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A Model Selection Rule for 
Sinusoids in White Gaussian Noise 

Petar M. DjuriC, Member, IEEE 

Abstruct- The model selection problem for sinusoidal signals 
has often been addressed by employing the Akaike information 
criterion (AIC) and the minimum description length principle 
(MDL). The popularity of these criteria partly stems from the 
intrinsically simple means by which they can be implemented. 
They can, however, produce misleading results if they are not 
carefully used. The AIC and MDL have a common form in that 
they comprise two terms, a data term and a penalty term. The 
data term quantifies the residuals of the model, and the penalty 
term reflects the desideratum of parsimony. While the data 
terms of the AIC and MDL are identical, the penalty terms are 
different. In most of the literature, the AIC and MDL penalties 
are, however, both obtained by apportioning an equal weight to 
each additional unknown parameter, be it phase, amplitude, or 
frequency. By contrast, in this paper, we demonstrate that the 
penalties associated with the amplitude and phase parameters 
should be weighted differently than the penalty attached to the 
frequencies. Following the Bayesian methodology, we derive a 
model selection criterion for sinusoidal signals in Gaussian noise 
which also contains the log-likelihood and the penalty terms. 
The simulation results disclose remarkable improvement in our 
selection rule over the commonly used MDL and AIC. 

I. INTRODUCTION 

ODEL SELECTION is an important area of research 
in signal processing, and its results are applied in 

many disciplines of science and engineering. Over the past 
two decades many of these problems have been addressed by 
utilizing two popular selection rules known as Akaike infor- 
mation criterion, or AIC [ 11, and minimum description length, 
or MDL [19]-[21]. For example, they have been applied in 
array processing to detect the number of sources that impinge 
on a passive sensor array [25], [26] in vibration analysis to 
decompose a nonstationary vibration record into stationary 
segments [7], and in image analysis to segment images [12], 
[ 131. Many more examples can be cited from areas as diverse 
as econometrics, control theory, and psychometrics 

The widespread use of these rules is mainly due to their 
intrinsic simplicity. Neither requires the derivation of test sta- 
tistics or selection of thresholds from statistical tables-tasks 
which are both rather difficult, particularly when there are 
several models to choose from, and/or the examined models 
are not nested. Instead, the AIC and MDL are simply applied 
by evaluating two terms, a data term and a penalty term. 
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These two terms are added together, and the model that 
yields the minimum sum is considered to be the best. In 
mathematical terms, if the set of competing models is denoted 
b y M I ; . k E Z Q ,  w h e r e Z ~ = { O , 1 , 2 , . . . , Q - l } , a n d t h e i r  
associated parameters are O k ,  the model is selected according 
to [14] 

where (81;) is the log-likelihood function of the data, 0 k  is 
the maximum-likelihood (ML) estimate of the parameters O k ,  

and p, is the penalty of the criterion. The difference between 
the two criteria is in the penalty term p,. The AIC imposes 
p c  = p x ~ c  = dI;, and the MDL, p c  = ~ M D L  = d k / 2  In N / 2  
[14]. Here dk: represents the number of parameters associated 
with the kth model, and N ,  the length of the observed data 
vector. These penalties obviously imply that each additional 
unknown parameter is equally weighted, regardless of its role 
in the model function. 

In general, however, it is not appropriate to penalize for 
additional unknown parameters equally and without regard to 
their roles in the model. To establish the validity of this claim, 
we address a specific problem and show that the penalties 
are parameter dependent. In particular, we investigate a model 
selection problem where the competing models represent mul- 
tiple sinusoids in white Gaussian noise. This problem has been 
of considerable interest since the beginning of the century [ 5 ] ,  
[23], and continues to attract the attention of many researchers 
[6], [8], [15], [16], [18]. When the selection is implemented 
by the AIC and MDL, the rules usually employed take the 
form of [lo], [27], [281 

~ X I C  = arg k E Z q  min { - L ( O k )  + 3 k )  

where ~ . A I C  and &,,ID, are the optimal numbers of signal 
components according to the AIC and MDL, respectively. 
Note that d k  = 3k since each sinusoid is parameterized by 
its amplitude, phase, and frequency, and that the penalties due 
to each parameter are identical. 

Recently, besides (2) and (3), similar selection rules have 
been proposed. In particular, in [24] a model selection rule for 
sinusoids in colored noise was proposed whose form is 
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-cos(wi(N - 1)) sin(wl(N - I))  . . . cos(w,(N - 1)) sin(w,(N - 1)) - 

. . .  

174.5 

where c is a constant that satisfies c > y, with y depending on 
the spectral density of the noise process. It was shown that 
(4) is strongly consistent. However, the use of this criterion is 
limited because the choice of c depends on the noise spectral 
density, which is usually unknown. It is important to point out 
that for white noise y = 2, and c > 2. Noteworthy too are the 
facts that the results from [24] imply the strong consistency 
of (3 ) ,  and when c is too small or too large, (4) tends 
to overestimate or underestimate the number of sinusoids, 
respectively [9]. 

For the colored noise problem another criterion was given in 
[9]. It is indirectly based on the MDL principle but is different 
from (3 ) ,  and its evaluation is implemented in the frequency 
domain. There, the main idea is to model the continuous noise 
spectrum as constant over frequency bands of width 2 r m / N ,  
where N is the number of observed data samples, and m is an 
integer. The obtained criterion has a penalty that has two terms, 
one depending on the number of sinusoids k ,  and the other 
being a function of m. The best signal model is obtined by 
optimizing the criterion simultaneously over k and m. For the 
same problem, one more MDL type criterion was suggested 
in [11], where the noise is modeled as an autoregression of 
unknown order. 

Finally, in [4], a maximum a posteriori probability (MAP) 
criterion was proposed whose form is 

This criterion is identical to the MDL criteria from [9] and [ 111 
when they are also applied to sinusoids in white noise. To make 
a distinction between the correct and the comrnonly used MDL 
criteria, we refer to (3) as the “MDL” criterion. A comparison 
of (5) with (2) and ( 3 )  clearly shows the differences in the 
penalties and that the penalty in ( 5 )  is the most stringent of 
the three. 

In this paper, we derive ( 5 )  and show how the penalties 
are obtained for additional unknown parameters. In particular, 
we demonstrate that the penalization per additional unknown 
amplitude or phase is In N and per addilional unknown 
frequency In N ,  which makes a total of j: 1 n N  for every 
additional sinusoid. In using the Bayesian methodology, we 
apply asymptotic arguments and explain the derivation steps, 
which can readiily be replicated in obtaining selection rules 
for other types of models. Aside from the derivation, we 
discuss important issues of the model selection problem, 
and we provide extensive simulation results that exhibit the 
performance of (5 )  and compare it to (3). 

The article is organized as follows. In Section 11 the problem 
statement is given, followed by the definition and derivation 

of our model selection criterion in Sections I11 and IV. Various 
points related to the selection problem are discussed in Section 
V, and a presentation of simulation results on the performance 
of the selection rules is given in Section VI. Finally, in Section 
VI1 some brief conclusions are drawn. 

11. PROBLEM STATEMENT 

Let y be an observed vector of N real data samples. The 
elements of y may represent samples of noise only, 

Y h l  = 4731, n E 2, (6)  

or m superimposed sinusoids embedded in nois,e, 
m 

y[n] = a j  cos(wjn + 4 j )  + e[nj, n E Znr. (7) 

Here e[n] symbolizes a noise sample whereas a j  , w j  and (ltj are 
the amplitude, radial frequency, and phase of the j th  sinusoid, 
respectively. ZN is the finite set of integers (0, 1, . . . , N - l}. 
Without loss of generality, we assume that 

j=1 

w j  f w l ,  j # 1, j ,1 = 1 , 2 , . . . , m  

w j  E(O;7r) ,  j = 1 , 2 , . ” , m  . (8) 

Alternatively, we may represent (7) as 

y[n] =I “Ja j ,  cos(wjn) + ajs  sin(wjn)) + e[rbl, 
m 

n E z A ~  

(9) 
j=l 

where 

a3, = a3 cos 4 j ,  a J S  = -a3 sin 4J,  ,j = I .  2, . . . , m. 

Finally, a concise depiction of (9) is provided in a vec- 
tor-matrix form according to 

Y = D2ma27n + e (10) 

where Dzm is an N x 2m matrix, shown at the bottom 
of the page, and the amplitude vector ~2~ is given by 
uTm == [a”, al ,  azC azS . . .  ucm usm] ,  with denoting 
transposition. The noise vector is assumed to be zero mean 
normal with density function 

-..,}. 1 (11) 
2a2  

The number of sinusoids 7n and their parameters are unknown, 
as is the noise variance 0’. Given y and the aforementioned 
assumptions, the objective is to determine the number of 
superimposed sinusoids in y. 

Dzm = 
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111. MODEL SELECTION CRITERION 

The formulated problem is clearly one of model selection 
(multiple hypotheses testing). Based on an accepted criterion, 
we want to choose the best model for the data from a set of 
predefined models. As an investigating strategy, the Bayesian 
methodology and MAP criterion are adopted as they allow for 
a consistent and optimal solution in a clearly defined way. 

Let M I ,  denote the hypothesized model, with k being the 
number of sinusoids in the data, and let p (  k )  be the a priori 
probability of the kth model. Formally, when k = 0, the model 
M O  is represented by (6), and when k > 0, M I ,  is given by 

Iv .  DERIVATION OF THE CRITERION 

First we derive f(ylk) for k = 0 and then for k > 0. When 
k = 0, the form of f ( y l k )  is determined from 

f(Ylk)  = J' f(Y/k,a)f(~lk)da, k = 0. (17) 

From (6) and ( l l ) ,  the first factor of the integrand can be 
expressed as 

Mk : y = D 2 k U z k  + e .  (12) The second factor, f ( a l k ) ,  is the prior density of the standard 
It is assumed that there are Q competing models, where 
Q > m, and that each model is equiprobable. That is 

1 
p ( k )  = -, k E ZQ. (13) 6! 

The MAP estimate of m will be the value of k that 
maximizes the a posteriori probability p (  kly). where k E ZQ 
or 

where f (y /k )  is the marginalized density of g given there are 
k sinusoids in the data,' and f ( y )  is the marginal density 
of the data. Note that under the assumption of (13), the 
maximization of the a posteriori probability becomes simply 
a maximization of the marginalized densities o f  the models, 
f ( y 1 k ) .  Q and f(y) were dropped from the criterion because 
they are independent of k .  Note that Q is a constant, and 

The marginalized density f ( y l k )  can be obtained from 

I / f(y/k,a)f(aIk)da, k = 0 

where 5 2 k ; a ,  and A ~ I ,  in (16) represent the parameter 
spaces of wk, a, and U Z k ,  respectively, while f ( a l k )  and 
f(wk,o,aklk) are the a priori densities of a and W I , , ~ :  and 
u ~ I , ,  respectively, given the number of sinusoids in the data 
is k .  In the next section we present the derivation of f ( y 1 k )  
and provide the final form of the selection criterion. 

For fixed y, f ( y / k )  can be viewed as the likelihood of k superimposed 
sinusoids in the data. 

deviation of the noise which quantifies our initial knowledge 
of LT. If this knowledge is vague, one typically adopts the 
Jeffreys' prior [2] 

f(a1k) cx a-1 (19) 

where cx signifies proportionality. Since we want to derive a 
model selection criterion that will be based on as little prior 
knowledge as possible, we adopt (19) as a prior. When (18) 
and (19) are substituted into (17), and with the use of the 
integral [2] 

U > 0; p > 0 (20) 

where I?(.) is the standard Gamma function, it is found that 

f(ylk) r - ( ~ ~ y ) - ( ~ / ~ ) ,  k = 0. (21) (3 
Now we derive the expression for f ( y ) k )  when k > 0 .  In 

order to do so, the following integrals need to be solved: 

f ( w k ,  ff, a21,lk) dazk  do dwk, k > 0 (22) 

where f (wk.a.a21, lk)  is the prior of the model parameters. 
Again, we adopt a vague prior whose form is 

f(Wk,a,a2klk) lx a-1. (23) 

First, the innermost integral of (22) is solved yielding 
f ( y . w k . a l k ) .  From (10) and ( l l ) ,  it is deduced that the 
first factor of the integrand in (22) is 

f ( y l k , w I , ,  a, U 2 k )  = (2na2)- ( "2)  

1 1 
. exp { - s ( y  - D z I , ~ z ~ ) ~ ( ~  - DZI,WI,)  . (24) 

Applying the prior in (23), one readily obtains 

where PkA. is an N x N projection matrix defined by 

P $ ~  = I - D ~ ~ ( D ; ~ D ~ ~ ) - ~ D & .  (26) 
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Next we solve the second integral From (28), we have 

This integral is of the same form as (20). It results in 

T I - ( ( N - 2 5 ) / 2 )  . ( Y  P , ,Y)  

Finally, we want to integrate out the frequencies wk, i.e., find 

f ( Y l k )  = /ak f ( Y , W k l k )  (29) 

As the frequencies are nonlinear parameters, it is very dif- 
ficult to obtain an analytical solution, and we thus resort to 
approximations. If f (y ,  wklk) is Taylor expanded around the 
ML estimate of wk, one can write 

f ( Y , W / t l k )  = exP{ln.f(Y,wkIk)} 
N exp{ln f(yI&, k )  

- Z ( W ~  1 - c & ) ~ Q ~ ( w ~  - &)} (30) 

where Gk is the ML estimated of wk, and f7k is the Hessian 
of - Inf(y,wkIk)  evaluated at wk = Gk, or 

If (30) is substituted in (29). the integration becomes straight- 
forward. The result can be expressed as 

f (y / l k )  cx f(y1Gjrc. k ) l Q k l - ( ~ / 2 ) .  (32) 

We would like to simplify (32) so that the evaluation of the 
Hessian may be avoided. To this end, we apply the following 
proposition. 

Proposition: When N is large, the Hessian of 
-In f (y ,  wklk)  can be written as 

G k  = N3Rk (33) 

where R k  is a k x k positive definite matrix whose determinant 
is of order O(1). 

The proof is not difficult but rather tedious. The following 
results will be used as we proceed [22]: 

where C is a constant. Upon taking the first derivative with 
respect to w;, one obtains 

(37) 

(38) 

where the derivative with respect to the determinant ID; D 2 k  I 
has been neglected since the determinant is almost constant 
over f l k  when the conditions specified in (8) hold. 

Now, after taking the partial derivative of (37') with rcspect 
to w I ,  we find 

a2 
ln f (Y, Wk I k )  _____ aW,aW3 
N - 2k 

N -___ 
- 2  

N - 2k 
( Y  1% Y 1 - 

With (34) and (35) it can be shown that 

(39) 

(40) 

(41) 

T I  -Y P , k Y  = O ( N )  3% 

Y P 2 , Y  = d W , d W J  

Y P , k Y  = O ( N ) .  

T I 

T I  

If the results (39)-(41) are applied to (38), the claim in the 
proposition directly follows. 

Returning to (32) and using the main result of the propo- 
sition as well as (28), we can express the marginal dmsity 
f ( Y I k )  by 

N - 2k 

1 N-l . ( y ~ ~ ~ k y ) - ( ( ~ - 2 k ) / 2 ) ~ - ( 3 k i 2 )  I k,kl-(1/2) (42) 

where D , k  and P,, are the matrices D,, and Pik, respec- 
tively, with wk substituted by Gk. With this result, the final 
form of the model selection criterion can readily be established 

~ nk cos(wn) rv 0 N,++1 -1 
n=O 

1 N-l 

(34) nk sin(wn) p? 0. 
n = O  

as 
In addition, if A is a matrix whose entries are functions of 
wk,  one can write [17] riZMAp = arg min { - In f(ylk)} (43) 

k C z Q  

(35) 
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(44) 

where in the last expression we have dropped all the terms of 
order 0(1), and we have assumed that N is large. We further 
simplify (44) by observing that 

IP;kD2kI = 0 ( N Z k )  (45) 
Y T P i k Y  = O ( N )  (46) 

and that the relative contribution of the Gamma function in 
(44) can asymptotically be replaced by k l n N .  To under- 
stand the latter approximation, divide - In f (ylk)  in (44) by 
I ' (N/2) .  This does not change the criterion because r'(N/2) is 
not a function of k ,  and the resulting penalty readily follows. 
With these approximations, one can obtain the final form of 
the criterion as 

V. DISCUSSION 

In this section we go on with discussion of several important 
issues related to (47). 

0 First we provide an interpretation of the result in (47). 
Note that the AIC and "MDL" rules in (2) and (3) can be 
written as 

if the priors of the unknown signal parameters are chosen as 
proposed, i.e., for each amplitude and phase they are equal to 
1/N and for each frequency l/N3, the criterion function in 
(47) follows immediately from - ln(f(yl81;; 6, k ) f ( 8 , ) ) .  

0 The result in (47) can also be obtained by a different 
derivation. If we expand the density f (y ,~k ,o , a21 ; lk )  in a 
Taylor expansion around the ML estimates of the parameters, 
ignore the prior due to the asymptotic assumptions, and 
approximate the determinant of the Hessian by neglecting all 
the terms that are not a function of N ,  we obtain the same 
rule as (47). 

0 It can be shown that a similar rule holds for complex 
sinusoids. In [3] we have investigated this problem by exploit- 
ing the concept of predictive densities which is yet another 
way to find (47). To obtain the rule for complex data that is 
equivalent to (47), upon deriving the final results in [3], one 
has to make an additional step which includes asymptotical 
approximations. 

0 It may be tempting to use an algorithm which would avoid 
the evaluation of the criterion function for every model [24]. 
In particular, we might want to rely on the following phenome- 
non: As the model complexity increases, the criterion function 
decreases until it reaches the minimum at the correct model, 
and then increases as the models becomes more complex. In 
other words, if the criterion function is 

T I  than we might propose to choose the best model according to 
~?L.AJC = arg min { In(y P,,y) + 3 k }  (48) 

k E Z Q  

fi>hMDL) = arg min 

which allow for a direct comparison with (47). Needless to 
say, the MAP criterion imposes a stricter penalty than either 
the AIC or MDL. Even more interesting is the fact that the 
MAP rule penalizes for the extra parameters with penalties 
that depend on the type of parameters used in the models, 
which is in contrast to the AIC and MDL. In particular, from 
our derivation, it is easy to deduce that the penalization for 
each amplitude or phase is In N ,  and for each frequency 
$ In N .  The different penalties can be interpreted as follows. 
Suppose that the MAP criterion can be approximated as the 
minimizer of - ln(f(yI81;, 6, k ) f ( O k ) )  over k ,  where 81; and 
6 denote the ML estimates of the signal parameters and the 
noise variance, respectively, and f(81;) is the prior of the signal 
parameters which is chosen to be a constant that depends 
somehow on 81;. Suppose also that the ML estimates of the 
signal parameters are obtained by a grid search. Once we 
decide about the grid size, the prior of the signal parameters 
is selected to be uniform over the grid. An open and sensitive 
question is how to choose the grid size. A reasonable choice 
is to adopt a grid which is a function of the data record length 
N ,  or more precisely, a function of the estimation accuracy 
with which 8, are obtained. Now, recall that the Cramer-Rao 
bound of the sinusoidal parameters is proportional to 1/N for 
the amplitudes and phases and l / N 3  for the frequences. Then, 

m = min{k: J1; 5 J ~ + I }  k E Q 

The last expression is attractive because we start with evalu- 
ating the criterion function of the simplest (noise) model and 
then escalate the complexity of the models by sequentially 
adding one more sinusoid until the criterion functions of 
J1; and J,+l meet the condition J1; 5 J k + l .  Obviously, 
by implementing the MAP rule with this strategy, we avoid 
the examination of all the models. This is, however, not 
recommended because we cannot guarantee that the first 
minimum of the criterion function is achieved at the correct 
model. To show this, consider the following experiment. Let 
y be of fixed length N with a fixed noise sequence e.  If y 
contains sinusoids, using (51), we will incorrectly choose the 
noise model M O  if 

Suppose that for some m (52) is not satisfied. Now, we start 
adding new sinusoids to the data, which will imply a steady 
decrease of the term on the left side of (52). After a sufficient 
number of sinusoids has been added, the value of the logarithm 
on the left side of the inequality will drop below y, and we will 
choose the noise only model. This will happen when the data 
actually contain many sinusoids, thus incurring a gross error in 
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Fig. I .  
the MAP and the MDL performances, respectively. 

(a) Estimated probabilities of correct selection. (b) Model underestimation. (c) Model overestimation. The solid and the dashed lines represent 

the selection. In conclusion, one should not apply (51) when 
k is increasing If we apply a modified rule by starting with 
the most complex model with k steadily decreasing, there still 
exists the possibility of a local minimum occurring before we 
reach the global minimum, and that may be a consequence of 

noise modeling. Thus the use of (51) or an equivalent rule is 
not encouraged. 

0 F'inally, the results of (47) depend critically on the quality 
of the ML estimates. We found that if an iterative algorithm 
is employed for parameter estimation, the final results can 
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k=O 
‘MDL’ 0 

N=64 MAP 0 

k=l  k=2 k=3 k=4 k=5 
0 0 63 21 16 
0 0 95 5 0 

strongly depend on the selected convergence criterion. For 
example, if convergence in the estimates is declared prema- 
turely, despite some moderate differences in their values from 
one iteration to another, poor selections can be obtained. 

VI. SIMULATION RESULTS 
In this section we present experimental results that demon- 

strate the performance of the selection rules. Three experi- 
ments were considered. In the first, the data were generated 
according to 

k=O k= l  k=2 k=3 k=4 k=5 
‘MDL’ 0 3 63 23 6 5 

-3dB MAP 0 28 70 2 0 0 
‘MDL’ 0 0 64 20 9 7 

- 2 d B  MAP 0 9 88 3 0 0 
‘MDL’ 0 0 72 17 6 5 

- l d B  MAP 0 3 96 1 0 0 
‘MDL’ 0 0 81 10 6 3 

OdB MAP 0 0 99 1 0 0 
‘MDL’ 0 0 73 15 S 4 . 

1 d B  MAP 0 0 98 2 0 0 
‘MDL’ 0 0 73 15 8 4 

2 d B  MAP 0 0 99 1 0 0 
‘MDL’ 0 0 77 16 3 4 

3 d B  MAP 0 0 100 0 0 0 
‘MDL’ 0 0 66 19 S 7 

4 d B  MAP 0 0 100 0 0 0 
‘MDL’ 0 0 74 17 3 6 

5 d B  MAP 0 0 99 1 0 0 

y[n] = a1 cos(w1n + $1) + U2 cos(wz1z + 42) 
+ e [ n ] ,  n E ZN (53)  

N=72 

N=80 

N=88 

N=96 

N=128 

where 

‘MDL’ 0 0 0 69 17 14 
MAP 0 0 0 100 0 0 
‘MDL’ 0 0 0 70 16 14 
MAP 0 0 0 1 0 0 0  0 

‘MDL’ 0 0 0 68 25 7 
MAP 0 0 0 100 0 0 
‘MDL’ 0 0 0 74 19 7 
MAP 0 0 0 99 1 0 
‘MDL’ 0 0 0 80 18 2 
MAP 0 0 0 100 0 0 

TABLE I1 
PERFORMANCE COMPARISON OF MAP AND MDL CRITERIA FOR VARIOUS DATA 

RECORD LENGTHS FOR EACH lv THERE WERE 100 TRIALS. THE ENTRIES 
REPRESEYT THE NUMBER OF TIMES A PARTICULAR MODEL WAS SELECTED OUT OF 
100 TRIALS.  THE CORRECT MODEL IS COMPRISED OF THREE SINUSOIDS ( k  = 3 )  

always overestimated the model, most of the time choosing 
the most complex model which represented five sinusoids 
in noise, and, therefore, we did not include its results in 
the figures. The MAP rule had an excellent performance for 
SNR’s above -1 dB, whereas the MDL was always yielding 
correct results ranging between 59 and 75 times out of 100. 
The deterioration in performance below -1 dB for the MAP 
estimator is not surprising because the ML estimator does 
not provide good estimates of the frequencies in that range. 
The performance of the MDL starts to deteriorate similarly 
for slightly lower SNR’s. Again, the results in that range are 
questionable because the frequency estimates are not reliable. 

In the second experiment we kept all the parameters from 
the first experiment the same except that we changed the 
amplitude of the second sinusoid to a2 = J6.3246. The SNR 
was again varied, this time between 5 dB and -3 dB (for the 
second sinusoid, or equivalently between 10 and 2 dB for the 
first sinusoid). The results are given in Table I. Practically, 
identical performance was obtained as in the first experiment. 

Finally, in the third experiment the data represented three 
closely spaced sinusoids. The data y were generated by 

a1 = a2 = q ! ~ ~  = 0 rad, $2 = ?r/4 rad. 

and N = 64. Throughout the experiment, the SNR defined by where 

(54) a1 = a3 = d%, a2 = d m ,  = 0 rad, 

was varied from -3 to 10 dB in steps of 1 dB. The noise 
sequences were generated according to a Gaussian density 
function given by (11) with cr2 appropriately chosen to yield 
the required SNR. For each SNR, there were 100 trials. 
The maximum number of sinusoids was assumed to be 5. 
Consequently, the selection rules had to choose the best model 
out of six nested models. The method for the frequency 
ML estimation was the one from [22]. The initial estimates 
were obtained by employing periodograms and notched peri- 
odograms [lo]. 

The results of the simulations for the MAP and the MDL 
rules are shown in Fig. 1. In Fig. l(a), we present the curves of 
correct model selection, and in Fig. l(b) and l(c), the curves 
of overestimation and underestimation, respectively. The AIC 

4 2  = ~ / 4  rad, $3 = ~ / 3 ,  w1 = 27r 0.2, 

The SNR for the first and third sinusoids was 10 dB (and for 
the second 5 dB). The number of samples was varied and in 
the first 100 trials it was 64. Then it was increased to 72, 80, 
88,96, and 128, and for each data length, there were 100 trials. 
The results are shown in Table 11. 

Again, the MAP rule had excellent performance. The results 
of the MDL were similar as in the previous experiment 
showing a large percentage of overestimated models. However, 
as the number of samples was doubled from 64 to 128, its 
performance improved. 
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VII. CONCLUSION 
In this paper, we proposed a model selection rule for 

sinusoids in Gaussian noise based on the MAP criterion. The 
rule has a log-likelihood and penalty terms, just like the AIC 
and MDL. The MAP criterion is different from the other two 
in the penalty term which is equal to 5 k / 2  In N ,  where k 
is the number of sinusoids and N the length of the observed 
data. The deriv<ation of the MAP criterion showed that the 
penalization due to additional unknown parameters depends 
on the parameters of the models. We penalize more for the un- 
known frequencies than for the unknown amplitudes or phases. 
The simulation results showed remarkable improvement in 
performance of our criterion over the MDL and AIC. 
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