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Abstract

We propose a novel numerical inversion algorithm for the coefficients of

parabolic partial differential equations, based on model reduction. The study is

motivated by the application of controlled source electromagnetic exploration,

where the unknown is the subsurface electrical resistivity and the data are time

resolved surface measurements of the magnetic field. The algorithm presented

in this paper considers inversion in one and two dimensions. The reduced

model is obtained with rational interpolation in the frequency (Laplace)

domain and a rational Krylov subspace projection method. It amounts to a

nonlinear mapping from the function space of the unknown resistivity to the

small dimensional space of the parameters of the reduced model. We use this

mapping as a nonlinear preconditioner for the Gauss–Newton iterative solution

of the inverse problem. The advantage of the inversion algorithm is twofold.

First, the nonlinear preconditioner resolves most of the nonlinearity of the

problem. Thus the iterations are less likely to get stuck in local minima and the

convergence is fast. Second, the inversion is computationally efficient because

it avoids repeated accurate simulations of the time-domain response. We study

the stability of the inversion algorithm for various rational Krylov subspaces,

and assess its performance with numerical experiments.

Keywords: inverse problem, parabolic equation, model reduction, rational

Krylov subspace projection, CSEM
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(Some figures may appear in colour only in the online journal)

1. Introduction

Inverse problems for parabolic partial differential equations arise in applications such as

groundwater flow, solute transport and controlled source electromagnetic oil and gas

exploration. We consider the latter problem, where the unknown r x( ) is the electrical

resistivity, the coefficient in the diffusion Maxwell system satisfied by the magnetic field

tH x( , )

− × × =
∂

∂
r t

t

t
x H x

H x
[ ( ) ( , )]

( , )
, (1.1)

for time >t 0 and x in some spatial domain. The data from which r x( ) is to be determined are

the time resolved measurements of tH x( , ) at receivers located on the boundary of the

domain.

Determining r x( ) from the boundary measurements is challenging especially because the

problem is ill-posed and thus sensitive to noise. A typical numerical approach is to minimize a

functional given by the least squares data misfit and a regularization term, using Gauss–

Newton or nonlinear conjugate gradient methods [22, 23, 25]. There are two main drawbacks.

First, the functional to be minimized is not convex and the optimization algorithms can get

stuck in local minima. The lack of convexity can be overcome to some extent by adding more

regularization at the cost of artifacts in the solution. Nevertheless, convergence may be very

slow [23]. Second, evaluations of the functional and its derivatives are computationally

expensive, because they involve multiple numerical solutions of the forward problem. In

applications the computational domains may be large with meshes refined near sources,

receivers and regions of strong heterogeneity. This results in a large number of unknowns in

the forward problem, and time stepping with such large systems is expensive over long time

intervals.

We propose a numerical inversion approach that arises when considering the inverse

problem in the model reduction framework. We consider one and two-dimensional (1 and 2D)

media, and denote the spatial variable by = x zx ( , ), with ∈z and Ω∈x , a simply con-

nected domain in n with boundary , for =n 1, 2. The setting is illustrated in figure 1.

The resistivity is =r r x( ), and assuming that

= u t xH e( , ) , (1.2)z

we obtain from (1.1) the parabolic equation

=
∂

∂
r x u t x

u t x

t
· [ ( ) ( , )]

( , )
, (1.3)

for >t 0 and Ω∈x . The boundary  consists of an accessible part A, which supports the

receivers at which we make the measurements and the initial excitation

= ⊂ u x u x u(0, ) ( ), supp{ } , (1.4)o o A

and an inaccessible part = ⧹  I A, where we set

= ∈ u t x x( , ) 0, . (1.5)I

The boundary condition at A is

= ∈ x u t x xn( ) · ( , ) 0, , (1.6)A
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where n is the outer normal. We choose the boundary conditions (1.5)–(1.6) to simplify the

presentation. Other (possibly inhomogeneous) conditions can be taken into account and

amount to minor modifications of the reduced models described in this paper.

The sources and receivers, are located on the accessible boundary A, and provide

knowledge of the operator

= >
∈




u u t x t( ) ( , ) , 0, (1.7)o
x A

for every uo such that ⊂ usupp{ }o A. Here u t x( , ) is the solution of (1.3) with the initial

condition (1.4). The inverse problem is to determine the resistivity r(x) for Ω∈x from .

Note that the operator  is highly nonlinear in r, but it is linear in uo. This implies that in one

dimension where Ω is an interval, say Ω = (0, 1), and the accessible boundary is a single

point = = x{ 0}A ,  is completely defined by δ=u x x( ) ( )o . All the information about r

(x) is contained in a single function of time

δ= = >y t x u t t( ) ( ( )) ( , 0), 0. (1.8)

To ease the presentation, we begin by describing in detail the model reduction inversion

method for the 1D case. Then we show how to extend it to the 2D case. The reduced model is

obtained with a rational Krylov subspace projection method. Such methods have been applied

to forward problems for parabolic equations in [7, 10, 13], and to inversion in one dimension

in [11] and multiple dimensions in [20]. The reduced models in [11] are 2 rational inter-

polants of the transfer function defined by the Laplace transform of y(t) from (1.8). In this

paper we build on the results in [11] to study in more detail and improve the inversion method

in one dimension, and to extend it to two dimensions.

The reduced order models allow us to replace the solution of the full scale parabolic

problem by its low order projection, thus resolving the high computational cost inversion

challenge mentioned above. Conventionally, the reduced order model (the rational approx-

imant of the transfer function) is parametrized in terms of its poles and residues. We para-

metrize it instead in terms of the coefficients of its continued fraction expansion. The rational

approximant can be viewed as the transfer function of a finite difference discretization of (1.3)

on a special grid with rather few points, known in the literature as the optimal or spectrally

matched grid, or as a finite-difference Gaussian rule [8]. The continued fraction coefficients

are the entries in the finite difference operator, which are related to the discrete resistivities.

To mitigate the other inversion challenge mentioned above, we introduce a nonlinear

mapping  from the function space of the unknown resistivity r to the low-dimensional space

of the discrete resistivities. This map appears to resolve the nonlinearity of the problem and

Figure 1. Examples of spatial domains for equation (1.1) in 2 (left) and 3 (right). The
medium is constant in the direction z, which is transversal to Ω. The accessible
boundary Ω⊂ = ∂ A is marked with ×.
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we use it in a preconditioned Gauss–Newton iteration that is less likely to get stuck in local

minima and converges quickly, even when the initial guess is far from the true resistivity.

To precondition the problem, we map the measured data to the discrete resistivities. The

inverse problem is ill-posed, so we limit the number of discrete resistivities (i.e. the size of the

reduced order model) computed from the data. This number depends on the noise level and it

is typically much less than the dimension of models used in conventional algorithms, where it

is determined by the accuracy of the forward problem solution. This represents another

significant advantage of our approach.

The paper is organized as follows: we begin in section 2 with a detailed description of our

method in one dimension. The inversion in 2D media is described in section 3. Numerical

results in one and two dimensions are presented in section 4. We conclude with a summary in

section 5. The technical details of the computation of the nonlinear preconditioner  and its

Jacobian are given in the appendix.

2. Model order reduction for inversion in 1D media

In this section we study in detail the use of reduced order models for inversion in one

dimension. Many of the ideas presented here are used in section 3 for the two-dimensional

inversion. We begin in section 2.1 by introducing a semi-discrete analogue of the continuum

inverse problem, where the differential operator in x in equation (1.3) is replaced by a matrix.

This is done in any numerical inversion, and we use it from the start to adhere to the

conventional setting of model order reduction, which is rooted in linear algebra. The pro-

jection-based reduced order models are described in section 2.2. They can be parametrized in

terms of the coefficients of a certain reduced order finite difference scheme, used in

section 2.3 to define a pair of nonlinear mappings. They define the objective function for the

nonlinearly preconditioned optimization problem, as explained in section 2.4. To give some

intuition to the preconditioning effect, we relate the mappings to so-called optimal grids in

section 2.5. The stability of the inversion is addressed in section 2.6, and our regularization

scheme is given in section 2.7. The detailed description of the 1D inversion algorithm is in

section 2.8.

2.1. Semi-discrete inverse problem

In one dimension the domain is an interval, which we scale to Ω = (0, 1), with accessible and

inaccessible boundaries = {0}A and = {1}I respectively. To adhere to the conventional

setting of model order reduction, we consider the semi-discretized equation (1.3)

∂
∂

=
t

t
A t

u
r u

( )
( ) ( ), (2.1)

where

= −A D Dr r( ) diag( ) , (2.2)T

is a symmetric and negative definite matrix, the discretization of ∂ ∂r x[ ( ) ]x x . The vector

∈
+

r N contains the discrete values of r(x) and the matrix ∈ ×D N N arises in the finite

difference discretization of the derivative in x, for boundary conditions (1.6)–(1.5). The

discretization is on a very fine uniform grid with N points in the interval [0, 1], and spacing

= +h N1 ( 1). Note that our results do not depend on the dimension N, and all the

derivations can be carried out for a continuum differential operator. We let A be a matrix to

avoid unnecessary technicalities. The vector ∈tu( ) N is the discretization of u t x( , ), and the
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initial condition is

=

h
u e(0)

1
, (2.3)1

the approximation of a point source excitation at A. The time-domain response of the semi-

discrete dynamical system (2.1) is given by

=y t tr e u( ; ) ( ), (2.4)T
1

where = …e (1, 0, 0, , 0)T1 . This is a direct analogue of (1.8), i.e. it corresponds to

measuring the solution of (2.1) at the left end point = {0}A of the interval Ω. We

emphasize in the notation that the response depends on the vector r of discrete resistivities.

We use (2.4) to define the forward map

→ + ∞
+

 C: (0, ) (2.5)N

that takes the vector ∈
+

r N to the time domain response

= yr r( ) (· ; ). (2.6)

The measured time domain data is denoted by

= + >( )d t y t t tr( ) ; ( ), 0, (2.7)true

where rtrue is the true (unknown) resistivity vector and  t( ) is the contribution of the

measurements noise and the discretization errors. The inverse problem is: given data d(t) for

∈ ∞t [0, ), recover the resistivity vector.

2.2. Projection-based model order reduction

In order to apply the theory of model order reduction we treat (2.1)–(2.4) as a dynamical

system with the time domain response

= =y t
h

r e
e

b b( ; ) e e (2.8)T A t T A r tr
1

( ) 1 ( )

written in a symmetrized form using the source/measurement vector

= hb e . (2.9)1

The transfer function of the dynamical system is the Laplace transform of (2.8)

∫= = − >

+∞
− −Y s y t t sI A sr r b r b( ; ) ( ; )e d ( ( )) , 0. (2.10)st T

0

1

Since A r( ) is negative definite, all the poles of the transfer function are negative and the

dynamical system is stable.

In model order reduction we obtain a reduced model A b( , )m m so that its transfer function

= − −( )Y s sI Ab b( ) (2.11)m m
T

m m m
1

is a good approximation of Y s r( ; ) as a function of s in some norm. Here Im is the ×m m

identity matrix, ∈ ×Am
m m, ∈bm

m and ≪m N . Note that while the matrix A r( ) given by

(2.2) is sparse, the reduced order matrix Am is typically dense. Thus, it has no straightforward

interpretation as a discretization of the differential operator ∂ ∂r x[ ( ) ]x x on some coarse grid

with m points.
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Projection-based methods search for reduced models of the form

= = =A V AV V V V Ib b, , , (2.12)m
T

m
T T

m

where the columns of ∈ ×V N m form an orthonormal basis of an m-dimensional subspace of
N on which the system is projected. The choice of V depends on the matching conditions for

Ym and Y. They prescribe the sense in which Ym approximates Y. Here we consider moment

matching at interpolation nodes ∈ + ∞s [0, )j that may be distinct or coinciding,

∂

∂
=

∂

∂
= … − = …

= =

Y

s

Y

s
k M j l, 0, , 2 1, 1, , . (2.13)

k
m

k
s s

k

k
s s

j

j j

The multiplicity of a node sj is denoted byMj, so at non-coinciding nodesMj = 1. The reduced

order transfer function Ym matches Y and its derivatives up to the order 2Mj−1, and the size m

of the reduced model is given by = ∑
=

m M
j

l
j1 .

Note from (2.11) that Ym(s) is a rational function of s, with partial fraction representation

∑
θ

θ=

+

> >

=

Y s
c

s
c( ) , 0, 0. (2.14)m

j

m
j

j
j j

1

Its poles θ− j are the eigenvalues of Am and the residues cj are defined in terms of the

normalized eigenvectors z j,

θ= + = ∥ ∥ = = …( )c A j mb z z z z, 0, 1, 1, , . (2.15)j m
T

j m j j j j

2

Thus, (2.13) is a rational interpolation problem. It is known [16] to be equivalent to the

projection (2.12) when the columns of V form an orthogonal basis of the rational Krylov

subspace

= − = … = …
−

 { }( )s I A j l k Ms b( ) span 1, , ; 1, , . (2.16)m j

k

j

The interpolation nodes, obviously, should be chosen in the resolvent set of A r( ). Moreover,

since in reality we need to solve a limiting continuum problem, the nodes should be in the

closure of the intersection of the resolvent sets of any sequence of finite-difference operators

that converge to the continuum problem. This set includes ⧹ −∞( , 0) for problems on

bounded domains. In our computations the interpolation nodes lie on the positive real axis,

since they correspond to working with the Laplace transform of the time domain response.

Ideally, in the solution of the inverse problem we would like to minimize the time (or

frequency) domain data misfit in a quadratic norm weighted in accordance with the statistical

distribution of the measurement error. When considering the reduced order model, it is natural

to choose the interpolation nodes that give the most accurate approximation in that norm.

Such interpolation is known in control theory as 2 (Hardy space) optimal, and in many cases

the optimal interpolation nodes can be found numerically [17]. Moreover, it was shown in

[11], that the solution of the inverse problem using reduced order models with such inter-

polation nodes also minimizes the misfit functional (in the absence of measurement errors).

When such nodes are not available, we can select some reasonable interpolation nodes chosen

based on a priori error estimates, for example, the so-called Zolotarev points or their

approximations obtained with the help of potential theory [10, 24]. In most cases such choices

lead to interpolation nodes that are distributed geometrically.
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2.3. Finite difference parametrization of reduced order models

As we mentioned above, even though the reduced order model A b( , )m m comes from a finite

difference operator A, it does not retain its structure. In particular, Am is a dense matrix. The

model can be uniquely parametrized by m2 numbers, for example the poles θ− j and residues

cj in the representation (2.14). Here we show how to reparametrize it so that the resulting m2

parameters have a meaning of finite difference coefficients.

A classical result of Stieltjes says that any rational function of the form (2.14) with

negative poles and positive residues admits a representation as a Stieltjes continued fraction

with positive coefficients

κ

κ

κ

κ
κ

=

+

+

+

⋱
+

Y s

s

s

s

( )
1

1

1

1

1

1

. (2.17)m

m
m

1

1

1

Obviously, this is true in our case, since θ− j are the Ritz values of a negative definite operator

A and the residues are given as squares in (2.15).

Furthermore, it is known from [8] that (2.17) is a boundary response w s( )1 (Neumann-to-

Dirichlet map) of a second order finite difference scheme with three point stencil

κ κ κ

−
−

−
− = = …

+ −

−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

w w w w
sw j m

1
0, 2, , , (2.18)

j

j j

j

j j

j
j

1 1

1

and boundary conditions

κ κ κ

−
− + = =+

⎛

⎝
⎜

⎞

⎠
⎟

w w
sw w

1 1
0, 0. (2.19)m

1

2 1

1
1

1
1

These equations closely resemble the Laplace transform of (2.1), except that the discretization

is at m nodes, which is much smaller than the dimension N of the fine grid.

It is convenient to work henceforth with the logarithms κlog j and κlog j of the finite

difference coefficients. We now introduce the two mappings  and  that play the crucial

role in our inversion method. We refer to the first mapping + ∞ → C: (0, ) m2 as data

fitting. It takes the time-dependent data d(t) to the m2 logarithms of reduced order model

parameters

κ κ=
=

 { }( )d( ( · )) log , log (2.20)j j
j

m

1

via the following chain of mappings

θ

κ κ κ κ

→ → →

→ →

=

= =

 { }

{ } { }

( )

( ) ( )

d t Y s Y s c: ( ) ( ) ( ) ,

, log , log . (2.21)

m j j
j

m

j j
j

m

j j
j

m

(a) (b) (c)

1

(d)

1

(e)

1

Here step (a) is a Laplace transform of the measured data d(t), step (b) requires solving the

rational interpolation problem (2.13), which is converted to a partial fraction form in step (c),

which in turn is transformed to a Stieltjes continued fraction form in step (d) with a variant of

Lanczos iteration, as explained in the appendix.
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Note step (b) is the only ill-conditioned computation in the chain. The ill-posedness is

inherited from the instability of the parabolic inverse problem and we mitigate it by limiting

m. The instability may be understood intuitively by noting that step (b) is related to analytic

continuation. We give more details in section (2.6). In practice we choose m so that the

resulting κj and κ j are positive. This determines the maximum number of degrees of freedom

that we can extract from the data at the present noise level.

The mapping →
+

: N m2 is the nonlinear preconditioner. It takes the vector of

discrete resistivities ∈
+

r N to the same output as . In simplest terms, it is a composition of

 and the forward map (2.6) = ◦   given by

=  yr r( ) ( (· ; )). (2.22)

Unlike the data fitting, the computation of  can be done in a stable manner using a chain of

mappings

θ

κ κ κ κ

→ → → →

→ →

=

= =

 { }

{ } { }

( )

( ) ( )

A V A cr r: ( ) ,

, log , log . (2.23)

m j j
j

m

j j
j

m

j j
j

m

(a) (b) (c) (d)

1

(e)

1

(f)

1

Here step (a) is just the definition of A, in (b) we compute the orthonormal basis V for the

rational Krylov subspace (2.16) on which A is projected in step (c) to obtain Am and bm. Then,

the poles and residues (2.15) are computed. The last two steps are the same as in the

computation of .

2.4. Nonlinearly preconditioned optimization

Now that we defined the data fitting  and the nonlinear preconditioner  mappings, we can

formulate our method for solving the semi-discrete inverse problem as an optimization. Given

the data d(t) for ∈ + ∞t [0, ) (recall (2.7)), we estimate the true resistivity rtrue by ⋆r , the

solution of the nonlinear optimization problem

= ∥ − ∥⋆

∈
+

 dr rarg min
1

2
( ( · )) ( )) . (2.24)

r
2
2

N

This is different than the typical optimization-based inversion, which minimizes the L2
norm of the (possibly weighted) misfit between the measured data d ( · ) and the model  r( ).

Such an approach is known to have many issues. In particular, the functional is often non-

convex with many local minima, which presents a challenge for derivative-based methods

(steepest descent, nonlinear conjugate gradients, Gauss–Newton). The convergence is often

slow and some form of regularization is required. In our approach we aim to convexify the

objective functional by constructing the nonlinear preconditioner .

To explain the map , let us give a physical interpretation of the reduced model para-

meters κ κ
=

{( , )}j j j
m

1 by introducing the change of coordinates ξ⇝x , so that ∂ = ∂ξr x
1 2 .

The equation for ξU s( , ), the Laplace transform of ξu t x( , ( )), is

∂ ∂ − =ξ ξ
− ( )r r U sU 0 (2.25)1 2 1 2

and (2.18) is its discretization on a staggered grid. The coefficients κ j and κj are the

increments in the discretization of the differential operators ∂ξ
−r 1 2 and ∂ξr1 2 , so they are

proportional to the local values of r1 2 and −r 1 2, respectively. Since = ◦   , an ideal

choice of  would be an approximate inverse of  for resistivity functions that can be

approximated well on the discretization grid. It would interpolate in some manner the grid
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values of r(x), which are defined by κ κ −
=

{ , }j j j
m2 2

1, up to some scaling factors that define the

grid spacing.

Not all grids give good results, as explained in more detail in the next section. We can

factor out the unknown grid spacings by working with the logarithm of the coefficients

κ κ −
=

{ , }j j j
m2 2

1 instead of the resistivity r. Although it is possible to calculate a good grid, we

do not require it in our inversion method. However, the grids can be useful for judging the

quality of different matching conditions and for visualizing the behavior of  as shown in

section 2.5.

The ill-posedness of the inverse problem is localized in the computation of the data fitting

term  d( ( · )) that is computed once. The instability of this computation can be controlled by

reducing the size m of the reduced order model projection subspace. A good strategy to follow

in practice is to choose the largest m such that all the coefficients κj, κ j, j = 1,…, m computed

by  are positive.

Conventional optimization-based methods regularize the inversion by adding a penalty

term to the objective function. Our approach is different. We acknowledge that there is a

resolution versus stability trade-off by reducing the size of the reduced model, and view

regularization only as a means of adding prior information about the unknown resistivity. If

such information is available, we can incorporate it at each iteration of the Gauss–Newton

method via a correction in the null space of the Jacobian . The regularization scheme is

discussed in detail in section 2.7.

Inversion via model order reduction is a recent idea that was introduced in [11, 12, 20]. In

particular, the approach in [11] uses maps
θ


c
and

θ


c
to the spectral parameters of the

reduced order model θj and cj, j = 1,…, m. Unlike the continued fraction coefficients κj and κ j,

the poles θ− j and residues cj do not have a physical meaning of resistivity and the mapping

θ


c
does not behave like an approximate identity, as  does. Our definition of the mapping 

is based on the ideas from [5]. It allows us to improve the results of [11]. The improvement

becomes especially pronounced in cases of high resistivity contrast, as shown in the

numerical comparison in section 4.

The idea of convexification of the nonlinear inverse problem has been pursued before for

hyperbolic equations in [3, 21] and global convergence results were obtained in [2]. However,

it is not clear if these approaches apply to parabolic equations. Although both hyperbolic and

parabolic equations can be transformed to the frequency domain via Fourier and Laplace

transforms, their data is mapped to different parts of the complex plane where the spectral

parameter lies. It is known that the transformations from the hyperbolic to the parabolic data

are unstable [19], so one cannot directly apply the methods from [2, 3, 21] to the parabolic

problem. The model reduction approach in this paper gives a specially designed discrete

problem of small size which can be inverted stably.

2.5. Connection to optimal grids

We explain here that the map  relates to an interpolant of the resistivity r on a special, so-

called optimal grid. Although our inversion method does not involve directly such grids, it is

beneficial to study them because they provide insight into the behavior of the nonlinear

preconditioner . We give a brief description of the grids, and show that they depend

strongly on the interpolation nodes sj in the matching conditions (2.13). We use this

dependence to conclude that not all rational approximants of the transfer function Y s r( ; ) are

useful in inversion, as shown in section 2.5.2. Then, we use in section 2.5.3 the optimal grids

and the continued fraction coefficients κj and κ j to visualize the action of  on r. This allows

us to display how the nonlinear preconditioner approximates the identity.
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2.5.1. Optimal grids. The optimal grids have been introduced in [8, 9, 18] to obtain

exponential convergence of approximations of the Dirichlet-to-Neumann map. They were

used and analyzed in the context of inverse spectral problems in [5] and in the inverse

problem of electrical impedance tomography in [4, 6]. The grids are defined by the

coefficients of the continued fraction representation of the rational response function

corresponding to a reduced model of a medium with constant resistivity r(0). In principle we

can define grids for other reference resistivities, not necessarily constant, but the results in [4–

6] show that the grids change very little with respect to r(x). This is why they are very useful

in inversion.

Let then ≡r x( ) 1(0) so that the change of coordinates in (2.25) is trivial (ξ = x) and

obtain from (2.18)–(2.19) that κ κ
=

{( , )}j j j
m(0) (0)

1 are the optimal grid steps in a finite

difference scheme for the equation

∂

∂
− =

w

x
sw 0.

2

2

The primary and dual grid points are

∑ ∑κ κ= = = …

= =

x x j m, , 1, , , (2.26)j

k

j

k j

k

j

k
(0)

1

(0) (0)

1

(0)

with boundary nodes = =x x 00
(0)

0
(0) . In the numerical experiments we observe that the grid

is staggered, i.e. the primary nodes x j
(0) and the dual nodes x j

(0) obey the interlacing

conditions

= = < < < < < … < < < ⩽−x x x x x x x x x0 1. (2.27)m m m0
(0)

0
(0)

1
(0)

1
(0)

2
(0)

2
(0)

1
(0) (0) (0)

We do not prove (2.27) here, although it is possible to do so at least in some settings.

The optimal grids are closely connected with the sensitivity functions, which for the semi-

discrete problem are given by the rows of the Jacobian ∈ × m N2 defined as

κ

κ
=

∂

∂
⩽ ⩽

∂

∂
+ ⩽ ⩽

= …

⎧

⎨

⎪
⎪

⎩

⎪
⎪

r
j m

r
m j m

k N( )

log
, if 1 ,

log
, if 1 2 ,

1, , .j k

j

k

j

k

,

The studies in [4, 6] show that the sensitivity function corresponding to κj is localized around

the corresponding grid cell
+

x x( , )j j
(0)

1
(0) , and its maximum is near x j

(0) . The same holds for κ j,

after interchanging the primary and dual grid nodes. Moreover, the columns of the

pseudoinverse ( )† have similar localization behavior. The Gauss–Newton update is the

linear combination of the columns of ( )†, and therefore optimal grids are useful for

inversion. They localize well features of the resistivity that are recoverable from the

measurements.

A good grid should have two properties. First, it should be refined near the point of

measurement to capture correctly the loss of resolution away from A. Second, the nodes

should not all be clustered near A because when the nodes get too close, the corresponding

rows of  become almost linearly dependent, and the Jacobian is ill-conditioned.

2.5.2. Matching conditions. We study here the grids for three choices of matching conditions

(2.13). The first corresponds to l = 1, =s 01 and =M m1 (simple Padé) and yields the rational

Krylov subspace
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= …
− − − { }A A Ab b b(0) span , , , .m

m1 2

This approximant has the best accuracy near the interpolation point (s = 0), and is obviously

inferior for global approximation in s when compared to multipoint Padé aproximants. The

other two choices match Y s r( ; ) and its first derivative at nodes =
∼ ∼

=
ss ( )j j

m
1 that are

distributed geometrically

= = …
∼ ∼

∼

∼

−⎛

⎝
⎜

⎞

⎠
⎟s s

s

s
j m, 1, , . (2.28)j

j

1
2

1

1

We use henceforth the tilde to distinguish these nodes from those obtained with the change of

variables

= ∈
∼

∼s
s

s
(0, 1], (2.29)j

j

m

intended to improve the conditioning of the interpolation. The mathching conditions at ∼s yield
the rational Krylov projection subspace

= − … −∼ ∼− −
 { }( ) ( ) ( )s I A s I As b b˜ span , , ,m m1

1 1

and the two choices of interpolants differ in the rate of growth of ∼s. The second interpolant

uses the rate of growth = +
∼ ∼s s m1 122 1 in (2.28) and =

∼s 21 , so that

= + = …
∼

−
⎜ ⎟
⎛

⎝

⎞

⎠
s

m
j m2 1

12
, 1, , . (2.30)j

j 1

This choice approximates the Zolotarev nodes [18] which arise in the optimal rational

approximation of the transfer function Y s r( ; ) over a real positive and bounded interval of s.

The third interpolant uses a faster rate of growth of ∼s and gives worse results, as illustrated in

the numerical experiment below.

We show the optimal grids for all three choices of matching conditions in figure 2 for

reduced models of sizes m = 5, 10. We observe that the nodes of the grids corresponding to

fast growing ∼s are clustered too close to the measurement point x = 0. Thus, inversion results

are expected to have poor resolution throughout the rest of the domain away from the origin.

In addition, the clustering of the grid nodes leads to poor conditioning of the Jacobian .

This is illustrated in figure 3, where the condition numbers are plotted against the size m of the

reduced model. We observe that the condition number of the Jacobian for the reduced model

with fast growing ∼s increases exponentially. The condition numbers of the Jacobians for the

other two choices of matching conditions grow very slowly.

We can explain why the case of fast growing ∼s is undesirable in inversion by looking at

the limiting case of approximation at infinity. The simple Padé approximant at infinity

corresponds to the Krylov subspace

+ ∞ = …
− { }A Ab b b( ) span , , , ,m

m 1

which is unsuitable for inversion in our setting. To see this, recall from (2.2) that A r( ) is

tridiagonal and b is a scalar multiple e1. Thus, for any ∈ +j only the first +j 1 components

of the vector A bj are non-zero. When A r( ) is projected on + ∞K ( )m in (2.12), the reduced

model matrix Am is aware only of the upper left + × +m m( 1) ( 1) block of A r( ), which

depends only on the first +m 1 entries of r. This is unsuitable for inversion where we want

Am to capture the behavior of the resistivity in the whole interval, even for small m. The
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corresponding optimal grid steps will simply coincide with the first m grid steps h of the fine

grid discretization in (2.2).

When the interpolation nodes grow too quickly, we are near the limiting case of simple

Padé approximant at infinity, and the first optimal grid steps are ≈ ≈x x h.1
(0)

1
(0)

Consequently, the rows
κ∂

∂
=

⎛

⎝
⎜

⎞

⎠
⎟

rk
k

N

1

1

and
κ∂

∂
=

⎛

⎝
⎜

⎞

⎠
⎟

rk
k

N

1

1

of  are almost collinear and the

Jacobian is poorly conditioned, as shown in figure 3.

Figure 2. Primary x j
(0) and dual x j

(0) optimal grid nodes for j = 1,…, m (m = 5,10) and

different choices of matching conditions. Moment matching at s = 0: primary ×, dual ◦.
Interpolation at geometrically distributed interpolation nodes: primary ⋆ and dual □
for slowly growing ∼s; primary ⋆ and dual ▽ for fast growing ∼s. The number of fine

grid steps in the semi-discretized model is N = 1999.

Figure 3. Dependence of the condition number of  on the size m of the reduced
model for different matching conditions. Moment matching at s = 0 is ◦, interpolation
at geometrically distributed nodes: slowly growing ∼s is □, fast growing ∼s is ▽. The

number of fine grid steps in the semi-discretized model is N = 1999.
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2.5.3. Action of the nonlinear preconditioner on the resistivity. The optimal grids can be used

to obtain resistivity reconstructions directly, without optimization, as was done in [5] for the

inverse spectral problem and in [4, 6] for electrical impedance tomography. We do not use

this approach, but we show here such reconstructions to display the behavior of the nonlinear

preconditioner  when acting on r.

Recall from equation (2.25) and the explanation in section 2.4 that κ j and κj are

proportional to the values of r x( )1 2 and −r x( )1 2 around the corresponding optimal grid

points. If we take as the proportionality coefficients the values κ j
(0) and κ j

(0) then we expect

the ratios

ζ
κ

κ
ζ

κ

κ
= = = …

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ j m, , 1, , , (2.31)j

j

j
j

j

j

(0) 2

(0)

2

to behave roughly as r x( )j
(0) and r x( )j

(0) . In practice, a more accurate estimate of the

resistivity can be obtained by taking the geometric average of ζj and ζ j

ζ ζ ζ
κ κ

κ κ
= = = …

∼
j m, 1, , . (2.32)j j j

j j

j j

(0)

(0)

Since building a direct inversion algorithm is not our focus, we only show (2.32) for

comparison purposes.

In figure 4 we display the ratios (2.31) plotted at the nodes of the optimal grid ζx( , )j j
(0) ,

ζx( , )j j
(0) , j = 1,…, m. We take the same resistivities rQ, rL and rJ that are used in the

numerical experiments in section 4. They are defined in (4.8) and (4.9). We observe that the

curve defined by the linear interpolation of the ‘primary’ points ζx( , )j j
(0) overestimates the

true resistivity, while the ‘dual’ curve passing through ζx( , )j j
(0) underestimates it. Both

curves capture the shape of the resistivity quite well, so when taking the geometric average

(2.32) the reconstruction falls right on top of the true resistivity. This confirms that  resolves

most of the nonlinearity of the problem and thus acts on the resistivity as an approximate

identity.

We can also illustrate how well  resolves the nonlinearity of the problem by

considering an example of high contrast resistivity. In figure 5 we plot the same quantities as

Figure 4. Action of the nonlinear preconditioner  on the resistivities rQ, rL and rJ
(solid black line) defined in (4.7) and (4.9). The ‘primary’ ratios ζx( , )j j

(0) are blue ×,

the ‘dual’ ratios ζx( , )j j
(0) are red ◦ for j = 1,…, m with m = 10. The geometric averages

ζ
∼

x( , )j j
(0) are green ▽.
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in figure 4 in the case of piecewise constant resistivity of contrast 20. The contrast is captured

quite well by ζ
∼
j, while the shape of the inclusion is shrunk. This is one of the reasons why we

use  as a preconditioner for optimization and not a reconstruction mapping. Optimization

allows us to recover resistivity features on scales that are smaller than those captured in ζj and

ζ j. Moreover, since  resolves most of the nonlinearity of the inverse problem, the

optimization avoids the pitfalls of traditional data misfit minimization approaches, such as

sensitivity to the initial guess, numerous local minima and slow convergence.

2.6. Data fitting via the rational interpolation

Unlike =  yr r( ) ( (· ; )) computed using the chain of mappings (2.23) with all stable steps,

the computation of the data fitting term  d( ( · )) requires solving an osculatory rational

interpolation problem (2.13) in step (b) of (2.21) to obtain the rational interpolant Ym(s) of the

transfer function Y(s). This involves the solution of a linear system of equations with an ill-

conditioned matrix, or computing the singular value decomposition of such matrix. We use

the condition number of the matrix to assess the instability of the problem. The condition

number grows exponentially with m, but the rate of growth depends on the matching con-

ditions used in the rational interpolation. We show this for the two choices of matching

conditions: interpolation of Y(s) and its first derivatives at distinct nodes ∼s distributed as in

(2.30) (multipoint Padé), and matching of moments of Y(s) at s = 0 (simple Padé). We

describe first both Padé interpolation schemes and then compare their stability numerically.

Figure 5. Action of the nonlinear preconditioner  on a piecewise constant resistivity
of contrast 20. Same setting as in figure 4.
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Multipoint Padé: Let us rewrite the reduced order transfer function (2.11) in the form

= =

+ + ⋯ +

+ + ⋯ +

−
−

Y s
f s

g s

f f s f s

g g s g s
( )

( )

( )
, (2.33)m

m
m

m
m

0 1 1
1

0 1

where f(s) and g(s) are polynomials defined up to a common factor. We use this redundancy

later to choose a unique solution of an underdetermined problem. The matching conditions

(2.13) of Y(s) and ′Y s( ) at the distinct interpolation nodes < < < … <
∼ ∼ ∼s s s0 m1 2 are

− =

′ − ′ − ′ =

= …

∼ ∼ ∼

∼ ∼ ∼ ∼ ∼

⎧

⎨
⎪

⎩⎪

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

f s Y s g s

f s Y s g s Y s g s
j m

0,

0,
1, , . (2.34)

j m j j

j m j j m j j

Next, we recall the change of variables (2.29) and define the Vandermonde-like × +m m( 1)

matrices

=

…

…

⋮ ⋮ ⋮ ⋮ ⋮

…

′ =

…

…

⋮ ⋮ ⋮ ⋮ ⋮

…

∼

−

−

−

 

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

s s s

s s s

s s s

s

s ms

s ms

s ms

1

1

1

,
1

0 1 2

0 1 2

0 1 2

, (2.35)

m

m

m m m
m

m

m

m

m m
m

1 1
2

1

2 2
2

2

2

1 1
1

2 2
1

1

and the diagonal matrices

= … ′ = ′ … ′∼ ∼ ∼ ∼ ( ) ( )( ) ( ) ( ) ( )Y s Y s Y s Y sdiag , , , diag , , . (2.36)m m1 1

This allows us to write equations (2.34) in matrix-vector form as an underdetermined problem

= ∈ +u u0, , (2.37)m2 1

with

=

−

′ − ′ − ′
∈ × +

 

   

⎡

⎣
⎢

⎤

⎦
⎥ , (2.38)

m m

m m

m m1: , 1:

1: , 1:

2 (2 1)

and

= = … −

= = …

∼

∼

−
+

−
+ +

f s u j m

g s u j m

, 0, , 1,

, 0, , . (2.39)

j m
j

j

j m
j

j m

1

1

The problem is underdetermined because of the redundancy in (2.33). We eliminate it by the

additional condition∥ ∥ =u 12 , which makes it possible to solve (2.37) via the singular value

decomposition. If we let U be the matrix of right singular vectors of  , then

= + +Uu . (2.40)m m1:(2 1), 2 1

Once the polynomials f and g are determined from (2.39), we can compute the partial

fraction expansion (2.14). The poles θ− j are the roots of g(s), and the residues cj are given by

∏

θ

θ θ

=

−

−

= …

=

≠

( )

( )
c

f

g

j m, 1, , ,j

j

m

k

m

k j

k j

1

assuming that θj are distinct. Finally, κj and κ j are obtained from θj and cj via a Lanczos

iteration, as explained in the appendix.
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Simple Padé: When l = 1, =s 01 and =M m1 , we have a simple Padé approximant which

matches the first m2 moments of y t r( ; ) in the time domain, because

∫∂

∂
=

∂

∂
= − = … −

= =

+∞Y

s

Y

s
y t t t j mr( 1) ( ; ) d , 0, 1, , 2 1.

j
m

j
s

j

j
s

j j

0 0
0

A robust algorithm for simple Padé approximation is proposed in [15]. It is also based on the

singular value decomposition. If Y(s) has the Taylor expansion at s = 0

τ τ τ τ= + + + ⋯ + + ⋯−
−Y s s s s( ) , (2.41)m

m
0 1 2

2
2 1

2 1

then the algorithm in [15] performs a singular value decomposition of the Toeplitz matrix

τ τ τ τ

τ τ τ τ

τ τ τ τ

=

⋯
⋯

⋮ ⋮ ⋱ ⋮ ⋮
⋯

∈

−

+

− − −

× +

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

. (2.42)

m m

m m

m m m m

m m

1 1 0

1 2 1

2 1 2 2 1

( 1)

If ∈ + × +U m m( 1) ( 1) is the matrix of right singular vectors of  , then the coefficients in (2.33)

satisfy

⋮
= + +

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

g

g

g

U , (2.43)

m

m m

0

1
1:( 1), 1

and

τ

τ τ

τ τ τ

⋮
=

⋯
⋯

⋮ ⋮ ⋱ ⋮ ⋮
⋯

⋮

− − −

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

f

f

f

g

g

g

0 0 0

0 0

0

. (2.44)

m m m m

0

1

1

0

1 0

1 2 0

0

1

We refer the reader to [15] for detailed explanations.

Comparison: To compare the performance of the two interpolation procedures, we give

in table 1 the condition numbers of matrices  and  . They are computed for the reference

resistivity r(0), for several values of the size m of the reduced model. We observe that while

both condition numbers grow exponentially, the growth rate is slower for the multipoint Padé

approximant. Thus, we conclude that it is the best of the choices of matching conditions

considered in this section. It allows a more stable computation of  d( ( · )), it gives a good

distribution of the optimal grid points and a well-conditioned Jacobian .

Table 1. Condition numbers of  (multipoint Padé approximant) and  (simple Padé
approximant). The number of fine grid steps in the semi-discretized model is N = 299.

m 2 3 4 5 6

cond( ) 4.43 · 102 6.73 · 104 1.85 · 107 6.95 · 109 3.83 · 1012

cond( ) 5.28 · 101 1.26 · 105 1.84 · 109 9.14 · 1013 2.86 · 1016
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2.7. Regularization of Gauss–Newton iteration

Our method of solving the optimization problem (2.24) uses a Gauss–Newton iteration with

regularization similar to that in [4]. We outline it below, and refer to the next section for the

precise formulation of the inversion algorithm.

Recall that  maps the vectors ∈
+

r N of resistivity values on the fine grid to m2

reduced order model parameters κ κ
=

{(log , log )}j j j
m

1. Thus, the Jacobian  has dimen-

sions ×m N2 . Since the reduced order model is much coarser than the fine grid discretization

≪m N2 , the Jacobian  r( ) has a large null space. At each iteration the Gauss–Newton

update to r is in the m2 dimensional range of the pseudoinverse  r( )† of the Jacobian. This

leads to low resolution in practice, because m is kept small to mitigate the sensitivity of the

inverse problem to noise. If we have prior information about the unknown rtrue, we can use it

to improve its estimate ⋆r .

We incorporate the prior information about the true resistivity into a penalty functional

 r( ). For example,  r( ) may be the total variation norm of r if rtrue is known to be piecewise

constant, or the square of the ℓ2 norm of r or of its derivative if rtrue is expected to be smooth.

In our inversion method we separate the minimization of the norm of the residual

− d r( ( · )) ( ) and the penalty functional  r( ). At each iteration we compute the standard

Gauss–Newton solution r and then we add a correction to obtain a regularized iterate ρ. The

correction ρ − r is in the null space of , so that the residual remains unchanged. We

define it as the minimizer of the constrained optimization problem

ρ
ρ− =



minimize ( ), (2.45)

rs.t.[ ]( ) 0

which we can compute explicitly in the case of a weighted discrete H1 seminorm

regularization, assumed henceforth,

= ∥ ∥͠ W Dr r( )
1

2
. (2.46)1 2

2
2

Here the matrix D͠ is a truncation of D defined as

= ∈͠ −
− ×D D ,N N

N N
1:( 1), 1:

( 1)

and ∈ − × −W N N( 1) ( 1) is a diagonal matrix of weights. We specify it below depending on the

prior information on the true resistivity.

With the choice of penalty in the form (2.46) the optimization problem (2.45) is quadratic

with linear constraints, and thus ρ can be calculated from the first order optimality conditions

given by the linear system

ρ λ+ =͠ ͠ D WD [ ] 0, (2.47)
T T

ρ =  r[ ] [ ] , (2.48)

where λ ∈ m2 is a vector of Lagrange multipliers.

In the numerical results presented in section 4 we consider smooth and piecewise con-

stant resistivities, and chooseW in (2.46) as follows. For smooth resistivities we simply take

=W I , so that (2.46) is a regular discrete H1 seminorm. For discontinuous resistivities we

would like to minimize the total variation of the resistivity. This does not allow an explicit

computation of ρ, so we make a compromise and use the weights introduced in [1]. The

matrix W is diagonal with entries
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ϕ= + = … −͠
−

⎜ ⎟

⎛

⎝
⎜

⎛
⎝

⎡⎣ ⎤⎦
⎞
⎠

⎞

⎠
⎟w D j Nr r( ) , 1, , 1, (2.49)j

j

2
2

1

where ϕ r( ) is proportional to the misfit for the current iterate

ϕ = ∥ − ∥ϕ  C dr r( ) ( ( · )) ( ) , (2.50)2

and ϕC is some constant, set to m1 (2 )2 in the numerical examples in section 4.

To ensure that A r( ) corresponds to a discretization of an elliptic operator, we need

positive entries in r. This can be done with a logarithmic change of coordinates, which

transforms the optimization problem to an unconstrained one. However, in our numerical

experiments we observed that if m is sufficiently small so that for the given data d(t) all the

entries of ∈ d( ( · )) m2 are positive, then the Gauss–Newton updates of r remain positive

as well. Thus, the logarithmic change of coordinates for r in not needed in our computations.

2.8. The inversion algorithm for 1D media

Here we present the summary of the inversion algorithm. The details of the computation of

 r( ) and its Jacobian  can be found in the appendix.

The inputs of the inversion algorithm are the measured data d(t) and a guess value of m.

This m reflects the expected resolution of the reconstruction, and may need to be decreased

depending on the noise level. To compute the estimate ⋆r of rtrue, perform the following

steps:

(1) Define the interpolation nodes ∼s via (2.30). Using the multipoint Padé scheme from

section 2.6 compute κ κ⋆ ⋆
=

( , )j j j
m

1 using the data d(t).

(2) If for some j either κ ⩽⋆ 0j or κ ⩽⋆ 0j , decrease m to −m 1 and return to step 1. If all

κ κ⋆ ⋆
=

( , )j j j
m

1 are positive, fix m and continue to step 3.

(3) Define the vector of logarithms κ κ κ κ= … …
⋆ ⋆ ⋆ ⋆ ⋆l (log , , log , log , , log )m m

T
1 1 .

(4) Choose an initial guess ∈
+

r N(1) and the maximum number n
GN

of Gauss–Newton

iterations.

(5) For = …p n1, ,
GN

perform:

(5.1) For the current iterate r p( ) compute the mapping

κ κ=

=

 { }( ) ( )r log , logp
j
p

j
p

j

m
( ) ( ) ( )

1

and its Jacobian

= ( )rp p( ) ( )

as explained in the appendix.

(5.2) Define the vector of logarithms

κ κ κ κ= … …( )l log , , log , log , , log .p p
m
p p

m
p T

( )
1
( ) ( )

1
( ) ( )

(5.3) Compute the step

ρ = − − ⋆( ) ( )l l .p p p( ) ( )
†

( )
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(5.4) Choose the step length α p( ) and compute the Gauss–Newton update

ρζ= +r r .p p pGN ( ) ( ) ( )

(5.5) Compute the weight W using (2.49) with rGN or W = I.

(5.6) Solve for the next iterate +r p( 1) from the linear system

λ
=

͠ ͠ +




⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

( )
( )

D WD r
r

0

0
. (2.51)

T p
T

p

p

p
p

( )

( )

( 1)

( )
( ) GN

(6) The estimate is

=
⋆ +( )r r .n 1GN

Let us remark that since the nonlinear preconditioner is an approximation of the identity

in the sense explained in section 2.4, most of the nonlinearity of the problem is resolved by

the rational interpolation in step 1. Thus, we may start with a poor initial guess in step 4 and

still obtain good reconstructions. Moreover, the number n
GN

of Gauss–Newton iterations may

be kept small. In the numerical results presented in section 4 we take the number of iterations

=n 5
GN

for medium contrast resistivities and =n 10
GN

for the high contrast case. In general,

any of the standard stopping criteria could be used, such as the stagnation of the residual.

In order to simplify our implementation we set the step length α = 1p( ) in step 5.4.

However, choosing α p( ) adaptively with a line search procedure may be beneficial, especially

for high contrast resistivities.

While the Jacobian  p( ) is well-conditioned, the system (2.51) may not be. To alleviate

this problem, instead of solving (2.51) directly, we may use a truncated singular value

decomposition to obtain a regularized solution. Typically it is enough to discard just one

component corresponding to the smallest singular value as we do in the numerical

experiments.

3. Two dimensional inversion

Unlike the 1D case, the inverse problem in two dimensions is formally overdetermined. The

unknown is the resistivity r(x) defined on Ω ⊂ 2, and the data are three dimensional. One

dimension corresponds to time and the other two come from the source (initial condition) and

receiver locations on A. The model reduction inversion framework described in section 2.8

applies to a formally determined problem. We extend it to two dimensions by constructing

separately reduced models for certain data subsets. Each model defines a mapping  j that is

similar to  in one dimension, where = …j N1, , d is the index of the data set. The maps  j

are coupled by their dependence on the resistivity function r(x), and are all taken into account

in inversion as explained below.

Let u x( )o
j( ) be the initial condition for a source that is compactly supported on a segment

(interval)  j of A. We model it for simplicity with the indicator function j of  j and write

δ=
∥ ⊥( ) ( )u x j x x( ) . (3.1)o

j( )

Here =
∥ ⊥x x x( , ), with ∥x the arclength on A and

⊥x the normal coordinate to the boundary,

which we suppose is smooth. The semidiscretized version of equation (1.3) on a grid with N
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points is

∂
∂

=
t

t
A t

u
r u

( )
( ) ( ), (3.2)

j
j

( )
( )

with ∈r N the vector of discrete samples of the resistivity. Equation (3.2) models a

dynamical system with response matrix y t r( , )kj defined by the restriction of the solution

=tu u( ) e (3.3)j A t
o
jr( ) ( ) ( )

to the support k of the kth receiver. We take for simplicity the same model of the sources and

receivers, with support on the disjoint boundary segments  j of the accessible boundary.

Thus, if we let ∈b j N( ) be the measurement vector corresponding to the jth source or

receiver, we can write the time domain response as

=y t r b b( ; ) e . (3.4)kj
k A t jr( ) ( ) ( )T

The diagonal of this matrix is the high dimensional extension of (2.8). The matrix valued

transfer function is the Laplace transform of (3.4),

∫= = − >

+∞
− −Y s y t t sI A sr r b r b( ; ) ( ; )e d ( ( )) , 0. (3.5)kj kj
st k j

0

( ) 1 ( )T

In model order reduction we obtain a reduced model with rational transfer function

Y s r( ; )kj m, that approximates (3.5). The reduced model is constructed separately for each

receiver–source pair (k, j). It is defined by an ×m m symmetric and negative definite matrix

A r( )m
k j( , ) with ≪m N , and measurement vectors bm

k( ) and bm
j( ) . The transfer function

∑
θ

= − =

+

−

=

( )Y s sI A
c

s
r b b( ; ) , (3.6)kj m m

k
m m

k j j

l

m
l
k j

l
k j,

( ) ( , ) 1
( )

1

( , )

( , )

T

has poles at the eigenvalues θ− l
k j( , ) of Am

k j( , ) , for eigenvectots zl
k j( , ) , and residues

= ( )( )c b z b z . (3.7)l
k j

m
k

l
k j

m
j

l
k j( , ) ( ) ( , ) ( ) ( , )T T

We are interested in the continued fraction representation of Y s r( ; )kj m, , in particular its

coefficients κ κ
=

{ }( ),l
k j

l
k j

l

m
( , ) ( , )

1
that define the preconditioner mapping in our inversion

approach. These coefficients are guaranteed to be positive as long as the residues in (3.7)

satisfy ⩾c 0l
k j( , ) . This is guaranteed to hold for the diagonal of (3.6), because

= ( )c b z . (3.8)l
j j

m
j

l
j j( , ) ( ) ( , )

2T

Thus, we construct the reduced models for the diagonal of the matrix valued transfer function,

and compute the model parameters κ κ
=

{ }( ),l
j j

l
j j

l

m
( , ) ( , )

1
as in one dimension. Such

measurement setting has analogues in other types of inverse problems. For example, a

similar setting in wave inversion is the backscattering problem, where the scattered wave field

is measured in the same direction as the incoming wave.

If we have Nd boundary segments  j at A, we define

κ κ= = = …
=

 ( ) ( )y j Nr r( ) (· ; ) log , log , 1, , , (3.9)j jj l
j j

l
j j

l

m

d
( , ) ( , )

1

as in one dimension, using the chain of mappings (2.23). The resistivity is estimated by the

solution of the optimization problem
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∑= ∥ − ∥⋆

∈
=+

 ( ) )dr rarg min
1

2
( · ) ( ) , (3.10)

j

N

j j
r 1

2
2

N

d

where dj(t) is the data measured at the receiver supported on  j, for the jth source excitation.

Note that the sum in (3.10) couples all the sources/receivers together in a single objective

functional.

Another question that we need to address is the choice of matching conditions. For

simplicity we match the moments of Yjj(s) at a single interpolation node ∼s . This yields the
matching conditions

∂

∂
=

∂

∂
= … −

= =
∼ ∼

Y

s

Y

s
k m, 0, 1, , 2 1, (3.11)

k
jj m

k

s s

k
jj

k

s s

,

and rational Krylov subspaces

= − … − = …
∼ ∼ ∼− −

 { }( ) ( ) ( )s s I A s I A j Nb bspan , , , 1, , . (3.12)m
j j m j

d
( ) 1 ( ) ( )

Then the only parameter to determine is the node >
∼s 0.

Similarly to the 1D case we use the condition number of the Jacobian  to determine

the optimal choice of ∼s . Here the total Jacobian ∈ × mN N(2 )d is a matrix of Nd individual

Jacobians ∈ × j
m N2 stacked together. It appears that for a fixed j the sensitivity functions

for κlog l
j j( , ) and κlog l

j j( , ) closely resemble the spherical waves propagating from the middle

of  j. As the index l increases, the wave propagates further away from  j. This behavior is

illustrated quantitatively in section 4.2 for an optimal choice of ∼s . The speed of propagation of
these sensitivity waves decreases as ∼s grows. Obviously, to get the resolution throughout the

whole domain we would like all of Ω to be covered by the sensitivity waves, which means

higher propagation speed (smaller ∼s ) is needed. On the other hand, if the sensitivity waves

propagate too far they reflect from the boundary  which leads to poor conditioning of the

Jacobian. The balance between these two requirements leads to an optimal choice of ∼s , which
we determine experimentally in the numerical example in section 4.2.

4. Numerical results

We assess the performance of the inversion algorithm with numerical experiments. To avoid

committing the inverse crime we use different grids for generating the data and for the

solution of the inverse problem. We describe the setup of the numerical simulations and

present the inversion results in section 4.1 for 1D media, and in section 4.2 for 2D media.

4.1. Numerical experiments in one dimension

We use a fine grid with Nf = 299 uniformly spaced nodes to simulate the data d(t), and a

coarser grid with N = 199 uniformly spaced nodes in the inversion.

The first term y t r( ; )true in (2.7) is approximated by solving the semi-discrete forward

problem (2.1) with an explicit forward Euler time stepping on a finite time interval T[0, ],

where T = 100. The time step is =
−h 10T
5. We denote by y the vector of length =N T hT T ,

with entries given by the numerical approximation of y t r( ; )true at the time samples =t jhj T .

Since even in the absence of noise there is a systematic error  t( )s( ) coming from the

numerical approximation of the solution of (2.1), we write

Inverse Problems 30 (2014) 125011 L Borcea et al

21



= … = + = …( ) ( ) ( )y y y y t t j Ny r, , , ; , 1, , .
T

j j
s

j T1
true ( )

NT

We also define the vector ∈ n N( ) T that simulates measurement noise using the

multiplicative model

ϵ χ χ= … ( )ydiag , , , (4.1)
n

N
( )

1 T

where ϵ is the noise level, and χk are independent random variables distributed normally with

zero mean and unit standard deviation. The data vector ∈d NT is

= + d y , (4.2)
n( )

and we denote its components by dj, for = …j N1, , T . Such noise model allows for a simple

estimate for a signal-to-noise ratio

ϵ

∥ ∥

∥ ∥
≈



d 1
. (4.3)

n

2

( )
2

The inversion algorithm described in section 2.8 determines at step 2 the size m of the

reduced model for different levels of noise. The larger ϵ, the smaller m. The values of ϵ and m

used to obtain the results presented here are given in table 2.

The transfer function and its derivative at the interpolation points are approximated by

taking the discrete Laplace transform of the simulated data

∑≈∼

=

−∼
( )Y s h d e , (4.4)j T

k

N

k
s t

1

T

j k

∑′ ≈ −∼

=

−∼
( )Y s h td e . (4.5)j T

k

N

k k
s t

1

T

j k

To quantify the error of the reconstructions ⋆r we use the ratio of discrete ℓ2 norms

=
∥ − ∥

∥ ∥

⋆


r r

r
. (4.6)

true
2

true
2

While this measure of error is most appropriate for smooth resistivities, it may be overly strict

for the reconstructions in the discontinuous case due to the large contribution of

discontinuities. However, even under such an unfavorable measure the inversion procedure

demonstrates good performance.

We show first the estimates of three resistivity functions of contrast two. We consider

two smooth resistivities

= = − −⎜ ⎟
⎛

⎝

⎞

⎠
r x r x x( ) ( ) : 2 4

1

2
, (4.7)Q

true
2

= = + +
− −r x r x x( ) ( ) : 0.8e 1, (4.8)L

xtrue 100( 0.2)2

Table 2. Reduced model sizes m used for various noise levels ϵ.

ϵ 5·10−2 5·10−3 10−4 0 (noiseless)

m 3 4 5 6
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Figure 6. Reconstructions of r(x) (black solid line) after one (blue ×) and five (red ◦)
iterations. True coefficient by column: left rQ, middle rL, right rJ. Reduced model size
from top row to bottom row =m 3, 4, 5, 6. Noise levels are from table 2. The relative

error  is printed at the bottom of the plots.
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and the piecewise constant

= =

<

⩽ ⩽
>

⎧

⎨
⎪

⎩⎪
r x r x

x

x

x

( ) ( ) :

1, for 0.2,

2, for 0.2 0.6,

1.5, for 0.6.

(4.9)J
true

The results are displayed in figure 6, for various reduced model sizes and levels of noise, as

listed in table 2. Each reconstruction uses its own realization of noise. We use five Gauss–

Newton iterations =n 5
GN

, and we display the solution both after one iteration and after all

five. The initial guess is ≡r x( ) 1(1) . It is far from the true resistivity r x( )true , and yet the

inversion procedure converges quickly. The features of r x( )true are captured well after the first

iteration, but there are some spurious oscillations, corresponding to the peaks of the

sensitivity functions. A few more iterations of the inversion algorithm remove these

oscillations and improve the quality of the estimate of the resistivity. The relative error (4.6) is

indicated in each plot in figure 6. It is small, of a few percent in all cases.

We also observe in figure 6 that the inversion method regularized with the nonlinear

weight (2.49) performs well for the piecewise constant resistivity rJ. Without the regular-

ization, the estimates have Gibbs-like oscillations near the discontinuities of r x( )true . These

oscillations are suppressed by the weighted discrete H1 regularization.

In figure 7 we are comparing our inversion procedure to an inversion approach like in

[11] that fits the poles and residues θ
=

c( , )j j j
m

1 instead of the continued fraction coefficients.

The comparison is done for the case of piecewise constant resistivity of higher contrast

= =

<

⩽ ⩽
>

⎧

⎨
⎪

⎩⎪
r x r x

x

x

x

( ) ( ) :

1, for 0.2,

5, for 0.2 0.6,

3, for 0.6.

(4.10)H
true

A higher contrast case is chosen since for the low contrast the difference in performance

between
θ


c
and  is less pronounced.

As expected, the reconstructions are better when we use the mapping . In fact, the

algorithm based on
θ


c
diverges for m = 4 and m = 6. Thus, for m = 4, 6 we plot the first and

second iterates only. The inversion based on the mapping  converges in all three cases and

maintains the relative error well below 10% for m = 4, 5 and around 11% for m = 6. The

reconstruction plots in figure 7 are complimented with the plots of the relative error  versus

the Gauss–Newton iteration number p. Note that even when the iteration with
θ


c
converges

(m = 5) the reconstruction with  has smaller error (8.5% versus 18.2%).

Aside from providing a solution of higher quality our method is also more computa-

tionally efficient since it does not require the solution of the forward problem (2.1) in time.

While constructing the orthonormal basis for the Krylov subspace (2.16) requires a few linear

solves with the shifted matrix A, the number m of such solves is small and thus it is cheaper

than the time stepping for (2.1). For example, the explicit time stepping to generate the data d

for the numerical experiments above takes 275 s, whereas all the five Gauss–Newton itera-

tions of our inversion algorithm takes less than a second on the same machine.

4.2. Numerical experiments in two dimensions

We consider a 2D example in a rectangular domain Ω = ×[0, 3] [0, 1]. The fine grid to

simulate the data has the dimension 120 × 40 nodes, while the coarse grid used in inversion is

90 × 30 nodes. We use Nd = 8 sources/receivers with disjoint supports  j uniformly dis-

tributed on the accessible boundary interval = ∈ = x x x x{( , ) | (1, 2), 0}A 1 2 1 2 . For each
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diagonal entry of the measured data matrix yjj(t), = …j N1, , d a reduced order model with

m = 5 is constructed.

As mentioned in section 3, the interpolation node ∼s for the matching conditions (3.11) is

chosen so that the sensitivity waves reach the boundary  without reflecting from it. This is

shown in figure 8 where the sensitivities for one particular source/receiver are plotted. For this

Ω the interpolation node that gives the desired behavior is =s 60. We cannot take a smaller s

since the sensitivity function for κ5
(4, 4) already touches the boundary =x 12 . On the other

Figure 7. Comparison between two preconditioners for high contrast piecewise
constant resistivity rH(x) (black solid line) after one (blue × and ⋆) and nGN (red ◦ and
□) iterations. Top row: reconstructions using  ( =n 10GN ). Middle row: reconstruc-

tions using
θ


c
( =n 2GN for m = 4, 6 and =n 10GN for m = 5). Bottom row: relative

error  versus the iteration number p for reconstructions with  (solid line with ◦) and

θ


c
(dashed line with □). The relative error  is printed at the bottom of the

reconstruction plots.
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hand, increasing s will shrink the region covered by the sensitivity functions and thus will

reduce the resolution away from A.

We solve the optimization problem (3.10) for the 2D media using a regularized pre-

conditioned Gauss–Newton inversion algorithm from section 2.8 adapted for the objective

functional of (3.10). In two dimensions the preconditioner appears to be even more efficient

with high quality reconstructions obtained after a single iteration. Subsequent iterations

improve the reconstruction marginally, so in figure 9 we show the solutions after a single

Gauss–Newton iteration starting from a uniform initial guess ≡r x( ) 1.

All three examples in figure 9 are piecewise constant so the inversion is regularized with

a discrete H1 seminorm (W = I ). In the first two examples there are two rectangular inclusions

in each with the contrast from =
Ω∈
r xmin ( ) 0.66

x
to =

Ω∈
r xmax ( ) 1.5

x
on a unit background. The

inclusions touch each other at a corner and a side respectively. This demonstrates that the

method handles well the sharp interfaces. In the third example there is a single tilted inclusion

Figure 8. Sensitivity functions (rows of the Jacobian  j indexed by l) for the 2D

uniform medium ≡r x( ) 1 in the rectangular domain Ω = ×[0, 3] [0, 1]. Source/

receiver index is j = 4 out of a total of Nd = 8 (mid-points of sources/receivers  j

marked as black ×), m = 5.
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of contrast 2 on a unit background. It is used to show the gradual loss of resolution away from

A. All three examples are narrow aperture, meaning that the horizontal extent of the

inclusions is equal to the width of A. Overall the reconstruction quality is good with the

contrast captured fully by the first Gauss–Newton iteration. One can iterate further to improve

the reconstruction, but an adaptive choice of the step length α p( ) is required for convergence.

5. Summary

We introduced a numerical inversion algorithm for linear parabolic partial differential

equations. The problem arises in the application of controlled source electromagnetic

inversion, where the unknown is the subsurface electrical resistivity r(x) in the earth. We

study the inversion method in one and 2D media, but extensions to three dimensions are

possible.

To motivate the inversion algorithm we place the inverse problem in a model reduction

framework. We semidiscretize in x the parabolic partial differential equation on a grid with

≫N 1 points, and obtain a dynamical system with transfer function Y s r( ; ), the Laplace

transform of the time measurements. In two dimensions the transfer function is matrix valued,

and we construct reduced models separately, for each entry on its diagonal. Each model

reduction construction is as in the 1D case.

The reduced models are dynamical systems of much smaller size ≪m N , with transfer

function ≈Y s Y s r( ) ( ; )m . Because Ym(s) is a rational function of s, we solve a rational

approximation problem. We study various such approximants to determine which are best

suited for inversion. We end up with a multipoint Padé approximant Ym(s), which interpolates

Y and its first derivatives at nodes distributed geometrically in +. The inversion algorithm is

a Gauss–Newton iteration for an optimization problem preconditioned with nonlinear map-

pings  and . These mappings are the essential ingredients in the inversion.

Figure 9. Reconstructions in 2D in the rectangular domain Ω = ×[0, 3] [0, 1].

Left column: true coefficient r(x); right column: reconstruction after a single Gauss–
Newton iteration. Mid-points of sources/receivers  j are marked with black ×,

= …j N1, , d , Nd = 8.
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Most inversion algorithms estimate r(x) by minimizing over discretized resistivity vectors

∈
+

r N the least squares misfit of the data d(t) and the mathematical model y t r( ; ) of the

measurements. By construction, our mapping =  yr r( ) ( (· ; )) is an approximate identity

when restricted to a subset of sufficiently regular resistivities r. We use it as a nonlinear

preconditioner in the inversion, meaning that we minimize the least squares misfit of

 d( ( · )) and  r( ). The advantage is the stability of the inversion and very fast convergence

of the iteration.

We define the nonlinear preconditioner  r( ) via an explicit chain of nonlinear mappings.

Each step in the chain involves a numerically stable computation. The computation of the

Jacobian  follows by the chain rule and we describe it explicitly, step by step. The only

unstable computation in the inversion is the data fitting calculation of  d( ( · )). The

instability is inherited from that of the inverse problem and is unavoidable. We mitigate it by

restricting the size m of the reduced model adaptively, depending on the noise level. The

smaller m is, the lower the resolution of the estimated resistivity. This is because at each

iteration the resistivity updates are in the range of ( )†, of low dimension ≪m N2 . We

improve the results by adding corrections in the null space of , so that we minimize a

regularization functional that incorporates prior information about the unknown resistivity.

The performance of the algorithm is assessed with numerical simulations in one and two

dimensions.
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Appendix. Computation of the nonlinear preconditioner and its Jacobian

The computation of the nonlinear preconditioner =  yr r( ) ( ( · ; )) and its Jacobian is the

most complex and time consuming computation in our inversion scheme. Nevertheless, it is

much more efficient than the traditional inversion approach because it avoids the repeated

computation of the time domain solution of the forward problem. We explain here the details

of the computation of  and  via the chain of mappings (2.23). We do so only for the

multipoint Padé approximant, which we showed in section 2.6 to be best suited for inversion.

(a) The matrix A is defined by (2.2) for a given r. Differentiating (2.2) yields

∂
∂

= − = − = …
A

r
D D k Ne e d d , 1, , , (A.1)

k

T
k k

T
k k

T

with = Ddk k N
T
, 1: . This is a rank one matrix.

(b) At this step we differentiate the orthonormal basis V of the Krylov subspace ∼ s( )m .

There are different ways of computing an orthonormal basis of ∼ s( )m . One choice is to use a

rational Lanczos algorithm [14]. While this may be a more stable way of computing V

compared to other approaches, differentiation formulas are difficult to derive and implement.

We consider an alternative approach, based on the differentiation of the QR decomposition.
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We compute first the matrix

= − … − ∈∼ ∼− − ×⎡
⎣

⎤
⎦( ) ( )K s I A s I Ab b, , ,m

N m
1

1 1

and its derivatives

∂
∂

= − − − … − −∼ ∼ ∼ ∼− − − −⎡

⎣
⎢

⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

⎤

⎦
⎥( ) ( ) ( ) ( )

K

r
s I A s I A s I A s I Ad d b d d b, , .

k
k k

T

m k m k

T

1
1

1
1 1 1

Then V can be defined via the QR decomposition of K, which we write as

=K VU,

where ∈ ×V N m is orthogonal = ∈ ×V V IT
m

m m, and ∈ ×U m m is upper triangular. If we

denote =L UT , then (A) implies

=K K LL .T T

That is to say =L UT is a Cholesky factor of K KT . At the same time, when we differentiate

(A), we obtain

∂
∂

=
∂
∂

−
∂
∂

= …
−

⎛

⎝
⎜

⎞

⎠
⎟

V

r

K

r
V

U

r
U k N, 1, , . (A.2)

k k k

1

Since we already know ∂ ∂K rk, it remains to compute the derivative ∂ ∂U rk of the Cholesky

factorization of K KT . This is given in the following proposition, which can be proved by

direct computation once we write δ δ δ= +LL L L L L( ) ( ) ( )T T T and solve for the columns of

δL, one a time, using that δL is lower triangular.

Proposition 1. (Differentiation of Cholesky factorization). Let ∈ ×M m m be a matrix with

Cholesky factorization =M LLT . Given the perturbation δM of M, the corresponding

perturbation δL of the Cholesky factor is computed by the following algorithm.

∑

∑ ∑

δ
δ

δ

δ δ δ δ
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= + …

= − −
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⎜
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⎟
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⎟
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.
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1
.
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j
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ij kj

1

1

1 1

1

We use proposition 1 for = =M K K LLT T , with perturbation

δ δ=
∂
∂

∂
∂

=
∂
∂

+
∂
∂

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟M

M

r
r

M

r

K

r
K K

K

r
, ,

k
k
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T

T

k

to obtain

δ δ=
∂
∂

∂
∂

=
∂
∂

⎛

⎝
⎜

⎞

⎠
⎟L

L

r
r

U

r

L

r
and .

k
k

k k

T

The computation of ∂ ∂V rk follows from (A.2).
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(c) Once we have V and its derivatives we compute from (2.12)

∂

∂
= − +

∂
∂

+
∂
∂

A

r
V V

V

r
AV V A

V

r
d d , (A.3)

m

k

T
k k

T

k

T
T

k

∂

∂
=

∂
∂r

V

r

b
b. (A.4)

m

k k

T

(d)–(e) There are two possible ways to go from the reduced model Am, bm to the

continued fraction coefficients κj, κ j. Both approaches use a Lanczos iteration to obtain a

symmetric tridiagonal matrix, which we denote by

α β

β α

β

β α

=

⋱

⋱ ⋱

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

T . (A.5)
m

m m

1 2

2 2

Note that for an arbitray symmetric matrix ∈ ×E m m we can compute a tridiagonal

matrix T that is unitarily similar to E via a Lanczos iteration with full reorthogonalization.

Since the dimension m of the problem is small, we reorthogonalize at every step to ensure

maximum numerical stability. The iteration is as follows:

Initialize η=x1 , =x 00 , β = 01 .

For = … −j m1, , 1

α = Ex xj j
T

j,

α β= − −∼
+ −Eu x x xj j j j j j1 1,

= − ∼
+ +I X Xu u( ( ) )j N j N j

T
j1 1: , 1: 1: , 1: 1,

β = ∥ ∥
+ +uj j1 1 ,

β
=+

+

+

x
u

j

j

j

1

1

1

,

α = Ex xm m
T

m.

We have two choices of the initial vector η and the matrix E such that =T X EXT with

=X X IT
m. The first takes =E Am, and η = ∥ ∥b bm m . It combines steps (e) and (d) and goes

from the reduced model Am, bm directly to the tridiagonal matrix T. The second approach is to

compute first the eigenvalue decomposition (2.15) of Am to get the poles θ− j and the residues

cj, for j = 1,…,m. Then take θ θ= − …E diag( , , )m1 and

η η η η= … =

∑
= …

=

c

c
i m( , , ) , , 1, , . (A.6)m

T
i

i

s

m
s

1

1

From the computed T with either of the two approaches, we obtain the coefficients of the

continued fraction using the formulas from [8].

∑
κ κ

κ α
= = −

=

c

1
,

1
, (A.7)

s

m

s

1

1

1
1 1

κ
κ β κ

= = …

− − −

j m
1

, 2, , , (A.8)j

j j j1
2

1
2

1
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κ

α κ
κ

= −
+

= …

−

j m
1

1
, 2, , . (A.9)j

j j
j 1

To differentiate the mappings (d) and (e), we need to differentiate the Lanczos iteration.

In general, there is no explicit formula for the perturbations of the entries of T in terms of

perturbations of E and η. Thus, we would need to differentiate the Lanczos iteration directly,

with an algorithm that computes the perturbations of αj, βj and x j iteratively, for increasing j.

However, for the second approach described above, we can use the explicit perturbation

formulas for the Lanczos iteration derived in [5]. To apply these formulas, we need to

differentiate the steps (d) and (e) separately.

The differentiation of (d) follows directly from the differentiation of the eigende-

composition (2.15) of Am. It is given by

θ∂

∂
= −

∂

∂r

A

r
z z , (A.10)

j

k
j

m

k
j

θ
∂

∂
= − +

∂

∂
( )

r
A I

A

r

z
z , (A.11)

j

k
m j

m

k
j

†

∂

∂
=

∂
∂

+

∂

∂

⎛

⎝
⎜

⎞

⎠
⎟( )

c

r

V

r r
b z b z b

z
2 , (A.12)

j

k
m
T

j
T

k
j m

T j

k

where † denotes the pseudoinverse.

For the computation of the derivatives in step (e) we use the explicit formulas from [5],

for Θ=E and =X QT and η given by (A.6). Let us define the vectors

∑ ∑

δ δ

δα

δα δα

δα

δβ β

δβ β δβ β

δβ β

=

+

⋮ =

+

⋮α β

= =

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

, . (A.13)

j

m

j

j

m

j j

1

1 2

1

1 1

1 1 2 2

1

They can be expressed in terms of the perturbations of the poles θ θ θ= …( , , )m
T

1 and the

initial vector η as

δ θ η δ θ ηδ δ δ δ= − + = − +α θ η β θ ηA A B B, .

Here ∈θ η
×A A, m m are the matrices with entries

∑β
θ θ

β

= +

−
− −

= = =

θ

η η θ

=

≠

+ + +

+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

( )A Q Q
Q

Q
Q Q Q Q

A
Q Q

Q
A A

1
1

2 ,

2 , 0, 1,

ij
i

p

m

p j

p j
ip i p

p

j
ip i j i p ij

ij
i

i j ij

j

mj mj

1

1,

1

1
1, 1,

1,

1
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for = … −i m1, , 1, j = 1,…, m and the entries of ∈θ η
− ×B B, m m( 1) are

∑
θ θ

=

−
−

=

θ

η

=

≠

+ + +

+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

( )

( )

B Q
Q

Q
Q Q

B
Q

Q

1
,

,

ij

p

m

p j

p j
i p

p

j
i p i j

ij
i j

j

1

1,

2 1

1
1, 1,

1,

2

1

for = … −i m1, , 1 and j = 1,…, m.

Note that the computation of ηδ can be done by differentiating (A.6) and using (A.12)

Once the vectors δα and δβ are known, it is trivial to obtain the individual perturbations δα j

and δβ j. From those perturbations we compute the derivatives of κj and κ j by differentiating

relations (A.7)–(A.9). The computation is straightforward and we do not include it here.

(f) The differentiation at the last step in the chain of mappings (2.23) is trivial. It is just

the derivative of the logarithm.
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