-limits and travel time in the
cost function, and the result is shown in Figure 11. The speed

FIGURE 11. Velocity profile and the generated lateral and longitudinal
acceleration combination profile. (a) Normal driving. (b) Aggressive
driving.

tracking is achieved by a PID longitudinal controller, which is
decoupled from the lateral control to reduce the complexity.
The same longitudinal controller and stability bounds are
used for all cases.

Figure 12 shows the simulation results for both scenarios;
the upper part of the figure presents the tracking deviation of
all compared controllers. The lower part of Figure 12 shows
the value of the condition indicator α calculated from the
logic described above and the switch flag (α < 0.5, switch
flag = 0; α(k) ≥ 0.5, switch flag = 1) is also reported.
Figure 13 shows the results of condition classification
variables.

As shown in Figure 12, for both scenarios, the lateral
tracking deviations of the original controller are significantly
larger than that of the controllers using1φ/1φs as a tracking
error. This matches the predicted result that taking the vehicle
heading deviation as tracking error in the controller cannot
minimize the lateral deviation effectively.
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FIGURE 12. Lateral tracking deviation of different controllers, the
condition indicator and switch flag of switched MPC controller.
(a) Normal driving. (b) Aggressive driving.

Figure 12 and Figure 13 show that at most of the nor-
mal driving scenario and the aggressive driving scenario,
the condition classification variables are under L1 leading to
a small α, which indicates that the vehicle is travelling at
quasi-steady-state or fully steady-state condition. The control
output of the proposed controller remains as y =

[

1φ e
]T

and the switch flag remains at 0. The tracking deviation of
the proposed controller and the controller with β remains the
same and is smaller than that of the controller with βss. This
matches the predicted result in section III. Using real-time
and predicted sideslip to calculate velocity heading deviation
in control output, the tracking performance will be improved
in quasi-steady-state condition.
At around s = 1000 meters along the track in aggressive

driving scenario, all variables reach over L1, and even over L2
as shown in Figure 13 due to the sharply changing road cur-
vature. As a result, α reaches over 0.5, indicating the vehicle
enters a transient condition. The proposed controller switches

FIGURE 13. Simulation results of the condition classification variables.
(a) Normal driving. (b) Aggressive driving.

the control output to the tracking error y =
[

1φs e
]T and

the switch flag is set to 1. As we can see from Figure 12,
at this condition all the controllers still can remain stable,
but the tracking deviation of the controller with β becomes
significantly larger than the other two controllers with βss
in their control output. The proposed controller follows the
curve of the controller with βss closely, which indicates that
the designed condition indicator can identify the vehicle
maneuvers clearly and precisely.
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As the tracking results summarized in Table 3 shows,
the designedMPC controller with switched tracking error can
reduce the tracking deviation RMS value, while maintaining
a lower deviation maximum and yaw oscillation simultane-
ously in both scenarios.

VI. CONCLUSION

A MPC path tracking controller that can minimize the track-
ing deviation and maintain vehicle stability simultaneously
for autonomous vehicle in a wide range of conditions is
designed by utilizing the benefits of switched tracking error.
By comparing the performance of the controller with different
tracking error, velocity heading deviation is chosen as the
tracking error. The steady-state sideslip and real-time sideslip
are switched to compute the velocity heading deviation to
combine strength of each in terms of vehicle condition. The
variables and its limits used to indicate the vehicle condi-
tion are determined in terms of statistics, and a condition
classifier based on fuzzy-logic is constructed to classify a
vehicle maneuver into steady-state or transient condition.
Simulation results in both normal driving and aggressive
driving scenarios show that the proposedMPC controller with
switched tracking error can track the desired path accurately
and steadily in both steady-state and transient condition. One
potential drawback of this controller is that the ability to
reject external disturbances and model uncertainties is not
ensured. Future work will seek to use robust MPC method to
improve the robustness of the system and conduct real-time
experiment.
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