
A Model Transformation
from the Palladio Component Model

to Layered Queueing Networks

Heiko Koziolek1, Ralf Reussner2

1Graduate School Trustsoft ?

University of Oldenburg, Germany and
2Chair for Software Design and Quality

University of Karlsruhe, Germany
{koziolek,reussner}@ipd.uka.de

Abstract. For component-based performance engineering, software com-
ponent developers individually create performance specifications of their
components. Software architects compose these specifications to archi-
tectural models. This enables assessing the possible fulfilment of perfor-
mance requirements without the need to purchase and deploy the compo-
nent implementations. Many existing performance models do not support
component-based performance engineering but offer efficient solvers. On
the other hand, component-based performance engineering approaches
often lack tool support. We present a model transformation combining
the advanced component concepts of the Palladio Component Model
(PCM) with the efficient performance solvers of Layered Queueing Net-
works (LQN). Joining the tool-set for PCM specifications with the tool-
set for LQN solution is an important step to carry component-based per-
formance engineering into industrial practice. We validate the correctness
of the transformation by mapping the PCM model of a component-based
architecture to an LQN and conduct performance predictions.

1 Introduction

Although the computational power of modern hardware is constantly increasing,
many IT companies still face serious performance problems in their systems. This
can lead to reduced user satisfaction and high maintenance costs [30].

The increasing complexity of modern software systems makes it hard to anal-
yse performance properties at low abstraction levels. The idea of component-
based software performance engineering (CBSPE) is to let software architects
reason on the performance properties of their systems during design time at an
architectural level using performance specifications provided by different compo-
nent vendors. This enables them to manage the complexity of the performance
model, to identify performance-critical components, and to avoid poor designs.
? This work is supported by the German Research Foundation (DFG), grants GRK

1076/1 and RE 1674/1-2

For component developers, it is not trivial to supply performance specifica-
tions of their components. As components shall be composed and deployed in-
dependently, component developers cannot make assumptions on how software
architects compose components with others, how components will be deployed,
and how users will execute them. All these factors influence the performance
properties of a component. Therefore, component developers have to supply
parametrised specifications, which software architects can adapt to different en-
vironments.

Researchers have proposed several approaches with parametrised specifica-
tions to support CBSPE (e.g., [5, 9, 6]). However, none of these approaches has
reached industrial maturity due to still limited parametrisation concepts and
due to a lack of tool support [16]. The Palladio Component Model (PCM) [4] is
another proposal for CBSPE. It features component performance specification
parametrised for different resource environments, usage profiles, and calls to re-
quired services. There is a discrete-event simulator for performance analysis of
PCM instances, which, however, can be time-consuming for non-trivial systems.

Approaches for CBSPE can build on analytical methods for monolithic per-
formance models, after the software architect has composed the individual com-
ponent performance specifications, and tools have resolved their parametrisa-
tions. A mature monolithic performance model for distributed software systems
with an efficient analytical solver is provided by Layered Queueing Networks
(LQNs) [25]. Although there is an extension for LQNs to support CBSPE [32],
its parametrisation concept is still limited. Therefore, we do not use this exten-
sion in this work.

In this paper, we introduce a fully automated model transformation from
PCM to LQN. Software architects can use this transformation and the con-
nected LQN solver to assess the performance of a PCM instance. With the PCM
as input model, they can easily change parameter values in the PCM instance
and analyse different settings. Because the LQN solver relies on Mean-Value-
Analysis (MVA) and carries out an approximative performance prediction, it
allows quicker performance analysis than running the PCM discrete-event sim-
ulator in many cases.

The contributions of the paper are (i) a model transformation from PCM
to LQN, and (ii) a case study, where the transformation helped to analyse the
performance of a component-based system. A part of the transformation (i.e.,
solving parameter dependencies) can be reused for other model transformations.
To the best of our knowledge the transformation in this paper is the first imple-
mented and validated transformation from a component-based modelling lan-
guage to LQNs.

The remainder of this paper is organised as follows: Section 2 surveys related
work in the area of component-based performance engineering and model trans-
formations for LQN. Section 3 briefly introduces the basic concepts of PCM and
LQN. Section 4 describes the two-step model transformation involving the so-
lution of parameter dependencies and the mapping to LQNs. Section 5 presents
a case study applying the transformation on the model of a component-based

system. Section 6 discusses limitations of the transformation, before Section 7
concludes the paper.

2 Related Work

The area of software performance engineering (SPE) originates from the pio-
neering work of Connie Smith [26]. Balsamo et al. [1] have surveyed several ap-
proaches for SPE, which use annotated, UML-like design models and transform
them into performance models, such as queueing networks, stochastic process
algebra, or stochastic Petri nets. Becker et al. [3] compare different approaches
for CBSPE.

Several approaches introduce model transformations targeting LQNs. The
source models are annotated UML diagrams [23, 8, 31, 12], Use Case Maps [22],
and CSM [21]. These approaches do not support the specifics of component-based
systems. Grassi et al. [11] have defined the intermediate modelling language
KLAPER, which shall ease model transformations between different component-
based design models and performance models. A KLAPER to LQN mapping is
under development, and the work in this paper could be adapted to incorporate
this mapping. However, the performance annotations in KLAPER so far do not
follow defined semantics, which complicates automatic transformations.

Though some researchers have used LQNs to model component-based sys-
tems (e.g. [28, 29]), these approaches create single monolithic models, from which
individual component specifications cannot be reused for different systems, be-
cause they lack the necessary parametrisation.

Wu et al. [32] have extended LQNs with the Component-based Modeling Lan-
guage (CBML), which adds explicit provided and required interfaces to parts of
LQNs and therefore enables replacing these parts with other LQN parts conform-
ing to the same interfaces. This extension also features a form of parametrisation,
which for example allows adapting the number of thread instances available to
a component. The parametrisation however does not refer to input or output
parameters of a component service, which is supported by the PCM.

Besides LQNs, other performance models have been used to analyse the per-
formance of component-based software systems. Liu et al. [18] focus on EJB-
based systems and have created a benchmark for application servers. Combining
the benchmark results with an application model yields a queueing network,
which allows analysing an application architecture for different workloads. The
performance models created by this approach rely on certain EJB patterns and
are hardly reusable in different settings. Kounev [15] uses Queueing Petri Nets
(QPN) to model the SPEC jAppServer 2004, which consists of several software
components. However, the resulting model is monolithic and cannot be decom-
posed into individual, reusable models for single components.

3 Foundations

3.1 Palladio Component Model

The Palladio Component Model (PCM) is a meta-model for the specification of
component-based software systems and especially targets performance predic-
tions [4]. Besides the specification of software components (according to Szyper-
ski’s definition [27]) and connectors, it additionally allows modelling hardware
resources and resource demands of components. While UML models annotated
with the UML SPT profile [19] could be used to model similar information
as in the PCM, the PCM includes more advanced component concepts than
the UML and features a parametrisation concept, which enables independent
modelling by different component developers. The PCM is divided into sev-

<<CommunicationLinkResource>>
Network2

<<ResourceContainer>>
Database Server

<<ResourceContainer>>
Application Server

C

DBComp1 DBComp2 DBComp3

<<ExternalCallAction>>
method1

<<ExternalCallAction>>
method2

<<ExternalCallAction>>
method3

<<InternalAction>>
innerMethod

<<ResourceDemanding
ServiceEffectSpecification>>

<<GuardedBranch>>
Specification =
P(input2.VALUE<10)

<<GuardedBranch>>
Specification =
P(input2.VALUE>=10)

<<LoopAction>>
Specification =
input3.ELEMENTS

<<VariableUsage>>
ReferenceName = zInput
Type = BYTESIZE
Specification =
input1.BYTESIZE / 3

<<Parametric
ResourceDemand>>
Specification = 350 +
input1.BYTESIZE * 25
Unit = CPU Units

<<ResourceContainer>>
WebServer

A

B

WebForm1 WebForm2

<<Signature>>
void C.do(File input1, int input2, List input3)

<<CommunicationLinkResource>>
Network1

Fig. 1. A simple example PCM Instance

eral sub-models targeting specific developer roles. Component developers spec-
ify behavioural abstractions of their components and put them into repositories.
Software architects retrieve these specifications during design time and compose
them to the model of a complete software system. System deployers provide a
model that specifies the hardware environment and the allocation of components
to resources. Finally, domain experts use the PCM to specify the usage of the
system in terms of number of users, user flow, and input parameters.

As the PCM contains more than 100 meta-classes, we only provide a simple
example for a PCM instance here (Fig. 1) in a UML-like concrete syntax to

give the reader an idea of the PCM’s modelling capabilities (more details in
[4]). The figure’s left hand side contains an example component-based software
architecture (provided by a software architect) and its allocation to hardware
resources (provided by a system deployer).

Each component may include an abstract behavioural description for each
of its provided services (specified by the component developer), which is called
Resource Demanding Service Effect Specification (RDSEFF). It specifies the
resource demands of the service and its calls to required services. Fig. 1 depicts
an RDSEFF for the service do of the component C on the right hand side. The
service first calls an external service method1 and then uses the CPU of the
application server (internalMethod). The component developer specifies the
resource demand in an abstract unit (”CPU-Units”), which can be converted
into a timing values once the system deployer has specified the execution time
for a CPU unit. A single internal action can represent a large amount of code in a
single model element, thereby creating an abstraction from the implementation.

In this case, the resource demand is specified including a dependency to the
size of the service’s input parameter input1. Once the domain expert specifies
the size of this input parameter for the given application context (e.g., 1000),
the actual resource demand can be resolved (e.g., 25350 CPU Units). Because of
the parametrisation, the specification can be easily adapted for different usages
and hardware environments (not shown here) if the component is reused. Be-
sides parametrised resource demands, RDSEFFs also allow parametrised branch
transitions, loop iteration numbers, and input parameters to required services as
shown in Fig. 1. The RDSEFF parametrisation allows modelling performance an-
notations in dependency to the data flow between components, whereas in other
approaches (e.g., LQNs) the parametrisation only refers to single components.
There are several extensions for the PCM (e.g., [13, 2]) to reflect performance-
relevant influences by the middleware.

The PCM is specified in Ecore from the Eclipse Modelling Framework. There
are several graphical editors for the specification of PCM instances. There is
also a discrete-event simulation for PCM instances called SimuCom [4], which
enables deriving performance metrics such as response times, throughputs, and
resource demands of a complete system model, but can be time-consuming for
large models, because it supports arbitrary distributed service times. Finally,
several reverse engineering tools are under development [7, 14], which shall semi-
automatically derive components and RDSEFFs given arbitrary Java code.

3.2 Layered Queueing Networks

Layered Queueing Networks (LQN) [10] are a performance model in the class
of extended queueing networks. Other than plain QNs, LQNs model software
entities and their communication explicitly in a hierarchical structure. Like the
PCM, LQNs target the performance analysis of distributed business informations
systems, but unlike the PCM they do not support independent specification of
individual software components. There is an approximative, analytical solver
based on Mean-Value Analysis (MVA) for LQNs including M/M/n queues [25].

As an example, Fig. 2 shows a simple LQN instance in the standard con-
crete syntax. It is an acyclic graph and consists of processors (circles) and tasks
(parallelograms). Processors model hardware entities such as CPUs, hard disks,
or networks. Tasks model software entities, such as components, application
servers, databases, semaphores, or buffers. Tasks are arranged in a layered hi-
erarchy, where tasks from upper layers may send requests to tasks from lower
layers. Both processors and tasks contain a request queue (not depicted in the
figure), from which they serve waiting requests according to a specific scheduling
discipline (e.g., FCFS or Processor Sharing).

Entry
[10]

WebServer[5]
WebServer
Processor

Entry1
[2]

Entry
[0.05]

Database

Database
Processor

Entry2 Entry3
[0.2]

AppServer
Processor

+

&
A2

[0.5]
A3

[0.3]

A4
[0.09]

A5
[1.2]

A6
[0.002]

A1
[0.01]

ApplicationServer

(0.08)(0.22)(0.7)

(1)
0.850.15

(1)

Fig. 2. A simple example LQN Instance

Each task can contain multiple entries, which model the services provided
by the software entity. Entries either directly specify a resource demand to the
underlying processor of the tasks, or include a control flow graph containing
multiple activities, which issue such demands. Both entries and activities can
also make calls to the entries of tasks on lowers layers of the LQNs. These calls
can be synchronous (i.e., blocking the caller) or asynchronous (i.e., the control
flow of the caller continues immediately after issuing the request).

The control flow graphs for activities support sequences, branches, loops, and
forks. Other than in the PCM, branch probabilities and loop iteration numbers
have to be specified as constant values and cannot depend on input parameters.
Resource demands by activities or entries specify execution times as mean values
of exponential distributions.

If an entry does not include a control flow graph, its execution may consists
of up to three so-called phases, where each phase can request processing from

the underlying processor or call other entries. The implicit semantics of the
first phase is that the caller of the entry containing the phase blocks until it is
finished. The entry then generates a reply for the caller, after which the caller
continues execution. Concurrently, the entry executes the second and third phase
asynchronously from the caller. This models a common communication pattern
in distributed systems, which tries to ensure a high responsiveness by returning
control to clients as early as possible.

The top-most tasks in an LQN are called reference tasks. They model clients
and may include open or closed workloads. Open workloads specify an arrival
rate for incoming requests and do not bound the number of requests issued to
the system. Closed workloads specify a bounded number of users circulating in
the system (the user population). After completing execution of all requests, a
user re-enters the system after a given think time.

4 Model Transformation

4.1 Process

The model transformation and solution process from PCM instances to LQN
instances contains multiple steps (Fig. 3). First the different developer roles
specify their parts of the PCM instance. After the domain expert has created
the usage model, the PCM instance is complete and can be checked automatically
for syntactical inconsistencies.

Component
Specification
Component
Specification

PCM
Component

Specifications

PCM
System

Specification

PCM
Allocation

Specification

PCM
Usage

Specification

PCM Instance,
Computed
Contexts

LQN ModelPerformance
Indices

Dependency
Solver

PCM2LQNLQNS
LQNSim

<<Component
Developers>>

Composition
(manually)

Allocation
(manually)

Usage Modelling
(manually)

<<Software
Architect>>

<<System
Deployer>>

<<Domain
Expert>>

Fig. 3. Modelling and Transformation Process

The Dependency Solver (DS) takes the complete PCM model as input and
propagates parameter values specified in the usage model through all RDSEFFs,
substituting parameter references in these specifications with the actual val-
ues (Section 4.2). This step creates resource demands, branch probabilities, and
loop iteration numbers without parameter dependencies. Afterwards, the tool
PCM2LQN is responsible for mapping the model to an LQN instance (Sec-
tion 4.3) and executing the LQN solver for the performance prediction. The
tool-chain is fully automated after starting the DS and embedded into the PCM
bench.

4.2 Transformation 1: Dependency Solver

The DS combines the sub-models from the different developer roles and removes
the parametrisation from RDSEFF instances, so that they are prepared for a
mapping to a performance model. To clarify this process, we will first briefly
describe the PCM context model.

The PCM strictly separates information about the context (i.e., the compo-
sition, allocation, and usage) of a component from its own behavioural specifica-
tion, because this information is unknown to the component developer. Software
architects create a so-called assembly context for each component instance they
compose into an architecture. It stores the component instance’s binding to other
components. There can be multiple assembly contexts for a single component
type in an architecture, as a software architect can use multiple instances of the
same component in the same architecture.

System deployers create a so-called allocation context for each assembly con-
text specifying the component instance’s deployment to a particular hardware
resource. The usage of a component (i.e., the number of invocations and the used
parameter values) only needs to be specified at the system boundaries for com-
ponents directly interacting with users. The domain expert creates a so-called
usage model, which stores this information. The DS then traverses all RDSEFFs
using the binding specification from the assembly contexts and propagates the
parameter values from the usage model through the architecture.

Consider the example in Fig. 4. It depicts the output of the Dependency
Solver after processing the RDSEFF from Fig. 1 in two different contexts using
the usage model and processing resource specification at the top of the figure.
For example, the ResourceDemand of the left-hand side RDSEFF results from
the ParametricResourceDemand (350 + input1.BYTESIZE ∗ 25) seen before in
Fig. 1. The DS has substituted the actual parameter value specified in above’s
usage model (350 +60∗25 = 1850) and divided the expression by the processing
rate from the processing resource (1850/1.5 = 1233).

The PCM allows component developers to specify parameter dependencies
referring to the value, bytesize, length (for collections), or other performance-
relevant properties of a parameter [16]. The dependencies may include arith-
metic expressions (+,-,*,/) on resource demands or loop iteration numbers, and
boolean expressions (=, <,>,≤,≥, AND, OR) on branching guards (cf. Fig. 1).

The PCM does not only support characterising parameter values with con-
stant values, but also probability distributions. For example, the domain expert
could specify a.BYTESIZE = IntPMF[(10;0.2) (20;0.3) (30;0.5)] in the us-
age model, meaning that the size of a in bytes is 10 with a probability of 0.2.
Then, solving the parameter dependency for the example (2 * a.BYTESIZE) by
the DS would result in a RandomVariable with the value: IntPMF[(20;0.2)
(30;0.3) (40;0.5)].

Notice that parameter dependencies need not exactly reflect the precise, ac-
tual dependencies given by the code of the component, which is for example
often impractical for large components. A coarse abstraction of the dependency
focussing on the performance impact of a parameter is often sufficient.

<<ExternalCallAction>>
method1

<<ExternalCallAction>>
method2

<<ExternalCallAction>>
method3

<<InternalAction>>
innerMethod

<<ResourceDemanding
ServiceEffectSpecification>>

<<BranchProbability>>
Specification = 1.0

<<BranchProbability>>
Specification = 0.0

<<VariableUsage>>
ReferenceName = zInput
Type = BYTESIZE
Specification = 20

<<ResourceDemand>>
Specification = 1233
Unit = ms

<<UsageModel>>
input1.BYTESIZE = 60
input2.VALUE = -2
input3.ELEMENTS = 12

<<ProcessingResource>>
name = CPU
processingRate = 1.5

<<LoopIterations>>
Specification = 12

(a) RDSEFF in Context 1

<<ExternalCallAction>>
method1

<<ExternalCallAction>>
method2

<<ExternalCallAction>>
method3

<<InternalAction>>
innerMethod

<<ResourceDemanding
ServiceEffectSpecification>>

<<BranchProbability>>
Specification = 0.6

<<BranchProbability>>
Specification = 0.4

<<LoopIterations>>
Specification = 48

<<VariableUsage>>
ReferenceName = zInput
Type = BYTESIZE
Specification = 40

<<ResourceDemand>>
Specification = 4785
Unit = ms

<<UsageModel>>
input1.BYTESIZE = 120
input2.VALUE = (-1;0.6)(1;0.4)
input3.ELEMENTS = 48

<<ProcessingResource>>
name = CPU
processingRate = 0.7

(b) RDSEFF in Context 2

Fig. 4. Output of the Dependency Solver

The DS stores all solved expressions for parameter dependencies in the so-
called ”computed context model”, which is a decorator model for the PCM.
It includes a computed usage context model (meta-model in Fig. 5) , which
stores solved expressions for branch probabilities, loop iteration numbers and
input/output parameter values. Furthermore it includes a computed allocation
model (meta-model in Fig. 6), which stores solved expressions for resource de-
mands. These models are separated, because they result from different informa-
tion sources (i.e., the domain expert and the system deployer).

The model traversal by the DS starts with RDSEFFs of components at the
system boundaries. If these RDSEFFs contains calls to other RDSEFFs, the DS
successively also traverses those RDSEFFs. Upon finishing the traversal of an
RDSEFFs, the DS returns to the calling RDSEFF and creates the External-
CallOutput specification of the ComputedUsageContext, which may include a
solved parameter dependency to the return value or output parameter character-
isations specified in the called RDSEFF. The DS traverses each loop body in the
RDSEFF only once, which is sufficient for solving the parameter dependencies.

After the DS has traversed the whole model and created all computed context
models, this decorated PCM instance is ready for the transformation into a
performance model. A more detailed description of the DS can be found in [16].
Although the following only describes the mapping to LQNs, transformations to

0..*
+parameterCharacterisations

0..*
+parameterCharacterisations

+externalCallOutput
0..*0..*

+externalCallInput
1
+output

1
+input

1
+loopAction

0..*
+loopIterations

+branchTransition
1

+branchProbabilities
0..*

1

+assemblyContext +usageContexts0..*

context::
ComputedUsage

context::Computed
UsageContext

context::
LoopIteration

context::Branch
Probability

context::Ex-
ternalCallInput

context::Ex-
ternalCallOutputcontext::Input context::Output

pcm:Assembly
Context

pcm:External
CallAction

pcm::
VariableUsage

pcm::Abstract
BranchTransition

pcm::Abstract
LoopAction

+parameterCharacterisations
0..* 0..*

+parameterCharacterisations

+specification

1

+externalCallAction

1

+externalCallAction

1

pcm::Random
Variable

branchProbability:Double

Fig. 5. Computed Usage Context (Meta-Model)

+randomVariable11+parametricResourceDemand

0..* +resourceDemands

+allocationContexts0..*

context::Com-
putedAllocation

context::Computed
AllocationContext

context::Computed
UsageContext

pcm::Allocation
Context

context::
ResourceDemand

pcm::Parametric
ResourceDemand

pcm::
RandomVariable

1

+usageContext+allocationContext

1

Fig. 6. Computed Allocation Context (Meta-Model)

other performance models can be applied at this point. For example, there is a
transformation to Stochastic Regular Expressions [17].

4.3 Transformation 2: PCM2LQN

The second transformation PCM2LQN maps a PCM instance decorated with
computed contexts to an LQN instance. This transformation is documented in
detail in [16]. Due to space reasons, this papers describes the mapping with an
example, provides an overview of the complete mapping, and highlights chal-
lenges of the transformation due to semantic gaps between PCM and LQN.

Example Fig. 7 demonstrates how PCM2LQN maps the RDSEFF from Fig. 4(b)
into an LQN. Each RDSEFF is mapped into an LQN task with a task activ-
ity graph. Although PCM2LQN could map all RDSEFFs of a single component
to a single LQN task with multiple entry activity graphs, this has not been
implemented, as the LQN solvers so far do not support entry activity graphs.

<<ExternalCallAction>>
method1

<<ExternalCallAction>>
method2

<<ExternalCallAction>>
method3

<<InternalAction>>
innerMethod

<<ResourceDemanding
ServiceEffectSpecification>>

<<BranchProbability>>
Specification = 0.6

<<BranchProbability>>
Specification = 0.4

<<LoopIterations>>
Specification = 48

<<VariableUsage>>
ReferenceName = zInput
Type = BYTESIZE
Specification = 40

<<ResourceDemand>>
Specification = 4785
Unit = ms

PCM2LQN

+

A2
[0.0]

A3
[0.0]

A4
[0.0]

0.60.4

Entry

A1
[0.0]

+

A5
[0.0]

RDSEFF-do-Task

RDSEFF-doLoop1-Task

RDSEFF-method3-Task

RDSEFF-method1-Task

1

1

1

48

RDSEFF-method2-Task

1

Dummy
Proc

CPU

Dummy
Proc

Dummy
Proc

Dummy
Proc

Dummy
Proc

E1
[0.4785]

E2
[...] AppServerCPUTask

Fig. 7. PCM2LQN Example: Transforming an RDSEFF to LQN fragments

PCM2LQN transforms each ExternalCallAction into an LQN activity with
zero host demand and a synchronous call to the task representing the called
RDSEFF. The activities A1 and A4 in the example have resulted from this
mapping.

PCM InternalActions model computations by a component service, which
execute on the resources the component is deployed on. Every InternalAction
can contain several ResourceDemands directed at specific resources, such as a
CPU or hard disk. PCM2LQN creates an activity for the InternalAction and
for each ResourceDemand (A2 in the example) and connects them sequentially.

RDSEFFs can reference multiple resources, but LQN tasks can run only on
a single LQN processor. Thus, PCM2LQN converts PCM ResourceDemands to
LQN entries, which are added to the task running on the processor created
for the resource referenced by the ResourceDemand (E1 in the example). The
activities created for the resource demand call these entries synchronously.

For the host execution demand of these entries, PCM2LQN either directly
uses the PCM resource demand specification if is a constant or computes its
expected value if is a probability distribution. This step is necessary as LQNs
only support mean value resource demands. It lowers the accuracy of the model
as information about the distribution gets lost.

The control flow constructs of branch and sequence can directly be mapped
to their counterparts in LQN task graphs. PCM2LQN accesses the computed
usage context for a given RDSEFF to retrieve the branch probabilities (0.4 and
0.6 in the example) and uses them in the task graph.

Although LQN activity graphs support loops, these loops may only contain
a sequence of activities, but not branches or nested loops. PCM Loop bodies
instead allow arbitrary behaviour. Therefore PCM2LQN creates a new LQN task
for each loop body. Within this task, the LQN can include arbitrary behaviour
and model the PCM loop body.

The tasks created for the loop body is called as often as the specified number
of loop iterations (48 in the example). If the number of loop iterations is spec-
ified with a probability distribution, PCM2LQN uses its expected value for the
number of calls to the loop body task.

The tasks created for RDSEFFs and loop bodies run on dummy LQN pro-
cessors, which they do not use. PCM2LQN creates these processors to make
the model valid for the LQN solvers. Only the LQN processors created for
PCM ProcessingResources are actually used by LQN tasks. Their mapping
is straight forward, as PCM2LQN can directly map their processing rates to the
speed-factor of LQN processors, and their scheduling policies to LQN scheduling
policies.

Mapping Overview Tab. 4.3 depicts a complete overview of the transforma-
tion. The first column refers to meta-classes from the PCM. The second and third
column refer to the corresponding meta-classes from the LQN meta-model. The
second column contains the main classes of the mapping, and the third column
contains additionally created classes to make the LQN instance syntactically
correct or to model control flow precedence.

In addition to the meta-classes, the values contained in the brackets refer to
attributes of these classes. The table only includes the attributes of a meta-class
if PCM2LQN maps to another value than the default value (documented in [24]),
otherwise the attribute is left out in the table for brevity. For example, for an
Activity of a LQN the default hostDemand is zero, therefore all Activities
without a hostDemand attribute in the table have an implicit hostDemand of
zero.

Table 1. Transformation PCM2LQN

PCM LQN LQN ‐ supplemental
ResourceEnvironment
prs:ProcessingResourceSpecification Processor (scheduling=prs.schedulingPolicy,

speedFactor=prs.processingRate)
Task, Entry

UsageModel
cw:ClosedWorkload Task (scheduling=ref,

thinkTime=expectedValue(cw.thinkTime),
multiplicity=cw.population)

Processor, Entry

ow:OpenWorkload Task (scheduling=ref), Entry
(openArrivalRate=1/expectedValue(ow.interArrivalTime))

Processor

sb:ScenarioBehaviour TaskActivityGraph
elsc:EntryLevelSystemCall Activity(synchCall) Precedence (pre=elsc,

post=elsc.successor)
d:Delay Activity(thinkTime=expectedValue(d.userDelay)) Precedence (pre=d,

post=d.successor)
b:Branch Activity, Precedence(pre=b, postOR=bt_1..n), Precedence

(preOR=bt_1..n, post=b.successor)
bt:BranchTransition ActivityOr(prob=bt.branchProbability)
l:Loop Activity (synchCall, callsMean=expectedValue(l.iterations)) Processor, Task, Entry,

Precedence (pre=l,
post=l.successor)

RDSEFF
rdb:ResourceDemandingBehaviour TaskGraph Processor, Task, Entry
st:StartAction ‐
sp:StopAction ReplyActivity, ReplyEntry
eca:ExternalCallAction Activity(synchCall) Precedence (pre=eca,

post=eca.successor)
ba:BranchAction Activity, Precedence(pre=ba, postOR=abt_1..n), Precedence

(preOR=abt_1..n, post=ba.successor)
abt:AbstractBranchTransition ActivityOr(prob=computedUsageContext(abt).branchProbabi

lity)
la:LoopAction Activity (synchCall, callsMean=

expectedValue(computedUsageContext(l). iterations))
Processor, Task, Entry,
Precedence (pre=la,
post=la.successor)

cia:CollectionIteratorAction Activity (synchCall, callsMean=
expectedValue(computedUsageContext(cia). iterations))

Processor, Task, Entry,
Precedence (pre=cia,
post=cia.successor)

ia:InternalAction Activity(hostDemand=0) Precedence (pre=ia,
post='first prd'), Precedence
(pre='last prd',
post=ia.successor)

prd:ParametricResourceDemand Activity(synchCall), Entry,
PhaseActivity(hostDemand=expectedValue(computedUsage
Context(prd).resourceDemand))

Precedence (pre=prd,
post='next prd')

sva:SetVariableAction ‐
fa:ForkAction, sp:SynchronisationPoint Activity, Precedence(pre=fa, postAND=rdb_1..n),

Precedence (preAND=rdb_1..n, post=fa.successor)
pr:PassiveResource Task(schedDisc=semaphore), Entry (signal), Entry (wait)

aa:AcquireAction Activity(synchCall, dest='wait') Precedence (pre=aa,
post=aa.successor)

ra:ReleaseAction Activity(synchCall, dest='signal') Precedence (pre=ra,
post=ra.successor)

Several LQN classes reference each other using strings, which refer to the
name attribute of other classes. The LQN’s Precedence classes use this mecha-
nism to connect individual Activities to an activity graph. The table does not
include all reference strings used in the transformation as they add little value
to understanding the transformation.

The mapping for PCM usage models is similar to mapping of RDSEFFs.
With them, domain experts specify user behaviour in terms of workload, scenar-
ios, and calls to RDSEFFs. PCM2LQN maps the included ClosedWorkloads to
LQN reference tasks (i.e., scheduling=ref). Such tasks only emit requests, and
cannot serve requests themselves. The attribute population (i.e., the number
of concurrent users) of the ClosedWorkload is equivalent to the multiplicity at-
tribute of the new reference task. The attribute thinkTime (i.e., the time a user
waits before re-entering a scenario after completing it) is mapped to the LQN
task think time.

PCM OpenWorkloads are also mapped to reference tasks. However, in this
case their think time is 0.0 and their multiplicity is 1 (i.e., the default values).
PCM2LQN transforms the OpenWorkload’s interArrivalTime into a rate us-
ing the expected value of the specified probability distribution. This rate is
used as the open arrival rate for the entry in the newly created reference task.
PCM2LQN maps the rest of the usage model similarly to RDSEFFs, therefore
we omit a detailed description.

In addition to the mappings shown in the example PCM2LQN also supports
mapping RDSEFF ForkActions. They model the invocation of threads and
their concurrent execution. The mapping to LQNs is similar to the mapping for
branches. PCM2LQN uses an AND precedence to create the fork and creates
new tasks for the forked behaviours. After they have finished execution, another
precedence merges the forked control flow together again. So far, the mapping
only supports synchronous forks.

In the PCM, components can have PassiveResources, which can be used to
model semaphores or thread pools. LQNs use special tasks to model semaphores.
These tasks have the scheduling discipline ’semaphore’ and contain two entries
named ’wait’ and ’signal’. The first entry allows requesting the semaphore, while
the second entry models returning the semaphore. PCM2LQN creates such a
task for each PassiveResource in the PCM instance. The AcquireAction and
ReleaseActions are mapped to activities with synchronous calls to the ’wait’
entry or ’signal’ entry respectively.

Prototypical Implementation PCM2LQN uses three visitors (implemented
in Java) to traverse the PCM’s ResourceEnvironment, UsageModel, and RDSEFF
models. The navigation between the RDSEFFs is managed by using the assem-
bly contexts and looking up the connected components in the PCM System
specification.

PCM2LQN creates instances of an LQN meta-model in Ecore. This meta-
model has been generated with EMF from the LQN-XML schema provided with
the LQN tools (Version 3.12, cf. [24]). Once the visitors of PCM2LQN have

traversed the whole PCM instance, an object representation of the LQN instance
has been created. Using the XML serialisation of EMF, PCM2LQN then saves
this representation to an XML file, which is the input of the LQN solvers.

5 Case Study

The following case study serves to demonstrate the correctness of the model
transformation introduced in this paper. We have modelled a component-based
software system as a PCM instance and used the Dependency Solver described
in Section 4.2 as well as PCM2LQN described in Section 4.3 to generate an
LQN and run the LQN solvers for performance analysis. Additionally, the case
study points out the benefits of a parametrised, component-based performance
specification as the PCM, which enables model reuse and analysis of the impact
of different usage profiles, hardware resources, and component compositions to
performance.

The case study investigates the so-called ”Business Reporting System” (BRS),
which is loosely based on an industrial system. We only present performance pre-
dictions based on the model and do not provide comparisons with measured data.
The validity of LQN performance predictions have been shown in former studies
(e.g., [10]) and are out of scope for this paper. We assume that the PCM instance
of the BRS with its control flow and resource demands reflects the performance
properties of the modelled system well.

WebServer

Reporting
Engine

Cache

Scheduler Database

Entries.NUMBER_OF_ELEMENTS = 50000

<<InternalAction>>
demand = 0.03

<<InternalAction>>
demand = 0.25

<<ExternalCallAction>>
IReporting.report

<<ExternalCallAction>>
IReporting.view

P(type ==
„view“)P(type ==

„report“)

<<InternalAction>>
demand =DoublePDF[(0.01;0.05)(0.02;0.05)(0.03;0.9)]

+ 1E-7 * Entries.NUMBER_OF_ELEMENTS

<<InternalAction>>
demand = 1.0

<<InternalAction>>
demand = DoublePDF[(0.28;0.3)

(0.29;0.3)(0.3;0.3)(0.31;0.1)]

<<InternalAction>>
demand = DoublePDF[
(0.025;0.1)(0.03;0.9)]

P(detailedView == false)P(detailedView == true)

<<ExternalCallAction>>
IDB.getAggregatedReport

<<ExternalCallAction>>
IDB.getFullReport

iterations =
requestedEntries.VALUE

<<InternalAction>>
demand = DoublePDF[(0.24;0.3)

(0.25;0.4)(0.26;0.3)]

<<ExternalCallAction>>
ICache.doCacheAccess

iterations = 2

iterations =
requestedEntries.
VALUE

<<RDSEFF>><<RDSEFF>> <<RDSEFF>> getAggregatedReport

<<InternalAction>>
demand = DoublePDF[(0.2;0.1)(0.3;0.6)(0.4;0.3)]
+ 0.000002 * Entries.NUMBER_OF_ELEMENTS

<<RDSEFF>> getFullReport

<<InternalAction>>
demand =DoublePDF[(0.1;0.2)(0.2;0.6)(0.3;0.2)]

<<RDSEFF>> getCachedData

processRequests report

IReporting IReporting

ICache

IDB

Fig. 8. Business Reporting System (Palladio Component Model)

The BRS is a 4-tier, web-based system to monitor and manage business
data. On a high abstraction level, it consists of 5 software components (Fig. 8
at the top). Clients either request business reports or specific entries from the
database via the WebServer. A Scheduler connects the WebServer with an
ApplicationServer. The latter contains a component ReportingEngine, which
manages the creation of reports, and a component Cache, which buffers data from
the database for quick access. Both, the ReportingEngine and the Cache query
the component Database, which stores a configurable amount of entries in its
tables.

Fig. 8 shows PCM RDSEFFs for services of the WebServer, Reporting-
Engine, and Database at the bottom. The whole model consists of nine RD-
SEFFs, some have been omitted for brevity1. The first RDSEFF process-
Requests includes parameter dependencies, which determine branch probabil-
ities according to the probabilities specified in the PCM usage model for the
type of requested services (i.e., report or view). It also contains some constant
resource demands to the WebServer’s CPU.

The second depicted RDSEFF (report) from the ReportingEngine chooses
a branch depending on whether the users request detailed reports or not. Detailed
reports result in longer calls to the database. As the BRS also allows users to
specify the number of entries in the generated reports, the loops in this RDSEFF
are iterated as many times as the number of requested entries. Finally, this
RDSEFF contains resource demands specified as probability density functions
(PDF).

The three RDSEFFs on the right hand side of the figure represent services
from the database system and do not include calls to other components. The
resource demands specified in the upper two RDSEFFs depend on the number
of entries specified in the Database. A larger number of entries results in longer
queries. The component developer of the Database has made this relationship
explicit, so that different software architects can adjust the model to their an-
ticipated number of entries in the database.

The full PCM instance of the BRS additionally includes an usage model and
a resource environment model, which are not illustrated here. Network traffic is
considered negligible in the model.

Running the formerly described model transformations on the PCM instance
of the BRS yields the LQN, schematically depicted in Fig. 9. The illustration
only shows entries including non-zero host demands to the underlying processors,
and only shows processors which are actually used by task. The complete model
contains a processor for each task to make it valid for the solvers. The illustration
also does not display the task activity graphs generated for the RDSEFFs.

Notice, how the loops of the RDSEFFs result in additional tasks and how the
resource demands of RDSEFFs result in LQN entries as described in Section 4.3.
For example, PCM2LQN has mapped the four resource demands of the RDSEFF
process (seen in Fig. 8) to the entries E1-E4 of the AppServerTask in Fig. 9.

1 The full PCM instance of the BRS system as well as PCM2LQN are available for
download at http://www.palladio-approach.net.

CPU

UsageScenario

Webserver.processRequest

UsgScnLoop

ReportingEngine.report ReportingEngine.view

Scheduler.report Scheduler.view

Cache.doCacheAccess

E1 E2 E3 DatabaseTask

E1 E2 WebServerTask

RE.reportLoop1 RE.reportLoop2

E1 E2 E3 E4 E5 E6 AppServerTask CPU

CPU

Database.getAggregatedReport Database.getFullReport Database.getCachedData

RE.reportLoop3

Fig. 9. Business Reporting System (Layered Queueing Network, Schematic Illustra-
tion)

PCM2LQN determines the expected values for the probability density functions
specified in the RDSEFFs and uses them in the LQN.

In our performance analysis, we predict the performance of the system for
different usage profiles. This only requires changing the PCM usage model and
not the PCM RDSEFFs, as the dependency solver automatically determines the
branch probabilities, loop iterations numbers and resource demands for a given
usage model. Here, we do not alter other possible parameters of the model, such
as the speed of hardware resources or the composition of the components to keep
the case study managable.

Table 2. Usage Profiles for the Business Reporting System

Usage Profile 1 Usage Profile 2 Usage Profile 3
Type of request 25% report,75% view 40% report, 60% view 10% report, 90% view
Number of requested entries 10 5 7
Detailed reports 20% yes, 80% no 70% yes, 30% no 10% yes, 90% no
Entries in Database 50000 10000 100000

Tab. 5 contains the three usage profiles used for the prediction. Users can
change the type of requests, the number of entries per request, and decide
whether they want detailed reports or not. Additionally, the number of entries
in the database is part of the usage profiles and needs to be specified by the soft-
ware architect. Here, the three usage profiles are not based on specific realistic
settings, and only serve to demonstrate the prediction capabilities of the model.

200

250

300

350

400

m
e
(S
ec
on

ds
)

Usage Profile 1

Usage Profile 2

Usage Profile 3

0

50

100

150

0 20 40 60 80 100 120

Re
sp
on

se
 T
i

User Population

(a) Response Times

0,2

0,25

0,3

0,35

0,4

eq
ue

st
s/
Se
co
nd

) Usage Profile 1

Usage Profile 2

Usage Profile 3

0

0,05

0,1

0,15

,

0 20 40 60 80 100 120

Th
ro
ug
hp

ut
 (R

e

User Population

(b) Throughputs

Fig. 10. Performance Indices Business Reporting System

Running the transformation and the LQN solver for all usage profiles took less
than 5 seconds in each case. We analysed the response time and throughput of the
system for the different usage profile and an increasing user population (Fig.10).
In some cases with a higher user population (> 60 users), the LQN solver did
not converge, so that we used the LQN simulator to obtain the depicted results.
The curves indicate that the system will be saturated for more than 64 users
(usage profile 1), or more than 32 users (usage profile 2), or more than 96 users
(usage profile 3).

6 Limitations

The model transformation introduced in this paper enables solving PCM in-
stances with LQN solvers. It is beneficial for software architects, who can quickly
analyse the performance properties of their design models. The parametrisation
in PCM instances enables them to easily change the modelled usage profile,
hardware environment, or component assembly and assess different design alter-
natives. However, there are still some open issues for the transformation:

– Information Loss: Some information within a PCM instance is lost when
mapping to an LQN. For example, PCM2LQN computes the expected values
of general distribution functions specified in an PCM instance and uses them
in the LQN to specify resource demands and loop iteration numbers. There-
fore, using LQN solvers for performance prediction is not useful if general
distributions functions are of interest.

– Exploiting more LQN constructs: LQNs support more communication
concepts between software entities than the PCM. For example, they allow
asynchronous communication, forwarding of requests, and multiple phases.
It is desirable to extend the PCM in the future to support more of these
concepts, so that a larger number of systems can be analysed.

– Incorporating Intermediate Modelling Languages: KLAPER [11] and
CSM [21] are intermediate modelling languages, which shall ease the imple-
mentation between design-oriented models, such as the PCM, and analysis-
oriented models, such as LQNs. Transformations from these languages to

LQNs are planned, but not yet implemented. Once these transformations
become available, the model transformation should be adapted to incorpo-
rate them.

– Solver Feedback: Mapping PCM instances to LQN instances and running
the solver has been fully automated and integrated into the PCM bench.
However, the current implementation simply prints the textual solver results
to the screen, so that the performance analyst has to interpret them. For the
future, a more sophisticated feedback of the solver results into the PCM
instance would be desirable, so that LQNs become fully transparent for the
analyst.

– Standardised Transformation Language: We have implemented the
both the Dependency Solver and PCM2LQN as ad-hoc Java transformations.
Once engines for standardised transformations languages such as QVT be-
come available, it is desirable to use QVT to implement the transformation.

– Standardised Design Model: Instead of UML, the PCM is a propri-
etary modelling language specifically designed for the performance analysis
of component-based software systems. So far, existing UML models cannot
be reused without manual overhead when specifying a PCM instance. A
transformation from UML models to PCM instances could enable reusing
parts of existing UML models and lower the reservation of using the PCM
in industry.

7 Conclusions

The model transformation introduced in this paper connects efficient perfor-
mance solvers for monolithic software architectures to a component-based per-
formance modelling language. The transformation bridges differences of LQNs
and PCM instances, by for example mapping distribution functions to expected
values and allowing components to access multiple resources. We have embed-
ded the transformation into the PCM bench for modelling and analysing PCM
instances, so that performance analysts can use the LQN solvers for quick per-
formance predictions. While the solvers are more efficient than the current PCM
simulator SimuCom, they only deliver mean-value performance indices instead
of distribution functions.

Having component-based, parametrised performance specifications such as in
the PCM has several benefits. It allows reusing the performance specification in
different contexts such as hardware environments, usage profiles and component
assemblies. PCM RDSEFFs shall be stored in public repositories, so that dif-
ferent software architects can incorporate them into their architectural models.
The parametrisation allows the different participating developer roles to model
independently from each other. As RDSEFFs specify resource demands, loop
iteration numbers, and branch probabilities in dependency to parameter values,
it is easily possible to adjust the specification for different usage profiles. This
is usually not possible in monolithic models (e.g., annotated UML diagrams),
where for example the dependency between a branch probability and input pa-
rameters is not explicitly specified.

For the future, we plan to implement the transformation in a standardised
transformation language such as QVT [20]. It is also desirable to map PCM in-
stances into intermediate modelling languages such as CSM [21] or KLAPER [11]
to enable transformation into even more performance models and exploit the
specifics of these models. Another area of improvement is the feedback of the
solver results into the PCM model, so that the performance models become fully
transparent for software architects.

References

1. Simonetta Balsamo, Antinisca DiMarco, Paola Inverardi, and Marta Simeoni.
Model-based performance prediction in software development: A survey. IEEE
Trans. Softw. Eng., 30(5):295–310, May 2004.

2. Steffen Becker. Coupled Model Transformations. In Proc. 7th International Work-
shop on Software and Performance (WOSP’08). ACM Sigsoft, June 2008. To
Appear.

3. Steffen Becker, Lars Grunske, Raffaela Mirandola, and Sven Overhage. Perfor-
mance Prediction of Component-Based Systems: A Survey from an Engineering
Perspective. In Ralf Reussner, Judith Stafford, and Clemens Szyperski, editors,
Architecting Systems with Trustworthy Components, volume 3938 of LNCS, pages
169–192. Springer, 2006.

4. Steffen Becker, Heiko Koziolek, and Ralf Reussner. Model-based Performance Pre-
diction with the Palladio Component Model. In Proc. 6th International Workshop
on Software and Performance (WOSP’07), pages 56–67. ACM Sigsoft, February
2007.

5. Antonia Bertolino and Raffaela Mirandola. CB-SPE Tool: Putting component-
based performance engineering into practice. In Ivica Crnkovic, Judith A. Stafford,
Heinz W. Schmidt, and Kurt C. Wallnau, editors, Proc. 7th International Sym-
posium on Component-Based Software Engineering (CBSE’04), volume 3054 of
LNCS, pages 233–248. Springer, 2004.

6. Egor Bondarev, Peter de With, Michel Chaudron, and Johan Musken. Modelling
of Input-Parameter Dependency for Performance Predictions of Component-Based
Embedded Systems. In Proc. of the 31th EUROMICRO Conference (EUROMI-
CRO’05), 2005.

7. Landry Chouambe, Benjamin Klatt, and Klaus Krogmann. Reverse Engineering
Software-Models of Component-Based Systems. In Proc. of the 12th European Con-
ference on Software Maintenance and Reengineering (CSMR’08), Athens, Greece,
April1–4 2008. IEEE. To appear.

8. Andrea D’Ambrogio. A model transformation framework for the automated build-
ing of performance models from UML models. In Proc. 5th International Work-
shop on Software and Performance (WOSP’05), pages 75–86, New York, NY, USA,
2005. ACM Press.

9. Evgeni Eskenazi, Alexandre Fioukov, and Dieter Hammer. Performance Pre-
diction for Component Compositions. In Proc. 7th International Symposium
on Component-based Software Engineering (CBSE’04), volume 3054 of LNCS.
Springer, 2004.

10. Greg Franks. Performance Analysis of Distributed Server Systems. PhD thesis,
Department of Systems and Computer Engineering, Carleton University, Ottawa,
Ontario, Canada, December 1999.

11. Vincenzo Grassi, Raffaela Mirandola, and Antonino Sabetta. Filling the gap be-
tween design and performance/reliability models of component-based systems: A
model-driven approach. Journal on Systems and Software, 80(4):528–558, 2007.

12. Gordon P. Gu and Dorina C. Petriu. From UML to LQN by XML algebra-based
model transformations. In Proc. 5th International workshop on Software and Per-
formance (WOSP’05), pages 99–110, New York, NY, USA, 2005. ACM.

13. Jens Happe, Holger Friedrichs, Steffen Becker, and Ralf Reussner. A Configurable
Performance Completion for Message-Oriented Middleware. In Proc. 7th Interna-
tional Workshop on Software and Performance (WOSP’08). ACM Sigsoft, June
2008. To Appear.

14. Thomas Kappler, Heiko Koziolek, Klaus Krogmann, and Ralf Reussner. Towards
Automatic Construction of Reusable Prediction Models for Component-Based Per-
formance Engineering. In Proc. Software Engineering 2008 (SE’08), LNI. GI,
February 2008. To Appear.

15. Samuel Kounev. Performance Modeling and Evaluation of Distributed Component-
Based Systems Using Queueing Petri Nets. IEEE Trans. Softw. Eng., 32(7):486–
502, July 2006.

16. Heiko Koziolek. Parameter Dependencies for Reusable Performance Specifications
of Software Components. PhD thesis, University of Oldenburg, Germany, March
2008.

17. Heiko Koziolek, Steffen Becker, and Jens Happe. Predicting the Performance of
Component-based Software Architectures with different Usage Profiles. In Proc.
3rd International Conference on the Quality of Software Architectures (QoSA’07),
volume 4880 of LNCS, pages 145–163. Springer, Juli 2007.

18. Yan Liu, Alan Fekete, and Ian Gorton. Design-level performance prediction of
component-based applications. IEEE Trans. Softw. Eng., 31(11):928–941, 2005.

19. Object Management Group (OMG). UML Profile for Schedulability, Performance
and Time, 2005. last retrieved 2008-01-13.

20. Object Management Group (OMG). MOF QVT final adopted specification
(ptc/05-11-01), 2006. last retrieved 2008-01-13.

21. Dorin B. Petriu and Murray Woodside. An intermediate metamodel with scenarios
and resources for generating performance models from UML designs. Journal of
Software and Systems Modeling, 6(2):163–184, June 2006.

22. Dorin C. Petriu and C. Murray Woodside. Software Performance Models from
System Scenarios in Use Case Maps. In Proc. 12th International Conference on
Computer Performance Evaluation, Modelling Techniques and Tools (TOOLS’02),
pages 141–158, London, UK, 2002. Springer-Verlag.

23. Dorina C. Petriu and Hui Shen. Applying the UML Performance Profile: Graph
Grammar-Based Derivation of LQN Models from UML Specifications. In Proc.
12th International Conference on Computer Performance Evaluation, Modelling
Techniques and Tools (TOOLS’02), pages 159–177, London, UK, 2002. Springer-
Verlag.

24. Real-Time and Distributed Systems Group, Carleton University. Layered Queueing
Network Documentation. last retrieved 2008-01-13.

25. J. A. Rolia and K. C. Sevcik. The method of layers. IEEE Trans. Softw. Eng.,
21(8):689–700, 1995.

26. C.U. Smith. Performance Engineering of Software Systems. Addision-Wesley, 1990.

27. Clemens Szyperski, Daniel Gruntz, and Stephan Murer. Component Software:
Beyond Object-Oriented Programming. Addison-Wesley, 2002.

28. Alexander Ufimtsev and Liam Murphy. Performance modeling of a JavaEE
component application using layered queuing networks: revised approach and a
case study. In Proc. International Workshop on Specification and Verification of
Component-based Systems (SAVCBS ’06), pages 11–18, New York, NY, USA, 2006.
ACM.

29. T. Verdickt, B. Dhoedt, F. De Turck, and P. Demeester. Hybrid Performance
Modeling Approach for Network Intensive Distributed Software. In Proc. 6th In-
ternational Workshop on Software and Performance (WOSP’07), ACM Sigsoft
Notes, pages 189–200, February 2007.

30. Murray Woodside, Greg Franks, and Dorina Petriu. The Future of Software Perfor-
mance Engineering. In Future of Software Engineering (FOSE ’07), pages 171–187,
Los Alamitos, CA, USA, May 2007. IEEE Computer Society.

31. Murray Woodside, Dorina C. Petriu, Dorin B. Petriu, Hui Shen, Toqeer Israr, and
Jose Merseguer. Performance by unified model analysis (puma). In WOSP ’05:
Proceedings of the 5th international workshop on Software and performance, pages
1–12, New York, NY, USA, 2005. ACM Press.

32. Xiuping Wu and Murray Woodside. Performance Modeling from Software Com-
ponents. In Proc. 4th International Workshop on Software and Performance
(WOSP’04), volume 29, pages 290–301, New York, NY, USA, 2004. ACM Press.

