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Abstract

Background: Hypothetical proteins [HP] are those that are predicted to be expressed in an organism, but no evidence

of their existence is known. In the recent past, annotation and curation efforts have helped overcome the challenge in

understanding their diverse functions. Techniques to decipher sequence-structure-function relationship, especially in

terms of functional modelling of the HPs have been developed by researchers, but using the features as classifiers for

HPs has not been attempted. With the rise in number of annotation strategies, next-generation sequencing methods

have provided further understanding the functions of HPs.

Results: In our previous work, we developed a six-point classification scoring schema with annotation pertaining to

protein family scores, orthology, protein interaction/association studies, bidirectional best BLAST hits, sorting signals,

known databases and visualizers which were used to validate protein interactions. In this study, we introduced three

more classifiers to our annotation system, viz. pseudogenes linked to HPs, homology modelling and non-coding RNAs

associated to HPs. We discuss the challenges and performance of these classifiers using machine learning heuristics

with an improved accuracy from Perceptron (81.08 to 97.67), Naive Bayes (54.05 to 96.67), Decision tree J48 (67.57 to

97.00), and SMO_npolyk (59.46 to 96.67).

Conclusion: With the introduction of three new classification features, the performance of the nine-point classification

scoring schema has an improved accuracy to functionally annotate the HPs.
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Background

Proteins that are predicted to be expressed from an open

reading frame, but for which there is no experimental evi-

dence of translation are known as hypothetical proteins

(HPs). Across the whole genome, approximately 2% of the

genes code for proteins, while the remaining are

non-coding or still functionally unknown [1]. These

known-unknown regions for which no functional links are

discovered, i.e. those with no biochemical properties or

obvious relatives in protein and nucleic acid databases are

known as orphan genes, and the end products are called

HPs [2]. These proteins are of great importance, as many

of them might be associated with human diseases, thus

falling into functional families. Despite their lack of func-

tional characterization, they play an important role in un-

derstanding biochemical and physiological pathways; for

example, in finding new structures and functions [3],

markers and pharmacological targets [4] and early detec-

tion and benefits for proteomic and genomic research [5].

In the recent past, many efficient approaches have existed

and the tools are publicly available to predict the function

of the HPs. One such widely used technique is

protein-protein interaction (PPI) analyses, which is con-

sidered valuable in interpreting the function of HPs [6].

While many proteins often interact with other proteins to-

wards expediting their functions, there are challenges that

are not just limited to their function but also to their regu-

lation [7]. Therefore, characterizing the uncharacterized

proteins helps to understand the biological architecture of
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the cell [8]. While high-throughput experimental methods

like the yeast two-hybrid (Y2H) method and mass spec-

trometry are available to discern the function of proteins,

the datasets generated by these methods tend to be incom-

plete and generate false positives [9]. Along with PPIs, there

are other methods to identify the essentiality of proteins,

such as antisense RNA [10], RNA interference [11],

single-gene deletions [12] and transposon mutagenesis [13].

However, all these approaches are tedious, expensive and

laborious; therefore, computational approaches combined

with high-throughput experimental datasets are required to

identify the function of proteins [9, 14]. Different computa-

tional methods have been designed for estimating protein

function based on the information generated from se-

quence similarity, subcellular localization, phylogenetic pro-

files, mRNA expression profiles, homology modelling etc.

[15]. Very recently, Lei et al. predicted essential proteins

based on RNA-Seq, subcellular localization and GO anno-

tation datasets [16, 17]. Furthermore, tools such as “LOCA-

LIZER” [18], that predicts subcellular localization of both

plant and effector proteins in the plant cell, and IncLocator

[19] have been useful in predicting subcellular localization

for long non-coding RNAs based on stacked ensemble clas-

sifiers [19]. On the other hand, combined analysis of all

these methods or datasets is considered to be more predict-

ive in integrating heterogeneous biological datasets [9].

Genome-wide expression analysis, machine learning, data

mining, deep learning and Markov random fields are the

other prediction methods which are widely employed [20,

21], whereas Support Vector Machines (SVM) [22], Neural

Networks [23], Bayesian Networks [24, 25], Probabilistic

Decision Trees [26], Rosetta Stone [14, 27], Gene Cluster-

ing and Network Neighbourhood analyses [28] have been

used to combine different biological data sources to inter-

pret biological relationships. Although these have shown to

be successful in predicting protein function, annotation

based on feature selection for inferring the function of HPs

is wanting. Nevertheless, there has been a steady increase

in the use of imparting machine learning and information

theoretic features used for development of efficient frame-

work for predicting interactions between proteins [28–30].

In this paper, we present a machine learning based

approach to predict whether or not the given HP is func-

tional. This method is not based on homology comparison

to experimentally verified essential genes, but depends on

the sequence-, topological- and Structure-based features that

correlate with protein essentiality at the gene level. Features

are the observable quantities that are given as input to a ma-

chine learning algorithm. Data given across each feature is

used by the learning algorithm to predict the output vari-

ables. Therefore, selecting the relevant features that could

predict the desired outputs is important. There are various

features that define the essentiality of the proteins. In our

previous study [31], we selected six such features (orthology

mapping, back-to-back orthology, domain analysis, sorting

signals and sub-cellular localization, functional linkages, and

protein interactions) that are potentially viable to predict the

function of HPs. Although the prediction performance of

the selected features was shown to be acceptable, in this

present study we added data on pseudogenes, non-coding

RNA and homology modelling to increase the predictability

of functionality of these known-unknowns. The additional

features which we employed are extended to show the possi-

bility of pseudogenes linked to HPs, proteins that are essen-

tially structural ‘mers’ of the candidate proteins and presence

of non-coding RNA signatures. We discuss the performance

of newly introduced classification features from a machine

learning perspective to validate the function of HPs.

Results
We report the improved classification efficiency when

three additional features were introduced (Table 1) to our

earlier proposed six-point classification scoring schema.

When we analysed the data through 10-fold cross-valida-

tion using the WEKA machine learning package, the deci-

sion trees (J48) yielded an accuracy of 97%, with SVM

(SMO) performing high: 98, 93, 96 for Poly, RBF, npolyk

kernals respectively; MLP (neural network perceptron)

with 97.67% and Naive Baiyes multinomial with 98.33%

(Table 2). Among the classifiers that we evaluated using

WEKA, neural networks yielded the best performance with

a steady change in performance of the model. In addition,

one-way ANOVA with significance level (α) of 0.05 was

performed to ascertain the statistical significance of the

mean differences across the columns or groups based on

the p-value. The results were found to be statistically sig-

nificant and in agreement with p-value heuristics (positive

and negative p-value of 3.166E-290 and 0, respectively). To

check the similarity and diversity of the samples, Jaccard

index similarity coefficient was plotted, providing different

values ranging from perfect similarity (value 1) to low simi-

larity (threshold value). This was further augmented when

we compared the HPs from underlying similarity/distance

matrix scores for evaluation. Furthermore, Jaccard index

statistics revealed that the HPs annotated are inferential

with the first six classifiers, but the newly introduced clas-

sifiers tend to fall apart with the introduction of

non-coding elements (more details in Additional file 1:

Figure S2). Secondly, the negative dataset, which we call a

discrete dataset, is in principle a list of all known proteins

from GenBank falling under important types of HPs. The

194 proteins are probably scaled to only these types, gener-

ating bias with the rest of the features. Thus, we argue that

the negative dataset was largely more discrete and would

have a more stringent heuristic learning set. To further

check the redundancy, a pocket variant of perceptron algo-

rithm was used as a unit step function, starting with a ran-

dom w’ (weight) vector of length 9, eta (positive scale
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factor) as 0.2 and n as 1000. Invariably, perceptron gave

better validation across all classifiers. For example, with a

random split of 66% for the training and testing set, after

1000 iterations we obtained an average accuracy of 94.04%,

with a maximum 97.97% and a minimum of 60.60%. The

split performed was found to be random from all itera-

tions, with no data point from the learning set being used

in the testing set. While the SVM yielded an average accur-

acy of 97.36%, with a max of 100% and min of 88.13%,

Naive Bayes, on the other hand, gave an accuracy of

96.62%, with a max of 100% and a min of 88.13%.

Discussion

The statistical evaluation suggests that among the newly in-

troduced classifiers, non-coding RNAs and pseudogene

features show considerable impact, indicating that most of

the HPs are either the products of pseudogenes or linked to

ncRNAs (Table 3). Among the other six features, functional

linkages, pfam and orthology are highly significant, indicat-

ing that annotating the HPs across these features would

predict the probable function of HPs (Table 3). Feature se-

lection algorithms like Correlation-based Feature Selection

(CFS) and Principal Component Analysis (PCA) also

showed improved accuracy, whereas the accuracies on the

entire data (ALL) are highest among the three methods in-

dicating the importance of all the nine features in model

generation (Table 4). In addition, we derived the best data

subsets from the nine features by selecting top scores from

all combinations with an ALL subset combination method

“1 2 4 6 7 9” by functions_mlp (98.33) and PCA selected

Table 1 Description of annotation for the three newly introduced features

Feature Principle Scoring criteria Result

Pseudogenes
linked to HPs

It is generally believed that the majority of HPs
are the products of pseudogenes. Follow-up of
BLAST: if the hits do not have starting codon
ATG across six reading frames, then it may be
assumed to be a pseudogene.

Predicted and synthetic sequences, sequences
with end-to-end alignment are ignored.
Sequences from Homo sapiens with
E- value less than zero are considered.

Sequences starting without
methionine and meeting all the
above criteria were given 1,
otherwise 0.

Homology
Modelling

As sequence-structure implies function, it is
possible to assign function to HP if we could
model the protein to find any interacting
domains.

Based on % identity between query
and PDB template

If there is more than 30%
similarity, score = 1, otherwise 0.

Non-coding
RNAs
associated to
HPs

Most of the HPs from GenBank lack protein
coding capacity and some of them may
themselves be noncoding RNAs

The top three hits are considered for sequences
from Homo sapiens, while the top five hits are
considered when there is no considerable
difference between scores.

If the above criterion is met,
score 1, otherwise 0.

Table 2 Comparison of all accuracies of all features using multiple learning algorithms derived through WEKA (ver 3.8) with

additional 3 new features increasing accuracy of the model

Learning algorithms Accuracy with all 9 features Average accuracy Accuracy with all 6 features

trees_j48 97.00 95.85 67.57

trees_DecisionStump 86.33 45.95

trees_RandomForest 98.00 70.27

trees_REPTree 98.00 43.24

HoeffdingTree 96.67 Not reported

trees_LMT 98.33 70.27

trees_RandomTree 96.67 67.57

functions_smo_PolyK 98.33 96.33 78.38

functions_smo_RBFK 93.00 24.32

functions_smo_npolyk 96.67 59.46

functions_smo_Puk 97.33 Not reported

functions_RBFNetwork 96.67 97.11 48.65

functions_mlp 97.67 81.08

functions_VotedPerceptron 97.00 Not reported

bayes_nbay 96.67 94.83 54.05

bayes_NaiveBayesUpdateable 96.67 55.21

bayes_NaiveBayesMultinomial 93.00 Not reported

bayes_NaiveBayesMultinomialUpdateable 93.00 Not reported
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data subset “1 2 3 4 5 6 7 8” by functions_smo_npolyk

(97.00) and trees_j48 (97.00) as the best accuracies

(Table 5).

Overall, the combined methods of feature selection pro-

vided ample evidence that all nine features are essential

for a model generation. Correlation analysis has further

allowed us to improve our classification feature selection

pairs which tend to be positive for pfam and orthology (1

& 2); sub-cellular location and functional linkages (5 & 6);

functional linkages and homology modelling (6 & 8) (de-

tailed in Additional file 2). In addition, the two-tailed

p-values for the above-mentioned combinations (1 & 2; 5

& 6; 5 & 8) were much less than the correlation (R) values,

indicating that the association between those variables is

statistically significant. We further analysed the perform-

ance of our model using various performance evaluation

metrics which showed improved performance for the

nine-point schema (Table 6, Additional file 3).

Methods
Construction of datasets

Two datasets were prepared for this study, viz. positive

and negative datasets, with the former constituting the

HPs while the latter representing functional proteins.

The final dataset consisted of 106 positive instances and

194 negative instances of HPs. These proteins were con-

sidered from GenBank with keyword searches “Homo sa-

piens” AND “Hypothetical Proteins” and further filtered

with annotation across the tools (Additional file 4). The

negative dataset was used to override false positives,

thereby obtaining improved precision. Algorithms learn

the characteristics underlying the known functional pro-

teins from the given negative dataset. They are also used

to validate the predicted results by making a comparison

with known functional proteins. Finally, scores from all

the nine classifiers were summed up to give total reli-

ability score (TRS; Fig. 1).

Significance of the features

The six features from our earlier proposed six-point

classification scoring schema are pfam score, orthology

inference, functional linkages, back-to-back orthology,

subcellular location and protein associations taken from

known databases and visualizers [31]. Conservation is

one of the important features of essential proteins. Stud-

ies have proven that essential proteins evolve more

Table 3 Ranking to show the impact of each feature (Rank 1: High impact, Rank 9: Less impact)

Features Functions_ smo_npolyk trees_ j48 bayes_ nbay Functions_mlp Rules NNge

Pfam 5 5 5 5 5

Orthology 4 4 4 4 4

Pro_intercations 6 6 6 6 9

Bidirectional_best_blast_hits 7 7 7 7 8

Subcellular_location 7 7 7 9 7

Functional_linkages 2 2 2 2 3

Pseudogenes 3 3 3 3 1

Homology modelling 7 7 7 7 6

Non-coding RNAs 1 1 1 1 2

Table 4 Derived accuracies by learning algorithms with default parameters set by WEKA are listed above. Column 1 lists different

algorithms

Algorithms ALL Cfs PCA

Earlier study [25] Current study Earlier study [25] Current study Earlier study [25] Current study

Selected Features □ 1,2,3,4,5,6 1,2,3,4,5,6,7,8,9 1 2 5 6 1,2,3,6,7,9 1,2,3,4,5,6 1,2,3,4,5,6,7,8

bayes_NaiveBayesUpdateable 55.21 96.67 54.05 96.67 72.97 93.00

functions_smo_npolyk 59.46 96.67 54.05 96.00 51.35 97.00

rules_DecisionTable 48.65 96.00 54.05 96.00 70.27 92.33

functions_mlp 81.08 97.67 59.46 96.67 81.08 96.00

bayes_nbay 54.05 96.67 54.05 96.67 72.97 93.00

trees_j48 67.57 97.00 51.35 96.00 72.97 97.00

Average 97.39 96.26 94.53

Column 2 shows accuracies on the entire data through ten-fold cross-validation. Columns 3 and 4 show accuracies by different algorithms after applying feature

selection algorithms as per the column header (Cfs Correlation Feature Selection, PCA Principal Component Analysis). Cfs uses best fit method and PCA uses

Ranker method as set by WEKA
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slowly and are more evolutionarily conserved than

non-essential proteins [32]. While we used sequence-

based features like orthology, back-to-back orthology

and domain analysis to describe the essentiality of the

proteins from the perspective of evolutionary conserva-

tion [33], proteins often interact with each other to ac-

complish the biological functions of cells [34]. Apart

from this, functional linkages [35] and subcellular

localization [36] have been popular in predicting the es-

sentiality or what we call the known-unknowns of pro-

teins. Three new features that were considered in this

model are HPs linked to pseudogenes, homology model-

ling and HPs linked to non-coding RNAs. Pseudogenes

are the functionally deprecated sequences present in the

genome of an organism. These disabled copies of genes

are the products of gene duplication or retrotransposi-

tion of functional genes [37]. It is generally believed that

the majority of the HPs are the products of pseudogenes

[38]. This feature is employed to check if the HP is

actually a pseudogene by performing tBLASTn, a variant

of BLAST which considers proteins as a query and

searches against the nucleotide database. The homology

modelling feature was introduced to predict the essenti-

ality of the protein based on the model generated. As

the protein three-dimensional (3D) structure leads to

function, there is a possibility to assign biological

function to proteins, if one could generate the model to

find any interacting domains through structural

bioinformatics-based approaches [39]. Most of the HPs

from GenBank lack protein-coding capacity. Similarly,

non-coding RNAs by definition do not encode proteins.

This indicates that some of the HPs may themselves be

noncoding RNAs [40]. With this feature, we checked if

HPs are associated with non-coding RNAs and are influ-

enced by regulatory regions (detailed in Table 1).

Classifier design and training

Prediction of the function of HPs can be presented as a

binary classification problem. Each protein from both

datasets was annotated across nine selected features and

assigned a score of 1 if the protein met the criteria or 0

if it did not (Fig. 2). Criteria followed for scoring are

shown in Additional file 5: Figure S1. The classifier was

trained across the nine features according to the scores

assigned to the members of each dataset. We used four

major classifiers to train and test the model: (i) SVM (ii)

Naïve Bayes (iii) Decision trees and (iv) Perceptron. For

non-separable learning sets, a variant of perceptron

called pocket algorithm [41] was used, which arbitrarily

minimizes the error for the non-separable learning set

[42]. It works by storing and using the best solution seen

so far rather than relying on the last solution. These so-

lutions appear purely stochastic. 80% of the dataset was

used for training and the rest for testing. We performed

Table 5 Subset evaluation. Accuracies by learning algorithms with default parameters set by WEKA and best data subset by

combination (Column 3) and Feature selection method (column 5) are listed above

Algorithms Best combination Subsets
(from complete dataset)

Accuracy Feature selection subsets Accuracy

bayes_NaiveBayesUpdateable 1,6,7,9 96.67 Cfs 1,2,3,6,7,9 96.67

functions_smo_npolyk 1,2,4,6,7,9 98.00 PCA 1,2,3,4,5,6,7,8 97.00

rules_DecisionTable 6,7,9 96.00 Cfs 1,2,3,6,7,9 96.00

functions_mlp 1,2,4,6,7,9 98.33 Cfs 1,2,3,6,7,9 96.67

bayes_nbay 1,6,7,9 96.67 Cfs 1,2,3,6,7,9 96.67

trees_j48 1,2,4,6,9 97.67 PCA 1,2,3,4,5,6,7,8 97.00

Column 1 lists different algorithms. Columns 2 & 4 list the best data subsets and Columns 3 & 5 accuracies, respectively. (1: Pfam; 2: Orthology; 3:

Prot_interactions; 4: Best Blast hits; 5: Subcellular localization; 6: Functional linkages; 7: HPs linked to Pseudogenes 8: Homology modelling; 9: HPs linked to

ncRNAs). Accuracies shown by both the subset combinations are almost same, with subset combinations from the complete dataset showing a slightly

higher accuracy

Table 6 Individual nine-point schema data are subjected through learning algorithms and scoring metrics are derived, averaged

and tabulated. Values are compared with the six-point performance metrics

Algorithm Sensitivity/
Recall (%)

Specificity (%) Precision (%) F1 Score (%) MCC (%)

Six
point

Nine
point

Six
point

Nine
point

Six
point

Nine
point

Six
point

Nine
point

Six
point

Nine
point

Decision Tree (j48) 37 38 90 93 17 85 23 41 16 54

SVM (functions_smo_npolyk) 36 37 89 93 16 57 22 41 15 36

Neural networks(functions_mlp) 36 38 89 92 16 80 22 43 15 53

Naïve Bayes (Bayes_Naïve
BayesUpdateable)

37 37 89 93 16 81 22 40 17 53
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Fig. 1 Methodology adopted to generate the classification model

Fig. 2 Workflow to annotate HPs across each classifier (Details in Additional file 2: Figure S1)
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1000 independent iterations of SVM, Naïve Bayes and

Perceptron algorithms. Instead of a k-fold cross-valid-

ation, we considered 1000 independent iterations and

averaged their results so as to avoid over-fitting, assum-

ing that a k for such a problem is beyond the scope of

this work. Further, we analysed the data using the Wai-

kato Environment for Knowledge Analysis (WEKA) soft-

ware package (version 3.8) [43] where 37 other learning

algorithms were used along with the aforementioned

four major algorithms. WEKA was implemented for

classifier design, training and evaluation. Finally, Jaccard

indices followed by training the datasets using machine

learning algorithms were used to infer heuristics.

Performance evaluation

Evaluating the performance of learning algorithms is a

central aspect of machine learning. Several measures in-

cluding cross-validation as a standard method [44] and a

10-fold cross-validation using WEKA were applied to

test the performance of the predictive model. To miti-

gate the over-fitting problem, the following measures

were used to evaluate the performance of the classifiers:

accuracy, sensitivity, specificity, F1 score, Matthew’s

Correlation Coefficient (MCC) [45, 46]. Specificity, Pre-

cision, Sensitivity and MCC of 1 indicate perfect predic-

tion accuracy [47].

The measures are defined as follows:

Accuracy = (TP + TN) / (TP + FN + FP + TN).

Sensitivity (Recall) = TP / (TP + FN).

Specificity = TN / (TN + FP).

Precision = TP / (TP + FP).

F1 Score = 2(Precision * Recall) / (Precision + Recall).

Matthews Correlation Coefficient (MCC).

= ((TP x TN) - (FP x FN)) / (TP + FP) (TP + FN)

(TN + FP) (TN + FN).

where TP: True Positives (positive samples classified

correctly as positive), TN: True Negatives (negative

samples classified correctly as negative), FP: False

Positives (negative samples predicted wrongly as

positive) and FN: False Negatives (positive samples pre-

dicted wrongly as negative).

Conclusion

We have proposed a nine-point classification scoring

schema to help functionally annotate the HPs. While a

large number of heuristics were interpreted to introduce

such problems, there is a strong need to ensure that the

HPs in question are provided a function in silico. An at-

tempt has been made to close the gap of providing func-

tional linkages to HPs. The addition of classification

features would possibly serve as a valuable resource for

analysing data and for understanding the

known-unknown regions. The potential regulatory func-

tion of HPs could be determined if there are larger cu-

rated datasets. However, this is also influenced by how

the HPs interact with each other, given a new set of di-

mensions in the form of next-generation sequencing to

the scientific community.
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