

A Modeling Framework for Analyzing Process Architecture
Transformations in the Software-Enabled Enterprise

 by

Zia Babar

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Faculty of Information
University of Toronto

© Copyright by Zia Babar 2020

ii

A Modeling Framework for Analyzing Process Architecture

Transformations in the Software-Enabled Enterprise

Zia Babar

Doctor of Philosophy

Faculty of Information
University of Toronto

2020

Abstract

Software is becoming a fundamental enabler of all kinds of evolving enterprise capabilities and

opportunities. For the enterprise to take advantage of software-based technologies, there will be

redesigns of processes that are responsible for the development of software, and the business

processes where these software are used. There exists extensive work on business process

modeling and analysis however, it is not adequate to study and optimize processes in isolation as

enterprise objectives are attained by multiple interrelated processes as a collection. We refer to a

collection of processes and their interrelationships as a process architecture.

By repositioning decision points within a process architecture, an enterprise can take better

advantage of software flexibility and data-driven capabilities. In this thesis research, we model and

analyze process architecture reconfigurations and study possible alternative configurations of these

process architectures, with emphasis on adaptability and flexibility. Through reconfigurable and

flexible process architectures, enterprises can respond to changing situations by selecting suitable

process architecture alternatives that best meets enterprise business objectives.

iii

We introduce the hiBPM framework to support the study of process architecture reconfigurations.

A hiBPM model describes processes, and their relationships and interactions needed to accomplish

enterprise objectives. hiBPM emphasizes the existence of various decision-making points and

offers expressiveness to allow relevant architectural properties to be analyzed, and to contrast

amongst alternative process architecture configuration options. Through hiBPM, enterprise

architects can explore alternatives to come up with process architecture that enable enterprise

flexibility while factoring in other non-functional criteria, such as the time or cost involved.

This thesis research used design science research to determine hiBPM framework design artifacts,

and case study research for the evaluation and validation of the developed conceptual modeling

framework. The case studies performed contributed to the validation of the hiBPM framework by

highlighting the varying degrees of plan and design completeness suitable to different contexts and

situations within the enterprise under uncertain conditions, elaborating on the different types of

processes in the process architecture and their relationships, and determining additional processes

that were necessary for meeting of enterprise functional and non-functional requirements.

iv

Acknowledgments

The attainment of my doctoral degree could not have been possible without the support and

guidance of many individuals.

I would like to recognize Professor Eric Yu for enabling me to get to this stage. I originally reached

out to him almost eight years ago asking if I could study under his tutelage. That one email started

a new chapter in my life and allowed me to pursue certain life-long aspirations of mine. Prof. Yu

spent innumerable hours reviewing my work and providing feedback on my research writings. I

consider myself fortunate to have been his student and I look forward to exploring future research

avenues with him.

I am further grateful to have Professor Kelly Lyons and Professor John Mylopoulos on my PhD

committee. I was able to discuss my work with them on a regular basis and my research benefitted

from their experience and insights. I also appreciate Professor Chun Wei Choo and Professor Alex

Borgida for their detailed review, feedback and comments on my thesis.

I have been fortunate to be part of a very strong and supportive cohort of researchers, belonging

to both the Faculty of Information and the Department of Computer Science. I wish to thank each

and every one of them for their assistance and comradery. Attaining a PhD is often a lonely

journey, and it’s nice to have a supportive community with whom one can share one’s joys and

sorrows. I particularly wish to thank Christie Oh who lifted my spirits up at key moments, and Vik

Pant, with whom I have had numerous cerebral discussions that allowed me to grow further as an

individual, as a professional and as a researcher.

I wish to thank my parents who have made numerous sacrifices to ensure that their only son could

pursue a path of his choosing. I also wish to thank my in-laws for the support that they have

provided over the many years. My two sons, Zain and Zair, have been exceedingly patient having

seen me work on my PhD for as long as they remember, and it is now time to spend some quality

time with them. Lastly, I am thankful to my wife, Fauzia, who has always believed in me and has

always been willing to undergo many personal sacrifices to support me.

v

Table of Contents

1 Introduction ... 1

1.1 Background .. 1

1.2 Problem Statement ... 2

1.3 Research Objectives ... 4

1.4 Research Approach .. 4

1.4.1 Systematic Literature Review ... 4

1.4.2 Design Science Research .. 5

1.4.3 Case Study .. 8

1.4.4 Research Approach Suitability ... 11

1.5 Research Contributions .. 12

1.6 Illustrative Example ... 13

1.7 List of Publications and Presentations ... 16

1.7.1 Refereed proceeding ... 16

1.7.2 Non-refereed posters and presentations .. 18

1.8 Thesis Structure .. 19

2 Literature Review.. 20

2.1 Adaptive Enterprises .. 20

2.1.1 Adaptive Enterprises ... 20

2.1.2 Enterprises Architecture.. 21

2.1.3 Summary ... 22

2.2 Business Process Management... 23

2.2.1 Business Process Modeling... 23

vi

2.2.2 Business Process Redesign ... 25

2.2.3 Business Process Architecture .. 27

2.2.4 Summary ... 28

2.3 Software Processes ... 29

2.3.1 Software Process Modeling .. 29

2.3.2 Software Process Variability and Adaptability ... 31

2.3.3 Software Process Modeling for Variability and Adaptability 33

2.3.4 Summary ... 35

2.4 Software Systems ... 36

2.4.1 Software Systems Variability and Adaptability .. 36

2.4.2 Requirements Modeling for Software Variability .. 38

2.4.3 Domain Modeling for Variability ... 39

2.4.4 Feature Modeling for Software Variability ... 40

2.4.5 Summary ... 42

3 Understanding Software-Enabled Enterprise Transformation .. 43

3.1 Recent Trends in Software-Enabled Enterprise Transformation 43

3.1.1 Digital Transformation.. 44

3.1.2 Two Speed or Bimodal Organizations .. 44

3.1.3 Adaptive Enterprises ... 45

3.2 Methodology .. 46

3.3 Characteristics Relating to Enterprise Transformation .. 50

3.3.1 C1: Business Strategy and Business Models .. 51

3.3.2 C2: Enterprise Agility ... 51

3.3.3 C3: Customer Centricity ... 52

3.3.4 C4: Rapid Cycles of Product and Solution Delivery .. 52

vii

3.3.5 C5: Multi-Speed Organizations .. 53

3.3.6 C6: Data-Driven Decision Making ... 53

3.3.7 C7: Social and Organizational Aspects... 54

3.3.8 C8: Business Process Automation .. 54

3.4 Requirements for the Modeling Framework .. 55

3.4.1 R1: Relationship Among Processes .. 56

3.4.2 R2: Multiple Types and Levels of Processes .. 57

3.4.3 R3: Enterprise and Process Goals ... 57

3.4.4 R4: Trade-Off Analysis... 58

3.4.5 R5: Abstract Software Artifact Design ... 59

3.4.6 R6: Pushing Design Decisions Downstream .. 59

3.4.7 R7: Upfront Planning vs. Deferred Planning .. 60

3.4.8 R8: Feedback and Feedforward Paths... 60

3.4.9 R9: Represent and Reason about Speed, Timescales and Process Cycles 61

3.5 Inadequacies of Existing Techniques ... 62

3.5.1 BPMN ... 62

3.5.2 ArchiMate ... 65

3.6 Conclusion .. 69

4 The hiBPM Framework in Action .. 70

4.1 The As-Is hiBPM Model .. 71

4.2 Scenario 1: Analyzing a Multitude of Business Processes .. 73

4.2.1 Determining Processes for Goal Attainment .. 75

4.2.2 Depicting Relationships between Processes ... 77

4.2.3 Activities for Alternative Goal Attainment ... 80

4.3 Scenario 2: Introducing Innovation in Software Processes .. 81

viii

4.3.1 Temporal Execution of Activities ... 83

4.3.2 Designing for Reusability or Customizability .. 86

4.3.3 Planning Ahead, or Deferring Planning .. 87

4.4 Scenario 3: Designing Two-Speed Enterprise Architecture .. 89

4.4.1 Managing Relative Execution Frequencies .. 90

4.4.2 Dealing with Adaptation ... 92

4.5 The To-Be hiBPM Model .. 94

4.6 Conclusion .. 96

5 Creating Models using the hiBPM Framework .. 97

5.1 An Architecture of Processes ... 97

5.2 A MetaModel for hiBPM ... 98

5.3 Structural Elements .. 101

5.3.1 Process Elements .. 102

5.3.2 Process Stages ... 103

5.3.3 Process Phases .. 105

5.3.4 User Engagement Process Elements ... 107

5.3.5 Process Boundaries ... 109

5.4 Relational Elements.. 111

5.4.1 Data Flow and Sequence Flow Relationships ... 112

5.4.2 Recurrence Relationships.. 114

5.4.3 Design-Use Relationship .. 116

5.4.4 Plan-Execute Relationship .. 118

5.4.5 Sense and Control Relationships .. 120

5.5 Comparison with Related Work ... 122

5.5.1 Process Elements .. 122

ix

5.5.2 Process Stages ... 122

5.5.3 Process Phases .. 123

5.5.4 User Engagement Process Elements ... 123

5.5.5 Process Boundaries ... 125

5.5.6 Data Flow and Sequence Flow Relationships ... 125

5.5.7 Recurrence Relationships.. 125

5.5.8 Design-Use Relationship .. 126

5.5.9 Plan-Execute Relationship .. 126

5.5.10 Sense and Control Relationships .. 127

5.6 Conclusion .. 128

6 Analyzing and Reconfiguring hiBPM Models ... 129

6.1 A Design Space for Reconfiguring hiBPM Models ... 130

6.2 Using Goal Models for Analysis .. 131

6.3 Reconfiguring Structural Elements .. 134

6.3.1 Adding and Removing Process Elements ... 135

6.3.2 Merging and Splitting Process Stages... 136

6.3.3 Converting Process Phases into Process Stages.. 137

6.3.4 Moving Process Stages and Process Elements across Process Boundaries 138

6.4 Reconfiguring across Temporal Placements .. 139

6.4.1 Moving Process Elements within a Process Stage .. 141

6.4.2 Moving Process Elements Across Process Stages .. 142

6.4.3 Moving Process Elements across Process Phases ... 143

6.4.4 Moving Process Elements within a Process Phase ... 144

6.5 Reconfiguring User Engagements .. 144

6.6 Reconfiguring Recurrence Relationships ... 147

x

6.6.1 Moving Process Elements across Recurrence Boundary 148

6.6.2 Moving Process Stages across Recurrence Boundary .. 149

6.6.3 Changing Recurrence Relationships ... 150

6.7 Reconfiguring Design-Use Relationships .. 152

6.8 Reconfiguring Plan-Execute Relationships .. 154

6.9 Reconfiguring Sense-and-Control Relationships ... 157

6.9.1 Modifying hiBPM Structural and Relational Elements .. 158

6.9.2 Moving Structural Elements across Process Boundaries 160

6.10 Conclusion .. 162

7 Case Study – Enterprise Process Innovation .. 163

7.1 Background and Context .. 163

7.2 Case Study Investigation Parts ... 164

7.3 Objective .. 165

7.4 Activities .. 166

7.4.1 Area 1 – Research Design ... 166

7.4.2 Area 2 – Data Collection... 167

7.4.3 Area 3 – Data Analysis ... 167

7.5 Modeling the Domain... 168

7.5.1 Evolving Design Capabilities ... 168

7.5.2 Flexibility of Process Execution ... 170

7.6 Enterprise Agility through Flexible Planning and Evolving Designs 171

7.6.1 Fully Automated Forecast Adjustment ... 174

7.6.2 Partially Automated Forecast Adjustment .. 175

7.7 The Complete hiBPM Model ... 177

7.8 Data Analytics Solution ... 179

xi

7.9 Evaluation... 181

7.9.1 Evaluation against Research Objectives ... 182

7.9.2 Shortcoming of the hiBPM Framework .. 183

7.9.3 Learnings from the Case Study ... 184

7.10 Conclusion .. 184

8 Case Study – Cognitive Business Operations ... 186

8.1 Background and Context .. 186

8.2 Case Study Investigation Parts ... 188

8.3 Objective .. 189

8.4 Activities .. 190

8.4.1 Area 1 – Research Design ... 190

8.4.2 Area 2 – Data Collection... 191

8.4.3 Area 2 – Data Analysis ... 191

8.5 Understanding Simplified CBO ... 192

8.5.1 The As-Is Situation for CBO Adoption .. 193

8.5.2 Analyzing CBO using the NFR Framework ... 195

8.5.3 The To-Be Situation for Simplified CBO ... 199

8.6 Context and Adaptation .. 201

8.6.1 Modeling and Analyzing Context-Induced Reconfigurations 202

8.6.2 The Complete hiBPM Model .. 208

8.7 Design Catalogues and Patterns ... 210

8.7.1 Learnability with Control .. 211

8.7.2 Learnability through Mimicking Humans and Control .. 213

8.7.3 Advisory User Engagement .. 214

8.7.4 Using Autonomous User Engagement with Human Governance......................... 216

xii

8.8 Evaluation... 217

8.8.1 Evaluation against Research Objectives ... 218

8.8.2 Shortcoming of the hiBPM Framework .. 219

8.8.3 Learnings from the Case Study ... 219

8.9 Conclusion .. 220

9 Conclusions ... 222

9.1 Summary .. 222

9.2 Contributions .. 223

9.3 Limitations ... 228

9.4 Significance .. 229

9.5 Future Directions .. 231

Appendix - Questionnaire ... 234

References ... 235

xiii

List of Tables

Table 1: Attributes used to assess information systems positivist case studies (Source: [25]) 9

Table 2: List of Characteristics and related papers ... 50

Table 3: Mapping Enterprise Transformation Characteristics to Framework Requirements 55

Table 4. Comparison of design-use and plan-execute relationships ... 89

Table 5: Forms of relationships in hiBPM .. 112

Table 6: The need and effect of reconfiguring structural elements .. 134

Table 7: The need and effect of reconfiguring across temporal placements 140

Table 8: The need and effect of reconfiguring recurrence relationships 148

Table 9: The need and effect of reconfiguring sense-and-control relationships 158

xiv

List of Figures

Fig. 3-1: Systematic literature review method adopted (Source: [11]) ... 46

Fig. 3-2: Distribution of selected articles by year ... 48

Fig. 3-3: Distribution of articles by characteristics. .. 49

Fig. 3-4: A simple BPMN model presenting the customer request processing by bank staff 62

Fig. 3-5: A BPMN model representing a typical DevOps approach .. 63

Fig. 3-6: ArchiMate layered viewpoint for the banking example ... 66

Fig. 3-7: ArchiMate business process collaboration viewpoint for the banking example 67

Fig. 4-1: An As-Is hiBPM model for the banking domain example ... 72

Fig. 4-2: Goal model for attaining bank operation objectives .. 74

Fig. 4-3: Alternatives for attaining the Setup Enterprise Application goal. 76

Fig. 4-4: hiBPM process stages as determined from goal model ... 77

Fig. 4-5: Sub-goals contributing towards goal attainment .. 78

Fig. 4-6: Relationships across multiple process stages as determined from the goal model 79

Fig. 4-7: Determining tasks from goals through decomposition .. 80

Fig. 4-8: Identifying hiBPM process elements for previously determined process stages 81

Fig. 4-9: Determining process elements for testing alternatives ... 84

Fig. 4-10: Moving process elements across temporal dimensions ... 85

Fig. 4-11: Determining process phases in a process stage .. 85

Fig. 4-12: Design-use relationship between two process stages for deploying software 86

Fig. 4-13: Goal model showing alternatives for complete designs versus no designs 87

Fig. 4-14: A plan-execute relationship between two process stages for testing software 88

Fig. 4-15: Goal model showing alternatives for complete plans versus no plans......................... 89

Fig. 4-16: Recurrence relationship for managing requirements and developing the enterprise

application ... 91

Fig. 4-17: Recurrence relationship across the bimodal process boundary for the mobile application

... 92

Fig. 4-18: Sense-and-control path for responding to production metrics 93

Fig. 4-19: The redesigned hiBPM model for the banking domain example 95

Fig. 5-1: Meta-Model for the hiBPM modeling framework ... 100

xv

Fig. 5-2: (A) A process element with a single data input and a single data output. (B) A process

element with two data inputs and a single data output ... 103

Fig. 5-3: A chain of process elements working collectively to process incoming data inputs to

generate an output ... 103

Fig. 5-4: (A) A process stage with multiple process elements that execute in some sequence (B)

Process stage containing multiple process elements that execute collectively to attain a common

objective .. 104

Fig. 5-5: Two process stages in an upstream and downstream configuration where the output of

the upstream process stage acts as an input to the downstream process stage 105

Fig. 5-6: A process stage with a combination of process elements and a process phase 107

Fig. 5-7: A process stage with two process phases with the output of the first process phase feeding

into the second .. 107

Fig. 5-8: A user engagement process element where the user engagement mode changes based on

input from a separate process stage .. 108

Fig. 5-9: Process boundary showing the Enterprise-Side and Customer-Side divide between two

process stages .. 110

Fig. 5-10: Data flow relationship between two process stages ... 113

Fig. 5-11: (A) A sequence flow between two process stages with a data label present, (B) A

sequence flow without the data label present ... 113

Fig. 5-12: Multiple 1:N, M:N and N:1 recurrence relationships between process stages 115

Fig. 5-13: Design-use relationships between two process stages that exist across a design-use

boundary ... 117

Fig. 5-14: Modeling notation for plan-execute relationships.. 118

Fig. 5-15: Sense-and-control relationships for responding to production metrics 121

Fig. 6-1: Using Goal Models for analyzing hiBPM model alternatives 133

Fig. 6-2: (A) A process stage with three process elements, (B) Adding a new process element to

the same process stage .. 135

Fig. 6-3: (A) A process stage with three process elements, (B) The same process stage with a

process element removed .. 136

Fig. 6-4: (A) A process stage with several process elements and a process phase, (B) The same

process stage being split into three distinct process stages ... 136

xvi

Fig. 6-5: (A) A process stage containing several process elements and a process phase, (B) The

process phrase being separated into a separate process stage ... 138

Fig. 6-6: Several process stages at different recurrences that span a recurrence boundary. 139

Fig. 6-7: (A) A process stage with several process elements, (B) The same process stage with the

sequence of process elements modified .. 142

Fig. 6-8: (A) Two process stages connected through a sequence flow, (B) Same process stages but

with a process element moved from one process stage to another ... 142

Fig. 6-9: (A) A process stage with several process elements and a process phase, (B) Moving a

process element to a process phase within the same process stage .. 143

Fig. 6-10: Moving process elements within a process phase .. 144

Fig. 6-11: Reconfigurability user engagement through selection of user engagement modes ... 146

Fig. 6-12: (A) Two process stages connected through a recurrence relationship, (B) Same process

stages with a process element moving across the recurrence boundary 149

Fig. 6-13: (A) Process stages connected across a recurrence boundary, (B) Moving a process stage

across the recurrence boundary resulting in increased recurrence .. 150

Fig. 6-14: (A) Process stages connected with a sequence flow and no recurrence, (B) Process stages

reconfigured with recurrence relationships ... 151

Fig. 6-15: (A) A design-use relationship between two process stages, (B) The same process stages

with a process element moved from the design process stage to the use process stage 153

Fig. 6-16: (A) A plan-execute relationship between two process stages, (B) The same process

stages with a process element moved from the plan process stage to the execute process stage 156

Fig. 6-17: (A) Process stages in a sense-and-control adaptative loop, (B) Reduce the process stages

in the sense-and-control adaptive loop ... 159

Fig. 6-18: (A) Sense-and-control adaptive loop spanning a process boundary, (B) Sense-and-

control adaptive loop within a process boundary ... 161

Fig. 7-1: Design-use relationship between the process stages that are part of the weekly sales

revision function ... 169

Fig. 7-2: Evolving capabilities through design-use relationships for the weekly sales revision

function ... 170

Fig. 7-3: Plan-execute relationships between the process stages that are part of the weekly sales

revision function ... 170

xvii

Fig. 7-4: Execution flexibility through plan-execute relationships for the weekly sales revision

function ... 171

Fig. 7-5: Combining design-use and plan-execute relationships for flexible plans and evolving

designs... 172

Fig. 7-6: Introducing surrounding process stages for full automated forecast adjustment function

... 175

Fig. 7-7: Manual control for partial automation of the forecast adjustment function 176

Fig. 7-8: Complete hiBPM diagram for the Enterprise Process Innovation case study 178

Fig. 7-9: UML component diagram for the prototype data analytics application 179

Fig. 8-1: As-Is Process Architecture Model for the Loan Application Process 194

Fig. 8-2: Goal Model showing two alternatives for attaining Cognitive Business Operations .. 197

Fig. 8-3. To-Be Process Architecture Model for Simplified CBO ... 200

Fig. 8-4: Goal model for the Loan Application process ... 203

Fig. 8-5: Process stage for determining business goals .. 203

Fig. 8-6: Context and context variables selection using ERD diagram 204

Fig. 8-7: Process stage for determining domain context variables ... 204

Fig. 8-8: Process stage for identifying context variables and their applicability 205

Fig. 8-9: Process stage for monitoring the availability and validity of context variables 206

Fig. 8-10: Process stage for replanning the solution using pre-built plan catalogues 206

Fig. 8-11: Process stages for determining and selecting suitable plans for adaptability 207

Fig. 8-12: Process stages in a plan-execute relationship for reconfiguring the process architecture

... 207

Fig. 8-13: hiBPM model for context based adaptation for the loan approval domain example . 209

Fig. 8-14: hiBPM model for the baseline business process .. 211

Fig. 8-15: hiBPM model for the learnability design pattern ... 212

Fig. 8-16: hiBPM model for the learnability with human mimicking design pattern 214

Fig. 8-17: hiBPM model for the advisory user engagement design pattern 215

Fig. 8-18: hiBPM model for the human governance design pattern ... 216

1 Introduction

1.1 Background

Software is a fundamental enabler of all kinds of evolving enterprise capabilities and opportunities

[1] and is expected to play a more significant role across multiple industries and enterprises. The

use of emerging and disruptive software technologies results in fundamental changes in these

“software-enabled” enterprises, such as how the enterprise engages with its customers or the

changes that occur to the business model [2][3]. By software-enabled enterprises, we refer to

enterprises that rely on software-based technologies (such as Mobile, Cloud Computing, IoT,

Artificial Intelligence, Blockchain etc.) to help attain specific enterprise objectives, such as that of

agility and customer-centricity. Through adopting software in new ways, enterprises can have

more rapid cycles of tools and artifacts development, reducing the time-to-market for new products

and features, providing greater customer-centricity, rapidly introducing new features based on

evolving customer needs, quickly resolving operational and support issues, and showing improved

responsiveness to changing environmental situations.

For the enterprise to take advantage of software-based technologies, there will be redesigns of

processes that are responsible for the evolution and adoption of software, and the business

processes where these software are used. Such a change in the enterprise can lead to different

possibilities, such as the inventions of new software technologies and innovation in how the

software is developed or how it is used. However, in enterprises undergoing continuous change,

business process design activities cannot be done once and be assumed to be valid over significant

periods but instead need to be periodically reviewed and reconsidered. Parts of the enterprise

engaged in developing and deploying software also go through many transformations to meet

differing requirements for the speed of delivery of software. Specific drivers of change need to be

monitored and evaluated, with alternative designs of business and software processes selected for

ongoing implementation and execution.

Conversely, evolving requirements needed for the enterprise to adapt and respond to changing

circumstances have resulted in software technological innovations as well. Software systems are

becoming increasingly complex and thus difficult to develop, deliver and support a range of

1

2

enterprise functional and non-functional objectives [4]. Here the term software is meant to include

both the software applications used by organizations to attain various enterprise functions and the

specialized processes responsible for the development and ongoing evolution of its software. We

refer to these specialized processes as software processes. The method of software development

and delivery needs to be studied and improved upon, not only for the effective and efficient

development and delivery of software systems, products and services but also to ensure that these

processes can enable the requisite enterprise transformations.

There exists extensive work on business process modeling and analysis that helps with analyzing

the basic functioning of any enterprise but these business processes are generally studied and

modelled in isolation without considering their inter-process relationships and structures. It is not

sufficient to study and optimize individual and isolated business processes for enterprise change

as many processes collectively contribute to the attainment of enterprise objectives. Such a

collection of interrelated processes is known as a process architecture and has previously been

studied in scholarly literature [50][51]. However, existing approaches to modeling process

architecture neither consider the regular and ongoing changes that help an enterprise continue to

meet its objectives nor do they factor in uncertainty of design. There is a need for an approach that

enables enterprise architects and process architects to model and analyze the ongoing

reconfigurations that can happen in the process architecture that exists in the enterprise while

considering complexities of business and software process design requirements.

1.2 Problem Statement

Adaptable business processes and software systems are becoming essential for modern enterprises

that need to undergo change, with change cycles are happening with increasing frequency. There

must be a focus on understanding adaptability and flexibility in business process design in addition

to studying the design of enterprises for business process execution [5][6], and the supporting

software, that enables enterprise change. Enterprise architects and system designers face choices

as to when and where to deploy what kinds of flexibilities in the enterprise when designing

business processes. Having reconfigurable and flexible business processes enables enterprises to

3

respond to changing situations by selecting suitable process design alternatives that help best meet

enterprise business objectives.

Many processes collectively contribute to the attainment of enterprise objectives. Different types

of process within the process architecture may take place over different timescales and have

different frequencies of occurrence, with some activities executing very infrequently (e.g. strategic

planning activities) whereas other activities may be more frequently executed (e.g. operational

activities). Enterprises can decide to have processes that produce detailed plans which help deal

with unpredictability at runtime process execution or may decide to invest in better-designed

software tools that are used in the automation of processes. There is often insufficient information

to create fully design these processes and often it is better to delay the designing of processes or

planning for their execution until additional information is available. There would be relationships

between these processes, with the output of certain processes feeding into other processes. Further,

the relationships between these processes may themselves change to support enterprise

transformations.

It is no longer enough to study and optimize individual and isolated business processes to

accommodate the need for enterprise change. Any design reconfiguration of the process

architecture should consider all processes that contribute to an enterprise objective. This provides

additional possibilities for redesigning that goes beyond what the analysis of a single type of

process could offer, and permits ignoring the traditional boundaries that demarcate the different

types of processes (such as business, software , strategic, operational or otherwise) that typically

exist within the enterprise. Such a design of the process architecture cannot be done in an ad hoc

manner as the full spectrum of alternative design configurations would neither be evident nor

considered. Instead, there needs to be a structured and systematic method that supports reasoning

and insight, enables process architecture transformations and improvements, and promotes data-

based design decision making while ensuring alignment with enterprise business objectives.

Contemporary enterprise architecture and process architecture modeling techniques generally

assume a reasonably settled and stable set of requirements. They do not cater to periodic, variable

and ongoing change, including the ability to decide between multiple alternative enterprise

4

configurations [7]. These techniques are thus, inadequate to deal with the type of enterprise

transformation exercises described above. While such a focus on enterprise transformation can be

studied from multiple perspectives, this PhD research project determines the design implications

for a multitude of business and software processes with regards to enterprise goals for

transformation and change. Such changes in enterprises can be considered at an elementary level,

by allowing focus on shifts between process architectural configurations.

1.3 Research Objectives

The objectives of this PhD research project can be expanded into three distinct areas as follows;

1. To identify a set of characteristics of enterprises undergoing change due to software technology

innovations and determine a set of requirements for a conceptual modeling framework that can

model and analyze the reconfigurations of enterprise process architectures.

2. To use these requirements to design a conceptual modeling framework that identifies the

upstream factors (i.e., the “whys”) that should be considered in the design of business and

software processes that can be traced to enterprise business objectives.

3. To consider the downstream effect (i.e., the “hows”) on software systems design and software

usage during the design of business processes, including acknowledging the interplays between

software design and the design of business processes that use these software.

1.4 Research Approach

Several research methods were used as part of this PhD research project. These are discussed in

this section.

1.4.1 Systematic Literature Review

A systematic and structured literature review was performed to identify relevant research papers

that would aid in the understanding and determining of the primary characteristics in software-

enabled enterprise transformation.

While there are many ways to conduct a systematic literature review, such as [8][9][10], we adopt

the eight-step approach proposed in [11] that deals specifically with performing standalone

5

systematic literature review as applied to information systems research. These eight steps are

briefly described below.

• Step 1: The intended goal of the review is identified which provides the necessary background,

a clear explanation, and the justification for conducting a systematic review.

• Step 2: A protocol for conducting the review is developed that is to be followed by the

reviewer. In case of more than one reviewer, all reviewers would be trained on the protocol.

• Step 3: A criterion for searching the literature is defined, including justifying its the search

criteria’s comprehensiveness.

• Step 4: A practical screen is done to eliminate articles (a) if they do not apply to the purpose

of the review, or (b) to limit the number of selected articles for manageability reasons.

• Step 5: A criterion is defined with only those articles being selected for the next review step if

they are deemed to of sufficient quality, with all other articles being discarded.

• Step 6: The articles in the final selected list are then reviewed and studied in greater detail to

extract data for the next step in the synthesis of the findings.

• Step 7: The extracted data across all the articles is then carefully generalized and combined to

develop a set of hypotheses. This is the cumulative outcome of the review process.

• Step 8: The entire process needs to be recorded so that it can be independently repeated by

other scholars who wish to perform a similar review processes of their own.

1.4.2 Design Science Research

Design Science Research (DSR) is a method well-suited for information systems research due to

the inclusion of social and organizational aspects as part of the research methodology [12]. Design

science is a research paradigm that attempts to create new design artifacts in order to determine,

understand, define and analyze a problem domain in an organization while solving identified issues

within [12]. Design science research is more agreeable towards the development of technology-

based or technology-derived artifacts, such as conceptual modeling frameworks and software

tools, along with their empirical evaluation in an actual study environment.

6

Design science research is characterized by a sequence of activities for theorizing, justifying,

building and evaluating these design artifacts [14]. It has its “roots in engineering and the sciences

of the artificial” [12] and is intended to extend human and organizational knowledge by solving

organizational problems through the creation of new and innovative artifacts [12]. From an

epistemological standpoint, design science research, due to its requirement for producing technical

artifacts, can be considered to be generally positivist [12][15] with some anti-positivist inclinations

when it comes to evaluation of artifacts. Positivism attempts to “explain and predict what happens

in the social world by searching for regularities, causal relationships between its constituent

elements” [16]. While design science research engagements may be iterative to ensure research

relevance and ongoing artifact refining, it is not explicitly mandated. The resultant artifacts are

expected to undergo a final evaluation to ensure research rigour [13].

The guidelines-based design science research approach proposed in [12] was used in this PhD

project for the development and validation of design artifacts pertaining to the proposed conceptual

modeling framework, as the desired research outcome stated previously strongly correlates to the

design artifacts introduced in design science research. These guidelines are as follows,

• Design as an artifact: The purpose of design science research is to produce a “viable artifact in

the form of a construct, a model, or an instantiation”, with artifacts being “innovations that

define the ideas, practices, technical capabilities, and products through which the analysis,

design, implementation, and use of information systems can be effectively and efficiently

accomplished” [12]. In our research project, the artifact is a conceptual modeling framework

that comprises of a set of modeling constructs and accompanying methods that allow for the

prescribing and determining of the usage of the constructs.

• Problem relevance: Through design science research, the developed artifacts should be

relevant to solving the problem, by helping users of the artifacts move from a “goal state” from

the “current state” of the system [12]. This objective is attained through the acquisition of

knowledge that would help develop an understanding for developing technology-based solutions

to solve a business problem. In our case, we provide a conceptual modeling technique that

tackles the problem that was introduced earlier in this chapter.

7

• Design evaluation: The design artifacts go through a process of research evaluation to

demonstrate rigour and relevance [17]. This evaluation is done by verifying the utility and

quality of the artifact by applying it in a business environment that defines the requirements and

conditions of the evaluation process. As indicated in [12], many different forms of design

evaluation methods exist, each with their applicability and strengths. We selected the case study

research method for the verification of our conceptual modeling framework.

• Research contributions: The outcome of the design science research should have a tangible

contribution to one or more disciplines. The contribution itself may take the form of either the

developed design artifact, the foundations of the design itself, or accompanying methodologies

in which the design is developed or used. In our case, the primary contribution of our research

is the design artifact itself. The contributions of this research are discussed in greater detail

elsewhere in this chapter, and the concluding chapter of this thesis.

• Research rigour: Ensuring research rigour is an essential part of design science research and

involves a “selection of appropriate techniques to develop or construct a theory or artifact and

the selection of appropriate means to justify the theory or evaluate the artifact” [12]. As part of

this research project, research activities for ensuring rigour were established and practiced

during the design evaluation; these are discussed in greater detail in subsequent sections of this

chapter.

• Design as a search process: Design science research follows an iterative mechanism of

progressively attaining the goal through starting with a simplified explanation or decomposing

the problem into manageable areas. We adopted this approach during the designing and

developing of the artifacts by following an iterative and incremental approach, starting with

simplistic domain examples and slowing building the modeling framework, including the

various constructs. These were then verified under a range of conditions, with the framework

becoming more practical and applicable.

• Research communication: The artifact needs to be presented to an audience of researchers and

practitioners from both a technology-oriented and a management-oriented background. This

ensures that the target audience includes individuals who can see how the artifact is constructed,

and how it is to be utilized within a business context. Considering this, our research is primarily

8

targeted towards the enterprise modeling, business and software process modeling, and

information systems design audience. Venues of research communication and publication were

chosen accordingly with the findings published in scholarly literature after each research stage.

1.4.3 Case Study

The design science research approach provides an instructional set of guidelines on how to proceed

with this research project. We supplemented this overarching approach with case studies for the

evaluation, validation and ongoing refinement of the developed conceptual modeling framework

[18][19]. The case study research method can be used from both a positivist and an interpretivist

philosophical theory [20]. Specifically, we adopted a positivist case study research method as this

is the dominant paradigm in information systems case research and was relevant in our situation

for validating our early hypothesis [15]. For case study research performed with a positivist

approach, there has to be a systematic process of defining the research criteria, collecting data,

analyzing results, while ensuring replicability and generalizability. Theoretical constructs are

defined and hypothesized, which are then empirically evaluated and measured [20][21]. Repetition

of research activities across multiple case studies allows for the generalizability of the case study

research findings [20][21][22].

This research went through cycles of explanation building and ongoing refinement [23] where

initial theoretical conceptualizations were used as a guide in the development of the design artifacts

and its accompanying methods. These were then applied to several real-world case studies. This

allowed for a more detailed assessment and validation than those offered just by published case

studies. Several industry partners were approached to understand their situational needs and

constraints for applying the preliminary developed framework to these real-world situations and

evaluated against these enterprise settings. Through multiple case studies, we were able to both

generalize findings and observations across a range of circumstances while refuting theories and

ideas which may only be valid in limited circumstances and localized settings [24]. Multiple case

studies would also ensure greater validity, generalizability, applicability and rigour of the research

exercise while limiting researcher bias and interpretability of data collection and analysis. Iterative

refinements were made to the framework as applicable.

9

These organizations were selected based on relevance and appropriateness to the research study.

The cases were in both technology-based organizations (i.e., organizations that specialize in the

development of software products and services as their primary business) and non-technology

based organizations (i.e., organizations which use digital technologies and software as a means to

offer products and services to their customers). The scope and unit of analysis for the case study

differed from instance to instance, nevertheless the case study was part of a research project that

had business value to the enterprise.

Table 1: Attributes used to assess information systems positivist case studies (Source: [25])

 Attribute

 Area 1 - Research Design

 Clear research questions

 A priori specification of constructs

 Multiple-case design

 Context of the case study

 Different roles for multiple investigators

 Area 2: Data Collection

 Elucidation of the data collection process

 Multiple data collection methods

 Data triangulation

 Case study protocol

 Case study database

 Area 3: Data Analysis

 Elucidation of the data analysis process

 Field notes

 Logical chain of evidence

 Explanation building

 Project reviews

To ensure research rigour in both case studies, we followed the recommendations provided in [25]

for positivist case study research. Here, a set of attributes is provided that span three main areas

that every positivist case study should have present in order to ensure the rigour of research. We

selected this approach as our case studies were often of long duration. Having such a structure

helped ensure that specific attributes remained in focus throughout the case study. Further, there

were often overlap during the case studies and the findings from one case study were corrected,

10

extended and refined in the other case study. We selected a subset of attributes from [25] as they

pertained to our research; these are listed in Table 1.

The three main areas, including the attributes that were relevant to our case studies, are discussed

further below. The specific activities within and across the areas are presented in a sequential

manner; however, they were performed iteratively as per the guidelines provided in design science

research.

• Area 1 – Research Design: Attributes associated with the designing of the case study are

covered in the first area. Here, there is attention to developing the research questions, the

foundations of the study, and the criteria for selecting the case studies. In our case studies, we

emphasized the defining of a clear research problem. We started the case study with a set of

constructs that were then tested in each of the case studies. We were going with multiple-case

studies to ensure the generalizability and applicability of our design artifact. We also identified

the context of the study early on in each of the case studies to ensure that there was an

understood frame of reference, in which the study was grounded. Finally, some of our case

studies had multiple research investigators, so clear differentiation of responsibilities and

research areas was specified.

• Area 2 – Data Collection: The second area is concerned with the overall quality and process

of data collection in the case study. Here the attributes pertained to the methods used for data

collection, particularly their application for enhancing the reliability of data collection. For

this, we followed several attributes that apply in this area. We ensured that there was an

elucidation of the data collection process through the process of gathering documentation and

artifacts and having a questionnaire. As multiple researchers were involved in some cases, and

the case studies were performed over a long duration, we needed to ensure reliability and

minimize bias. For this, we developed a case study protocol (as required) and a case study

database where raw materials (including the iterative conceptual models) were stored.

• Area 3 – Data Analysis: Attributes in the third area pertain to the analysis of the data collected

in previous research activities, including the application and use of suitable techniques that

lend to that analysis. Again, in our case, we describe the activities that were adopted for the

11

analysis of the data. We used field notes for capturing the verbal discussion for later analysis.

The analysis itself was performed using both techniques of logical chain of evidence and

explanation building. In logical chain of evidence, we moved from the initial research

questions to ultimate case study conclusions using the evidence collected. In explanation

building, we used the evidence collected to revise and refine our initial hypothesis, with the

process iteratively repeated. Finally, in both our case studies, a final project review exercise

was performed where the case report was presented for review to the project participants to

ensure research credibility and accuracy and a questionnaire was filled out by a member of the

organization.

1.4.4 Research Approach Suitability

Despite the suitability of both design science research and case studies research methods in our

research project, some general challenges are mentioned below,

• Study Environment: Performing case studies in organizations adds a layer of complexity to

the modeling framework development and needs to be carefully managed. A researcher’s

primary objective would be in the research outcome whereas the participant’s objective may

be self-preservation and organizational benefit. In design science research, there is a heavy

focus on resultant artifacts which are not necessarily a priority for the participating

organization or may not entirely be applicable in that organization’s context.

• Artifact Generation: Several factors need to be considered during the generation of the design

artifacts. Artifact generation for emerging and experimental areas requires some iterations to

get them right which may not be acceptable for participants who are interested in immediate

resolution of issues. Further, the participant may be unwilling to invest in the effort required

for either iterative or overall artifact evaluation [13].

• Rigour and Relevance Balance: Establishing and balancing research rigour and relevance in

design science research, and case studies, is a challenge as ensuring rigorous research in a

particular context may erode its applicability and relevance to a broader domain. Establishing

research rigour in the minds of the organization’s managerial audience may be difficult due to

a rejection of the methods adopted or differences in focus or priorities.

12

• Artifact Generalization: A careful balance needs to be maintained while developing new

artifacts using design science research as generalizing these artifacts may result in them being

too abstract while having too detailed constructs, models, methods and tools may limit their

applicability to other organizations or domains. A set of guidelines are provided in [12] for

ensuring overall rigorous design science-based research by emphasizing design evaluation, but

this needs to be balanced against the generalizability of the design artifacts which may reduce

their overall relevance.

• Study Limitations: There were some limitations with regards to the research projects with the

industry partners, particularly around the nature and availability of research data and team

members. The case studies were time-bounded and a predetermined problem was presented

that required understanding and analysis. Relevant stakeholders were made part of the research

team and were available to have team discussions and analyzing alternative design choices,

and to identify suitable alternatives that would solve the identified problem. In some case

studies, additional data was provided in the form of written documents and architectural

diagrams to supplement the team discussions.

A document was drafted in the initial phase of all case studies that defined the scope,

responsibilities and outcome of the research project. This activity was done to manage better the

challenges mentioned above.

1.5 Research Contributions

This research yields both theoretic and practical contributions through advancing current

conceptual modeling techniques for understanding, evaluating and analyzing software-induced

enterprise transformation activities.

Our first contribution is to provide a set of characteristics that are common to software-enabled

enterprise transformation, and the limitations of existing modeling approaches when applied to

analyze the process reconfigurations in these enterprise. Indeed, while modeling enterprises in

their complexity, and considering alternative ways of analyzing and reconfiguring is often central

13

to these modeling approaches, there are still relatively few propositions that consider the ongoing

changes that need to be made in the overall enterprise business processes.

Continuing from this, our second contribution is a conceptual modeling framework that comprises

a visual modeling language, and accompanying methods, that depict an architecture of business

and software processes. The framework emphasizes studying the processes while abstracting

aware from process design details and highlights the nature of their relationships rather than the

individual process themselves. Existing techniques from goal-oriented requirements engineering

were adapted to allow for analysis between alternative configurations of enterprise processes.

This framework is a significant step forward, and it allows for the structured contemplation of

enterprise transformation, brought about by changes in business processes configuration and

disruptive software-based technologies; we refer to these as software-enabled enterprise

transformation. Basic process architecture reconfiguration types are included in this framework,

along with methods for their implementation in an enterprise context by focussing on involved

processes and software artifacts. Further, methods for assessing, reasoning and selecting suitable

alternatives are provided while considering trade-offs with regards to enterprise goals. This

research builds on the preliminary findings from [26] and [27].

1.6 Illustrative Example

To illustrate the problem and our approach, we chose an example from the financial services

domain that offers sufficient richness to allow introducing various aspects of our modeling

framework. The financial services industry has been undergoing innovation and change, more

recently precipitated by opportunities offered by advancements in software technologies [28] and

the competitive threats from new entrants to the incumbents. These new entrants heavily rely on

software technologies such as mobile, cloud computing, artificial intelligence (amongst others),

along with innovations in the design of software processes to provide services to their customers

at lower costs and with rapid cycles of delivery. The incumbents are larger banks that have been

around for centuries but are weighed down by existing investments in infrastructure and

organization rigidities. The nature of challenges that this industry faces can be patterned across

many other industry sectors, such as retail, transportation, and others.

14

Let us consider a banking institution that is undergoing change. The widespread adoption of

software technologies in enterprises is enabling a change in the business model, improving

customer experiences, and optimizing operational processes [29]. Here, the enterprise change is

being influenced by both the internal adoption of software technologies and the general

pervasiveness of software technologies in the environment that they operate. These shifts in how

the organization is operated results in digital-first business models that are a significant departure

from their previous business model [3]. Here, the focus of transformation should not be on

individual systems or processes but should instead be viewed holistically and at an enterprise level.

The incumbent banks are expected to adapt continuously to successfully survive in such evolving

and uncertain conditions [30]. We discuss three scenarios below.

Scenario 1: Fintech startups and technology companies in the financial services space are offering

competing products and services which are eroding the profitability margins of traditional banks

[28]. As a result, banks are digitizing their core products like credit cards, loans and payments to

better compete with these entrants. A seamless “omnichannel” experience to customers across all

service delivery channels is becoming essential, which requires careful coordination of the

processes across the enterprise, even if these processes belong to disparate parts of the enterprise.

The nature of change in the organization may be along various perspectives such as strategic vs.

operational, transformational vs. transactional, discontinuous vs. continuous, revolutionary vs.

evolutionary etc., involving diverse areas such as people, processes, and technology [31]. It is not

enough to consider individual processes in isolation for optimization; rather, the collective set of

processes would have to be considered and redesigned. But can the interactions between several

business and software processes be represented to signify their associations and relationships? The

business processes are coupled with the software processes, and thus need to be reviewed

collectively for improvement. Software processes could evolve to develop software tools which

then are used in business processes, or plans could be developed as part of strategic planning

processes that are then used to influence the execution of the software processes.

The dynamic nature of the enterprise invalidates the notion of complete planning before execution.

Banks can identify further areas of improvement in the design of their processes, and the creation

15

of software design artifacts, through big data analytics, which are then optimized and improved

upon [32]. Can activities or decisions currently performed in a planning stage be moved to an

execution stage, and what are the placement trade-offs? How would changes in the business

processes reflect on the need to redesign software to support them? If business processes are to be

automated or made simpler, would it require off-loading specific activities within the business

processes to be executed by software systems? These are the many questions that enterprise

architects struggle to answer.

Scenario 2: As banks increasingly adopt cloud-based infrastructure, they rely on recent

innovations in software development processes (such as DevOps) to rapidly develop and deliver

software to ensure customer centricity and responsiveness. Broadly speaking, DevOps attempts to

introduce rapid delivery of product features, services and bug fixes to end-users through frequent

release cycles, each containing a small feature set [33][34][35]. Rapid delivery enables an

enterprise to reduce the time-to-market for new products and features, provides greater customer-

centricity by introducing new features based on evolving customer needs, quickly resolves

operational and support issues, and shows greater responsiveness to changing (internal and

external) environment situations.

DevOps enables the above by (a) automating activities in the overall software development process

through the introduction of software tools and custom development of scripts, thus shortening the

time required for new feature development and bug fixes through reduction of manual effort, (b)

using feedback loops for continuously improving software development processes and

development of product features through the monitoring and measurement of various software

process and technical metrics, and (c) promoting a culture of collaboration and information sharing

between multiple teams.

Analyzing the possible configuration of such a development process for enterprise requires

considering many possible alternatives as there is no one prescribed solution. Implementing

DevOps can vary from enterprise-to-enterprise and needs to be carefully considered while

considering the enterprise functional and non-functional objectives, the existing software

processes, and the expected business outcome. Is greater automation of processes preferred or

16

should human intervention be part of the process execution? How can we represent and reconfigure

software processes to introduce faster delivery and release cycles? These are some questions that

the enterprise and process architects in the banks have to consider when reviewing a DevOps

approach.

Scenario 3: The development of mobile enterprise systems is also an indication of two separate

and distinct enterprise segments with different characteristics and timescales. The front-end mobile

app development is characterized by quick development and deployment cycles with customers

providing immediate feedback through the app store rating, whereas back-end enterprise systems

have longer, more cautious development cycles [36]. Thus, a new business feature affecting both

mobile front-end and enterprise backend systems would be managed, developed and delivered

differently based on the different enterprise levels and timescales.

The goal for both back-end enterprise systems and front-end mobile applications are the same, to

provide customers with software features that service the customer’s request. However, both sides

have significant environment autonomy with defined integration points for the successful

completion of this business objective [36]. The processes would need to be designed in a manner

where both areas can maintain distinct processes, software tools and environments that are more

conducive to their particular needs and user requirements but still align with overall business

objectives. Moreover, the business and software processes can encompass various timescales and

the implications of the process architecture reconfiguration needs to be considered when moving

activities across different timescales. Some of the questions that enterprise architects need to

consider are if some activities or decisions be deferred closer to the customer or be part of the

back-end enterprise? What would be more suitable approach for improved delivery cadence for

the considering such an enterprise solution and how to select the most appropriate one?

1.7 List of Publications and Presentations

Below are all the publications that are based on this research.

1.7.1 Refereed proceeding

Conference Papers

17

1. Babar, Z., Yu, E.: Integration of Software Applications into Evolving Enterprise Business

Processes. In Proceedings of the 22nd International Conference on Enterprise Information

Systems (ICEIS), Vol 2, pp. 778-786 (2020)

2. Babar, Z., Yu, E., Carbajales, S., Chan, A.: Managing and Simplifying Cognitive Business

Operations Using Process Architecture Models. In International Conference on Advanced

Information Systems Engineering (CAiSE), pp. 643-658, Springer Cham (2019)

3. Babar, Z., Lapouchnian, A., Yu, E., Chan, A., Carbajales, S.: Modeling and Analyzing Process

Architecture for Context-Driven Adaptation: Designing Cognitively-Enhanced Business

Processes for Enterprises. In Proceedings of the 22nd International Enterprise Distributed

Object Computing Conference (EDOC), pp. 58-67, IEEE (2018)

4. Lapouchnian, A., Babar, Z., Yu, E.: Designing User Engagement for Cognitively-Enhanced

Processes. In Proceedings of the 27th Annual International Conference on Computer Science

and Software Engineering (CASCON), pp. 227-233 (2017)

5. Lapouchnian, A., Babar, Z., Yu, E., Chan, A., Carbajales, S.: Designing Process Architectures

for User Engagement with Enterprise Cognitive Systems. In IFIP Working Conference on The

Practice of Enterprise Modeling (PoEM), pp. 141-155, Springer Cham (2017)

6. Babar, Z., Lapouchnian, A., Yu, E.: Modeling DevOps Deployment Choices Using Process

Architecture Design Dimensions. In The Practice of Enterprise Modeling (PoEM), pp. 322-

337, Springer Publishing (2015)

Workshop Papers

1. Babar, Z., Yu, E.: Digital Transformation – Implications for Enterprise Modeling and Analysis.

In Trends In Enterprise Architecture Workshop (TEAR), Springer International Publishing

(2019)

2. Babar, Z.: A Conceptual Modeling Framework for Software-Enabled Enterprise

Transformation. In International Conference on Advanced Information Systems Engineering

Doctoral Consortium (CAiSE DC), pp. 11-22 (2019)

18

3. Babar, Z., Lapouchnian, A., Yu, E.: Modeling Evolving Human User Engagements with

Cognitive Advisory Agents using the i* Framework. In iStar Workshop Colocated with

CAiSE. (2018)

4. Babar, Z., Lapouchnian, A., Yu, E.: Chatbot Design - Reasoning about design options using i*

and process architecture. In iStar Workshop Proceedings, pp. 73-78 (2017)

5. Babar, Z.: Modeling Software Process Configurations for Enterprise Adaptability. In The

Practice of Enterprise Modeling Doctoral Consortium (PoEM DC), pp. 125-132 (2015)

6. Babar, Z., Yu, E.: Enterprise Architecture in the Age of Digital Transformation. In Trends In

Enterprise Architecture Workshop (TEAR), pp. 438-443, Springer International Publishing

(2015)

1.7.2 Non-refereed posters and presentations

1. Babar, Z., Yu. E.: Integration of Data Analytics into Evolving Enterprises Business Processes:

Overcoming Enterprise Modeling Challenges, Presentation at Exploring Modeling Methods

for Systems Analysis and Development (EMMSAD) conference (2019)

2. Babar, Z., Yu, E., Carbajales, S., Chan. A.: Leveraging Solution Catalogues for Designing

Enterprise Cognitive Systems. Poster at CASCON x EVOKE (2019)

3. Babar, Z., Yu, E., Carbajales, S., Chan. A.: Managing and Simplifying Cognitive Business

Operations using Process Architecture Models. Poster at IBM CASTLE, Markham, Toronto

(2019)

4. Babar, Z., Lapouchnian, A., Yu, E., Chan. A., Mourra. J., Carbajales, S., Pacholski, P., Ngo,

K. T.: cogBPM: A Cognitive-Enhanced Modeling and Analysis Framework for Enterprise

Business Processes. Poster at CASCON’17, Markham, Toronto (2018)

5. Babar, Z., Lapouchnian, A., Yu, E., Chan. A., Mourra. J., Carbajales, S., Pacholski, P., Ngo,

K. T.: cogBPM: A Cognitive-Enhanced Modeling and Analysis Framework for Enterprise

Business Processes. Poster at IBM Day at University of Toronto, Toronto (2018)

19

6. Babar, Z., Lapouchnian, A., Yu, E., Chan. A., Carbajales, S.: Enhancing BPM for Cognitive

Operations. Poster at IBM CASTLE 2018, Markham, Toronto (2018)

7. Babar, Z.: Conceptual Modeling Framework for Supporting Software-Enabled Enterprise

Transformation. Poster at CASCON, Markham, Toronto (2016)

8. Yu, E., Babar, Z., Nalchigar, S., Danesh, M., Lapouchnian, A.: Cognitive Business Operations

Made Easy. Poster at IBM CASTLE, Markham, Toronto (2017)

9. Babar, Z., Yu, E.: Towards an Enterprise Adaptiveness Framework for Digital Transformation.

Poster at iSchool PhD Research Days, Toronto, ON, Canada (2015)

10. Babar, Z., Yu, E.: Re-Architecting Enterprises Based on Adaptiveness Requirements. Poster

at CSER, Markham, ON, Canada (2014)

1.8 Thesis Structure

The rest of the thesis is structured as follows. Chapter 2 provides a literature review and domain

knowledge relevant to this thesis. Chapter 3 discusses the set of characterizations of enterprises

undergoing change and transformation and provides requirements for the conceptual modeling

framework. Chapter 4 shows how this framework would be used to model and analyze the banking

domain example. Chapter 5 discusses the modeling constructs in more detail with Chapter 6

showing how to analyze change in a domain. Chapter 7 and Chapter 8 apply the modeling

framework to two real-world case studies for evaluation purposes. In Chapter 9, we conclude this

thesis.

20

2 Literature Review

This chapter presents the related work for this research project.

2.1 Adaptive Enterprises

Enterprises are expected to respond to ongoing changes and evolving environmental factors

continuously. Increasing competition and the emergence of new market players from non-

traditional sectors require enterprises to react and adapt to change more quickly than ever before

[2]. Various types of internally and externally initiated changes need to be determined early,

analyzed and be responded to. Such “adaptive” enterprises have many characteristics [7], and

should be able to anticipate change in the environment, and respond to it using build-in provisions

within the enterprise; these could entail pre-constructing flexible technology infrastructure, having

configurability capabilities in software systems, supporting modifiable organization structure, and

having a workforce trained to be adaptable. Such provisions require investment and time, and

appropriate trade-offs should be considered. In this section, we review the literature on adaptive

enterprises and the support provided in enterprise architecture frameworks to analyze such

enterprises.

2.1.1 Adaptive Enterprises

Enabling “adaptiveness” behaviour in adaptive enterprises can be explained and understood

through the defining of specific enterprise characteristics that cover multiple perspectives, such as

process, social and systems [7]. Haeckel [37] provides a differentiation between make-and-sell

enterprises and sense-and-respond enterprises where sense-and-respond adaptive enterprises

monitor their environment for changes and accordingly respond to them [37]. In such enterprises,

the rigid organization hierarchy is replaced by one that consists of capabilities, where capabilities

are modular subsystems (managed by individuals and roles) that are responsible and accountable

for outcomes. Moving to such an adaptive enterprise requires (a) setting the context by identifying

stakeholders of the enterprise and their objectives, (b) structuring the enterprise as a collection of

sub-systems, each with its roles and responsibilities, and (c) determining adaptation loops that

21

would gather data from the sensing and interpreting portion of the enterprise and pass them to the

deciding and acting part of the enterprise.

Introduction of agility in enterprises has been discussed previously [38]; however, these studies

generally do not consider the bidirectional adaptation influences between business and technology

(particularly those enabled by software systems and business processes). Wilkinson [2] provides a

staged-based approach to designing an adaptive enterprise, starting with bringing existing IT assets

to a stable stage, then leveraging best practices and automation through technology to get to an

efficient stage, and finally removing organizational silos and introducing service-oriented

computing infrastructure to get to an adaptive stage.

2.1.2 Enterprises Architecture

The Enterprise Architecture discipline provides the necessary mandate to study the design of

adaptive enterprises by emphasizing the inclusion of the business context and environment to the

design of enterprise technology and software systems. Hoogervorst [39] presents an argument that

enterprise architecture should not just focus on the technology aspect of the enterprise, but should

also encompass other architectures as well, such as business architecture, organizational

architecture, and information architecture. Each of these represents a particular manner in

designing the enterprise, but collectively with the same architectural goals of agility and the ability

to change. Unified Enterprise Modeling Language (UEML) allows for the “discovery” and

integration of multiple enterprise perspectives however are limited in their ability to reason about

the propagation of influences caused by reconfigurations in any one area [40][41]. Enterprise

Service Oriented Architecture (SOA) offers a narrower and technology-centric approach towards

enterprise agility and adaptability by allowing for business process modifications through an

enterprise service-based architecture [42][43].

ArchiMate [44] is an enterprise architecture framework that has been extended in previous years

to incorporate goals and rationales (part of the Motivation extension in ArchiMate 2.0) and strategy

and physical layers (part of extensions in ArchiMate 3.0). These extensions are indicative of the

need for multi-perspective considerations to study adaptive enterprises. ArchiMate has multiple

architectural layers (business, application and technology) with the lower service layer

22

contributing to the higher service layers; the lower layer provides the “primitives” or building

blocks that the higher layer arranges into services. Two relationships that cross these layered

boundaries are the serving relationship that “serves” to the upper layer functions, whereas the

realization relationship indicates a realizing of data objects and application components [44].

Further, ArchiMate considers cooperation amongst business processes by looking at causal

relationships between processes. Here, processes are mapped onto business functions with the

realization of services through these processes [44]. TOGAF ADM allows for migration from an

as-is to a to-be state through iterative multi-phased cycles for attaining strategic business needs

[45] but does not necessarily support analysis of incremental and ongoing small-scale transitions.

For example, the Architecture Development Method (ADM) in TOGAF supports enterprise

architectural change in response to a business need, but ADM is an iterative exercise with many

phases, explicitly designed to transition the enterprise from an as-is state to a to-be state [45].

However, it does not cater to periodic and variable changes, including the ability to decide between

multiple alternative enterprise configurations at run-time.

2.1.3 Summary

While enterprise architects are well equipped to model and reason about enterprise architectures

using the frameworks described above, there are limitations when it comes to modeling and

analyzing about the nature of multi-perspective (i.e., systems-, enterprise-, and process-level

factors) changes that are introduced to enterprises due to ongoing technology and software

innovations. E.g., in ArchiMate, there are distinct layers between business and technology, and it

is not apparent how processes can be migrated from one layer to another, or the consequences of

such a migration. There is a limited notion of partiality in the relationships, so a serving

relationship cannot be shown as partially fulfilling the requirement.

A certain level of uncertainty exists in the enterprise as the enterprise continually reacts to

changing circumstances. Despite this, sociotechnical rigidities and barriers to change exist that

resist change in the enterprise. The frameworks do not offer techniques that allow enterprises in

dynamic and uncertain environments to design suitable enterprise processes while being repeatedly

informed through feedback loops and considering the multiple types and levels of processes with

23

their complex relationships, including the integration of software systems. Some enterprise

architecture frameworks (like ADM in TOGAF) do allow for ongoing change but do not cover the

full range of the transformative requirements for the enterprise, such as those presented in Chapter

3. Therefore, these frameworks should have modeling constructs that support diversity and

variability along multiple dimensions of adaptiveness, including the ability to decide among

different architectural configurations.

The research in this PhD project differs from the aforementioned related work as it deems

fundamental transformation requirements of enterprises from multiple perspectives (such as

process-based and goal-based) while reasoning about interplays and influences amongst (as well

as within) these perspectives. These transformation requirements are presented in Chapter 3. Such

an analysis can lead to continuing process redesigns due to process restructuring and altered

requirements for software tools and artifacts.

2.2 Business Process Management

Business processes help understand the basic functioning of any enterprise. The designing and

architecting of business processes include notions such as specifying the relationships, dependency

types, structure, composition and associations that exist between them [50], including additional

process relationships, such as the sequencing of information flows, triggers, specialization,

reference, and composition [51]. There exist multiple “core elements” that need to be present to

be able to design and reconfigure processes due to evolving organizational needs [52]. In this

section, we review some conventional approaches to modeling and analyzing business processes.

2.2.1 Business Process Modeling

A popular business process modeling notation is BPMN [53]. While activities can be shown, along

with changes in their sequencing, the implications of any activity reordering cannot be determined.

BPMN models do show feedback loops, but the full range of attributes associated with them (for

example, the multitude of timescales present in the loop or the recurrence of the sensing and

responding parts) are not evident. Process participants are used to represent abstract roles in

BPMN, but these roles cannot be used to indicate intentionality or motive. These processes have a

24

sense of duration as described from start and end events, and in-between process constructs.

BPMN and other traditional business process modeling languages rely on an imperative approach

where the process model represents (in great detail) the process state of the system and all

permitted actions. However, capturing such detailed specifications of the system-under-study is

challenging, particularly as the underlying processes may be ever-changing. Declarative process

modeling notation (such as BPMN-D) allows the capturing of constraints on activity flows [54],

i.e., any flow is permitted as long as the restrictions are upheld.

Other approaches in business process management have focused on the role of “artifacts”

(uniquely identifiable and self-contained flow entities) within process design and execution. This

is necessary as without considering artifacts, it would be difficult to consolidate processes to see

how they can attain a common goal. Business participants often are too focused on the execution

of processes without understanding the reasons for the execution, thus having an understanding of

the information context is necessary in order to design business processes properly [55].

Elsewhere, specific business tasks are considered to be encapsulated functions that act on these

business artifacts [56]. Artifact-Centric Operational Modeling (ACOM) is an approach that

emphasizes identifying artifacts that traverse the complete process, and aids in systems

development and specification, rather than purely lending itself to business analysis [57][58].

These artifacts “capture the contexture of a business and operational models describe how a

business goal is achieved by acting upon the business artifact” [59]. An alternative

conceptualization of a business artifact (and its lifecycle in business processes) is provided in [60]

where an artifact “is a concrete, identifiable, self-describing chunk of information that can be used

by a business person to actually run a business” and is “taken to be the only explicit information

contained in the business; that is, the set of business records represents the information content of

the business.”

Business processes are modelled from the perspective of information entities or data flows in the

information-centric approach. An information-centric process model of a process scope may

contain multiple information entities, with information entities being the data that are used by

business functions, and the input and output of different business services [61]. Declarative data-

centric approaches for business process design are useful as they provide an understanding of

25

various business artifacts that are managed within the process flow, including the operations

performed [62]. The details captured in such declarative workflow specifications make it easier if

there is a need to come up with physical implementation. Business processes can be considered to

cross many “layers” in the organization, these being the operations layer, execution layer, and

implementation layer [63]. A sense-and-respond organization would have data flows (through

business processes) across these layers that would allow it to communicate data from the sensing

part to the deciding part. Finally, the impact of cognitive computing on business process

management is covered in [64] where multiple types and levels of business processes are

discussed; these include transaction-intensive, judgement-intensive, and design & strategy support

processes. These processes result from the incorporation of cognitive capabilities within an

enterprise and how cognitive processes enablement can be attained.

2.2.2 Business Process Redesign

Business processes need to be periodically redesigned. This is often a response to the changing

state of the organization itself, or as a response to the changes in the external environment. While

these redesigns can be done in an unstructured and creative manner, there are systematic means of

analyzing and proposing alternative designs. Dumas et al. [50] suggest two methods of redesigning

business processes, heuristic-based and product-based design. Seven elements are considered to

enable structured contemplation better and to redesign a process from a heuristic standpoint. These

elements are customers, business process operation, business process behaviour, organization,

information, technology, and external environment. The product-based design method considers a

different perspective where the central focus is on designing a particular enterprise product or

service while ignoring the existing design of that process. This frees the process architect from the

constraints of existing process design and permits a design that is the most efficient for the creation

of that product or service. Another approach to business process redesign is provided in [65] as a

framework where the emphasis is on the mechanics of the process. This framework highlights

several elements that should be central to the redesign of a process, including best practices and

commonly accepted ideas.

26

Another relevant domain is business process variability modeling which focuses on representing

customizable business process models through variation points used to describe and bind

variability at design-time [66]. Introducing variability at design-time means that all instances of

the business process execution follow the same design configuration. Conversely, flexibility can

be added in business processes at run-time where customization decisions are made that affect

different instances of the process execution, but not the process model itself [67]. Variation points

are specific locations in the business process where decisions are made (at binding time) for

selecting alternative process configurations that help accomplish particular enterprise objectives.

In dealing with business process flexibility, [68] proposes four dimensions of change that help

determine the relationships between process fragments and the late selection for these fragments.

Overall, these approaches deliberate about variability only at the process level (i.e., within a single

process) and do not support reasoning about and within business processes nor do they guide

ongoing enterprise transformations.

The concept of process families is discussed in [69], where several processes, with minor

differences between them, are considered as variations of one meta-process. Such a way of viewing

collections of processes as a process family allows for generalization and contemplation of design

choices around automation, cost, simplicity, management etc. However, this work does not

sufficiently differentiate between design-time process variants of run-time variability in process

execution. A method of determining process variants and design-time, and reconfiguring the

process at run-time is provided in [70] through a five-step method which involves eliciting and

describing variability, determining and analyzing the context, linking the non-functional

requirements to different process variants, and finally reconfiguring the process at execution time.

There have been attempts to model context in problem domains. The VIVACE framework is

derived after a systematic literature review into handling process variability [71]. The framework

allows for comparing existing process variability approaches and selecting an approach that best

meets the requirements of a particular situation while also factoring in the application context.

Context Modeling Language (CML) allows for capturing of various fact types with regards to

related objective types [72]. Fact types are further differentiated into static facts, dynamic facts

(such as profile facts, sensed facts, derived facts) and temporal facts. Other standard modeling

27

approaches like UML and ER have been used for context modeling. However, they are limited in

their ability to capture specific distinctive characteristics of contextual information [72]. For

example, UML class diagrams model user, personalization, and context metadata subschemas

together in one model [73].

Context-driven process adaptation has recently been given much consideration. A formal

representation of context, using a metamodel, for business processes for a domain is given in [74].

The metamodel is defined across three layers (context, process, and domain) that collectively

support the representation of relevant contextual variables (associated with a process model within

the domain under study). Such a metamodel helps with adapting business processes based on

available context. A Process Management System, consisting of a model and a prototype, is

provided in [75][76]. This additionally features a set of techniques for supporting the run-time

adaptation of knowledge-intensive process instances in response to unanticipated exceptions.

Situation calculus is used to model context with planning systems used to execute the automated

adaptation of processes using encoded action plans. A context model-based approach and planning

technique is proposed in [77] to tackle the problem of dynamic adaptation within a process-aware

information system by characterizing unexpected situations as known as contextual elements. This

helps automate the decision of process flow replanning while ensuring process strategy is still

attained. Various characteristics of the problem domain to define the context in which systems are

to operate are considered in [78] with a methodology proposed for exploring context variability

while modeling and analyzing its effects on requirements goal models, whereas an illustration in

managing and monitoring context to redesign business processes is provided in [79].

2.2.3 Business Process Architecture

Considering a multitude of business processes as a collective to understand their relationships,

exchanges of data, and how services are realized has been previously studied in scholarly literature.

The concept of Business Process Architecture, and the sequence and hierarchy of business

processes, how and why to split process stages, etc. is covered in [50]. Eid-Sabbagh et al. [51]

define additional ways of considering the relationship between processes by considering notions

such as composition, specialization, trigger, and information flow. Business process architectures

28

are used to provide an abstract representation of multiple processes that exist in an enterprise.

Dumas [50] distinguishes between three types of relationships that exist in a process architecture

- sequences, decomposition and specialization. Process architectures can also be seen as a means

for developing a more holistic view of the organization by associating business process modeling

and enterprise architecture, while additionally abstracting processes into a higher level of

granularity that provide increased visibility on the constituent parts of the integrated processes [6].

2.2.4 Summary

Business processes are generally studied and modelled in isolation without considering their inter-

process relationships and structures. Multiple business processes may come together to provide

some feature functionality, but the nature of their relationship is not explicit in modeling

languages, such as BPMN. Pools are used to show a multiplicity of processes that operate

independently of each other and the inter-process connections show sequence relationships

between these processes and the exchange of messages and artifacts. Despite this, the multiple

levels of process-driven dynamics and the relationships between the process levels are not apparent

in a BPMN model, nor are boundaries between these process levels obvious. The relationship

notations in BPMN are limited in the sense that they cannot convey the degree of configurability

between the relationships of processes where one business process is producing a plan that is being

used by another business process in its execution, or when software processes are building software

artifacts that are used elsewhere. Variability in business process design is well covered by existing

literature but these ignore the influence of surrounding processes on business process design.

The existing approaches for studying and modeling business process architecture provide a

representation of a collection of business processes under study. They do not offer constructs or

mechanisms for studying enterprise transformations or provide mechanisms for dealing with

uncertainty in the design of the business process architecture. While similar to the idea of business

process architecture, the approach in this research project differs by emphasizing alternative

process constructs and various means of reconfiguring the process architecture for enabling

fundamental transformations in the enterprise. We are focused on the need for ongoing change in

the enterprise and use process architectures to model those changes and analyze possible variants

29

of process architecture configurations that can exist. We ignore the differentiation of processes as

business processes or software processes. Rather the focus is on how multiple processes come

together to achieve a common objective and how to reconfigure the process if certain associated

non-functional objectives change.

2.3 Software Processes

Software processes are a collection of numerous activities involving many organizational units

and individuals performing various roles for the generation of different kinds of software artifacts.

Software processes have been defined as “the coherent set of policies, organizational structures,

technologies, procedures, and artifacts that are needed to conceive, develop, deploy, and maintain

a software product” [4] and “activities, methods, practices, and transformations that people use to

develop and maintain software and the associated products” [206]. These definitions imply that

the process of software development does not exist in isolation from the rest of the organization

and is influenced by multiple organizational and technological factors.

Software processes are continuously evolving, with numerous innovations to software process

design being introduced over time [42]. Enterprises continue to customize and tailor software

processes to suit their local environments, different team cultures, software project priorities,

organizational policies, software tools, and functional requirements. Several approaches to

designing and modeling software processes have been proposed over the years to allow for process

transformations and improvements, and support design decision making [4][80]; some of these are

discussed in the subsequent sections.

2.3.1 Software Process Modeling

Several techniques and methods have been proposed for modeling software processes to help with

the design of these processes, along with providing insights into their execution [42]. These

software process models allow the depiction (through various means) of the activities that need to

be executed to accomplish process objectives. The participants involved in the enactment of the

activities can also be identified, including the roles that they play. Further, the nature and form of

30

software artifacts that are produced by process execution can be discovered alongside the software

tools that contribute towards the development of these artifacts [42].

A categorization of activity-oriented and artifact-oriented software process models is provided in

[80]. Activity-oriented models focus on the activities and methods that comprise a software

process, whereas artifact-oriented models focus on the resultant artifact output produced through

process execution. The activity-based approach focuses on the various activities, methods and

tasks that collectively contribute towards defining the overall software process [80]. Breaking up

the software process into finer-grained activities enables the assessment of the key actions that

need to be performed (as well as understanding the requirements for that action) for developing

the software product. This further allows the redesign of the software process by shifting around,

substituting or even repeating activity segments based on varying enterprise needs. Individual

activities could be considered for localized improvements and automation. Associations could be

defined between the activity segments, which would indicate the nature of the relationships, the

ordering present, and any control and information flow, all of which would give a more in-depth

insight into the implementation of the software process.

Several software process modeling techniques exist which are activity-based. Situational Method

Engineering (SME) can be used to create development (software process) methods for specific

purposes by selecting and combining method fragments previously-stored in method repositories

[81]. These method fragments can be either activities or product artifacts, and the method

combination is done in a manner to meet the demands of the situation. Software & Systems

Engineering Metamodel (SPEM) is a meta-process modeling technique for designing software

process models particular to specific enterprise needs [82]. SPEM abstracts out key software

activities. By ignoring specific process modeling languages, implementation and execution details,

construction of various process models (and their ongoing evolution and redesign) is possible

without being burdened by software process nuances. The Unified Process (UP) [83] and some of

the techniques in the Unified Modeling Language [84] can also be considered an activity-based

approach by their emphasis on activity-based development. This is not to say that activity-based

approaches ignore the presence of software artifacts or tools. Instead, their primary focus is on the

software activities with the artifacts that may or may not be well described or included [80].

31

In contrast to the activity-based approach, the artifact-based approach focuses on the artifacts

which are to be produced as part of the software development process. Such an artifact-centric

approach ensures that the software artifact is given primary importance, with the software process

being designed around it [80]. The requirements, nature and structure of the artifacts thus need to

be well understood with the processes contributing to its development. It would be prudent to

define here what is meant by an artifact. An artifact “is seen as a structured abstraction of modeling

elements used as input, output, or as an intermediate result of a process. An artifact has particular

properties (structure, behaviour, etc.) and can be precisely described using standardized

(semi-)formal modeling concepts. Upon such a description, one can incorporate different

techniques and notions, define clear responsibilities and support a progress control for the

production of artefacts” [85].

The advantage of the artifact-based approach is that the software process can be designed to be

flexible, modifiable and less concrete as long as it manages to meet the functional and non-

functional requirements of the artifact. The stakeholders need not be bothered about defining the

software process in great depth and detail as long as there is an understanding of what artifacts

would be produced by process segments; minor process segments and activities can be determined

by the process participants themselves based on their conveniences and efficiencies. Modeling

techniques from requirements engineering can also be used to define the problem space (for artifact

requirements elicitation), which would allow opportunities for richer and deeper analysis and

design of the software process [85]. Some modeling techniques under the UML umbrella can be

considered to be artifact-based approaches to modeling software processes. Another example is

that of V-Modell XT, where modeling process defines the resultant artifacts [85].

2.3.2 Software Process Variability and Adaptability

Designing software processes for enterprises is a complex activity and needs to be carefully done,

considering each enterprise's unique characteristics. Software processes that have been

successfully adopted in one enterprise may not necessarily serve the needs of another enterprise.

Besides, multiple software processes may exist within an enterprise, each serving some specific

project and having certain contextual considerations that cause them to be different from each

32

other. Determining commonalities and variabilities between these software processes would be

beneficial in many ways. Sharing of design experiences would reduce the time spent in designing

unique software processes while reducing the risk of less optimum process design, which may

result in wasteful activities being performed or project budget being impacted [86]. Further, being

able to manage minor variations between software processes enactments efficiently allows the

contextualization and refinement of these processes at a certain granular level. For example,

allowing individual teams to customize the software process based on their needs while staying

within the broader enterprise mandated software process design. Customized software processes

can be created and discarded as per project needs.

In Situational Method Engineering (SME), allowing the archiving and usage of software process

fragments enables variability in software process design through the creation of customized

software processes [81]. Software Process Tailoring (SPT) and Software Process Improvement

(SPI) methods aim to mould a general software process to a particular project by “adding,

removing or modifying the activities and the required inputs/outputs of a base process model to

develop high-quality system/software efficiently” [87]. There is a plethora of approaches within

process tailoring on how to achieve improvements through variability, customizability and

reusability through the mixing or matching software process components for new process creation

or the instantiating of customized process architectures using process architecture templates [87].

Extending the idea of Software Product Lines to processes results in the notion of Software Process

Lines (SPrL) [87], which is based on a similar premise; similarities and differences between a set

of software processes could be scoped for determining customized software process configurations

as per unique software project conditions. SPrL allows for the reasoning of alternative

configurations by considering the placement, and their binding, of variation points, thus facilitating

software process reuse. Another approach for considering variability in software processes is by

abstracting out the specifics of the process implementation and designing the process at a meta-

level. SPEM, being at a meta-process level, does not specify the particulars of the software process.

For example, while it may indicate that a requirement elicitation stage is required, the exact

approach to be used may be left out. SPEM also provides different variability constructs that can

be extended (as per specific implementations) to give concreteness to a SPEM process design [82].

33

Adaptability is characterized by some form of feedback loop which provides opportunities for

adaptation through the selection of one out of many variations. All agile development practices

have in-built mechanisms for self-evaluation and retrospection; in fact, having a post-iteration

review is one of the principles of the Agile Manifesto [88]. The Scrum methodology has a “sprint

retrospection” ritual where the recently concluded sprint is reviewed and activities rated according

to whether they should be started, should not be done, or whether certain activities should continue

to be done [89]. Despite having sound practices of feedback, the reflection and retrospection rituals

in agile are manually initiated, unsystematic and subjective. Due to the unstructured manner of

feedback collection, interpretation and implementation, it is difficult to measure the effectiveness

of these feedback sessions on the overall improvement of the agile software development process

being practiced in the enterprise. The reflection and retrospection rituals in agile development

practices are usually represented as simplistic block diagrams and non-standardized modeling

notations. While these diagrams may provide primitive representations of the activities involved

in adaptive software process design and are relatively easy to understand, they do not lend well to

reasoning and analysis, particularly when trying to compare alternative software design

configurations.

2.3.3 Software Process Modeling for Variability and Adaptability

Some techniques exist for formal or visual capturing of variability aspects of software processes

[117]. As mentioned in the previous section, SPEM provides specialized variability constructs for

illustrating variability in a software process. SPEM 2.0 consists of various elements such as role,

work product, and task in addition to a variation element [82]. Variation elements allow the

introduction of variation and extension functionality to other SPEM elements (i.e., role, work

product and task) through variability types. There are four variability types, contributes, replaces,

extends, extends-replaces. The contributes variation type allows the addition of the properties of a

variability element to the base variability element. The replaces variation type allows the

substitution of the properties of a variability element to the base variability element. The extends

variability type allows the inheritance and extension of the properties of a base variability element

to the variability element. A combination of the last two variation types is extends-replaces, where

the variability element can replace specific defined properties of the base variability element while

34

extending others. SPEM 2.0 provides visual modeling notations for denoting each of the above

cases. Here the “base variability element” refers to the component which is abstractly depicted in

the SPEM model and the “variability element” is the element that contributes to particular concrete

implementation.

Variability aspect of SPEM 2.0 is indicated in [118], however in a somewhat constrained manner

as it (a) does not provide solutions for tailoring the software process (despite solutions for

substituting, extending or adding a base process), (b) does not offer variability specific notations

(but reuses the UML association relationship), and (c) does not provide guidance on the

modifications to the work element resulting from the process variation. To overcome these stated

limitations in SPEM v2.0, the authors present vSPEM where the concept of variation points and

variants (borrowed from SPL) is introduced to SPEM and are defined as “places at which

variations occur, and the elements may be different from one process to another. Variants are

specific implementations of this variability, and each one of these variants makes the process

unique” [119]. Both variation points and variants are abstract classes for SPEM elements, and the

concrete class represents the different alternatives possible for that abstract SPEM element.

Additionally, vSPEM provides variability specific notations to identify variability in software

processes better and quickly.

UML activity diagrams too have been proposed to representing variability in software activities

by introducing stereotypes (<<VarPoint>>, <<Variant>> and <<Variable>>) to standard UML

activity diagram notations [120]. Another approach for modeling variability is through feature

modeling. Feature models were introduced as being used to represent variability in SPLs; however,

they can be similarly be used for software processes as well [117]. In this context, mandatory and

optional software process elements are represented and marked as features with the standard

feature modeling analysis techniques being applied to derive alternatives. Finally, from a

requirements engineering perspective, agent-oriented and goal-oriented modeling techniques are

used to supplement a software process modeling visualizing by showing the different goals and

the alternative means of achieving the higher-level goal [121]. These goals map to process

elements in the software process and the alternatives indicate the different configurations of those

process elements that are permitted for attaining the process objectives.

35

There is limited modeling support for software process adaptability. System dynamics is a

feedback-oriented approach for modeling complex continuous systems through mathematical and

graphical modeling. System dynamics provide structured and established modeling techniques

using graphical process depiction and equations, including diagrams such as stock and flow

diagrams and causal loop diagrams [49]. System dynamics has been applied to a wide range of

areas, including managerial decision making and organizational behaviour. The design of software

processes has also benefitted by the application of system dynamics [90]. Since software processes

can be considered to be processes with inputs, outputs and feedback control elements, thus the

principles of system dynamics can be used for adapting the software process.

2.3.4 Summary

Software processes are increasingly seen as contributing towards organizational strategy [1] and

becoming an integral part of operational processes [42]. Software process design cannot be done

in isolation from the rest of the organization and should consider various organizational

considerations, in addition to the nature and need of the software being developed and the team

that is responsible for developing it. Indeed, software processes can be considered to be more

“complex and unpredictable than typical production processes as they depend on people and

circumstances” [207]. As a result, the design of software processes is a fairly difficult activity that

requires considerable insight into multi-level objectives, i.e., at an organizational level, at a team

level, at a software architecture level, at a customer level etc. [208].

As part of our PhD research, we ignore the traditional boundary between software processes,

operational processes and business processes, and focus on the collection of processes that come

together to attain some enterprise functionality. This allows us to consider the design of software

processes in conjunction with other processes. Most of the software process design approaches

described in the previous sections support better software development and production activities,

including automating processes, by identifying processes, resulting artifacts (to be produced or

used), and the process participants. However, they do not sufficiently provide tools and methods

for reasoning about design alternatives (for both process and artifacts) while evaluating enterprise

objectives. They do not provide mechanism for periodically studying software processes

36

reconfigurations to account for organizational variations while fulfilling high-level requirements.

Ongoing changes in process design are handled in our research by providing process constructs

that allow for various degrees of configurability to meeting ongoing shifts in soft-goal attainment.

2.4 Software Systems

It is no longer economically feasible or acceptable to have multiple disparate versions of software

systems developed and maintained separately, each designed to function in a specific situation

[46]. Further, organizations are shifting from developing single systems to a domain-specific

family of systems, which further adds pressure for reuse between software systems. This requires

modern software systems design to factor commonalities and variabilities between families of

systems, in addition to the architectural design of individual applications. Evaluating and analyzing

families of systems for commonalities and variabilities can be done by studying the problem space

(for variability requirements) or by examining the solution space (for software architectural

variability). The following sections consider modeling variability from both perspectives with a

few techniques discussed for illustrative purposes.

2.4.1 Software Systems Variability and Adaptability

There has been a conscious effort to make software systems utilizable across a range of conditions

and situations. This requires the designing of software systems to have variable behaviour based

on differing requirements that are presented to them and enable the system to be extended,

customized and configured for use in multiple contexts [46]. Thus the system is described as

having variability in design, behaviour and execution, with variability helping with “delaying

constraining of the system.” System designers are thus able to offer a broader range of products

and services (more economically) through the late selection of variants. Variability in software

systems is influenced by two underlying forces [46],

• Moving the embedding of variability behaviour from hardware to software allows the

introduction, modification and embedding of system variability at a far lower cost.

• Delaying the design decision points to a later stage in a system’s lifecycle based on economic

considerations.

37

Variation points (VPs) are specific locations in systems where decisions are made to select

variants of the system component or system design [46][47]. Variants can be alternative system

components or system design elements that help accomplish particular system design objectives.

One of the possible variants is selected at binding time in order to commit an alternative at that

variation point. The system does not need to be designed with all possible variants determined

beforehand; in some instances, the variants may be later added to the system.

Systems are further expected to demonstrate adaptability characteristics where they are supposed

to adapt in response to various external and internal stimuli. The adaptation may be self-initiated

(i.e., self-adaptive systems) or may be initiated through some form of manual or external initiation.

There is a distinction between system adaptability and adaptiveness [7] where a system is

considered to be adaptable if it is “easy or amenable to change” whereas system adaptiveness refers

to the “ability of an entity (organism or system) to change its behaviour to better survive or succeed

in its environment.” In order words, the adaptability of technological systems contributes towards

the adaptiveness of systems which operate at a higher (business) abstraction level.

System adaptability is inclusive of some form of feedback loop that allows a system to monitor

input sensory data, analyze and evaluate this data and undertake corrective actions as a response

[48]. Further, this adaptation is enabled through the selection of variants that provide alternative

ways of achieving system objectives. Stock and flow diagrams allow for the visualization of the

various software process components and activities, the associated software flows, and information

linkages [49]. The elements in a stock and flow diagram are the level, source and sink, rate,

auxiliary, and information link. The various software tasks, software artifacts, individuals and

participants, activities performed can be considered to be levels. The sources and sinks would be

things outside the boundary of the software process under consideration. The various software

actions being performed in the system being modelled would be considered to be rates. Auxiliaries

could be regarded as the different software metrics that exist in any software process environment,

metrics such as percentage accomplished and code coverage. Finally, information links, progress,

customer feedback, milestone and status information help with the flow of information.

38

Causal loop diagrams show cause-and-effect linkages and feedback loops in a system along with

positive or negative influences that may exist [49]. Causal loop diagrams are advantageous over

stock-and-flow diagrams in the sense that they can be quickly drawn and do not require detailed

modeling and specification of levels and rates. In the case of adaptive enterprises, they can help

show the various feedback that is received from the stakeholders and process participants. These

can include software engineers, test engineers, product analysts and even the customers. Both

causal loop and stock and flow diagrams can help with simulation modeling of business processes,

which can further enable adaptive tendencies in the design of enterprises.

2.4.2 Requirements Modeling for Software Variability

Various requirements engineering (RE) techniques elicit requirements for variability between

multiple software systems that occupy the same domain space. Agent-oriented requirements

engineering (AORE) [91] and goal-oriented requirements engineering (GORE) [92] techniques

provide a means for defining and assessing goals which are to be achieved by software systems.

Goal and agent requirements models allow for depicting higher-level goals, which can iteratively

and recursively be decomposed into multiple sub-goals with OR decompositions between these

sub-goals. Each sub-goal represents a means-to-an-end, i.e., one of many alternative ways (as

indicated through the OR decompositions) of attaining the higher-level goal. From a variability

perspective, the higher-level goal can be considered to be a variation point with the sub-goals being

the possible variants. A suitable alternative (variant) can be selected based on positive or negative

influences that that variant has on different non-functional requirements, represented as softgoals

in AORE and GORE [93]. The evaluation and selection of alternatives can be done using

techniques proposed as part of the Non-Functional Requirements (NFR) framework [94], and

through the qualitative or quantitative methods discussed in [95]. Examples of AORE and GORE

techniques include i* [91], Tropos [96] and KAOS [97]. Requirements engineering techniques

have been proposed to assist and aid in software systems adaptability by focusing on the problem-

space [98]. These techniques are primarily focused on the design of software adaptive systems,

and less so on the dynamics and complexities of the relationship between software systems,

business and software processes, users and participants, and the alignment with enterprise business

objectives.

39

Scenario-based approaches provide another way of modeling requirements variability in the

problem space [99], with scenarios described as “projections of future system usage, thereby

helping to identify requirements” and one scenario being “one sequence of events that is one

possible pathway through a use case”. A multi-view variation modeling technique for developing

product families is proposed in [100] what considers alternative scenarios that “describe a

spectrum of possible futures that affect the architecture.” Multi-view here refers to the usage of

five different modeling views - namely functional, conceptual, realization, application, and

customer – for determining the impact of identified commonalities and variations along each one

of those view dimensions. The views themselves are integrated through annotations or linkages

amongst the modeling elements (of each view). Problems Frames (PF) have also been proposed

for studying requirements variability. Problem frames is a problem-oriented conceptual

framework for requirements analysis, which emphasizes a focus on the problem domain rather

than the solution [101]. The context of the problem (captured using context diagrams) plays an

essential role within problem frames, and changes in context may result in different system

behaviour. The context in the problem space can be considered from a variability standpoint [102],

and problem frames can be used for representing and reasoning about contextual variability by

considering them as variant problems. Despite the support for variability assessment, scenario-

and problem-oriented approaches do not support systematic methods for analyzing and modeling

variability for the complete problem domain, whereas the goal- and agent-oriented approaches

allow capturing of domain variability requirements by starting with a high-level goal and gradually

and recursively decomposing into lower sub-goals.

2.4.3 Domain Modeling for Variability

Analyzing and modeling a domain can help in identifying commonalities and variabilities between

software applications existing in that domain [103]. A model of the domain would help with

abstract description, identification of relationships between key constructs, and determination of

commonalities and variabilities between individual software applications [104]. Domain analysis

generally comes under the broader domain engineering umbrella for economically developing

Software Product Lines (SPL). Software product lines allow an enterprise to identify and define

shared software components and artifacts in a product family, thus enabling the launch of multiple

40

disparate products in a shorter time and lower cost by taking advantage of the commonalities

between them [105]. Various domain engineering approaches exist which can be used for

analyzing and modeling variabilities in a domain. The Family-Oriented Abstraction, Specification,

and Translation (FAST) approach consists of three sub-processes (domain qualification, domain

engineering, and application engineering), which helps organizations determine a viable product

line, develop suitable product line artifacts, and finally build software products using those shared

artifacts [106]. This approach is in contrast to traditional software processes that focus on a single

software project or product. FAST evaluates a product domain and produces a domain model, in

the form of a commonality analysis document, “which is a record of the family’s terminology,

commonalities, and variabilities, and the key issues that arose during the analysis” [106].

Another approach, Product Line UML-Based Software Engineering (PLUS), extends UML (which

helps in designing single systems) to consider multiple products by introducing some additional

modeling notations and techniques [107]. PLUS supports three categories of modeling for domain

analysis – requirements, analysis and design modeling – with many modeling techniques within

each category. The Product Line Software Engineering (PuLSE) approach seeks to focus on the

organizational context, rather than the general domain, when conceiving, developing and

deploying product lines as the organization is deemed to be a strong influencing factor while

designing product families [108]. The PuLSE methodology consists of three “elements” –

deployment, technical, support – each further refined into phases or components as applicable.

PuLSE contains both graphical models (for showing the flow of activities within phases) and a

tabular map (for displaying a combination of software characteristics and the products that they

map to) for modeling the application domain. Finally, the Domain Analysis and Reuse

Environment (DARE) approach uses multiple sources – such as product code, technical

documents, and domain experts – to determine domain variability through models for determining

opportunities for software automation and reuse [109].

2.4.4 Feature Modeling for Software Variability

Software systems comprise of several software features that provide specific functionality.

Features are an intuitive way of expressing and understanding a software's purpose and

41

characteristics. Variants of software differ with regards to the features that they offer, and thus,

software variability can also be expressed with regards to the commonalities and variabilities of

features across multiple products. Models which allow the expression and analysis of

commonalities and variabilities of software features are referred to as feature models [110].

Feature-Oriented Domain Analysis (FODA) supports “the development of domain products that

are generic and widely applicable within a domain” [111]. In FODA, variability of product design

is obtained through three methods (a) aggregation/decomposition (multiple units instead of one

monolithic unit), (b) generalization/specialization (a conceptual unit that can be instantiated into

different forms), and (c) parameterization (unit adaptation into various forms based on parameters

thus enabling variability). FODA feature models are a means to capture the “general capabilities

of applications in a domain” through a graphical tree-like structure where each node represents a

feature [111]. In this model, features can be decomposed recursively into sub-features, with

linkages showing the relationship between features and variability being represented by labelling

features as alternative or optional. Feature Oriented Reuse Method (FORM) extends FODA from

the requirements engineering phase to the systems design phase by utilizing feature models for

designing system architecture and code by adding appropriate constructs to feature models [112].

Various modeling techniques are proposed that use UML models in conjunction with feature

models to design product families. Here feature models are used for tracing overall domain

variability while UML models help with designing individual software systems. Reuse-Driven

Software Engineering Business (RSEB) is an approach that utilizes use-case models for driving

software reuse within a product family, with variability being captured through the explicit

definition of variation points in use-case diagrams [113]. FeatuRSEB proposes the inclusion of

feature models (from the FODA approach) into RSEB to complement the RSEB models and

capture feature-based variability and commonality [114] as part of the overall domain analysis.

Feature tags for associating elements in a UML component diagram is introduced in [115]. An

abstract (feature-based) representation of variabilities in product lines (coming from the feature

model) is mapped to architectural components spanning multiple software products (as illustrated

by UML component diagrams). Unlike the previous approach, which introduced UML lightweight

extensibility mechanisms (i.e., tags and stereotypes), [116] advocates for making changes to the

42

UML use-case meta-model by adding two new relationships, option and alternative, and one new

model element, variation point. This evolved use-case meta-model is combined with feature

modeling for overall domain analysis.

2.4.5 Summary

Software designers can offer a greater range of products and services by delaying design decision

points to a later stage in a system’s lifecycle based on economic considerations. This necessitates

having an understanding of how the software system is used within the enterprise setting.

Postponing design decision points to a later point is only possible if the necessary data for decision

making is available. Similarly, building a software artifact later means that there should not be a

need for its use in business process execution until that point. Hence, software design should

consider the context in which the software is going to be used within business processes.

In this research, we do not specifically focus on the design of software systems but emphasize the

building and use of these software artifacts within the broader process architecture. This allows

for differentiating between processes that are responsible for the building of software, and

processes where the software is used, thus indirectly indicating the software artifacts that need to

be developed, including the location within the overall process architecture in which they are to

be used. We also consider the possibility of having partial designs of software artifacts, where

certain design decisions are left to be resolved at the time they artifacts are to be used.

43

3 Understanding Software-Enabled Enterprise Transformation

Acknowledgement: This chapter is partially based on the following papers;

• Babar, Z., Yu, E.: Digital Transformation – Implications for Enterprise Modeling and Analysis. In

Trends In Enterprise Architecture Workshop (TEAR), Springer International Publishing (2019)

• Babar, Z., Yu, E.: Enterprise Architecture in the Age of Digital Transformation. In Trends In Enterprise

Architecture Workshop (TEAR), pp. 438-443, Springer International Publishing (2015)

There is an opportunity for researchers in the conceptual modeling and enterprise modeling

community to provide enterprise architects and process architects with methods that would help

organizations to become ever more adaptive in fast-moving and rapidly evolving environments,

particularly taking advantage of emerging software-based technologies such as big data analytics,

artificial intelligence, blockchain, cloud computing, etc. Before we do so, we first need to

understand what we mean by the phrase “software-enabled enterprise transformation” by

providing a characterization of this phenomenon. There exist several factors that should be

considered whenever enterprises are incorporating digital technologies and software to foster

innovation and change. Such commonalities across multiple organizations and industry segments

can be extracted as a set of characteristics. Each of these characteristics may have been extensively

studied in isolation, and have appropriate solutions proposed by scholars and practitioners.

However, the problem posed by the characteristic may have been solved in a limited context while

generally ignoring the collective impact these characteristics have on the enterprise.

3.1 Recent Trends in Software-Enabled Enterprise Transformation

We studied three current industry trends, digital transformation, bimodal organizations, and

adaptive enterprises, all of which rely on the recent emergence of digital technologies and software

innovation to help transform the organization through the introduction of new business models and

digital-based strategies. There may be other relevant trends as well, but we were able to identify

several characteristics through these to be able to proceed to determine the requirements for the

modeling framework. Each of the three trends is further discussed below. In a review of these

topics in the remaining subsections of this chapter, we specifically view them through the prism

44

of business and software processes, as our motivation is to address enterprise change through

identification, analysis, and management of alternative process architectural configuration.

3.1.1 Digital Transformation

Digital transformation entails the transformation of core business operations of an enterprise by

leveraging digital technologies [3][122]. Such a transformation is a significant shift from the

previous modus operandi and results in broad-ranging and potentially disruptive enterprise-wide

transformation enabling enterprises to move from a brick-and-mortar style operation to one that is

more encompassing of digital technologies [123]. There is no one agreed definition of digital

transformation, although recent literature reviews [124][125][126] attempt to provide a set of

properties for enterprise digital transformation.

The major drivers for digital transformation are digital technologies, digital capabilities, enterprise

strategies and evolving business models; with there being an impact on the products and services

offered by the enterprise, the processes that produce those products and services, as well as the

overall organization structure [126]. The operational processes would need to be optimally

designed to align with and support enterprise strategic objectives, including those around customer

experiences. For this, enterprise architects require an enterprise modeling framework that would

provide a systematic and structured mechanism for managing change in the enterprise at multiple

layers and perspectives.

3.1.2 Two Speed or Bimodal Organizations

Organizations born in the digital age are better able to meet customer expectations as they do not

have legacy business processes or IT infrastructure weighing them down. Consequently, two speed

or bimodal IT architecture models have been adopted by traditional organizations to be able to

stay competitive and remain customer-centric [127]. The term “two-speed” refers to the relative

frequency at which each “section” of the enterprise operates, with the management of the

customer-centric front-end systems being separated from the legacy back-end enterprise systems

to allow for independence of decision-making and operations.

45

Such an approach is useful as it allows organizations with significant slow-moving business

models and technology infrastructure to stay competitive, albeit this does come with several

challenges [128] for the enterprise architect. Having disconnected sections of the organization

means that there is less proliferation and exchange of ideas. Sociotechnical challenges with

integrating these two disconnected segments remain, with strategic initiatives never really having

a cross-organization complementarity of offerings. Finally, both the financial and non-financial

cost and complexity of having such an architecture is significant and needs justifying against the

perceived (and unproven) benefits that would result from such an enterprise architecture.

3.1.3 Adaptive Enterprises

Organizations are seeking new ways to become more agile and adaptive [7]. As mentioned in

Chapter 2, an adaptive enterprise is one in which the output of the organization (in the form of

goods or services) is continually changing while being synchronized with the expectations of its

customers. Adaptive enterprises are in a continuous reorganization state, with the change being

influenced by both the internal adoption of technologies and the general pervasiveness of digital

technologies in the environment that they operate in. Such enterprises have “sensing” and

“responding” characteristics, with them needing to “observe” and be aware of such situations

based on which it would initiate and undertakes activities of adaptation and change.

Such paths of change can be analyzed in terms of sense-and-response loops through which the

enterprise continuously adapts and improves [37]. In the sensing part, the enterprise would

(proactively or reactively) determine the cause and need for change. In the responding part, the

enterprise would determine the best possible alternative for change. The trait of adaptiveness in an

enterprise is a desirable goal, but this often competes with other objectives. As with bimodal

organizations, the cost of maintaining a state of adaptability in the organization could be high and

must be balanced against other enterprise goals [7]. Further, IT resources and capabilities need to

be designed with flexibility in mind to ensure agility and an ability to react to change in the market

conditions [129].

46

3.2 Methodology

A systematic literature search was performed using the eight-step process provided in [11] for

conducting literature reviews in information systems research. This process is visually presented

in Fig. 3-1. Through this review, we intended to determine the underlying characteristics of

software-enabled enterprise transformations by identifying behavioural commonalities across

multiple enterprises undergoing transformation using the three trends introduced in the previous

section.

Fig. 3-1: Systematic literature review method adopted (Source: [11])

1. Purpose of the
Literature Review

2. Protocol & Training

3. Searching the

Literature

4. Practical Screen

5. Quality Appraisal

6. Data Extraction

Qualitative

Quantitative

7. Analysis of Findings

Qualitative

Quantitative

Qualitative

Quantitative

Quantitative &

Qualitative

8. Writing the Review

Planning

Selection

Extraction

Execution

Systematic

47

Step 1: Purpose of Literature Review

We first portray the problem by identifying the characteristics of software-enabled enterprise

transformation. Our intention was to use these characteristics to come up with definite

requirements for an enterprise modeling technique that would allow modeling and analyzing

enterprises undergoing transformation due to emerging digital technologies. We emphasize that

the purpose of this systematic literature review was not to provide a precise definition and

description of software-enabled enterprise transformation, but rather to identify common

underlying traits in such enterprises.

Step 2: Protocol and Training

A protocol or training document wasn’t needed as the review employed only one reviewer.

Step 3: Searching for the Literature

We started with an inclusion criterion and identified all those papers that used the term “Digital

Transformation”, “Two Speed Organizations”, “Bimodal Organizations”, “Adaptive Enterprises”

in the paper title, abstract or keywords. Although different phrases (such as "Digital Strategy",

“Enterprise Digitization”, etc.) may be considered as a viable alternative, we chose to limit our

search to just the ones mentioned as adding alternate terms to the research may lead researchers

into a biased understanding, as not all terms are semantically similar to our selected terms.

Step 4: Practical screen

The search for articles was conducted in early 2019 and only for journal articles and conference

papers that had a publication date of 2010 and later, as we wished to focus on enterprises that were

transforming due to emerging digital technologies. Further, only papers written in English were

selected. Using this inclusion criterion, we ran a search query against the ProQuest database, which

returned a total of 818 articles. By manually reviewing the search results, we identified 120

duplicates which were eliminated to obtain a final list of 698 articles (see Fig. 3-22 for distribution

by year).

48

Fig. 3-2: Distribution of selected articles by year

Step 5: Quality Appraisal

In the screening process, we reviewed the title and abstract of the 698 papers to determine if the

papers attempted to define attributes, characteristics, or adoption challenges for enterprise

transformation. We specifically considered the following questions during this phase of the review

process. Does the article cover one of the following points in detail?

• Define enterprise transformation?

• Discuss its characteristics?

• Discuss the primary drivers in its adoption?

• Specify adoption challenges in enterprises?

• Share experiences in real-world settings?

During this screening processing, we found out that most papers superficially introduced or

mentioned such enterprise transformations in passing. These papers did not qualify based on the

screening criteria set above and were excluded. The final selection consisted of 36 articles that

were then reviewed in more detail in the next step.

Step 6: Data Extraction

In this step we extracted segments from across the 36 papers that based off the following thematic

areas,

• Traditional and Digital Business Models

• Operational Processes

• Emerging Digital Technologies

49

• Customer and Customer Experiences

• Organization Culture

• Social and Employee Implications

• Legacy Technology Infrastructure

The thematic areas were identified by studying the drivers and impact areas as identified in

[37][124][125][126][127][128][129]. Collecting and grouping these paper segments based on the

thematic areas was important as it simplified the data to be synthesized in the next step.

Step 7: Synthesis of Studies

Through a process of qualitative reasoning, each thematic area was coded to determine the nature

and types of discussion points and arguments presented. Through this we determined eight

concrete characteristics across our final data set (shown in Table 2). We were careful only to isolate

those characteristics that were present across multiple papers. The paper count by characteristic is

given in Fig. 3-3. The total number of articles exceeds 36 as multiple characteristics may appear

in an article.

Fig. 3-3: Distribution of articles by characteristics.

Step 8: Writing the Review

In this section, we provided the systematic literature review process employed for independent

reproduction by other researchers. We do acknowledge that the review relied on qualitative

reasoning and analysis of articles. It is conceivable that other reviewers executing a similar review

50

process may thus see slightly different results or uncover additional characteristics. These could

then be used to determine a set of requirements for an enterprise modeling framework.

3.3 Characteristics Relating to Enterprise Transformation

The literature review exercise performed resulted in the identification of eight concrete

characteristics that are presented in Table 2.

Table 2: List of Characteristics and related papers

Characteristics Papers

Business Strategy and Business Models
Berman [130]; Resca et.al. [131]; Lan & Lui [132]; Schallmo et.al.
[133]; Remane et.al. [134]; Kotarba [135]; Matt et.al. [136];
Loonam et.al. [137]; Delmond et.al. [138]

Enterprise Agility

Delmond et.al. [138]; Earley [139]; Berman & Marshall [140];
Westerman [141]; Hossain & Lassen [142]; Heavin & Power
[143]; Andriole [144]; Burden et.al. [145]; Shrivastava [146];
Narayanan [147]; Kaivo-Oja et.al. [148]; Shaughnessy [149]

Customer Centricity
Berman [130]; Loonam et.al. [137]; Shrivastava [146]; Narayanan
[147]; Shaughnessy [149]; Wahi & Medury [150]; Weill &
Woerner [151]

Rapid Cycles of Product and Solution Delivery
Kaivo-Oja et.al. [148]; Shaughnessy [149]; Wahi & Medury
[150]; Weill & Woerner [151]; Masuda et.al. [152]; Troilo et.al.
[153];

Multi-Speed Organizations

Berman & Marshall [140]; Hossain & Lassen [142]; Andriole
[144]; Burden et.al. [145]; Shrivastava [146]; Narayanan [147];
Shaughnessy [149]; Wahi & Medury [150]; Troilo et.al. [153];
Masuda et al. [157]; Basole [158]; Alos-Simo et.al. [159];
Ardolino et.al. [160]

Data-Driven Decision Making

Schallmo et.al. [133]; Delmond et.al. [138]; Berman & Marshall
[140]; Westerman [141]; Hossain & Lassen [142]; Narayanan
[147]; Troilo et.al. [153]; Gölzer & Fritzsche [154]; Pikkarainen
et.al. [156]; Masuda et al. [157]

Social and Organizational Aspects

Resca et.al. [131]; Loonam et.al. [137]; Heavin & Power [143];
Andriole [144]; Narayanan [147]; Shaughnessy [149];
Kolbjørnsrud et.al. [155]; Alos-Simo et.al. [159]; Schwarzmüller
et.al. [161]; Sainger [162]; Nwaiwu [163]; Andriole [165]

Business Process Automation

Schallmo et.al. [133]; Westerman [141]; Heavin & Power [143];
Andriole [144]; Kaivo-Oja et.al. [148]; Shaughnessy [149]; Weill
& Woerner [151]; Kolbjørnsrud et.al. [155]; Weber & Monge
[164]

51

This list of characteristics is not meant to be exhaustive or absolute, as the identification process

was based on qualitative reasoning and may be prone to observer bias. Our intention of discovering

these characteristics is to develop an understanding of the key challenges in modeling enterprises

that are underdoing enterprise transformation. A narrative for each is provided below based on

common discussion points across the papers in the final dataset.

3.3.1 C1: Business Strategy and Business Models

Business strategies and business models are utilized by enterprises to develop and maintain

competitive advantages in a changing landscape [130]. Alignment between an enterprise’s

business strategy and operational processes allows for improved enterprise performance [130].

Through the usage of emerging digital technologies, enterprises are now increasingly developing

digital business models (or digital models) [132][135]. Cloud computing platforms, in particular,

have allowed for the creation of new digital business models, such as eCommerce or SaaS based

solutions, and enabled evolving enterprise strategies [131]. Enterprise business and technology

processes need to be supportive of enterprise strategies and need to be aligned, designed and

tailored accordingly [136]. In a changing environment, enterprise strategies and business models

evolve, and software process need to be flexible and adaptive enough to serve the needs of such

evolving needs through closer and ongoing association between business and software

development functions [138]. Additionally, enterprises can adopt agile approaches to requirements

engineering for managing the challenges of rapidly changing technology, or by aligning innovation

in business models and changes in business strategy with the organization process setup and design

[137] [138].

3.3.2 C2: Enterprise Agility

Enterprises undergoing transformation due to disruptive software technologies are responding to

ongoing changes and evolving environmental factors, increased competition, and the emergence

of new market entrants from non-traditional sectors [140]. Disruptive technologies and continual

business model innovation require enterprises to react and adapt to change more quickly than ever

before [140][141]. Emerging technologies are used to inform and shorten product development

cycles and increase product release cadence [142]. To this end, enterprises are expected to be

52

adaptable by relying on rapidly configurable IT and software systems and accompanying processes

for the development and delivery of appropriate products and services with agility and

responsiveness [138][145]. Similarly, IT and software processes too need to be supportive of

enterprise strategies to deal with transformation challenges and need to be aligned, designed and

tailored accordingly [143]. Recent innovations in software processes and artifacts allow for faster

and rapid software product development [149]. Such improvements can be in both the developed

software system and the software processes that develop such systems. Collectively, such an

approach would allow enterprises to become more agile and responsive.

3.3.3 C3: Customer Centricity

Enterprises strive to offer continuously improving customer experience through greater customer-

centricity with respect to the products and services that they offer [130]. Recent advances in digital

technologies allow for greater customer involvement and engagement between the customer and

the enterprise than ever before [149]. Thus, a significant motivator for ongoing software process

and product evolution and innovation is the ability to rapidly and efficiently satisfy emerging

customer preferences and trends [146]. Organizations are making their processes more agile by

bringing their software development processes closer to the user so as to respond to evolving

customer trends and change requirements faster [147]. Such a shift allows for more significant

customer consideration during the design, develop, deliver and operate phases of the final solution.

3.3.4 C4: Rapid Cycles of Product and Solution Delivery

Continuing from the previous points, enterprises need to have faster and rapid cycles of product

and service delivery [149]. Prompt delivery of software features enables an enterprise to reduce

the time-to-market of new products and features, provide greater customer-centricity by

introducing new features based on evolving customer needs, quickly resolve operational and

support issues, and show improved responsiveness to changing internal context and external

environmental situations [150]. Rapid cycles can be achieved by either increasing the frequency

of process execution or through the reduction in time required for a cycle execution. Practically

these are attained by reconfiguring various segments within business and technology processes or

reducing the number of activities within [151]. Technology and software systems, tools and

53

processes are being redesigned for ensuring continuous and rapid delivery of software products

and artifacts while supporting on-going evolving enterprise cycles of innovation. These redesigns

are done by considering the multi-faceted implications of introducing such practices within an

enterprise [153].

3.3.5 C5: Multi-Speed Organizations

Enterprises that are undergoing change due to adoption of software-enabled technologies often

have distinct areas, with each having separate culture, processes, methodologies, software tools

and environments that are locally relevant and conducive [145]. This is particularly evident in two-

speed organizations, where one side is more responsive to customer needs by allowing it to be

“decoupled” from the side containing legacy systems (and its associated processes) [146][147].

Such separation is attained by adopting multiple approaches and can involve diverse perspectives,

including organizational structure, separate technology and software systems, and differing

business, IT and software processes [149]. Digital technology has allowed customers to be

increasingly engaged with enterprise service providers. The technology solutions used within the

digital enterprise transcend two distinct areas having different characteristics and timescales. The

side closer to the customer is characterized by quick development and deployment cycles with

customers providing immediate feedback, whereas back-end enterprise systems have longer, more

cautious development cycles [158]. Thus, business features affecting front-end and enterprise

backend systems would be managed, developed and delivered differently using different enterprise

areas, levels, methodologies, tools, and timescales.

3.3.6 C6: Data-Driven Decision Making

Within any enterprise, there exist data-driven cycles of ongoing feedback and improvement that

are considered during planning activities [153]. Advances in big data technologies are enabling

the capture, retention and processing of large volumes of enterprise data, which are then utilized

as part of decision making for incrementally improving on operational processes, strategic decision

making, product design, amongst other areas [154][156]. Analyzing process execution allow for

the identification of inefficiencies in operational process execution, which can then be used to re-

engineer business processes better [147]. The use of feedforward loops is also evident in order to

54

have the enterprise respond to changing environmental conditions. Software engineering

methodologies, too, are increasingly utilizing enterprise feedback and feedforward loops to help

improve in decision making for software process and software systems design [140].

3.3.7 C7: Social and Organizational Aspects

Changes to the enterprise are frequently accompanied by changes in roles and responsibilities of

organizational units and individuals [155][161][162]. These organizational changes need to be

carefully and systematically deliberated while considering changes to enterprise processes, and

technology and software systems [165]. Creating and understanding these multi-faceted

associations is difficult while factoring in the complexities of enterprise architecture and design,

as well as other enterprise considerations such as culture, context, and alignment [161]. It is

generally convenient to ignore such social and organizational aspects during the design and

inclusion of software and technology and focus on how an activity is to be performed or what it

entails, yet the why also needs to be understood to glean out the complex social relationships

between the various enterprise and process participants [155][165]. The rise of popular software

methodologies and concepts, such as Microservices Architecture [166] and DevOps [33], has been

the direct result of requiring visibility and alignment between the social, technological, and process

perspectives, with each being configured in a manner that supports the other

3.3.8 C8: Business Process Automation

Enterprises are increasingly investing in business process automation to improve process

efficiency, reduce cost, and improve execution time [155]. Through the use of advanced software

and technology, automation is resulting in changes to crucial enterprise processes [151]. The

widespread support for business and software process automation through recent technological

advances enables operational support for both enterprise business activities (by helping with

automated decision making) and the technology environment (by aiding with software systems

configuration, deployment, monitoring and maintenance) [164][149]. However, automation brings

about certain complexities, and it needs to be justified against its perceived benefits [141].

Automation results in business processes operating at different timescales i.e., the manual

development activity may take days, whereas the automation and deployment may now take hours

55

[143][148]. From a technology standpoint, automation has strongly influenced the software

development and delivery model by allowing for short release cycles and more rapid delivery of

software features.

3.4 Requirements for the Modeling Framework

The characteristics presented in the previous section can be abstracted out as a set of requirements

for a modeling framework. In Table 3, we provide a matrix mapping between these transformation

characteristics and the requirements; this is in addition to referencing the applicable characteristics

(e.g. C1, C2, C3, and so on) within each requirement.

Table 3: Mapping Enterprise Transformation Characteristics to Framework Requirements

(C
1

)
B

u
si

n
e
ss

 S
tr

a
te

g
y

 a
n

d

B
u

si
n

e
ss

 M
o

d
e
ls

(C
2

)
E

n
te

r
p

r
is

e
 A

g
il

it
y

(C
3

)
C

u
st

o
m

e
r
 C

e
n

tr
ic

it
y

(C
4

)
R

a
p

id
 C

y
c
le

s
o

f

S
o

lu
ti

o
n

 D
e
li

v
e
r
y

(C
5

)
M

u
lt

i-
S

p
e
e
d

 O
r
g

a
n

iz
a

ti
o

n
s

(C
6

)
D

a
ta

-D
r
iv

e
n

 D
e
c
is

io
n

 M
a

k
in

g

(C
7

)
S

o
c
ia

l
a

n
d

 O
r
g

a
n

iz
a

ti
o

n
a

l

A
sp

e
c
ts

(C
8

)
B

u
si

n
e
ss

 P
r
o

c
e
ss

 A
u

to
m

a
ti

o
n

✓ ✓ ✓
(R1) Process Architecture: Represent the overall software ecosystem through processes and their relations.

Configuring processes would allow for introducing different enterprise behaviors while attaining enterprise

objectives.

✓ ✓ ✓
(R2) Multi-Level Process Dynamics: Indicate several process types and their levels. Different levels can be

demarcated through process boundaries, with each level having similar process behavioral attributes.

✓ ✓ ✓
(R3) Enterprise and Process Goals: Align enterprise strategy and business models to processes responsible

for delivery of products and services. Shifting enterprise objectives are attained through process

reconfigurations.

✓ ✓
(R4) Trade-Off Analysis: Compare possible process configuration alternatives against priorities of process

participants, systems complexity, enterprise objectives through trade-off analysis using enterprise non-

functional objectives.

✓ ✓
(R5) Abstract Software Artifact Design: Consider bidirectional influences between the design of software

artifacts, and the design of surrounding enterprise processes, with software being designed with flexibility and

adaptabilty in mind.

✓ ✓
(R6) Design-Use: Differentiating between designing and usage processes allows for configuring the process

domain (along with supporting software artifacts) for greater process automation or human dependency.

✓
(R7) Plan-Execute: Differentiating between planning and executing processes allows for configuring the

process domain for flexibility or stability of execution.

✓ ✓ ✓
(R8) Feedback and Feedforward Paths: Rapidly incorporate feedback from sources for reconfiguring process

architecture and associated software artifacts, thus enabling continuous and ongoing improvements.

✓ ✓ ✓ ✓
(R9) Process Cycles: Confirm faster software delivery cadence for improved customer centricity and enterprise

agility while comparing and selecting against multiple possible process configuration and software automation.

Characteristics

Selected Highlights for Requirements

56

For each characteristic, we reasoned what affect it would have on the processes in the enterprise,

the objectives that the enterprise was trying to attain, the impact on software design, and how data

could be used within the process execution. We were able to deduce the requirements presented in

this section through this process of reasoning. We acknowledge that there could be additional

requirements were not discovered during our study and which could be uncovered in subsequent

qualitative analysis. Stating the requirements in such a manner guides the development of a

framework that would allow enterprise architects to analyze enterprises undergoing transformation

while considering complexities of software systems and business process design, and stakeholder

motives and intentions.

3.4.1 R1: Relationship Among Processes

Every organization relies on many processes that together ensure its success and viability, and to

introduce certain agility in its operations (C2). Enterprise modeling techniques need to express and

reason about the nature of the relationships amongst the various business and software processes

and their resultant artifacts. The relationships are essential in the current context of dynamic

enterprises, as these relationships are themselves subject to change. The structuring and capturing

of overall enterprise and associated software processes would result in a process architecture that

shows the various process segments, the nature of relationships amongst them, and any exchange

of data or artifacts. Modifying the nature of the processes, and their relationships allows the

enterprise to adapt to different cycles of solution delivery (C4). Identifying locations of data

availability is important as it allows understanding of the possible process changes that can be

introduced (C6). Holistically considering multiple processes, and their relationships to each other,

allows for more meaningful analysis that goes beyond a single process, and permits asking the

following,

• How would the interactions between several business, technology and software processes be

visually represented to signify their associations and relationships?

• What are the architectural implications when changes are made to the process architecture for

attaining particular enterprise business objectives?

57

3.4.2 R2: Multiple Types and Levels of Processes

Because process architectures encompass multiple individual processes, there can exist several

“levels” of process dynamics within a process architecture, making the enterprise more amenable

to change (C2). Different types of processes, for example, planning processes, design processes,

operational and transactional processes, etc., may take place over different timescales and have

different frequencies of occurrence and execution (C4 and C5). Some processes provide inputs to

other processes. These levels of dynamics are not entirely evident to the casual observer, nor are

the boundary transitions (between these process levels) apparent. Thus, a process architecture

would have to incorporate details and attributes that would allow for the identification of, and

differentiation between, various process segment types and levels. These types and levels would

be delineated through process boundaries and all process segments within would share similar

attributes and behaviour. The constituent activities of any process could be moved across level

boundaries, still there would be resulting implications which need to be understood.

• Would it be possible to identify and aggregate similar process segments (in the overall process

domain) with regards to their behaviour and attributes?

• How would the movement of the activities across level boundaries and the resultant

implications be captured and understood?

3.4.3 R3: Enterprise and Process Goals

Enterprises and local units have defined functional and non-functional objectives that align to the

business strategy, with business processes assigned to attain them (C1). For introducing and

maintaining enterprise agility, enterprises need to reconfigure their business and software

processes while considering trade-offs amongst non-functional goals (such as customer centricity)

based on organizational priorities (C2 and C3). These objectives can be viewed as functional

requirements and non-functional requirements and goal-modeling techniques be used to represent,

compare and contrast alternative business, technology and software process configurations for that

domain. Including enterprise and process goal-oriented perspective to the overall domain study

allows for identification of process structures (in the process architecture) that collectively work

58

together to serve some common (higher-level) goal. Associating the process architecture with

goals allows for the following analysis,

• What are the processes that collectively contribute to some enterprise goal, and can the link

between processes and goals be represented?

• Can there exist multiple process configurations that allow for the attainment of an enterprise

goal at the expense of different non-functional goals? How to compare, contrast and select

between these alternatives?

3.4.4 R4: Trade-Off Analysis

Introducing innovation through technology can no longer be considered to have limited

implications and must be regarded along multiple perspectives. In many cases, there are several

possible reconfigurations of the process architecture that align to the attainment of strategic

enterprise objectives (C1). However, such possible alternatives need to be confirmed against other

aspects, such as the availability of data, the priorities of process participants, and implications on

systems complexity and any consequence to those enterprise goals and objectives (C7). Trade-off

analysis would need to be done to consider the impact of and to various systems-, enterprise-,

process-, and social-level factors. Analyzing and deciding between process architecture

configurations (along with supporting software tools design and usage) can thus be done by

evaluating the satisfaction of objectives. Some of the recent innovations and approaches in

software engineering emphasize multi-dimensional perspectives by incorporating factors

pertaining to software design, software development and deployment processes, organizational

structure, and enterprise culture. Questions such as the following can be asked,

• Would there need to be a change in roles and responsibilities mandated by reconfigurations to

process architectures? How would such trade-offs be evaluated?

• How should the organization structure and software delivery pipeline processes be aligned to

reflect the optimum software architecture?

59

3.4.5 R5: Abstract Software Artifact Design

There exist bidirectional influences between the design of software artifacts and the design of

surrounding enterprise processes that need to be studied and reflected upon. Often, software needs

to be designed with adaptability in mind to enable run-time decision making and having flexibility

in how the software is delivered (C4). Software can also be used as tools for processes that are

themselves responsible for software artifact development, thus facilitating process automation

(C8). Detailed software design artifacts can be produced using modeling techniques such as UML

diagrams, which allow for precise software development and implementation. However, abstract

distinctions need to be understood to permit conceptual and visual analysis of the software’s

contribution to, and participation in the overall enterprise business and technology processes,

particularly those which need to be altered to introduce change.

• How to incorporate the contribution of software artifacts and tools to the overall enterprise

processes while meeting enterprise objectives (such as automation)?

• How would changes in the enterprise processes (or their objectives) reflect on the need to

redesign software to support them (and vice versa)?

3.4.6 R6: Pushing Design Decisions Downstream

There exist two levels of processes, one where the process is responsible for the creation of a tool,

capability or artifact while the other being responsible for (repeatedly) using the designed artifact.

Different designs (along with their associated processes) may be prepared based on how they are

to be used by downstream processes. Some design decisions would be deferred to at runtime (or

use-time) to ensure some flexibility in the use of the design artifact (C4). Consequently, there exist

many possibilities regarding the degree of designing that should be done before which an artifact

can be used by a human user or as part of some process. These can range from full designing where

all design decisions have been made for that artifact and the user must “use” the artifact, to

minimum designing where many choices regarding artifact use are left at run-time to allow for the

most considerable flexibility in the artifact usage. Each possibility would be accompanied by

complex trade-offs. Software can be designed to create persistent capabilities in the form of

software tools and artifacts that can repeatedly be (re)used during automated process execution

60

without being aware of how the capability is constructed (C8). Such variations in design-use

process configuration permits the following questions,

• Should some activities or decisions be deferred closer to usage time to take advantage of near-

real-time data thus creating flexibility in artifact use?

• Is greater automation of processes preferred (with no runtime decision making), or should

human intervention be part of the process execution?

3.4.7 R7: Upfront Planning vs. Deferred Planning

Processes modeling techniques (such as BPMN) generally describe the activities that are to be

executed, but not how these activities are planned or determined. Such a consideration is vital for

enterprises undergoing change, particularly around changing their solution delivery to meet

varying customer expectations (C4). Different plans (along with their associated processes) may

be prepared based on how they are to be executed by downstream processes. Some plan-related

activities may be left for later because of the unavailability of updated contextual data, analytics,

or to ensure some flexibility in process or system design. Thus, there exists a degree of planning

that can be done that would influence the behaviour and execution of downstream processes. This

can range from full planning where each downstream activity is thoroughly “planned” out by

providing detailed instructions or constraints, to minimum planning where many decisions

regarding process execution are left at run-time / execution time. These possible process

configuration alternatives would have to be carefully considered against potential trade-offs.

Categorizing the processes as planning or executing allows the following questions to be answered,

• Should activities or decisions currently performed in a planning stage be moved to an execution

stage, and what are the placement trade-offs?

• What degree of planning (full to minimum planning) be done for downstream execution

activities?

3.4.8 R8: Feedback and Feedforward Paths

The enterprise needs to “observe” and be aware of evolving situations, based on which it would

initiate and undertake activities of transformation and change to meet shifting customer

61

expectations (C3). Such paths of change can be analyzed in terms of sense-and-response loops

through which the enterprise adapts and improves (C4 and C6). Sensing and responding take place

in business and technology processes that exist at different levels of dynamics and timescales. For

example, the sensing part can happen at machine timescales (through the use of automated data-

driven systems) with the acting part existing in human timescales (through managerial decision

making). In the sensing part, the enterprise would determine the cause and need for change. In the

responding part, the enterprise would discover the best possible change alternatives. These

feedback and feedforward paths need to be mapped out in the process architecture and tagged to

activities. Such techniques would allow for,

• Sketching out linear paths or cyclic loops as they exist in any enterprise while indicating the

interactions that the paths may have with other paths or objects.

• Depicting the various timescales that a loop traverses and the process-level implications in

reconfiguring these loops or moving activities across different timescales within the loop itself.

3.4.9 R9: Represent and Reason about Speed, Timescales and Process Cycles

Software-enabled enterprise innovation and transformation allow for increased enterprise benefits,

such as automation, higher productivity, and improved release cadence (C2 and C3). Different

environments may require different approaches to be adopted. However, these often come at the

expense of other enterprise considerations, like an increase in complexity of the solution, higher

cost, reduced flexibility, reluctance in adoption, etc. Sometimes there are deviations within, where

the software artifact itself dictates the speed of delivery that should be adopted. The processes may

be executing at different process cycles depending on which part of the enterprise they belong to

(C5). The process cycles need to be represented in a manner that would allow for possible

reconfigurations to improve execution frequency and changing process execution activities (C8).

Enterprises need to be aware of questions, such as,

• How to represent and reconfigure processes to introduce faster software delivery and release

cycles for their customers?

• What is the more suitable approach for improved delivery cadence amongst the various

possibilities mentioned above? How to select the most appropriate one?

62

3.5 Inadequacies of Existing Techniques

There are several conceptual modeling techniques available to model and analyze enterprises. In

this section, we consider two popular modeling techniques and their inability to deal with the

complex challenges of modeling enterprises that are dealing with software-induced change as per

the requirements presented in the previous section.

3.5.1 BPMN

The first modeling language that we consider is BPMN. Here, we model two processes using this

notation. For the sake of simplicity, we do not show the entire domain example mentioned in

Chapter 1 but rather just the primary participants and processes that are necessary to accomplish

the business outcome. This is still sufficient to illustrate some of the limitations of BPMN with

regards to satisfying the requirements presented in the previous section.

Fig. 3-4: A simple BPMN model presenting the customer request processing by bank staff

The first process is a simplistic representation of the servicing of a customer at a bank branch by

a staff member. Fig. 3-4 shows the main participants involved in this business process, i.e., the

Customer and the Bank Staff, with the Enterprise Application also shown as a process participant.

The business process starts once the customer arrives in the bank branch and Initiates Service

B
a

n
k
 B

ra
n

c
h

C
u
s
to

m
e

r
B

a
n
k
 S

ta
ff

E
n

te
rp

ri
s
e

A
p

p
li
c
a
ti
o

n

Process Service
Request

Notify Customer of
Outcome

Initiate Service
Request

Request
Information

Process Request
Outcome

Service

Request

Enterprise
Application
Database

63

Request. The Bank Staff receives the Service Request and processes it using some data artifact

from the Enterprise Application Data. The business process ends once the customer receives the

outcome of the service request processing.

Fig. 3-5: A BPMN model representing a typical DevOps approach

We show another process in Fig. 3-5 indicating the primary participants and the significant

activities in a typical DevOps-inspired software process that exists in this bank. We have

developed this context by referencing published literature from multiple sources, such as

[168][169][170], intending to highlight how the various activities in DevOps can be better

configured to serve a variety of enterprise functional requirements and non-functional

requirements. In DevOps, the development of product features can be done using different

development methodologies while adhering to different practices and policies specific to an

enterprise adoption; in this context, we assume the use of the Scrum project management

methodology. However, this general DevOps context is not intended to be an exhaustive depiction

D
e
v
e

lo
p

m
e

n
t

P
ro

d
u

c
t

M
a

n
a

g
e
m

e
n

t
S

o
fw

a
re

 E
n

g
in

e
e

r
Q

A
 E

n
g

in
e

e
r

A
u

to
m

a
ti
o

n

E
n

g
in

e
e

r

D
e
v
O

p
s

E
n

g
in

e
e

r

Estimate Delivery
Effort

Prioritize Product
Backlog Items

Identify Above-the-
Line Items

Plan Iteration
Implement Product

Feature
Review Iteration

Deliverables

Deliverable
Review

Stakeholder
Feedback

Perform QA
Testing

Commit Code
Changes

Testing
successful

Develop Product
Backlog

Elicit
Requirements

Create Release
Backlog

Review Iteration
Deliverables

Meet Daily for
Status Exchange

Perform System
Testing

Package Product
Release

Deploy to
Production

Monitor Production
Environment

Measure Key
Metrics

Detect and Fix
Production Issues

Groom Release
Backlog

Check Testing
Status

X

Testing not successful

X XX

Next iteration

Release

Backlog

Product

Backlog

Execute Build
Execute Testing

Scripts
Generate Report Deploy To Staging

Setup Production
Environment

Install Third-Party
Tools

Create Testing
Scripts

Create Testing
Plan

Production
Environment

Testing

Scripts

X X

64

of variations in DevOps adoption in an enterprise setting but rather is meant to illustrate

reconfigurability of software process configurations.

In our sample enterprise setting, there could be various forms of change occurring in these

processes. We discuss some examples of these below,

• Any developed feature has to be functionally tested before it goes through the continuous

delivery process. This testing can be carried out by QA Engineers in at least two ways: they

can retrieve the committed code from the code repository and test it on a test environment, or

they can collaborate with the software engineer to quickly validate the functionality before the

codebase is committed to the code repository. While activities for both situations can be shown

through BPMN models, along with the changes in their sequencing, the implications of any

activity reordering cannot be determined.

• The enterprise is assumed to have periodic and fixed release cycles of appropriate duration. A

release planning activity is carried out at release initiation that results in a release backlog; this

artifact is then used to plan out individual sprint iterations. Two of the possible alternatives are

1) the release backlog is produced once and remains static throughout the release duration, and

2) the release backlog is revisited at the beginning of every sprint and “groomed” (i.e., re-

ordered and re-estimated) based on an on-going change in circumstances and priorities. There

is no way to distinguish such a situation using the BPMN notations, where the outcome of

some prior processing is repeated used or is regenerated each time.

• DevOps is characterized by the usage of third-party tools for continuous integration and

continuous delivery, server configuration, infrastructure provisioning, deployment

management, etc. These tools are configured for use repeatedly without requiring the

knowledge of their inner working; this is depicted in Fig. 3-5 as a separate Automation Engineer

pool. Here there exist multiple process levels, with the outcome of some processes (i.e.,

creation of DevOps tools) at one level feeding into those at an upper level (usage of those tools

for deployment). The multiple levels of process-driven dynamics and the relationships between

the process levels are not apparent in the BPMN model.

65

The multiple business and software processes shown in Fig. 3-4 and Fig. 3-5 are coming together

to provide some feature functionality, but the nature of their relationship is not explicit in the

model. It’s not obvious as to the changes that can be introduced by moving activities from one

process participant to another, and the accompanying trade-offs that need to be considered.

Similarly, enterprises rely on sense-and-respond loops to improve their operational processes.

While the BPMN model in Fig. 3-5 does show such feedback loops, the full range of attributes

associated with them (for example, the multitude of timescales present in the loop or the execution

frequency of the sensing and responding parts) are not evident.

3.5.2 ArchiMate

In the second case, we discuss an enterprise architecture for our sample setting using the ArchiMate

enterprise modeling language. Specifically, we present two viewpoints for discussion here that are

closely associated with the conceptual modeling framework requirements presented in the previous

section. In ArchiMate, a viewpoint contains a relevant set of ArchiMate notations that presents a

particular perspective of the enterprise architecture [44]. By allowing such views of the enterprise,

enterprise architects can focus just on the perspectives that are of interest to them, rather than being

mandated to study and design the enterprise in its entire collective.

The first viewpoint that we present is the layered viewpoint, as shown in Fig. 3-6. The layered

viewpoint contains several enterprise architectural layers in a single diagram. In the figure below,

we shown three layers, the Business Layer, the Application Layer, and the Technology Layer. In

the layered viewpoint, each layer exposes certain services which then service the next layer. This

structure is indicated using two relationships, the realizing relationship and the serving

relationship. Example, in the figure below, we see two services being present in the Technology

Layer, the Database Management service and the Application Hosting service. Both of these

services collectively help serve the Enterprise Banking Application software component. This

component in turn realizes the Application Service that is then made available to the Process

Service Request process that exists in the Business Layer. Thus, through such a layered structure

principle, we have one layer exposing a set of services which are realized by the elements in the

same layer. These services exposed in this layer are then utilized for serving the layer above. The

66

layered viewpoint shown in Fig. 3-6 also shows aspects that can appear in the Application Usage

viewpoint. In this viewpoint, we shown how the application are used to support business processes

that exist in the Business Layer. In our case, we show the that Enterprise Banking Application is

used to support the Process Request activity that is part of the Process Service Request business

process.

Fig. 3-6: ArchiMate layered viewpoint for the banking example

The second viewpoint presented in Fig. 3-7 is the business process cooperative viewpoint. This

viewpoint shows the relationships between various processes that exist in the same layer. Through

such a diagram, the enterprise architect can study the design and dependencies of various

processes.

Bank Staff

Customer

Enteprise
Banking

Application

Application
Service

Customer
Information

 Receive
Request

Request
Information

Process
Request

Process Service Request

Notify
Customer

Customer Data

Customer
DB Tables

Blade System

Notification
Service

Requesting
Service

Database
Management

Application
Hosting

Database
Management

System

Application
Server

67

Fig. 3-7: ArchiMate business process collaboration viewpoint for the banking example

In the figure above, we highlight the various processes that exist across each of the three layers.

Two processes are shown in the Application Layer, Manage Requirements and Develop and Test

Application, with the latter process depending on the output of the former process for its execution.

The realizes and serves relationships are used to associate both these processes, with the direction

Customer

Application
Service

 Receive
Request

Request
Information

Process
Request

Process Service Request

Notify
Customer

Application
Hosting

Design Software
Develop
Software

Test Software
Review

Specifications

Perform System
Testing

Package for
Release

Deploy to
Production

Specifications

Elicit
Requirements

Develop and Test Application

Manage Requirements

Consult
Stakeholders

Create
Specifications

Deploy Application

Notification
Service

Requesting
Service

68

of arrow indicating the dependency relationship between both processes. Here the Specification

service is realized through the execution of the Manage Requirements process. This service in turn

is used to serve the Develop and Test Application process.

While we just present two viewpoints above, there are many other viewpoints that are part of the

ArchiMate specifications. Two other viewpoints that have some relevancy to the framework

requirements are the Goal Realization viewpoint and the Migration viewpoint. The goal realization

viewpoint allows an enterprise architect to analyze how certain high-level enterprise goals can be

attained by refining them into progressively more tangible goals. These sub-goals are then refined

into requirements or constraints that need to be considered when coming up with the enterprise

architecture design. The migration viewpoint allows the contemplating of transiting from an as-is

enterprise architecture to a to-be enterprise architecture by providing a high-level model of the

activities that need to be performed using ArchiMate notational elements specific to the migration

viewpoint.

Despite the presence of a wide range of modeling elements and several viewpoints, ArchiMate

still does not fully meet the requirements for the conceptual modeling framework that we presented

in the previous section. Specifically,

• The relationships between multiple processes can be represented in the business process

cooperation viewpoint. However, it is not entirely evident how activities can be moved from

different processes within the same layer, or even across layers, and the trade-offs that are to

be considered. There could be situations where moving certain activities from one layer to

another layer would better help server enterprise goals, but it’s not apparent how activities can

be moved across layers, and the surrounding enterprise architecture changes that would need

to happen to accommodate such design changes.

• The types of conjunctive relationships between the processes are also limited, with just the

realizes and serves relationships being used to depict the dependencies between multiple

processes. This visual notation cannot capture or differentiate between the different types of

relationships, such as that where one process is building a design that will be used by another

process, or where one process is responsible for providing a plan that is to be executed by

69

another process. The full complexity of how several processes work together to attain some

common objective is not evident.

• In the presented viewpoints, the lower layer realizes the services that are then used to serve

services to the higher layer. Often, in an enterprise architecture, there would be cases where

the higher layer also influences the behaviour of the lower layers. For example, planning

activities are usually done at a higher layer (business layer) which are then used to influence

the design and execution of processes or systems in lower layers. Through flow relationships,

transfer (of information) can be represented between different elements, however, there is no

way of modeling sense-and-effect relationships between different parts of the enterprise.

3.6 Conclusion

This chapter provides a set of requirements that guides the development of an enterprise modeling

framework. Enterprise architects can use such a framework as part of their arsenal to represent and

understand changes to the enterprise that are being introduced and supported by software

innovations and emerging digital technologies. We use recent trends, such as digital

transformation, bimodal organizations, and adaptive enterprises, to highlight some of the

challenges that such organizations face when adopting software-based technologies for change and

transformation. In order to determine these requirements, we first performed a systematic literature

review to identify and review academic literature published in this decade and isolated eight

characteristics that are common to software-enabled enterprises undergoing change. These

characteristics were then abstracted out as a set of requirements for the enterprise modeling

framework. We introduce this modeling framework in the next chapter.

70

4 The hiBPM Framework in Action

Acknowledgement: This chapter is partially based on the following paper;

• Babar, Z., Lapouchnian, A., Yu, E.: Modeling DevOps Deployment Choices Using Process Architecture

Design Dimensions. In The Practice of Enterprise Modeling (PoEM), pp. 322-337, Springer Publishing

(2015)

In Chapter 1, we introduced an example of a bank that is undergoing change in response to a

shifting environment, competitive threats, and evolving customer preferences. We continue our

discussion and analysis of this example by applying several concepts from the hiBPM framework

for illustrative purposes. Specifically, we will consider three scenarios from our banking example.

These scenarios were selected to illustrate the capabilities of the hiBPM framework to model and

analyze multiple process architecture design alternatives, particularly under uncertain conditions

caused by inadequate information needed for designing the process architecture.

In the first scenario, we provide a structure for the hiBPM model as it applies to a particular

business process. Here a primary, yet simple, business process is selected and we review the design

of this business process. In the second scenario, we consider innovations introduced to software

processes that presently exist in the bank. These software processes are responsible for the

development and maintenance of enterprise applications being used as part of business process

execution. In the third scenario, we consider the need for re-architecting the enterprise to have two

distinct areas, as is the case with bimodal organizations. One side contains the traditional processes

and systems that are somewhat removed from the bank customer whereas the other side is closer

to the bank customer and supports rapid cycles of change based on customer preferences.

In the following sections, we illustrate how the hiBPM model notations are used in three scenarios

without going into details of the hiBPM framework constructs. The hiBPM framework constructs

and methods are explained in detail given in Chapter 5 whereas in Chapter 6 we explain how to

analyze change along multiple dimensions using these hiBPM constructs.

71

4.1 The As-Is hiBPM Model

A bank exists to provide banking services to its customers through its various channels.

Traditionally this was accomplished through a bank branch but the advancement of technology

has also enabled new alternate delivery channels, such as ATMs, PoS machines, Mobile Apps, and

Internet Banking. Let us consider the case of a customer who visits a bank branch to get access to

various financial services. Some customer service requests could be simple and quickly executed

by the bank teller, like making a cash withdrawal, or submitting a cheque. Others may require the

customer to spend more time working with a financial services advisor before the requested service

is fully processed. These services could entail the customer applying for a mortgage loan or

discussing how to set up an investment portfolio. We abstract away from the specifics of the

customer request, and generally consider the case of a customer making a service request at a bank

branch, with the assistance of a bank representative, like a bank teller or a financial services

advisor.

Here we assume a typical bank business process that needs to have flexibility ingrained in its

design to be able to respond to changing environments and technology innovation. We show a

simple hiBPM model in Fig. 4-1 that visualizes the key aspects of the business process, software

development for applications, and operational support processes that are commonly present, and

contains multiple hiBPM constructs, such as process elements, process stages, process phases and

the relationships among them. An explanation of how this hiBPM model was derived, and the

hiBPM model notations used, is provided in subsequent sections of this chapter where we highlight

some notable aspects of the hiBPM model while introducing different hiBPM constructs as we

study and understand the domain example

The hiBPM model in Fig. 4-1 contains multiple processes, with the model itself emphasizing the

relationships between these processes. The primary business process is where the customer service

request is processed. Other processes support the execution of this business process. These

supporting processes may include processes responsible for building software artifacts, processes

where these artifacts are used, processes responsible for strategic planning, and other processes

72

where these plans are then used for operations. These related processes all come together as a

process architecture.

Fig. 4-1: An As-Is hiBPM model for the banking domain example

In the following sections of this chapter, we talk through the methods used to arrive at a

reconfigured hiBPM model that is more optimally redesigned for the three scenarios that we

introduced at the start of this chapter.

Manage Requirements for Enterprise App

Elicit

Requirements

Analyze

Requirements

Design and Develop Software

Design

Software

Develop

Software

Commit Code

Change

Requirements

Specifications

Build Business Understanding

Consult

Stakeholders

Conduct

Competitive

Analysis

Develop

Product

Roadmap

Stakeholder

Feedback

Competitor

Information

Product

Roadmap
Create

Specifications

Test Software

Perform

Manual

Testing

Perform

Automated

Testing

Plan for Test

Design

Software

Develop

Software

Commit Code

Change

Develop

Software

Commit Code

Change
Software

Test P lan

X

Deploy Software

Package

Software for

Deployment

Instantiate

Environment

Install

Software

Configure

Software

Make Environment Template

Create

Environment

Install Third-

Party

Dependencies

Configure

Environment

Create

Environment

Template

Environment

UEnvironment

Parameters

Process Service Request

Receive

Service

Request

Request

Information

Process

Service

Request

Notify

Customer of

Outcome

Service

Request

Service

Response

Enterprise

Application

U

73

4.2 Scenario 1: Analyzing a Multitude of Business Processes

The enterprise architect needs to design the business process to be a simple, yet efficient, sequential

execution of activities, along with the transfer of information amongst multiple process

participants, e.g. the customer, branch staff, and other banking personnel, through the use of

various enterprise applications. However, it is not enough to focus on optimizing the primary

business process as, in order to make this business process possible, there may be other supporting

and surrounding processes that need to exist. These may include software processes which develop

the enterprise software that is used by bank staff during business process execution, or other

business processes that support the primary business process. Thus, when designing the business

process, enterprise architects and process architects need to collectively consider the interrelated

processes as part of the analysis. This enables an assessment of the kinds of changes that are to be

made to support the transformative characteristics presented in Chapter 3 and the corresponding

effect that it would have on other processes.

While its useful to create conceptual models of business processes by considering the activities

that are being performed by these processes, and the flow of information between them, we need

to first discuss the purpose of these various activities. How can the business processes and the

software processes be collectively analyzed to ensure their optimum design? Can these processes

be reorganized and rearranged in a manner to improve the overall enterprise objective(s)

accomplishment, particularly as the enterprise transitions to a digital business model? Can shifts

in the external environment be used to influence the design and execution of these processes?

To explain how this can be achieved, let us start with serving the customer objective. Customers

can be served by receiving them in the bank branch and processing their Service Requests. For

processing the request, there must be specific enterprise applications in place which are going to

be used as part of the processing of the request. Further, the bank staff need to be being trained on

those enterprise applications. We review goal models intending to explore and depict how the

attainment of a certain kind of softgoal would be achieved. Goal models are an existing way of

modeling the means to attaining high-level stakeholder goals [171] and we discuss them in more

detail, including their use in the hiBPM framework, in Chapter 6.

74

In Fig. 4-2, we show a goal model where the Serve Customer goal is attained by the satisfaction

of two sub-goals, i.e. Receive Customer in Branch and Service Customer Request. Service

Customer Request is decomposed into two further sub-goals, Be Trained on Application and Setup

Enterprise Application. The AND notation in the means-end relationships indicates that both sub-

goals are to be satisfied before the parent goal can be satisfied.

Fig. 4-2: Goal model for attaining bank operation objectives

AND AND

AND AND

Serve Customer

Receive

Customer in

Branch

Service

Customer

Request

Setup

Enterprise

Application

Be Trained On

Application

OR OR

Build

Application In-

House

Acquire

Application

from Vendor

Design

Software

AND AND

AND
Manage

Requirements

Develop and

Test Software

Develop

Software

Commit Code

Change

Perform

Manual

Testing

75

As part of the hiBPM framework, we use goal models to (a) see how goal models can also be used

to help determine the structure of the process architecture, and (b) analyze and guide possible

configurations of the process architecture to help satisfy both functional and non-functional goals.

The former is attained through constructing and navigating the goal graphs and seeing how a goal

structure can be applied to an appropriate configuration of the process architecture model where

the promise of a software-enabled enterprise (as it attains the functional and non-functional goals)

is possible. For the latter, we consider different points in the hiBPM model where there could exist

alternative process architecture configurations; here, the goal models would help decide between

alternatives based on non-functional goals.

Goal models are used as a guide for determining additional process structures and alternative

process architecture configurations that may need to be present in the hiBPM model. This does not

imply a one-to-one mapping between the two modeling approaches, as goal models and hiBPM

models can be at different levels of granularity and detail.

4.2.1 Determining Processes for Goal Attainment

Once we have a good understanding of the goals that need to be attained, we can determine the

primary tasks that help attain that goal. Continuing this further, we are able to question how these

tasks come together. Would they need to be executed collectively in order to attain the goal? Or

can they be contributing to goal attainment, but not directly responsible for it?

Let us reconsider the Setup Enterprise Application goal shown previously in Fig. 4-2. By starting

from this goal, we develop an idea of how to structure activities to ensure the attainment of this

goal. There may be multiple ways of configuring the overall collection of business processes to

ensure that the non-functional objectives for our banking domain are met, along with the functional

objective. By delving further, we understand that there are two ways to attain this goal, as we show

in Fig. 4-3. Alternative A (Build Application In-House) shown is for the situation at an enterprise

that has achieved its functional requirements by building the enterprise application in-house using

its staff, whereas Alternative B (Acquire Application From Vendor) is for another situation where

the enterprise is acquiring the enterprise application from a vendor, and then deploying it. The

softgoals for this particular situation are Speed and Cost, and we evaluate both goals options

76

against these softgoals. Here contributions links are shown as either contributing to the softgoal

satisficing (some +) or not contributing to its satisficing (some -).

Fig. 4-3: Alternatives for attaining the Setup Enterprise Application goal.

Focusing on the goals and softgoals in such a way allows for contemplation without being

hampered by the current design of the business process. We use techniques for goal satisfaction

analysis to qualitatively assess if the softgoals can be satisficed [172]. Once goals and softgoals

are determined for the banking example, we then explore and depict how the attainment of certain

kinds of goals would be achieved. Through the goal model, we determine the corresponding, and

similarly named, process stages in the hiBPM model that indicate how the tasks (from the goal

model) are attained. Here, the focus is on goals, and these are used to show the associated process

stages from a hiBPM perspective.

Process Stages (PS) are collections of activities that are to be executed collectively as part of the

same execution cycle. Process stages are generally structured in a manner where they deliver some

enterprise functionality, in the form of functional objectives or non-functional objectives (goals

and sub-goals in goal modeling respectively). Process stages provide a generic representation of

the structure of activities for the domain under study. These constructs represent various strategic,

tactical and operational activities, at different granularities and different levels to each other. They

are meant to attain some business or technological purpose and thus provide insight on “why” the

processes are structured the way they are, rather than just providing insight into “how” specific

business objectives are meant through process execution. We show examples of two process stages

in Fig. 4-4, these are Build Application and Acquire Application.

OR OR

Speed Cost
Setup

Enterprise

Application

Build

Application In-

House

Acquire

Application

from Vendor

A B

77

Fig. 4-4: hiBPM process stages as determined from goal model

Based on the goal model granularity and detail, the goals and softgoals are mapped to process

stages, with the expectation that the goal models are sufficiently developed to indicate how the

goals can be traced to process stages. We create process stages by reviewing the activities that help

attain the goal or softgoal and determining if they would be part of the same recurrence, i.e., if

they need to be executed collectively to attain that goal. If so, the process stage is thus determined.

As the emphasis of the hiBPM is on architectural relationships between different types of

processes, the internals of process stages is usually only defined at a level where they show

sufficient detail on how the functional requirements are attained, including the activities required

to produce the necessary output for those process stages.

Note, the process stages are responsible for functional or non-functional objectives’ attainment;

however with the goal model, we aim to show how they can be better configured also to satisfy

the banking domain requirements. Thus, the configuration of the hiBPM model would be justified

through the goal model, with specific configurations (mapped to alternatives in goal models) better

suited to attain enterprise goals Build Application In-House and Acquire Application from Vendor,

which correspond to Alternative A and Alternative B options for attaining the goals shown in Fig.

4-3.

4.2.2 Depicting Relationships between Processes

Once the process stages are determined, we need to start bringing some structure to the overall

hiBPM model. For this, let us review the goal Build Application In-House from Alternative A that

was introduced in the previous section. We can refine this further and come up with additional

Build Application

...

Acquire Application

...

A

B

78

sub-goals that are a means to accomplishing this. These sub-goals are Manage Requirements,

Design Software, and Develop and Test Software. Conjunctive sub-goals from the goal graphs are

separately operationalized in the hiBPM model, meaning that the goals have separate process

stages, but they work together to attain some goal. AND de-compositions in the goal model from

Fig. 4-5 are reflected in the hiBPM models where the AND relationship means that two process

stages need to work together to collectively attain the upper-level softgoal.

Fig. 4-5: Sub-goals contributing towards goal attainment

Using this goal model, we come up with corresponding process stages for the hiBPM model, as

shown in Fig. 4-6. These map to the similarly named process stages of Manage Requirements,

Design Software, and Develop and Test Software. Thus, there exist relationships between the three

process stages (Manage Requirements, Design Software, and Develop and Test Software), where

the output of one is the input of the other. Here, the Manage Requirements process stage is shown

to have a relationship with the Design Software process stage. Similarly, the output of the Design

Software is Software Design that is used by the Develop and Test Software process stage. It should

be clarified that the goal graph is not meant to be a precise reflection of the multi-level process

stage relationship in process architecture models. Rather, the goal model interdependency structure

is used as a guide to understand the relationships between different process stages.

Design

Software

AND AND

AND

Build

Application In-

House

Manage

Requirements

Develop and

Test Software

79

Fig. 4-6: Relationships across multiple process stages as determined from the goal model

By drawing these input and output relationships between the process stages, we can slowly form

a structure for the hiBPM model. A particular relationship type is that of the data flow. Data flows

can contain an exchange of data or artifacts that are needed by downstream process stages. The

identification of these resources is done using goals models, which are then used to show the inputs

to various process stages, further defining the relationships between the process stages. This

concept is discussed further in subsequent chapters.

In any hiBPM model, there would exist areas with different behaviours and responsibilities. There

may be specific processes that are responsible for planning vs. processes which are more

operational. Certain processes would be designing and building tools or capabilities, which are

then going to be used in other locations within the hiBPM model. There need to be constructs in

the hiBPM notation that shows the relationships between these different areas, while also helping

with the differentiation between different types of processes. Showing these is important as in

hiBPM; these relationships connect “higher” level process stages to “lower” level process stages.

Such relationships can exist between process stages, from process stages to process elements, and

may even be within a process stage. These relationships provide associations between various

process stages and process elements, and help answer some broader questions, such as what would

be the sequence of execution of these tasks? Or can we change the sequence of process execution

to introduce different behaviour? These relationships (and the differentiation of process stages into

higher-level or lower-level process stages) are discussed in more detail in Chapter 5.

Manage Requirements

...

Design Software

... ...

Develop and Test Software

...

Requirements

Specifications

Design

Specifications

80

4.2.3 Activities for Alternative Goal Attainment

Often, process stages are not sufficiently granular to guide how to perform different tasks across

the business process. For example, we may want to know the specific sequential order of executed

tasks to accomplish a goal associated with a process stage. Having this knowledge allows us to

consider alternative means of accomplishing that goal, e.g. by performing certain activities before

others. In such a case, there is a need to see the composite tasks for a process stage, for reasons of

analysis and reconfiguration.

Take the example of Develop and Test Software as this process stage is essential to ensure the

domain softgoals. Again, the goal model provides a useful starting point for determining the

internal details for the hiBPM model. In the goal model of Fig. 4-7, we see that Develop and Test

Software is decomposed into several tasks, Develop Software, Commit Code Changes, and Perform

Manual Testing. Depending on the granularity of the operationalized goals, these tasks (from the

goal model) can be used to show similar activities in hiBPM. There is an AND relationship

between these tasks, meaning that they come together to result in the accomplishment of the goal.

Thus, when determining the process stage, we can show that this process stage comprises of several

activities in the hiBPM, which help the process stage attain its goal. It is not mandatory to

determine all these activities, as generally only those that help with analysis are beneficial and

considered. For this, we consider process elements which are more fundamental process structures

in the hiBPM modeling notation.

Fig. 4-7: Determining tasks from goals through decomposition

Process Elements (PEs) are basic activity units which produce some output or outcome based on

a set of control and data inputs. They may also include the act of decision making as part of the

Develop and

Test Software

Develop

Software

Commit Code

Changes

Perform

Manual

Testing

81

activity processing (i.e., what action to perform based on the data available). The specifics of how

these actions are performed are not required in hiBPM as the focus is on how the process element

contributes to the attainment of enterprise functions. Through envisioning process elements in

hiBPM, we can ask questions such as whether specific tasks should be done before other tasks, or

after? Whether sufficient information is available to make decisions? Can we remove tasks from

the critical path in order to hasten the time required to release a product?

In hiBPM, the process elements are shown as activities within a process stage, which when

executed on being provided with some input, produce an output that is then used by subsequent

process elements or downstream process stages. This can be seen in Fig 4-8 as the Develop and

Test Software process stage and the three internal process elements (Develop Software, Code

Changes, and Perform Manual Testing) are being executed in sequence to produce the output. For

each process stage, the internal process phases (introduced later in this chapter) and process

elements need to be determined to understand better how the process stage can attain the functional

objectives that it is responsible for, while supporting non-functional objective attainments. Process

elements are grouped in process stages if they are executed together as part of the same execution

cycle, and to attain a common functional or non-functional objective.

Fig. 4-8: Identifying hiBPM process elements for previously determined process stages

4.3 Scenario 2: Introducing Innovation in Software Processes

A challenge for enterprise architects is to redesign portions of the process architecture to

incorporate innovations and improvements to the software development processes better, notably

Manage Requirements

Elicit

Requirements

Analyze

Requirements

Create

Specifications

Design Software

Review

Specifications

Design

Software

Develop and Test Software

Develop

Software

Commit Code

Change

Perform

Manual

Testing

Requirements

Specifications

Design

Specifications

82

to support digital technologies, such as cloud computing. The software processes would have to

be periodically redesigned based on evolving situational needs, such as the need for faster delivery

of new product features and bug fixes through higher deployment frequency to application

production environments.

The enterprise architect designing the architecture for any such organization would need to

consider the following,

• Automating activities in the overall software development process through introducing

software tools and custom development of scripts, thus shortening the time required for new

feature development and bug fixes through the reduction of manual effort. Such a design for

automation enables software teams to deliver frequent releases to customers and users.

• Using feedback loops for continuously improving software development processes. Product

feature development can be improved for speed and quality through monitoring and

measurement of various software process and technical metrics. These metrics are then

interpreted and utilized for overall process improvement.

• Promoting a culture of collaboration and information sharing between multiple teams. The

traditional approach of having organization silos with defined boundaries and handover points

is discouraged and team members are expected to collaborate towards the attainment of

enterprise objectives.

We consider DevOps to illustrate such a recent innovative practice in software development and

maintenance. DevOps is a software development approach that enables enterprises to deliver

software product features through process automation rapidly while improving inter-team

collaboration and increasing operational efficiency through monitoring and measuring activities

[33][34][35]. The term “DevOps” is a combination of two words “Development” and “Operations”

and has been described as a methodology for rapidly and frequently delivering new software

product features and service innovation to end-users through frequent release cycles, each

containing a small feature set. Rapid delivery enables an enterprise to reduce the time-to-market

for new products and features, provides greater customer-centricity by introducing new features

83

based on evolving customer needs, quickly resolves operational and support issues, and shows

greater responsiveness to changing (internal and external) environment situations.

The hiBPM model needs to be understood through a combination of these ideas and concepts,

particularly in light of enterprise requirements for greater responsiveness and adaptability while

managing uncertainty. No two enterprise-adopted DevOps approaches would be similar as each

bank has unique characteristics and requirements.

4.3.1 Temporal Execution of Activities

The development of product features is done in DevOps using different development

methodologies while adhering to different practices and policies specific to an enterprise adoption;

in this context, we assume the use of the Scrum project management methodology [89]. However,

this general DevOps context is not intended to be an exhaustive depiction of variations in DevOps

adoption in an enterprise setting but rather is meant to illustrate variations in process architecture

configurations.

Let us consider the case where a developed feature is to be functionally tested before it goes

through the continuous deployment process. This testing can be carried out by Quality Assurance

(QA) engineers in at least two ways: they can collaborate with the software engineer to quickly

validate the functionality before the codebase is committed to the code repository, or they can

retrieve the committed code from the code repository and test it on a test environment. As shown

by the goal model in Fig. 4-9, the former approach has the benefit of being collaborative and

encouraging both the software engineer and QA engineer to work together to solve the problem

quickly. The latter approach is more methodological and allows for the proper (and independent)

validation of the feature and the tracking of testing issues. There is uncertainty in the design of the

testing process, with different enterprises (or the same enterprise under different conditions)

selecting different ways of configuring their testing processes. Thus, there has be an element of

design uncertainty incorporated where the final design can be determined, or a modified design

selected, at some future point in time.

84

Fig. 4-9: Determining process elements for testing alternatives

In hiBPM, we emphasize the relative positioning of the process elements within the overall model.

Repositioning a process element within a hiBPM model results in variable behaviour to support

change objectives, as there may be multiple possible temporal placements for structural elements

that achieve the same functional objective but are different in terms of their non-functional

characteristics. When ordering these structural elements, we need to be mindful of the functional

dependencies among them. Despite this, through temporal displacements of these structural

elements can still result in functional goal satisfaction but differ in terms of their non-functional

characteristics.

We can introduce reconfigurations in the hiBPM model by virtue of these temporal movements.

E.g. a process element could be moved earlier or later in relation to other process elements while

being within the same process stage. The output of the process stage would not change; however,

how the process stage is executed would change. Considering the possible ways in which to

reconfigure the hiBPM model along the temporal dimension, the placement of any process element

should be carefully considered with regards to various softgoals, subject to inherent temporal

constraints among the process elements. The appropriate order of the Perform Manual Testing

process element is determined based on the organization’s prioritization between the softgoals. We

then select either one of the two alternatives shown in Fig. 4-10, i.e., the QA engineer verifies the

developed feature (Perform Manual Testing) after the software engineer checks in the code to the

code repository (Commit Code Changes) or before the code is checked in.

OR OR

Collaborative Methodicalness

Perform

Manual Testing

Testing

[Before Checkin]

Testing

[After Checkin]
BA

85

Fig. 4-10: Moving process elements across temporal dimensions

The particular temporal placement of a process element can bring about certain benefits. A process

element can either be advanced (and be executed) before other process elements or postponed after

those process elements. Postponing a process element provides the benefit of executing it with the

latest context and information available, thus reducing the risk and uncertainty that are inherent in

any software process. Advancing a process element relative to other process elements reduces

complexity and cost, as less effort is required to process the limited contextual information

available at that instant. The testing of a product feature by a QA engineer illustrates the trade-offs

between advancing and postponing a process element.

In Fig. 4-11, we assume a case where changing the sequential execution order of the Commit Code

Changes and Perform Manual Testing process elements does not result in any change in softgoal

satisfaction. In such a case, there is no reason to show them as having a certain temporal order,

and we can have a process phase encapsulate them. Process phases are sections within a process

stage that produce the same result irrespective of the arrangement of process elements within, i.e.,

the temporal reordering of process elements does not result in any change in the outcome of the

process phase. A process stage may contain one or more process phases. An output of a process

phase can only be used by the subsequent process phases of the same instance of process stage.

Fig. 4-11: Determining process phases in a process stage

Design, Develop And Test Software

Design

Software

Develop

Software

Perform

Manual

Testing

Commit Code

Change

Design, Develop And Test Software

Design

Software

Develop

Software

Commit Code

Change

Perform

Manual

Testing

B

A

Design, Develop And Test Software

Design

Software

Develop

Software

Commit Code

Change

Perform

Manual

Testing

86

4.3.2 Designing for Reusability or Customizability

When designing DevOps to support automation, there has to be an element of repeatability of

process execution; this can be attained by having software tools, capabilities or design artifacts

that are available for repeated use. Such artifacts are either going to be built or used during the

execution of a software process. These artifacts would be shown as either input to the process stage

(if the artifact is used during processing) or as outputs (if the artifact is produced by the process

stage). As long as there is an understanding of how to use this artifact, it is not necessary to know

how this design artifact is built before it can be used by a user performing an activity.

In Fig. 4-12, we show where a design Environment Template is built by Make Environment

Template process stage that is subsequently used by another process stage Deploy Software in the

hiBPM model. Here greater automation of the software development lifecycle is attained by using

environment templates. These templates are pre-built and configured for use in any DevOps

implementation.

Fig. 4-12: Design-use relationship between two process stages for deploying software

Having such a concept allows imagining places in the hiBPM model where such designs are being

built, and are used elsewhere. This way, one can see what activities can be automated, and the type

of designs that would need to be built to support that automation effort. Being able to repeatedly

use the design also enables automation of process execution which helps in reducing the time and

cost of process execution; thus, repeated reuse of design through automation is an essential factor

for attaining these softgoals.

Deploy Software

Package

Software for

Deployment

Instantiate

Environment

Install

Software

Configure

Software

Make Environment Template

Create

Environment

Install Third-

Party

Dependencies

Configure

Environment

Create

Environment

Template

Environment

Template

U

87

In hiBPM, the process stage producing the design is called the design stage and the process stage

using the design is called the use stage; both these stages come together in a Design-Use

relationship. Through this design-use relationship between the two process stages, we can show

the location at which the template can be integrated into the software process; this is useful as it

allows ensuring that suitable process and data dependencies are fulfilled at or before that point.

The introduction of any artifact in the design-use relationship should be evaluated against the

softgoals. In Fig. 4-13, we show two alternatives for Deploy Software. Alternative A has a design-

use relationship while in Alternative B no designs are built and the entire software deployment is

done by always creating an environment from scratch and then deploying the software.

Fig. 4-13: Goal model showing alternatives for complete designs versus no designs

4.3.3 Planning Ahead, or Deferring Planning

When executing a process, there will be a need to have modifiable behaviour of process execution,

as and when the situation demands. This is particularly true when situation context changes and

the software process needs to behave differently. For example, there may be a need to perform

additional activities to ensure a quality release, which goes beyond the normal level of testing.

Thus, we should have a means for deciding on how to change the way the process is executed; this

is done through plans. Through plans, we can induce some change in the hiBPM design or result

in some behavioural change in the business process execution.

Let us consider another example, this time around the testing of the software, with the hiBPM

model shown in Fig. 4-14. Typically, Software Test Plans are used as guides to during the

execution of the Test Software, process stage. Software Test Plans are prepared by the process

OR OR

Efficiency Customizability

Deploy

Software

Deploy

[No Design]
A B

Deploy

[Complete Design]

88

stage Plan for Test and enable automated testing of the developed features. Here, there exists a

Plan-Execute relationship between the Plan for Test process stage and the Test Software process

stage. A plan-execute relationship can be considered to have two distinct process stages, where

one process stage, Plan for Test, is responsible for creating a plan, which the other process stage,

Test Software, would then execute one or many times. We call the process stage producing the

plan the planning process stage, and the process stage executing the plan the process execution

stage. Both of these work in conjunction to achieve some upper-level business objective, which

requires the conceptualization of both plan and execute process segments. A plan can be re-

executed many times.

Fig. 4-14: A plan-execute relationship between two process stages for testing software

As shown in Fig. 4-15, there are two possibilities for testing the software. In Alternative A, we

develop Software Test Plans that are detailed and complete and do not require any interpretation

for their execution. The Test Plan consists of not just the overarching testing criteria but also the

test execution sequence that is to be followed. In Alternative B, there is no prior test planning done

and the testing is done in an ad hoc and unsystematic manner. The trade-offs between both the

alternatives would be between the repeatability and flexibility of the automated testing being

performed.

Plan-Execute Boundary

Plan for Test

Define

Execution

Sequence

Test Software

Perform

Manual

Testing

Software

Test P lan

X

Define Test

Pass Criteria

Review

Requirements

Create Test

Cases

Define Input

and Output

Parameters

89

Fig. 4-15: Goal model showing alternatives for complete plans versus no plans

We present a comparison between the design-use and plan-execute relationships in Table 4. A

notable difference between plans and designs is that the process stage using the design does not

need to be aware of how the design is built whereas the process stage executing the plan needs to

be aware of the information as codified in the plan in order to ensure proper execution.

Table 4. Comparison of design-use and plan-execute relationships

Design-Use Plan-Execute

Design of system tools and artifacts that are to be used
repeatedly and to enable process automation.

Construction of plans that are used as instructional
guide(s) for process execution, or process architecture
reconfiguration.

A design is a software tool or artifact that is used by
downstream process stages to accomplish enterprise
goals and softgoals.

A plan provides instructions for execution of activities
to accomplish enterprise goals and softgoals.

Downstream process stages are not aware of the
internals of the design and can directly use it.

Downstream process stages need to be aware of the
instructions as codified in the plan in order to ensure
proper execution.

The use of a design by the downstream process stage is
denoted by a relationship (with a “U” annotation)
terminating at the bottom of the process stage that uses
the design.

The execution of the plan by the downstream process
stage is denoted by a relationship (with an “X”
annotation) terminating at the top of the process stage
that executes the plan.

4.4 Scenario 3: Designing Two-Speed Enterprise Architecture

In Chapter 3, we presented the concept of two-speed or bimodal organizations where each

“section” of the enterprise operates at a relative frequency to the other. Transforming a legacy

enterprise architecture of the bank to one that supports the objectives of a two-speed organization

OR OR

Repeatability Flexibility

Test Software

Test

[Complete Plan]

Test

[No Plan]
A B

90

brings about interesting challenges for the enterprise architect. Here, the management of the

customer-centric front-end systems is kept separate from the legacy back-end enterprise systems

to allow for the independence of decision-making and operations. Each section is responsible for

the attainment of distinct goals and softgoals; such a separation enables both sections to be

optimally designed for the realization of these goals and softgoals. However, both sections still

need to meet to fulfil broader enterprise goals and thus, there would always be some constraints

on the design of processes and software systems; these would need to be considered during tradeoff

design analysis. These constraints can pertain to the sociotechnical isolation, the exchange of data,

or the difficulty in aligning process and software design across both sides.

Enterprises that adopt a two-speed enterprise architecture have done so by separately designing

the software and business processes (and the software applications used within) for both areas, to

satisfy the softgoals for each. E.g., the enterprise back-end side may use traditional phase-based

(or waterfall) software development methodology to prioritize stability and reliability of the

developed product, at the expense of rapid delivery of new features in the back-end enterprise

application. On the customer-facing side, the bank may use Agile development practices [173] to

deliver mobile and internet applications that are quickly updated with new features. However, this

may come with some degree of disruption and risk to the customers, i.e., in case software bugs are

introduced or customers dislike new feature rollouts. These issues can be reduced by incorporating

feedback loops that are entirely contained within the customer-facing side.

Finally, in order to support such enterprise architectures, additional software processes (like

blue/green deployments [174] and A/B testing [175]) may be introduced to minimize the potential

impact of disruptions and risks to enterprise operations. To reconcile both sides, the bank may

introduce some form or middleware (or an API gateway) that conforms to an agreed-to standard

interface, which frees both sides to evolve and develop independently, with their processes,

architecture, user experiences, and softgoal priorities [176].

4.4.1 Managing Relative Execution Frequencies

In an enterprise, there would be processes that execute at a higher frequency than other adjacent

processes. This is important to understand when designing the bimodal enterprise, we need to

91

decide which business and software processes to place on either side. Let us illustrate this by

considering the two applications being used in our present scenario, namely the enterprise

application used by bank staff members to process customer service requests and the mobile app

that bank customers use themselves to perform their financial transactions.

Developing either the enterprise application or the mobile app requires first understanding the

features to be developed. This entails consulting stakeholders for eliciting requirements, shown in

the Manage Requirements process stage. As enterprise applications do not frequently go through

rapid cycles of development, the requirements that are determined for the enterprise application

can be done once in Manage Requirements to prepare design specifications that are assumed to be

fairly stable during the duration of the development cycle, as performed in the Develop Enterprise

Application process stage. This is shown in Fig. 4-16 where the for every execution of the Manage

Requirements process stage, the Develop Enterprise Application process stage executes once too.

Fig. 4-16: Recurrence relationship for managing requirements and developing the enterprise application

However, in the case of mobile apps, the requirements would need to be periodically reviewed in

and new development items (in the form of a groomed Product Backlog) be determined. Thus, the

enterprise-side process stage of Device Backlog may be executed once to determine the

requirements for the mobile app, but the fast-moving customer-side process stage of Plan for

Release and Perform Sprint Cycle would be executed frequently as there may be changing priorities

to the requirements provided. Continuously revising the order of these requirements (present in a

Product Backlog) allows for the development teams to Develop Feature based on the organization’s

shifting priorities to meet softgoals such as customer-centricity or service adaptability. We show

this in Fig. 4-17.

Develop Enterprise Application

Design

Software

Develop

Software

Manage Requirements

Elicit Product

Requirements

Analyze

Requirements

Create

Specifications
[Design

Specifications]

92

Fig. 4-17: Recurrence relationship across the bimodal process boundary for the mobile application

In the figure above, we do not show all the surrounding software processes, but it is implicit that

the enterprise-side uses different software development practices (such as Waterfall) than the

customer-side, which uses iterative and incremental development approaches (such as Scrum).

Through recurrence relationships, we can see the location where both sides of the enterprise come

together. Recurrence relationships allow the considering of what decisions and actions in the

enterprise need to be re-executed, and under what conditions. Boundaries can exist between

process stages; these need to be visually displayed to show the differing characteristics that can

exist between adjacent process stages. This is necessary for analysis so that we can determine the

impact of moving certain process elements or process stages across different portions of the hiBPM

model. In hiBPM, process boundaries are means of identifying and demarcating similar process

stages with respect to certain process-related attributes, such as the frequency of execution, the

type of process output, and the behaviour of the process stage.

4.4.2 Dealing with Adaptation

We previously mentioned that the customer side of the enterprise needs to evolve and deliver new

product features quickly. However, this brings up a situation where the pressure for faster

development and deployment cycles may inadvertently introduce software bugs or undesirable

product features; these need to be fixed immediately to ensure ongoing customer satisfaction. If

the normal enterprise development feedback cycle is followed, the changes that need to be made

would first be reviewed by the product team on the enterprise side, before they turn up as product

backlog items on the customer side. This would not work as there has to be an immediate response

Enterprise-Side

Customer-Side

Plan for Release

Identify

Above-The-

Line Items

Create +

Groom

Release

Backlog

Perform Sprint Cycle

Design

Feature

Develop

Feature

1:N

Devise Backlog

Elicit Product

Requirements
1:N

[Release

Backlog]

93

to any determined issues, and these need to be fixed in hours and days. There needs to be sense-

and-response linkages within the enterprise to solve this problem; these exist between the sensing

part of the enterprise and the responding parts of the enterprise. In the situation described above,

these linkages are to be entirely contained within the customer side of the enterprise architecture.

Let us review this in our hiBPM model example in Fig. 4-18. The mobile app solution is running

in a production environment, with the state of the environment being monitored for both user

behaviour and system metrics in the Monitor Environment process stage. The various metrics are

then sent to the Review Environments Metrics where these are evaluated. This is shown as a sense

flow between the Monitor Environment and Review Environment Metrics process stages. The

metrics may indicate that there is a change in user behaviour (for example new features introduced

are less preferred than earlier versions) or that the recently developed code is resulting in

performance degradation. The feedback from these validation cycles is used for further design-

time improvements to the product. Through such an evaluation, additional development tasks are

decided which are then passed on to the Design, Develop and Deploy Software process stage. After

this, the normal structure of the hiBPM model follows. Thus, there exists a sense-and-respond path

between the Monitor Environment and the Design, Develop and Deploy Software process stages, the

purpose of which is to have ongoing improvements to the mobile app.

Fig. 4-18: Sense-and-control path for responding to production metrics

By differentiating control and design inputs from normal data inputs, and sensing from normal

outputs, we can locate adaptive loops as they exist within a hiBPM model through the use of sense

and control flows. Lower-order use process may execute many multitudes of times more frequently

Review Environment Metrics

Study User

Behavior

Review

System

Parameters

Software

Design

Tasks

C
Monitor Environment

Monitor

Systems

Measure Key

Metrics

Production

Metrics

S
1:N

Setup Software

Setup and

Configure

Environment

Design, Develop and Deploy Software

Design

Software

Develop

Software

Deploy

Software

94

than the high-order design process. Thus, the higher-order process (the P and D sides of the plan-

execute and design-use relationships respectively) typically has a lower recurrence frequency than

the lower order process (the X and U sides). Adaptation loops are discussed in mode detail in

Chapter 5 and Chapter 6.

4.5 The To-Be hiBPM Model

At the beginning of this chapter, we presented an As-Is hiBPM model. While understanding the

structure of this As-Is hiBPM, we identified and analyzed alternative configurations of the hiBPM

model based on the three scenarios presented. The alternatives were analyzed against various non-

functional objectives for the bank, in addition to the primary function objective, i.e., providing

financial services to the customer. Using analysis methods provided by the hiBPM framework, we

modified the design of this process architecture by moving various activities around, or the

changing the relationships that connect multiple processes. Such changes in the process

architecture led to alternative design configurations of the hiBPM model; these alternative design

configurations still met the enterprise objectives but the non-functional objectives attainment may

be different.

In Fig. 4-19 we show the To-Be hiBPM model that encompasses all three scenarios described at

the beginning of the chapter. Such changes to the hiBPM model allow us to cope with the

transformation characteristics of software-enabled enterprises described in Chapter 3. The hiBPM

model further indicates two separate sections in the enterprise that exist to support situations where

customers demand increased service responsiveness. Each section (corresponding to the customer-

side or the enterprise-side) ensures that the processes within are suitably designed for increased

customer-responsiveness or stability of operations.

95

Fig. 4-19: The redesigned hiBPM model for the banking domain example

Manage Requirements for Enterprise App

Elicit

Requirements

Analyze

Requirements

Design and Develop Software

Design

Software

Develop

Software

Commit Code

Change

Requirements

Specifications

Build Business Understanding

Consult

Stakeholders

Conduct

Competitive

Analysis

Develop

Product

Roadmap

Stakeholder

Feedback

Competitor

Information

Product

Roadmap
Create

Specifications

Test Software

Perform

Manual

Testing

Perform

Automated

Testing

Plan for Test

Design

Software

Develop

Software

Commit Code

Change

Develop

Software

Commit Code

Change
Software

Test P lan

X

Deploy Software

Package

Software for

Deployment

Instantiate

Environment

Install

Software

Configure

Software

Make Environment Template

Create

Environment

Install Third-

Party

Dependencies

Configure

Environment

Create

Environment

Template

Environment
U

Environment

Parameters

Process Service Request

Receive

Service

Request

Request

Information

Process

Service

Request

Notify

Customer of

Outcome

Service

Request

Service

Response

Enterprise

Application
U

Review Environment Metrics

Study User

Behavior

Review

System

Parameters

Software

Design

Tasks

C

Monitor Environment

Monitor

Systems

Measure Key

Metrics

Production

Metrics

S

Setup Software

Setup and

Configure

Environment

Select User Engagement

Evaluate

Requirements

and Feedback

Select User

Engagement

Mode

Manage Monthly Expenses

Provide

Transactional

Records

Manage

Monthly

Budget

Review and

Adjust Future

Spending

Selected

UEM

Process Service Request

Receive

Service

Request

Request

Information

Service

Request Service

Response

Identify User Engagements

Identify User

Engagements

Select

Possible

Subsets

User

Engagement

Modes

Other Data

Plan for Release

Identify

Above-The-

Line Items

Create +

Groom

Release

Backlog

1:N

Devise Backlog

Elicit Product

Requirements

1:N

[Product

Backlog]

Perform Sprint Cycle

Commit Code

Change

Perform

Automated

Testing

Test Software

Design

Feature

Develop

Feature

Software

Feature

Mobile App
U

Create Test Scripts

Write Test

Scripts
Test

Script

Requirements

Specifications

96

4.6 Conclusion

A major challenge for information systems design is dealing with enterprises that undergo change.

It cannot be assumed that a single design cycle and implementation would be sufficient, as there

are numerous uncertainties. Change in such a dynamic enterprise would be long-lasting, and

impact numerous areas in the enterprise. Any change exercise in the enterprise would have varying

degrees of success, as measured by their attainment of enterprise objectives, and the feedback from

these would be used to refine subsequence change cycles iteratively. Thus, dynamic enterprises

evolve in response to changing environmental circumstances and business objectives, frequently

going through cycles of learning and improvement.

In this chapter, we demonstrated how the hiBPM framework can be used to systematically analyze

multiple scenarios in a bank that is undergoing software-enabled change. Here we created a hiBPM

model for the overall collection of business processes and used it to progressively reason about

and introduce changes in banking processes to ensure that the enterprise continues to attain its

organization objectives. In the next two chapters, we provide a detailed explanation of the hiBPM

framework constructs and methods, including how to analyze change along multiple dimensions

using these hiBPM concepts.

97

5 Creating Models using the hiBPM Framework

5.1 An Architecture of Processes

A hiBPM model is visually depicted as a conceptual model that considers various (process-related)

constructs while providing the ability to express different design configurations of processes by

describing activities, and their relationships needed to accomplish enterprise objectives. hiBPM

emphasizes the existence of decision-making points and offers expressiveness to allow relevant

process architectural properties to be analyzed, and for contrasting among alternative process

architecture design options. Detailed process sequences or elements, such as that offered in

business process modeling techniques, are not needed as they do not lend to the analysis of

alternative ways to reconfigure the hiBPM model. The idea is to have expressiveness of the domain

for allowing capturing and evaluation of alternative hiBPM configuration options, without having

to detail all domain elements, their relationships, operational sequences, specifics on activity

execution, or information flows.

Portions of hiBPM model could be redesigned based on evolving functional and non-functional

enterprise objectives. Thus, many possible process architecture configurations (also referred to as

a “design space”) exists in the domain under study. Such a design space would include the possible

configuration options that exist in different areas of the hiBPM model, and under the conditions in

which those options would be valid. Thus, in hiBPM, we do not consider the process architecture

to be static, but something that can (and should be) re-analyzed and re-engineered. The process

architecture can be configured in multiple ways while simultaneously permitting trade-off analysis

between several enterprise non-functional requirements. Alternative designs are, therefore,

different ways of respectively modifying or implementing the process architecture. Such redesigns

would allow a process architect to ask questions such as,

• Does the present configuration of the process architecture permit the attaining of enterprise

non-functional objectives?

• Where in the hiBPM model can redesigns be introduced for enterprise flexibility and to attain

specific non-functional objectives?

98

• Should certain activities be postponed for later to ensure that real-time data is used in the

processing, or would the additional cost of this configuration outweigh the benefit of delayed

execution?

Enterprise architects and process architects can navigate through the design space of a hiBPM

model and come up with alternative designs of process architecture. This permits enterprises to be

designed with flexibility to permit change, while taking into consideration criteria such as cost,

performance, uniformity, etc. The hiBPM model is part of an overall hiBPM framework. Here, the

term “framework” is emphasized to indicate that this design artifact consists of a set of prescriptive

constructs and modeling notations that collectively allow analysis, reasoning and evaluation-

related activities. Accompanying methods and rules allow for the prescribing and qualitative

determination of process architecture configurations based on enterprise requirements while

evaluating trade-offs between multiple configuration alternatives.

The hiBPM constructs, modeling notations and methods are presented in Chapter 5 and Chapter 6

of this thesis. Specifically, in Chapter 5 we discuss in detail the various ways that a hiBPM model

can be design and configured, whereas in Chapter 6, we present the analysis capabilities to decide

between design space options in the hiBPM model. We continue to use the domain example

introduced in Chapter 4 to explain the concepts covered in Chapter 5 and Chapter 6.

The notion of business process architecture, including the types of relationships and various

dimensions of change, was initially proposed in [26] and [27]. This research project is based on

this preliminary work and extends it by adding new constructs and providing additional details and

preciseness to the ones that were originally introduced to develop a complete conceptual modeling

framework.

5.2 A MetaModel for hiBPM

We present a meta-model for the hiBPM model in this section. According to Seidewitz [177], “a

meta-model makes statements about what can be expressed in the valid models of a certain

modeling language”. A meta-model for the hiBPM framework is needed as it helps with the

analysis and construction of a hiBPM diagram that models a domain under study. Through this

99

meta-model, we define the various modeling notational constructs needed for creating a hiBPM

model. This meta-model helps decide amongst possible modeling constructs and modeling variants

as they apply to different situations and aids in navigating the space of possible hiBPM design

options. This balances the need for creating manageable and straightforward hiBPM models

against the inherent complexity that accompanies any attempt to model a multitude of business

processes.

A simple metamodel for the hiBPM modeling framework was introduced in [26]. We present an

updated meta-model with additional process constructs and updated relationships between the

various meta-model elements in Fig. 5-1. For developing the hiBPM framework meta-model, we

utilized concepts adapted from business process modeling [50], functional modeling [179], and

goal modeling [171]. Such an approach permitted us to consider and assess optimum process

architecture design alternatives while keeping in mind enterprise functions, business processes and

their associated goals. The meta-model is structured as two primary parts; the first is for creating

a hiBPM model, whereas the second is for analyzing alternatives using a goal model based

notation.

The first part of the meta-model is further divided into two primary categories of constructs,

Structural Elements and Relational Elements, the former being used to define the significant

constructs that allow for the structuring of domain (process) activities with the latter being used to

depict relationships between the structural elements. There can be different types of structural

elements – Process Stage, Process Phase, and Process Element. Relationships exist between

structural elements and provide a means of association and information transfer; the relationships

include Data Flow, Sequence Flow, Recurrence, Design-Use and Plan-Execute. Through this meta-

model, we can express the attributes of the modeling constructs, the mechanisms in which they

could be used, and the associations they have with other modeling constructs in hiBPM. The

modeling constructs themselves are discussed in greater detail in subsequent sections of this

chapter.

100

Fig. 5-1: Meta-Model for the hiBPM modeling framework

In the second part of the meta-model, we provide the necessary hiBPM modeling constructs that

help in coming up with alternative process architecture configurations at key points in the hiBPM

model. Enterprise objectives are attained through structural elements. This is shown in the meta-

model as a Structural Element being associated with a Goal. The execution of the process elements

in any process stage help attain objectives for a process stage; thereby process element objectives

are aligned to, and contribute towards, process stage objectives. The hiBPM model may contain

Variation Points where different possible Process Element configurations may be present. These

may appear anywhere within the hiBPM model. During the analysis of the hiBPM model, we

consider the different options of hiBPM design that exist at a variation point. Each possible option

is referred to as a variant that exists at that variation point. These then contribute either positively

or negatively towards the satisficing of one or more Softgoals that exists at that variation point.

Goals and possible ways of reconfiguring the hiBPM model are discussed further in Chapter 6.

Structural Element

Process Element

1

contains

0..* 0..1

contains

1..*

Use Engagement

0..*

from-to

1..*

is connected by

Process Stage Process Phase

Activity

Variation Point

Softgoal

1..* is optimized by

1 optimizes

Goal

1

helps attain

1

is attained by

2 is part of

1 has

Relational Element

relationship: RelationshipType

label: String

Relationship End

symbol: Character

recurrence: Integer

101

5.3 Structural Elements

Structural Elements are a set of constructs in the hiBPM model that provide a generic

representation of the structure of activities for the domain under study. These elements are not

meant to give a detailed description of the domain but rather are a selective representation of

activities that provide some means for domain depiction and analysis. When selecting structural

elements for creating hiBPM models, the emphasis is not on depth and detail of the resultant

models but instead on the contribution that those structural elements have on model analysis. That

is, only those structural elements are selected and shown if they help explain the design of the

multitudes of business processes that exist, and if they contribute towards coming up with, or

deliberating between, alternative design configurations of the hiBPM model. Detailed activities

are not shown if they do not assist in coming up with alternative designs.

These structural elements represent various strategic, tactical and operational activities at different

granularities and different levels to each other. The structural elements typically are meant to attain

some business or technological purpose, and thus provide insight on “why” the processes are

structured the way they are, rather than just providing insight into “how” individual business

objectives are meant through process execution. Thus, these structural elements are associated with

the accomplishment of specific goals in the enterprise. Therefore, their identification is done

through understanding the goals (and sub-goals) that exist in various parts of the enterprise and

the process tasks and activities that exist to accomplish them.

In hiBPM, there are three types of structural elements, Process Elements, Process Stages and

Process Phases; these all have a label associated with them that describes their purpose and

accomplishment. The label takes a particular form (verb action on the entity) and is usually written

in a manner that represents the operation being performed. They take in specific inputs, perform

some processing for attaining the associated objective, and generate an output. These structural

elements work in conjunction to achieve some collective goal, with various configurations being

possible.

102

5.3.1 Process Elements

A fundamental construct in the hiBPM modeling notation is that of the Process Element. Process

elements are basic activity units which produce some output or outcome based on a set of control

and data inputs. Process elements indicate the behaviour or actions performed by a domain actor

or participant that results in an accomplishment of function, or the generation of measurable

output. The specifics of how these actions are performed are not apparent nor required. Instead,

the focus is on how the process element contributes towards the attainment of enterprise functions

and the relative positioning of the process elements within the overall process architecture.

Generally, process elements are at a level of granularity where they represent a functional or non-

functional accomplishment. The execution of process elements may or may not be atomic, as that

is not a pertinent requirement for selecting process elements. A process element may access

enterprise resources to be able to attain the behaviour that is expected of them while being

generally chained in some order where collectively, these process elements accomplish some

enterprise objective. Here the output of one process element serves as the input of another process

element for onward processing.

Process elements can also include the act of making decisions as part of the activity processing.

As part of designing the hiBPM model, a decision may need to be made on which alternative

design to proceed with. These decision points in the hiBPM model are also represented as process

elements. There may be uncertainty in how the processing is performed at that process element,

and the process element itself is represented as a variation point in the overall hiBPM model.

Binding all possible alternative design options at the variation points allows for creating complete

and inflexible process architecture, whereas leaving variation points open for binding provides for

flexibility of configuring the process architecture. Designing hiBPM models for flexibility and

configurability is discussed further in Chapter 6.

In Fig. 5-2, we present various ways that a process element may appear in a hiBPM model. Fig. 5-

2(A) shows a single process element Elicit Requirements (represented by a rectangular shape with

rounded corners) that receives the input Product Roadmap, processes it and generates the output

Requirements. A process element has a label associated that describes the operation performed.

103

Fig. 5-2(B) shows a slight variation of this; here there are multiple inputs, Customer Survey and

Product Backlog, that are collectively processed to generate an output. A process element only has

one output. Depending on the type of input, we show the inputs as coming in from the left, top or

bottom, with the output emerging from the right boundary of the process element. These are further

discussed in subsequent sub-sections in this chapter.

Fig. 5-2: (A) A process element with a single data input and a single data output. (B) A process element with two

data inputs and a single data output

In Fig. 5-3 we show multiple process elements working together to form a chain of processing

activities; these are Elicit Requirements, Analyze Requirements and Create Specifications. The

links between the process elements are explained more in Section 5.4. These process elements

collectively process the incoming inputs, Customer Survey and Product Roadmap, to produce the

output Requirements Specification.

Fig. 5-3: A chain of process elements working collectively to process incoming data inputs to generate an output

While process elements may appear in anywhere in the hiBPM model, they are not independent

constructs and are part of process stages and process phases. Process elements can be linked to

another structural element (such as a process element or process phase) with relational elements

within the same process stage, or to another process stage. Process phases and process stages are

discussed in the next sections.

5.3.2 Process Stages

Process elements can be placed in collections called Process Stages based on the similarity of

execution frequency, and their relationship to each other. Alternatively stated, process stages are

collections of process elements that are to be executed collectively. A process stage contains one

A B

Elicit

Requirements
Requirements

Customer Survey

Product Roadmap

Elicit

Requirements
RequirementsProduct Roadmap

Elicit

Requirements

Analyze

Requirements

Create

Specifications

Customer Survey

Product Roadmap

Requirements

Specifications

104

or more process elements and will be structured in a manner where it delivers some enterprise

objective in the form of functional or non-functional goals. Here a process stage represents a

(sub-)process within a broader business process that attains a defined business objective. This

output of a process stage is available to other subsequent process stages as an input to be used for

its execution multiple times (as needed). The output of a process stage is available until the process

stage re-executes, at which time the previous output is discarded and new output from that process

stage is available. This concept will become important when recurrence relationships are discussed

in later sections in this chapter.

We present two possible forms of process stages as they can exist within a hiBPM model in Fig.

5-4. Fig. 5-4(A) shows a simple process stage, Manage Requirements, with several process

elements, Elicit Requirements, Analyze Requirements and Create Specifications. The process stage

is depicted as a rectangle shape with rounded corners that contain one or more process elements

within, with the process stage having an identifying label that appears in the top left corner. In Fig.

5-4(B) we show the same process stage; however, this time only depicting certain process elements

with others omitted as these would not have contributed to the analysis. Additionally, the

sequential relationship is not shown for all process elements as there may not be a sequential

execution between the process elements in that process stage.

Fig. 5-4: (A) A process stage with multiple process elements that execute in some sequence (B) Process stage

containing multiple process elements that execute collectively to attain a common objective

We illustrate another form of the same example that is presented in Fig. 5-5. Here two process

stages, Manage Requirements and Generate Specifications, are setup in an upstream and

Manage Requirements

Elicit

Requirements

Analyze

Requirements

Create

Specifications

Manage Requirements

Elicit

Requirements

Analyze

Requirements
...

Create

Specifications

A

B

Requirements

Specifications

Requirements

Specifications

Product Roadmap

Product Roadmap

105

downstream configuration. By upstream we mean the process stage that executes first and results

in an output that is then processed by another process stage (the downstream process stage). This

is a relative temporal arrangement of process stages and does not imply the upstream process stage

is immediately before the downstream process stage.

Fig. 5-5: Two process stages in an upstream and downstream configuration where the output of the upstream process

stage acts as an input to the downstream process stage

Process stages can be represented as a loose collection of dependent actions that each run at

approximately the same time duration and frequency for attaining a common goal. Process stages

are determined by identifying process elements that need to be executed with the same frequency

or are triggered by the same data-driven trigger. Further, these process elements should contribute

to some common enterprise functional or non-functional goal. Once process elements are

identified, they can be combined into a process stage with the output of that stage to be reused

multiple times by the subsequent stages, thus saving time, money and possibly other resources.

Process stages can be executed on-demand, having been triggered by appropriate events. We do

not need to determine all the process elements that would be part of the process stage but only

those that lend to hiBPM model analysis; thus, certain process elements or sequence relationships

can be omitted when visualizing a process stage.

5.3.3 Process Phases

Another structural element is Process Phases, which are collections of process elements within a

process stage that produce the same result irrespective of the arrangement of those process

elements. We highlight such parts within the process stage as any temporal reordering of the

process elements does not result in any change in the outcome of the process phase. This is

important as moving process elements within a process stage may or may not result in a different

output for that process stage; we need to differentiate between both these situations. A process

stage may contain one or more process phases, with the output of one process phase being used by

Manage Requirements

Elicit

Requirements

Analyze

Requirements

Generate Specifications

Create

Specifications

Review

Specifications

Publish

Specifications

Published

Specifications

Product

Roadmap

106

the subsequent process phases or process elements of the same process stage instance. Introducing

process phases as a modeling construct helps to reduce the number of possible process element

placement alternatives. This leads to a decrease in analysis effort and allows for more focus on

more important issues by abstracting over some hiBPM modeling details, like the specific

sequential arrangement of process elements.

When determining process phases in a process stage, we first understand the temporal constraints

of process elements, as this then helps identify process phases that exist within a process stage. By

temporal constraints, we mean that if changing the order of sequential process elements results in

a different output (in the form of non-satisfaction of a functional or non-functional goal) of the

process stage that the process phase is a part of, then we say that there is a temporal constraint.

Conversely, if changing the order does not result in a change in the output (which is tied to the

functional or non-functional goal for that process stage), we say that there is no temporal

constraint. Given this collection of process elements within a process stage, process elements that

do not need to be in a defined execution sequence should be encapsulated as part of a process

phase. For other process elements, they can be shown outside of this process phase, with sequential

relationships indicating the temporal order of execution. Unlike process elements and process

stages, process phases need not be associated with any functional and non-functional goals, and

are just representative of the ordering of the process elements within a process stage.

A process phase is represented with a rectangle with rounded corners and dashed lines (instead of

the solid lines used in process stages and process elements). A label helps describe and differentiate

the process phase, although this is not strictly necessary. In Fig. 5-6, we show a process stage,

Develop Software Product, with multiple process elements, some of which are part of a process

phase, Commit and Test. The process elements outside of the process phase (Review Design and

Implement Product Feature) have a sequential ordering (indicated by the sequence flow) whereas

the ones within the process phase, Commit Code Change and Perform QA Testing, have none. This

is to suggest that moving the process elements within the process phase does not result in a change

in the output of that process phase or that of the process stage that this process phase is part of.

107

Fig. 5-6: A process stage with a combination of process elements and a process phase

In Fig. 5-7, we show a process stage with two process phases, Design and Develop and Commit and

Test, that demonstrate the same behaviour as described previously. Here we show the output of the

first process phase, Design and Develop, going into the second process phase, Commit and Test;

however, other possible configurations may exist. The input to a process phase may be from

another process element, process phase, or even a process stage. The output of a process phase can

go to another process element or another process phase only.

Fig. 5-7: A process stage with two process phases with the output of the first process phase feeding into the second

5.3.4 User Engagement Process Elements

hiBPM models emphasize the nature of relationships between technology and software processes

where an artifact or tool is generated, or some data produced, and where it is ultimately used during

the execution of a process. Such an exchange may not be as one-dimensional as it would initially

appear. To explain this, let us assume a (human or system) user that is involved in the execution

of a activity within some business process. This user relies on the output produced by some

software system for either decision making or process execution. Here the user has learnt how to

use and adapt to such systems as part of executing their business processes, where the systems

themselves were designed and configured as per each enterprise’s unique requirements.

However, in dynamic enterprises, the output produced by the process stage could change, not just

in the output value, but also in the format and nature of the output. For example, upon reaching

the desired levels of trust, confidence, accuracy, and reliability, the process stages may produce

Design, Develop and Test Software

Design

Software
Commit Code

Change

Perform

Manual

Testing

Commit and Test

Develop

Software

Requirements

Specifications

Software

Product

Design, Develop and Test Software

Commit Code

Change

Perform

Manual

Testing

Commit and Test

Design

Software

Develop

Software

Design and Develop

Requirements

Specifications

Software

Product

108

different tools, with the software systems themselves increasingly becoming more entrenched into

the enterprise. The above results in changes to the design and execution of business processes, and

in the responsibilities of users in charge of these business processes. Thus, it is important to

indicate the relationships between the output of software process stages (that produce some data

or tools) that are then inputs to some other structural element (like a process element), with the

likelihood that this relationship will change over time due to the inclusion of factors such as

assignment of responsibilities for communication/collaboration, issues of trust, and the ability to

override the system. We refer to such relationships as user engagements, implying that a user

(human-based or system-based) is engaging in the use of an output from another process stage.

As part of applying hiBPM, we map user engagements into process elements where the applicable

user engagements (injected into those process elements) are then are executed by both human

process participants and activities executed by information systems. Such a process element,

Manage Monthly Budget, is shown in a shaded form in the hiBPM model shown in Fig. 5-8 to

differentiate it from other process elements within the same process stage, Manage Monthly

Expenses. Such a process element has parameters that are likely to be different across every

execution instance or is expected to receive inputs that can change (along a spectrum of user

engagement dimensions) over time. An example being where the output of the Manage Monthly

Budget is purely information with the user having to do the actual balancing of their budget. Later

on, the user engagement mode may change and now the output of the Manage Monthly Budget is

completely balanced, and the user is just reviewing the provided budget and approving it.

Fig. 5-8: A user engagement process element where the user engagement mode changes based on input from a

separate process stage

Manage Monthly Expenses

Provide

Transactional

Records

Manage

Monthly

Budget

Review and

Adjust Future

Spending

Selected

UEM

Process Service Request

Receive

Service

Request

Request

Information

Service

Request

Service

Response

109

5.3.5 Process Boundaries

Within any process architecture, there would be areas where the structural elements have similar

traits. This may be to do with the frequency of execution, the type of process output, the behaviour

of the structural elements, or generally the contribution that they have to enterprise strategic,

tactical, or operational goals. Through process boundaries, we ensure that we can identify and

demarcate between two adjacent, yet dissimilar, sections that may exist within a hiBPM model,

and their relative positioning to each other. We include process boundaries in structural elements

as it helps differentiate between two adjacent process stages and provides additional depth (for

understanding and analysis purposes) to the structure of the hiBPM model.

Identifying such process boundaries permits the determining of common attributes of process

stages. For example, a process stage may exist at a higher level (in terms of process stage objective,

or recurrence) than another lower level process stage. Among these processes, there can be a

number of different relationships. For instance, a higher-level process can control a lower-level

one by adjusting that process’ parameters. On the other hand, there can be another relationship

between processes, where a higher-level process designs (or redesigns) a specification for the

lower-level one. Through process boundaries, we can show the difference between process stages

that exist at different levels and are connected by relational elements, such as recurrence

relationships, design-use relationships, and plan-execute relationships. This is discussed further in

subsequent sections of this chapter. The “hi” in hiBPM refers to the presence of multiple business

processes in the domain space, with some being at a higher level than others.

Process boundaries can only exist between two process stages and not any other type or

combination of structural elements. This is because the output of a process stage is persistent (i.e.,

can exist after the process stage executes) and can be an input to a process stage in another part of

the hiBPM model. This is opposed to the output of process elements or process phases which are

immediately passed on to subsequent process elements or process phases (within the same process

stage). In case one process phase is operating at a higher execution level than another, it would be

better to show them as two process stages with a process boundary in between. Process boundaries

are indicated by a simple dashed line that is drawn between two process stages. We try to have this

110

process boundary sketched horizontally, with one process stage placed higher than the other. This

helps with the visualization of multiple levels of process stages and how one contributes to the

other in a particular manner.

Fig. 5-9 shows two process stages Build Business Understanding and Manage Requirements for

Mobile App, with a process boundary between them. Recall that in Chapter 4 we introduced the

concept of two-speed enterprises where some parts of the enterprise operate at a different speed

than others. Here the process boundary, shown by the dash-line separating both process stages, is

indicating of the two process stages belonging to the separate parts of the enterprise, Enterprise-

Side and Customer-Side. Other examples of process boundaries separating process stages across

Design-Use and plan-execute relationships are given in subsequent sections of this Chapter.

Fig. 5-9: Process boundary showing the Enterprise-Side and Customer-Side divide between two process stages

Process elements (part of a particular process stage) can be moved across process boundaries (to

another process stage on the other side of the boundary), though they then inherit the behavioural

traits of the target process stage. Moving process elements across phase boundaries may also affect

the quality of decisions and the outcome of actions. Thus, it’s important to understand the

ramifications of placing process elements during the design of a hiBPM process architecture and

the resulting behaviour that may emerge. We discuss the placement and movement of process

elements in greater detail in Chapter 6.

Build Business Understanding

Consult

Stakeholders

Gather

Customer

Feedback

Manage Requirements for Mobile App

Elicit

Requirements

Analyze

Requirements

Create

Product

Backlog

Product

Backlog

Customer

Feedback

Stakeholder

Feedback

Enterprise-Side

Customer-Side

111

5.4 Relational Elements

As with any process modeling approach, there exist several relational elements in hiBPM that

associate multiple structural elements together. They are an essential part of the overall process

architecture by providing the relationship aspect through linkages. A relational element connects

two structural elements with one source and one (or more) destination connector, and can only be

between structural elements. Moreover, a relational element can connect two different types of

structural elements. E.g. the originating structural element may be the output of a process stage

that goes into a process element that is part of another process stage. Such combinations of

structural elements connected by relational elements are permissible in hiBPM.

Relational elements have a direction indicator (an arrow), through which the source and destination

structural element can be determined. The arrow broadly and generally provides information on

the upstream and downstream processing of activities but is not meant to determine sequential

execution (in the sense of BPMN). It also permits identification of the initiator and recipient of the

object transfer that takes place as part of this association. The arrow emerges from the left side of

a structural element and terminates at either the right, top or bottom side of a destination structural

element. The shape and flow of this arrow vary based on which relation is being represented; these

are discussed in further detail in the following sub-sections of this chapter. In cases where process

stages exist across a process boundary, a relational element would connect them while crossing

the process boundary for providing a means of object transfer and association. Despite this, the

object transfer occurring through the relational element does not get transformed in any way when

crossing the process boundary and gets delivered in the originating form.

In hiBPM, there are various forms of relationships; these include data flows, sequence flows,

recurrence relationships, sense-and-control flows, design-use relationships, and plan-execute

relationships. The table below shows the permitted relationships between an originating and

destination structural elements.

112

Table 5: Forms of relationships in hiBPM

 DF SF RECUR SF CF D-U P-E

PE to PE ✓ ✓

PE to PP ✓ ✓

PE to PS

PP to PE ✓ ✓

PP to PP ✓ ✓

PP to PS

PS to PE ✓ ✓ ✓ ✓ ✓

PS to PP ✓ ✓ ✓ ✓ ✓

PS to PS ✓ ✓ ✓ ✓ ✓ ✓ ✓

DF = Data Flow

SF = Sequence Flow

RECUR = Recurrence

SF = Sense Flow

CF = Control Flow

D-U = Design-Use

P-E = Plan-Execute

5.4.1 Data Flow and Sequence Flow Relationships

Data Flow and Sequence Flow are elementary constructs that link two structural elements in any

hiBPM model. The output of an upstream structural element is transferred as an input to a

downstream structural element through these flow relationships. The execution of a downstream

structural element cannot start until the upstream structural elements (as represented by the flows)

is completed.

Data flows are a means of representing the transfer of information objects from a structural element

to another and indicate a simple association between structural elements. These information

objects could take the form of data that is required by the downstream structural element for its

processing. In Fig. 5-10, we show a data flow relationship, Raw Requirements, between two

process stages, Manage Requirements and Generate Specifications.

113

Fig. 5-10: Data flow relationship between two process stages

Sequence flows represent the temporal arrangement between two structural elements, where an

upstream structural element would be linked to a downstream structural element by a sequence

flow. They provide some indication of the sequential execution of process stages in the overall

process architecture and help with the readability of the model. Sequence flows are shown as solid

lines that emerge from one structural element and end at another, whereas data flows are shown as

dashed lines.

Data flow and sequence flow may appear separately in a hiBPM model or shown collectively,

which means that there would be a temporal arrangement between two structural elements that

also happens to have a transfer of data. In this case, we use the same sequence flow notation but

add a data flow label to it. In Fig. 5-11(A), we use the same hiBPM model as that in Fig. 5-10, this

time emphasizing that the there is a sequence flow between the two process stages. Fig. 5-11(B)

shows an example where the sequence flow label is not shown as it doesn’t contribute to the

analysis of the hiBPM model.

Fig. 5-11: (A) A sequence flow between two process stages with a data label present, (B) A sequence flow without

the data label present

Labels (that indicates the information object being transferred) may be optional for both data flows

and sequence flows. Both these flows are generally represented directionally from left-to-right and

Manage Requirements

Elicit

Requirements
...

Generate Specifications

Create

Specifications
...

Requirements

Specifications

Product

Roadmap

Raw

Requirements

Manage Requirements

Elicit

Requirements
...

Generate Specifications

Create

Specifications
...

Requirements

Specifications

Product

Roadmap

Manage Requirements

Elicit

Requirements
...

Generate Specifications

Create

Specifications
...

Requirements

Specifications

Product

Roadmap

A

B

Raw

Requirements

114

may bend at 90 degrees depending on the positioning of the downstream process stage. While there

is flexibility in drawing the flows, the general direction of flow should be such so that the temporal

ordering and higher-level ordering is apparent in the hiBPM model.

5.4.2 Recurrence Relationships

Recurrence relationships exists between two process stages when both stages are at separate

execution frequencies. By this, we mean that an upstream process stage may execute at a rate

different from a downstream process stage. This difference in execution frequency between both

process stages is represented by a recurrence relationship. Here, an attribute is associated with this

link that indicates the relative recurrence of process stages at both sides of the recurrence

relationship. Note, the emphasis here is on the relative execution between both associated process

stages, and not their absolute execution frequencies.

Within a recurrence relationship, the process stage that executes more frequently is referred to as

having higher recurrence (and exists at the higher recurrence side of the relationship) and the

process stage that executes less frequently is referred to as having lower recurrence (and exists at

the lower recurrence side of the relationship). Recurrence is primarily a temporal repetition motion.

Through recurrence relationships, we aim to highlight the relative execution frequencies between

different segments of the hiBPM model that permit analysis amongst various design variants.

There are several possible cardinality relationships between two process stages. Each of the below

representation of recurrence relationships between process stages is shown in Fig. 5-12. Here M

and N are variables that represent the execution of the process stage. They are not meant to

represent absolute values and generally signify that a process stage having a recurrence of M or N.

• 1:N - Each execution of Manage Requirements results in multiple executions of Develop and

Deploy Software. In other words, the output of the higher recurrence Manage Requirements

process stage is available to be used as an input by a lower recurrence Develop and Deploy

Software process stage for multiple execution cycles. This is the more common case in a typical

hiBPM model.

115

• M:N - The Develop and Deploy Software may execute multiple times before Monitor

Production Environment would execute. Here N > M so the lower recurrence Monitor

Environment process stage will execute N times for every M executions for the higher

recurrence Develop and Deploy Software process stage.

• N:1 - The Monitor Production Environment will execute multiple times before the Analyze and

Audit Environment would execute. This can show situations where higher recurrence Monitor

Environment process stage execute once for multiple lower recurrence Analyze and Audit

Environment process stage executions. Such a configuration allows Analyze and Audit

Environment to aggregate and analyze the data that Monitor Production Environment generates.

Fig. 5-12: Multiple 1:N, M:N and N:1 recurrence relationships between process stages

Recurrence between combinations of process elements and process phases is assumed to be 1:1. If

a recurrence relationship other than 1:1 becomes apparent, then the process elements or process

phases need to be converted to process stages. Introducing recurrence relationships in hiBPM

models allows for flexibility in representing process stage execution amongst the various parts of

the process architecture.

Monitor Environment

Monitor

Systems

Measure Key

Metrics

M:N

Manage Requirements

Review

Requirements

Create

Product

Backlog

Develop

Software

Deploy

Software

Develop and Deploy Software

1:N

Analyze and Audit Environment

Analyze Logs
Generate

Audit Reports N:1

116

In the recurrence relationship, we assume that at the execution completion of an upstream process

stage automatically results in the downstream process stage execution. However, this may not

always be the case, and at times, the downstream process stage may need to be manually executed;

for this, we rely on triggers. Trigger relationships are a special kind of data flow that exists between

a structural element (process element, process phase or process stage) and another process stage.

Triggers are used to indicate that the completion of an upstream process stage (or a process

element) results in the immediate execution of an immediately downstream process stage. Thus,

this represents some form of temporal relationship between these two associated process stages.

Triggering conditions pertain to changes in context and their availability, thus detected changes in

context allow for reconfiguration in other parts of the hiBPM model. When a stage is triggered, it

is re-executed, with the triggers themselves being manual or automatic. Manual triggers are those

that are human-initiated and can be “fired” even if triggering conditions are not satisfied.

Automatic triggers are those that are fired by the system when certain triggering conditions are

satisfied. However, in hiBPM the specific temporal details, e.g. on how the recurrence is triggered,

are of less concern compared to process architecture redesign and thus not specially indicated in a

hiBPM model.

5.4.3 Design-Use Relationship

The execution of a process stage can result in the creation of a tool, capability or artifact that can

be used, with the tool or capability referred to as a “design”. This design is used to build an artifact

that is then made available to downstream process stages to be utilized repeatedly in the stage’s

execution. In hiBPM, designs are conceptualized as pre-built black box artifacts that can adopt

different forms; they may be physical objects, a digitized entity or even be informational. The

designs are black-boxes as a user that uses the design artifact as part of the process stage execution

does not care (nether is informed) about the (internal) structure of a design artifact or how its built

and is only concerned about whether the functional and non-function objectives are achieved when

invoked during usage.

Such an act (of creating this tool or capability) can be considered as having two distinct process

stages, one creating the designed artifact, with the other (repeatedly) using the designed artifact.

117

Thus, a design-use relationship exists between these process stages. A design-use relationship only

exists if the design is used in a downstream, immediate process stage. In design-use relationships,

we consider the association between how the designs are built and the usage of the artifact as it

not only allows a contemplation on how designs are developed but also how they are integrated

and used in business processes. This is useful as it ensures that suitable processes and data

dependencies are fulfilled at or before that point.

In Fig. 5-13, we show a design-use relationship between two process stages, Setup Environment

and Deploy to Production, with the process creating the artifact called the design process stage and

the one using the artifact called the use process stage. The relationship between the two process

stages indicates the flow of the design, Environment Template, from the design stage to the use

stage, with a “U” annotation representing using of design in the execution in the use stage, which

enters the latter at the bottom following the Mechanism arrow notation from IDEF0. The figure

also shows a design-use process boundary, thus differentiating between the designing part of the

hiBPM model and the using part of the hiBPM model.

Fig. 5-13: Design-use relationships between two process stages that exist across a design-use boundary

A primary motivator for design-use relationships in hiBPM is to represent arrangements in a

process architecture where certain process stages can invoke a capability without knowing how to

create it, i.e., following the principles of encapsulation and abstraction. Thus, designs can be

considered as black-box abstractions; we discuss this in more detail in Chapter 6. Design-use

relationships also allow for introducing designs in the process architecture for (a) enabling

Design-Use Boundary

Deploy Software

Package

Software for

Deployment

Instantiate

Environment

Install

Software

Configure

Software

Make Environment Template

Create

Environment

Install Third-

Party

Dependencies

Configure

Environment

Create

Environment

Template

Environment

U

118

automation, and (b) reducing the process execution time and cost (amongst other reasons). The

assumption is that the design stage will not be executed just once to produce a tool or a capability.

5.4.4 Plan-Execute Relationship

In typical business process modeling (in the context of enterprise agility), the process model

describes the process that is to be executed, but not how this process gets determined. In hiBPM,

a process stage can produce an output that is a plan for a subsequent process stage to execute. A

plan provides instructions for execution of activities to accomplish enterprise functional and non-

functional goals while simultaneously reducing the space of possible process execution

possibilities, as there may be several possibilities to attain these enterprise goals. Thus, a plan is

the output of the planning process stage and can be an arrangement of actions, or a set of

specifications that describes the method, means and constraints of executing the plan. Downstream

process stages need to be aware of the information as codified in the plan to ensure proper

execution. We call the process stage where the plan is produced the planning process stage, while

the subsequent stage is called the execution process stage. Such an association between the two

sides is called a plan-execute relationship.

In Fig. 5-14, we show a plan-execute relationship between two process stages, Plan for Testing and

Create Test Scripts. The relationship between the two process stages indicates the flow of the plan,

Test Plan, from the planning stage to the executing stage, with an “X” annotation representing the

executing of the plan execute stage.

Fig. 5-14: Modeling notation for plan-execute relationships

Plan-Execute Boundary

Plan for Testing

Define

Execution

Sequence

Test Software

Perform

Manual

Testing

Software

Test P lan

X

Define Test

Pass Criteria

Review

Requirements

Create Test

Cases

Define Input

and Output

Parameters

119

Through plan-execute relationships, the hiBPM model can capture the relationship between the

two process stages, i.e., where the plans are devised and where they are executed. Note that due to

their nature, planning stages do not achieve domain-specific objectives – i.e., they do not change

the state of the system or its environment, but rather indirectly assist in the attainment of these

objectives through the execution of the plan. Processes may produce plans that are then executed

by downstream processes to induce some change in the overall process architecture design or result

in some behavioural change in the business process execution. The planning process stage devises

the plan irrespective of how the execution process stage will execute it. The execution process

stage is aware of the plan internals to interpret and best execute the plan based on requirements

and trade-off analysis that can be done as part of its execution.

In plan-execute, the planning stage can be seen as being “about” or as “operating on” the execution

stage, thus creating a higher-order effect when one process constructs another. The benefits of this

include the ability to represent and analyze the capabilities of organizations/systems to evolve in

the face of changes, which is crucial for analyzing the sustainability of systems in highly volatile

domains. As mentioned previously, the “hi” in hiBPM refers to the presence of multiple business

processes, with some being at a higher level than others. Here the planning stage exists at a higher

level than the processes executing the plan.

The primary motivation for such a process relationship is to identify two distinct segments, each

with their attributes and distinct process goals. One is responsible for planning, whereas the other

is responsible for the execution of the plan. These are separate process segments but have an

association relationship with each other because both goals are part of accomplishing some upper-

level objective. So, attaining this upper-level objective requires the conceptualization of both plan

and execute process segments. As a plan is informational, thus data flow relationships can be

considered as a plan-execute relationship if a plan is being transferred between two stages and that

plan is directly executed by the immediate downstream process stage.

While not shown in Fig. 5-14, we can visualization another level of plan-execute relationships to

be present if we introduce a third process stage, say Process Stagec to an existing plan-execute

relationship between Process StageA and Process StageB. An execution process stage Process StageB

120

to a planning process stage Process StageA can also be a planning stage for some execution process

stage Process StageC. Thus there is a cascading relationships where Process StageA produces a plan

that is executed by Process StageB which further provides a plan that is executed by Process StageC.

5.4.5 Sense and Control Relationships

In order to understand enterprise adaptiveness, we need to highlight the various sense-and-

response paths that are implicit in a hiBPM model, and to see if they can support a desired level

of enterprise adaptiveness. Such paths in hiBPM are used for revealing unique adaptation

relationships between two process stages. There may exist process stages that are responsible for

"sensing" different environmental parameters. These are then used to influence (or "control") the

design or execution of other process stages in the hiBPM model. The visual representation in a

hiBPM model supports the analysis of feedback paths e.g., whether the adaptation loop is

appropriately designed, where to source the data flow for feedback, and where to insert the

feedback flow back into a some other process stage.

By differentiating control and design inputs from regular data inputs, and sensing from regular

outputs, we can locate adaptive loops as they exist within a process architecture model. In

annotated process models, we can capture feedback path details through the use of design, sense,

and control flows. To make feedback loops explicit, message flow that serves a Sense purpose are

marked with an “S” on an output from a process stage where Control is represented as a message

flow adorned with “C” to mark a message flow that serves as a control input to a process stage.

The change is either through a “control” flow constraining the possible options for the target

process at runtime or through an “execute” flow that changes the space of options for its target

process by creating new capabilities. Hence, there is a hierarchy among processes that reflects their

relative control order. The execution frequencies of both these levels typically differ as well.

Mechanisms indicate a capability output that supports a process stage. In hiBPM, we show

mechanisms as designs, as mechanisms are to be used by downstream process stages. The

terminology of “control” and “mechanism” flows are borrowed from the IDEF0 language. There

can exist feedforward paths as well in process architecture, where a control signal flow from an

121

external environment, which results in some action in a process stage. Such feedforward paths are

signified using the “C” symbol.

Fig. 5-15 shows sense-and-control feedback paths that exist between two process stages for the

example introduced in Chapter 4. The Review Production Metrics process stage receives a sense

flow from the Monitor Production Environment with a set of Production Metrics that are then used

to then influence the future software feature development. This is represented by the control flow

Product Modification Tasks between the Review Production Metrics and Design, Develop and

Deploy Software Product process stages.

Fig. 5-15: Sense-and-control relationships for responding to production metrics

In hiBPM, a higher-order process stage can be a design or plan process stage to some lower-order

use or execution process stages. It senses how well its lower-level process works and may change

the way it operates. For example, in certain enterprises, the execute/use process stages may be at

run-time (i.e., at machine-scale execution) while the plan/design process stages may be at design-

time (i.e., at human-scale execution). Through feedback paths (along with design-use and plan-

execute relationships), such a configuration can be shown as part of the overall process

architecture. Most of the data will likely be monitored in an enterprise at the operational stage.

This applies even to the data that is not analyzed at that level but is aggregated and can trigger a

change in a much higher-level (earlier) stage.

Review Production Metrics

Study User

Behavior

Review

System

Parameters

Design, Develop and Deploy Software

Design

Software

Develop

Software

Deploy

Software

Requirements

Specifications

Product

Modification

Tasks

C

Monitor Production Environment

Monitor

Systems

Measure Key

Metrics

Production

Metrics

S

1:N

122

5.5 Comparison with Related Work

5.5.1 Process Elements

Most conceptual modeling techniques that are process-centric, or have process considerations,

have similar notions of activities. BPMN has the concept of activities which is a generic term for

work that is performed as part of business process execution. BPMN defines activities as either

being atomic or compound (i.e., a collection of atomic tasks). In SPEM too, there exists the notion

of activities which are basic units of work within a software process. Other process modeling

approaches, like flowcharts and UML sequence diagrams, too have concept of tasks that capture

an operation that is performed within the process being studied. In goal-based and agent-based

modeling techniques, there exists the idea of tasks. Goal-based techniques (like the NFR

framework) decompose a high-level goal into subsequent goals until we get to operationalized

goals (or tasks), whereas in agent-based techniques (like iStar) tasks are associated with the

accomplishment of actor goals, or dependencies between actors. CMMI [179], has a construct

called “process element,” which is sub-process within another process. These process elements are

interconnected together to form a more extensive process architecture. Our motive for process

elements is to (a) capture fundamental activities in a process architecture model, and (b) show how

their movements can result in different process architectural configurations. Therefore, the process

elements in hiBPM are present not to provide depth and detail to the domain model but identify

areas of the domain that could be reconfigured by moving the process element along various

dimensions of change.

5.5.2 Process Stages

There are several approaches to express variability in business processes, which generally involve

adding or removing process fragments in order to customize the business process for a particular

situation [66]. Non-functional requirements are also used for modeling and deciding between

multiple variants in the business process at run-time [70]. In SPEM, task definitions provide a

detailed explanation for work that is to be performed to attain a particular software development

objective [82]. Agent-oriented and goal-oriented modeling approaches, too, have tasks and

resources that contribute to goal attaining. Our concept of process stages is different from these as

123

we considering process stages to be sub-processes that exist in the overall process architecture,

that may span multiple business processes, but are collections of process elements that are

collectively executed to attain a common functional or non-functional goal. Further, we externalize

the reconfigurability of process design or process execution in the form of business rules. We then

consolidate the commonalities of process execution into one process stage, with other varying parts

into another process stage, whose execution behaviour varies in response to context changes. The

latter process stage can then be reconfigured as necessary through analysis of the hiBPM model.

This introduces flexibility in the design of the process architecture. This idea is conceptually

similar to that of process line engineering [87], where process line architectures consist of

processes that incorporate both commonality and variability.

5.5.3 Process Phases

In SPEM [82], groups are a collection of graphical elements that belong to the same category. A

trait of this grouping is that this does not affect the sequence flows with the group. This is similar

to our concept of hiBPM process phases, where the order of execution of process elements is not

relevant to the output of the process phase. However, in SPEM the primary idea is to collapse the

graphical elements and simply the diagram, whereas we introduce process phases to a hiBPM

model to show that the placement of process elements within the model would not result in any

changes in the output of the process stage, i.e., to reduce the possible design space of hiBPM model

reconfigurations. Slightly related conceptually to process phases is the idea of phases as discussed

in variability in the design of software product lines [47], with the difference being that unbounded

variation points in downstream phases do not affect the design of upstream phases.

5.5.4 User Engagement Process Elements

Cognition is the process by which “an autonomous system perceives its environment, learns from

experience, anticipates the outcome of events, acts to pursue goals, and adapts to changing

circumstances" [183]. The impact of cognitive computing on business process management (BPM)

is covered in [64] where multiple types and levels of business processes are discussed –

transaction-intensive, judgement-intensive, and design & strategy support processes – resulting

from the incorporation of cognitive capabilities within an enterprise and how cognitive processes

124

enablement can be attained. Human-Computer Interaction (HCI) involves the study of the

communication of information and data between a human user and a computer through an

interface, using various modes and mechanisms such as input/output peripheral devices, voice,

text, sound, gesture control etc. [184]. HCI aims to greatly improve the experience of user

interaction by leveraging the principles of information design, interaction design and sensorial

design [185]. We approach the problem of user engagement with machines differently in that we

consider the shifts in user approaches for decision making (as part of a routine business process

execution) that are caused by changes in the design and implementation of cognitive agents.

Much research has also been dedicated to the formal handling of contexts in the area of Artificial

Intelligence and Knowledge Representation and Reasoning [186]. In most modeling frameworks,

“context” refers to what is outside the system that is being modelled; as the context changes, the

model needs to be revised. What the context is, and how to deal with changes in context, is not

modelled. Additionally, previous approaches for designing context-aware business processes

focus more on specifying how organizations and their processes would react to changing business

contexts. Context-aware business processes emphasize the use of context at design-time for

business processes configuration through ongoing monitoring and capturing of context [187].

The approach proposed here differs from those above by considering context as part of the overall

hiBPM model, and how changes in the context in one part of a hiBPM model may result in design

and run-time changes in another region. Additionally, we focus on the design changes resulting

where the cognitive agent is integrated into the business process as these changes are generally

complicated and result in reconfiguration in at a systems level, process level, or how the user

utilizes the cognitive agent. Organizations need to proactively explore the space of context

information, identify and sense relevant context, and utilize it in a business process. The intention

behind context determination and incorporation for business process redesign is to ensure that

business processes continue to be aligned with enterprise objectives (modelled as goal models

[171]) while considering design constraints in the business process.

125

5.5.5 Process Boundaries

Boundary is a familiar concept in enterprise architecture and systems design. ArchiMate has a

concept of layers which represent different architecture segments. These segments divide the

architecture into the business layer, application layer, and technology layer. The architectural

components in each layer have distinct purposes in the enterprise. In systems design, two temporal

layers are obvious; one being the design-time and the other being the run-time. An imaginary

boundary can be considered between activities that happen at design-time versus activities that

occur at run-time. In hiBPM, process boundaries do not represent temporal distinctions (like

design-time vs. run-time) nor do they slice the process architecture into separate areas (like in

ArchiMate). Process boundaries separate different areas of the hiBPM model where moving

process elements across these process boundaries results in different possible hiBPM

configurations and behavioural outcome.

5.5.6 Data Flow and Sequence Flow Relationships

We use the same graphical notations for sequence flows and data flows as they are defined in

BPMN (with hiBPM data flows being matched to BPMN message flows, and hiBPM sequence

flows being matched to BPMN sequence flows). Conceptually sequence flows and data flows are

similar between hiBPM and BPMN, in the sense that sequence flows show the sequential

arrangement between various process constructs and that data flows show exchange of information

between two process constructs. Similar rules for the visualization also apply.

5.5.7 Recurrence Relationships

Approaches for representing cardinal relationships and different execution frequencies are present

in different modeling approaches. ERD diagrams have concepts of cardinality but these show the

relative instantiations between two entities. In software systems design, APIs are used to

differentiate two areas that are governed by differing development behaviour and lifecycle. In

hiBPM, we introduce recurrence relationships to show how different process stages can execute at

relative frequencies and moving process elements between two such process stages would have

implications on non-functional goal satisficing. Triggers are a much-studied topic in systems

126

design but there are some differences in how triggers are conceptualized here. In hiBPM, triggers

are considered in the context of the overall process architecture and are fired when a process stage

is to be executed due to the completion of a process stage elsewhere in the process architecture,

although triggers are not explicitly identified through some hiBPM notation.

5.5.8 Design-Use Relationship

Simon [180] suggests that the design of artificial systems depends on the motives of the designer

and how the design is expected to be used. The designer indicates the boundaries of the design

(i.e., the interface), which separates the “inner environment” and the “outer environment” [180].

Baldwin and Clark [181] consider designs to be generally “complete” in the sense that the design

itself would be completely usable having resolved issues around architecture and interface, and

would be presented as a black-box to be used. However, in cases where environments are changing,

or there is no clear identification of the boundary between the inner and outer environments, and

such an “absolute” design would no longer suffice. Designs can be considered as being “both the

medium and outcome of action” to handle such situations, thus accepting an incomplete

specification of what the design is [182]. Our idea of designs differs from these, as we consider

designs to be black-box artifacts, capabilities of tools that are produced in one part of the hiBPM

model, and to be used at another part. The designs can differ in their “completeness” (as will be

explained in Chapter 6), thus allowing for different forms of hiBPM model configurations.

5.5.9 Plan-Execute Relationship

The concept of “emergent workflow” is introduced in [26] where process definition or process

planning is also recognized as part of the process that is being enacted. Having process model

templates allows for a model that is geared towards adaption rather than a simple prescription of

process execution. The idea of process definition being separate from process enactment is similar

to our notions of having planning stages and execute stages, though we consider plan-execute (and

others) as change dimensions for process reconfiguration as part of a business process architecture.

In the space of enterprise modeling, ArchiMate has multiple architectural layers (business,

application and technology) with the lower service layer contributing to the higher service layers;

127

the lower layer provides the “primitives”, i.e., building blocks that the higher layer arranges into

services. Two relationships that cross these layered boundaries are the serving relationship that

“serves” to the upper layer functions, whereas the realization relationship indicates a realizing of

data objects and application components [44]. The plan-execute and design-use relationships in

hiBPM differ from these ArchiMate relationships as they provide reasoning about how the plan or

the design came about (thus allowing contemplation of alternative configurations) as opposed to

being a simple service relationship. Additionally, the plan-execute can be thought of as being

within an ArchiMate architectural layer as it allows for rationalizing why and how an ArchiMate

artefact is to be built in a certain way, with design-use being across architectural layers where the

lower layer builds the design (including abstracting out the building of the design) from the layer

above that uses this design.

5.5.10 Sense and Control Relationships

The concept of using feedback loops for adaptation is not new. System dynamics is a feedback-

oriented approach for modeling complex systems and has been applied to a wide range of areas,

including managerial decision making and organizational behaviour [49]. Here, a controller and a

target system come together to form a feedback loop. The controller monitors a target system and

modifies it if the output deviates from a defined threshold range. This is done by sending an input

through a feedback path to the controller in order to alter the controller output in the next iteration

cycle. Such a behaviour denotes the adaptation of the system. The design of adaptive software

processes is also an area that has benefitted by the application of system dynamics [49] as software

processes can be considered to be processes with inputs, outputs and feedback control elements;

therefore, the principles of system dynamics can be used for adapting the software process.

The feedback paths in software process dynamics [90] are used to assign resources and take

corrective actions in the execution of processes, rather than redesigning them at an architectural

level. Unlike previous research that considers adaptation loops in business process management

(e.g. BPMN), we are mostly interested in emphasizing the information flow back into a higher-

order process stage rather than the iterative executions of the same activities. The hiBPM model

supports the visualization and analysis of these feedback paths, including deciding on where the

paths should originate and terminate.

128

5.6 Conclusion

Any business domain contains multiple interrelated business processes, referred to as a process

architecture. Our notion of process architecture as part of the hiBPM framework differs from other

definitions of process architecture as we consider hiBPM process architectures to comprise of a

multitude of business processes that work coherently, to achieve some common objective, and can

be grouped for analysis. Such a hiBPM process architecture depicts relationships between multiple

business processes that exist in a domain while abstracting away from process-level details.

Therefore, the hiBPM architectural description will need to refer only to certain selected elements

from process specifications, and not the complete sequence of steps, control flows, data flows, etc.

Here detailed specifications are avoided in favour of highlighting relationships and process aspects

that facilitate enterprise transformation while considering suitable trade-offs. This is done through

abstraction and aggregation of activity units into different process segments types. The concept of

studying a collection of abstract processes is similar to that of software systems architecture or

enterprise architecture where software design or enterprise design is reviewed and studied at a

higher level of abstraction to permit reasoning about design decisions. The emphasis here is on the

major elements in the business process collection, including their relationships, while avoiding

over-specification.

We introduce some concepts of the hiBPM modeling framework in this chapter to realize the

objective of being able to guide the analysis and optimum determination of business processes

configuration in evolving enterprises. Unlike traditional process-oriented modeling techniques, the

purpose of this framework is not to depict the (sequential) execution of activities, information and

data flows, and inclusion of software artifacts in the process structure. Instead, it is developed for

modeling multiple business processes and their relationships, and how these relationships and

structures can change, thus focusing on the process architecture for enterprises. In Chapter 6, we

explain how the concepts introduced in this chapter can be used for representing alternative design

configurations of hiBPM models, and provide a means for performing tradeoff analysis for an

alternative selection.

129

6 Analyzing and Reconfiguring hiBPM Models

There are vital factors to consider when designing enterprise processes. Firstly, there may be

insufficient information about the conditions under which these processes would execute.

Secondly, even if there is sufficient clarity when designing the process stages, over time conditions

may change, and it would be difficult to foresee all possible conditions that may result in the future.

Therefore, when designing the business processes, there is always a degree of uncertainty in the

environment in which the processes are expected to operate. There has to be flexibility in the

design of enterprise processes to accommodate this uncertain environment. As a result, managing

uncertainty is an essential idea in the design of flexible enterprises; the more uncertain the

environment, the higher the degree of flexibility required.

Introducing flexibilities in an enterprise process architecture in response to evolving circumstances

may sound like a good idea, but this comes at the expense of adding design complexity and the

need for extra resources and capabilities to deal with these changing conditions. Additionally, it

may not be possible to deal with all possible circumstances because of constraints, rigidities and

barriers in the process architecture design - these would be expressed as various non-functional

requirements that need to be maintained while considering the flexibilities in how the process is to

be designed. Analysis of these non-functional requirements is thus important as they influence an

enterprise’s ability to be flexible and adaptable and take on suitable transformations as the situation

demands. A natural solution would be to have a partial state of flexibility at key points in the

hiBPM model.

In Chapter 5, we introduced hiBPM modeling notations to visually depict a static process

architecture for an enterprise. In this chapter, we provide additional details on how the hiBPM

framework can support expressing different design configurations to enable reasoning and analysis

of the trade-offs between alternative designs for meeting enterprise functional and non-functional

goals. These alternative designs can be exercised in situations where the enterprise objectives may

not be attained anymore due to evolving circumstances. As there would be an associated cost to

implementing these alternative configurations, the hiBPM framework provides mechanisms for

considering trade-offs between the benefit and value of retaining these configurations.

130

6.1 A Design Space for Reconfiguring hiBPM Models

As mentioned previously, there is often a cost of accommodating uncertainty in the enterprise as

multiple hiBPM model configurations need to be designed and maintained. If this cost cannot be

justified or deemed to be unacceptable, then the enterprise could be designed in a manner that is

optimized for efficiency but is unable to handle new conditions that may emerge in the future.

Conversely, having highly flexible enterprises will introduce significant design overheads for

supporting these flexibilities. This overhead could be in the form of additional processes to support

alternative configurations and require adding new capabilities and resources for managing the

different alternatives that exist. These overheads need to be kept ready even if they are not

deployed or used, which results in unnecessary complexity and cost. hiBPM models should, thus,

be designed with trade-offs being considered between the need for accommodating uncertainty

and simplicity while minimizing rigidity and overhead.

Through the analysis of the hiBPM model, different points in the process architecture are

systematically evaluated and the degree of flexibility is determined that should exist to deal with

uncertain circumstances. Such possible alternative hiBPM model configurations are represented

through variation points. A variation point has an associated objective and several variants for

achieving them. By identifying and focusing on variation points, the possible alternatives to the

hiBPM model design in the overall domain setting can be identified. The optimum variant is

selected by evaluating their satisfaction with both enterprise functional and non-functional goals.

Uncertainty is attained by leaving these variation points “open” to the selection of different

variants at some future point. By this we mean that the process architect or enterprise architect can

select an alternative variant at that variation point. Conversely, the rigidity of design is

accomplished by selecting a variant after performing a suitable trade-off analysis. A variation point

is bound (or closed) when one of the possible variants at that location is chosen after appropriate

analysis and reasoning. As enterprise conditions can change, the outcome of the analysis may

change over time. The concept of binding variation points is similar to what exists in the software

engineering discipline. Binding variation points in both software systems and software processes

is discussed in greater detail in Chapter 2 of this thesis, as part of the literature review.

131

The design space for the hiBPM model consists of not just where the variants exist, including what

kinds of variants, but also the conditions under which a variant would be selected and bound. Being

aware of the space of design options (and the trade-offs involved in their selection) allows for

analysis and selection by taking explicit decision criteria into account. Determining suitable

variants, and when and where a variation point becomes bound to a variant is the basis of this

chapter. Through analyzing the hiBPM model, the process architect can determine variants that

fulfills enterprise requirements at certain points-in-time.

Once a suitable variant has been selected, an alternative state of the hiBPM model at a particular

variation point is represented. Through these localized evaluation of variation points, we develop

a to-be hiBPM model with the individual variation point changes providing instruction on how to

attain that to-be state. The difference between the as-is and the to-be states can then be reviewed,

with the process architects and enterprise architects determining the steps required from move

from the as-is to the to-be state. In the design space, the hiBPM model could be reconfigured along

several dimensions of change. There could be reconfigurability with regards to the placement of

various structural elements, or reconfigurability in the relationships between these structural

elements.

Different types of analysis can be performed through the hiBPM framework. There may often be

insufficient information to pre-plan processes fully before execution and hiBPM models can allow

analyzing configurations where activities can be deferred until context-dependent information is

available. The relationship between a process that is building a design and the process that uses it

can also be expressed using hiBPM, including considering the trade-offs that need to be considered

if activities are moved from the former to the latter (and vide versa). These, and other types of

analysis, are discussed in greater detail in the next sections.

6.2 Using Goal Models for Analysis

In the previous section, we discussed having multiple variants at a variation point and their binding

at a suitable (future) point-in-time. How to compare variants, and select a suitable one, was not

covered at that time. In this section, we discuss how goal modeling techniques can be used to

perform such an analysis.

132

Goal Modeling [171] approaches are used to represent and analyze alternative configuration

options systematically. In the discipline of Requirements Engineering, goal modeling based

techniques are commonly used to capture software system development objectives and stakeholder

interests. The functional objectives of the enterprise are represented as goals, whereas non-

functional objectives are represented as softgoals. Using a goal model provides an intentional

perspective while capturing the objective of the structural element as a goal. We use existing goal

modeling techniques to provide the means to understand, analyze and guide possible

configurations in the hiBPM model that help satisfy both enterprise functional and non-functional

objectives.

Goal models are used to help enterprise architects and process architects analyze alternative

options that can exist at a variation point. Alternative configurations of the hiBPM model are,

therefore, different ways of respectively modifying or implementing the process architecture. A

goal model permits such an analysis showing possible ways of configuring the process architecture

for the domain under study. Here, the goals are linked to process actions, each of which achieves

a certain functional goal. Reconfigurations to attain functional goals can be shown as multiple

choices using OR decompositions. Different structural configurations of the hiBPM model should

still result in the attainment of the goals but may result in the non-satisfaction of the softgoals.

Conversely, the non-attainment of softgoals may result in the process architects and enterprise

architects to propose an alternative hiBPM model configuration. These architects can evaluate

these alternative configurations using simple qualitative analysis based on the contribution values

of the alternatives against softgoals. Such a selection is made based on the positive or negative

contribution(s) that the alternative would have on the softgoals. Evaluating the satisficing of

softgoals is a much-studied area in conceptual modeling and requirements engineering, and several

techniques are discussed in [172].

We show how a goal model is used to depict multiple alternative ways of attaining a goal at a

variation point in Fig. 6-1, including the contribution of each against the applicable quality

objectives (shown as softgoals) at that variation point. Here Goal is the root goal that needs to be

attained at a particular variation point. There are two means of satisfying this goal, through GoalA

or GoalB, shown as OR decompositions for each of the alternative variant possible. To go one level

133

lower, GoalA can be satisfied through further sub-goals, GoalAA, GoalAB or GoalAC. The softgoals are

also shown, as SoftgoalA and SoftgoalB, with their evaluation being done using contribution links.

In the hiBPM framework, we only do a qualitative evaluation of softgoals using different

contribution links, such as help+/hurt–, make+/break-, some+/some- etc.

Fig. 6-1: Using Goal Models for analyzing hiBPM model alternatives

Such a concept of associating goal models and process models is not unique and has been

previously considered in [188][189]. Our work differs from these as we consider associating the

process stages with goals or softgoals (as determined from the goal models), as these process stages

indicate some accomplishment of enterprise functional or non-functional objectives. As hiBPM is

not a business process modeling notation, hiBPM models are not meant to be complete in their

depiction of the domain. Therefore, there is no expectation that all leaf-nodes in the goal model

would appear as corresponding process structural elements in the hiBPM model. Rather, the goal

models are able to provide a starting structure for creating the hiBPM model, while also helping

populate the internals of these process stages.

OR OR

OR OR

Goal

GoalA GoalB

GoalACGoalAA

GoalAB

SoftGoalA SoftGoalB

OR

134

In Chapter 5, we introduced various modeling constructs for the hiBPM model. However, at that

time we did not provide details on how hiBPM models can be reconfigured. We discuss hiBPM

model reconfigurations in subsequent sections of this chapter.

6.3 Reconfiguring Structural Elements

There exists several ways of manipulating the structural elements of the hiBPM model for

achieving model reconfigurability which involves the relative placing and movement of various

structural elements within the hiBPM model. Some of these possible combinations are presented

in Table 6 below and are discussed in more detail in the following sub-sections.

Table 6: The need and effect of reconfiguring structural elements

Reconfiguration Need for Reconfiguration
Example Effect of Reconfiguration on

Softgoals

Adding process elements to process

stages

Process elements are added to the process stage to

indicate the additional activities that need to be

performed to attain softgoals, to introduce varition

points, or to provide preciseness to the means for

goal attainment.

Increase: Cost, Preciseness

Decrease: Speed

Removing process elements from process

stages

Process elements can be removed from process

stage if they do not contribute to either softgoal

attainment, or if they do not lend to the hiBPM

analysis.

Increase: Speed, Simplicity

Decrease: Cost

Splitting process stages

A process stage can be split if there are multiple

goals and softgoals that are being attained by the

process stage or if the ouput of some of the process

elements need to be available until after the process

elements complete execution.

Increase: Cost, Reusability

Decrease: Rigidity, Simplicity

Merging process stages

Process stages can be merged together if they

collectively contribute to the same goals or

softgoals and if the output of individual process

stages does not need to be separately made

available.

Increase: Rigidity, Simplicity

Decrease: Cost, Reusability

Converting process phases to process

stages

A process phase can be converted to a process

stage if the output of the process phase needs to be

made available after the process phrase execution

and the process phase can independently

contribute towards goal or softgoal attainment.

Increase: Repeatability

Decrease: Simplicty

Converting process stages to process

phases

A process stage can be converted into a process

phase and merged into an existing process stage if

there is no need to make available the ouput of the

process stage and there is no sequential

dependency within a process phase.

Increase: Simplicity

Decrease: Repeatability

135

6.3.1 Adding and Removing Process Elements

Process elements may be added to process stages and process phases or be eliminated from them

altogether. Adding process elements to a process stage has the advantage of bringing into

additional focus activities that need to be performed (or activities that need to be evaluated) during

the overall analysis of the hiBPM model. We show a process stage, Manage Requirements, in Fig.

6-2(A), that has three process elements. Another process element, Publish Specifications, is added

to this process stage, presented in Fig. 6-2(B). In this situation, the addition of this process element

results in a modified output, Published Specifications.

Fig. 6-2: (A) A process stage with three process elements, (B) Adding a new process element to the same process

stage

Removing process elements can indicate that either the activity no longer has a consequence in the

analysis or that the execution of the process phase or process stage needs now to be changed that

requires the elimination of the process element. This could be necessary when the cost or time of

process stage execution needs to be reduced. We present this example in Fig. 6-3 where a process

element, Analyze Requirements, is removed from the Manage Requirements process stage to

signify that there is no need to analyze the determined requirements, presumably because there is

no value in doing so and eliminating this process element does not result a change in the output of

the process stage.

Manage Requirements

Elicit

Requirements

Analyze

Requirements

Create

Specifications

Manage Requirements

Elicit

Requirements

Analyze

Requirements

Create

Specifications

Publish

Specifications

B

A

Product

Roadmap

Product

Roadmap

Requirements

Specifications

Published

Specifications

136

Fig. 6-3: (A) A process stage with three process elements, (B) The same process stage with a process element

removed

6.3.2 Merging and Splitting Process Stages

Process stages may be created or eliminated because of changes in the process stage recurrence,

or because process stages may evolve to have different objectives to fulfill. This results in a process

stage being split into two or a process stage may be merged into another one.

Fig. 6-4: (A) A process stage with several process elements and a process phase, (B) The same process stage being

split into three distinct process stages

In Fig. 6-4(A) several process elements in the Design, Develop and Test Software process stage

were all contributing to single goal attainment, that of producing the Software Product. If there

was a need to retain the outputs of process elements or collections of process elements that are

present within the Design, Develop and Test Software process stage, then it would be better to split

this single process stage by having the process elements being part of a new process stage or the

Manage Requirements

Elicit Product

Requirements

Create

Specifications

B

Product

Roadmap

Requirements

Specifications

Manage Requirements

Elicit Product

Requirements

Analyze

Requirements

Create

Specifications

A

Product

Roadmap

Requirements

Specifications

Design, Develop and Test Software

Design

Software
Commit Code

Change

Perform

Manual

Testing

Commit and Test

Develop Software

Commit Code

Change

Perform

Manual

Testing

Test Software

Design

Software

Develop

Software

A

B

Develop

Software

Requirements

Specifications

Software

Product

Software

Product

Design Software

Requirements

Specifications

137

process phases being split off into separate process stages. Such a case is shown in Fig. 6-4(B)

where we now have three process stages, Design Software, Develop Software, and Test Software,

each with their own outputs.

In another case, all process elements and process phases within a process stage have the same

recurrence. If there were changes that were to be made with regards to the frequency of executing

these process elements and process phases, then it would necessitate splitting the process stage

into two or more process stages. Splitting process stages enables greater flexibility through

introducing recurrence relationships or by retaining the outputs of the split process stages but

introduces complexity as the enterprise architects now need to plan for managing these process

stage outputs. Conversely, merging multiple process stages into a single process stage can be

considered when the intermediate outputs are not needed or there is no need to consider recurrence

between process stages.

6.3.3 Converting Process Phases into Process Stages

As mentioned in Chapter 5, a process stage may have multiple process phases. The reason such a

composition may exist is because (a) the process phases conjunctively work together to accomplish

the process stage objective and the exact sequence of process element execution is not relevant

within those process phases. As in the previous case, a situation may emerge where these process

phases are no longer collectively working towards a single goal accomplishment and may now be

responsible for goals or softgoals that are independent of each other. Also, there may be specific

types of relations that need to be explicated (such as recurrence) or specific types of outputs

(designs or plans) that are to be highlighted for process phases. In such a case, it would be better

to have the process phases as separate process stages, as shown in Fig. 6-5. Here the Design,

Develop and Test Software process stage is split into two by converting the Commit and Test

process phase into a separate process stage, Test Software. Through this separation, we can signify

that each process stage is responsible for a specific output, i.e., an unvalidated Software Product

in the case of the Design and Develop Software, and a validated Software Product in the case of

Test Software.

138

Fig. 6-5: (A) A process stage containing several process elements and a process phase, (B) The process phrase being

separated into a separate process stage

The reverse case would also be true where if the enterprise doesn’t need to maintain the

intermediate unvalidated Software Product, then it can combine the process phase into a single

process stage.

6.3.4 Moving Process Stages and Process Elements across Process Boundaries

Structural elements may move across process boundaries. Such boundaries exist across recurrence

relationships, design-use relationships and plan-execute relationships. A movement of process

elements or process stages across process boundaries adopts the traits (whether recurrence, design

objective or planning objective) of structural elements on the other side of the process boundary,

thus affecting the outcome of the process execution, or the quality of decisions made. For example,

in Fig. 6-6, we show process stages across a recurrence boundary. We specify look at the Design

Feature process element that is part of the Perform Sprint Cycle process stage. This process element

can be placed in either the lower recurrence process stage (Design Software) or the higher

recurrence process stage (Perform Sprint Cycle). Based on either of these hiBPM model

configurations, the Design Feature process element would correspondingly adopt the recurrence

attribute of that process stage. A more detailed understanding of why such movements are useful

is provided in the sub-sections on recurrence, design-use and plan-execute in this Chapter.

Design, Develop and Test Software

Design

Software
Commit Code

Change

Perform

Manual

Testing

Commit and Test

Design and Develop Software

Commit Code

Change

Perform

Manual

Testing

Test Software

Design

Software

Develop

Software

A

B

Develop

Software

Requirements

Specifications

Requirements

Specifications

Validated

Software

Product

Validated

Software

Product

Software

Product

139

Fig. 6-6: Several process stages at different recurrences that span a recurrence boundary.

6.4 Reconfiguring across Temporal Placements

In the temporal reconfigurability dimension, there are multiple possible temporal placements for

structural elements that achieve the same functional objective but are different in terms of their

non-functional characteristics. A particular temporal placement of a structural element can bring

about certain benefits, depending on whether it is advanced (and be executed) before other

structural elements or postponed after those structural elements. Therefore, in hiBPM, a

consideration is to not just determine the structural elements (and their relationship to other

structural elements), but also where they should be placed within the hiBPM model.

The degree of impact due to permitted temporal movements may vary between domains. By

permitted temporal movements, we mean those placements of structural elements within the

hiBPM model that do not violate the constraints placed due to the input data not being available

or prior sequential processing not having occurred. Such movements would have virtually no

improvement in flexibility and other non-functional goals in stable domains but may result in very

significant benefits in highly dynamic, volatile domains.

Let’s consider some examples of how the temporal placement of structural elements would work,

• Advancing a structural element relative to other process elements reduces complexity and cost,

as less effort is required to process the limited contextual information available at that instant.

By advancement we mean moving a structural element within a hiBPM model so that it now

Perform Testing

Perform

Manual

Testing

Recurrence Boundary

Software

Product

Create High-

Level Design

1:N

[Design

Specifications]

Design Software

Requirements

Specifications

Perform Sprint Cycle

Design

Feature

Develop

Feature

Software

Feature

140

executes before elements that it previously used to execute after. Advancement provides for

stability and uniformity and can be enabled by either settling on coarser-grained process

elements that rely on less information and thus can tolerate uncertainty or by better predictions

of the currently missing information.

• Postponing a structural element provides the benefit of executing it with the latest context and

information available, thus reducing the risk and uncertainty that are inherent in any software

process. By postponing we mean moving a structural element within the hiBPM model so that

it now executes after elements that it previously used to execute before. Here there is an

assumption that better, more precise information will be available at a later point in the hiBPM

model. Postponing the structural element would allow for better execution outcomes.

Table 7: The need and effect of reconfiguring across temporal placements

Reconfiguration Need for Reconfiguration
Example Effect of Reconfiguration on

Softgoals

Postposing process elements within a

process stage

A process element can be postponed for execution

later in a process stage if the process element relies

on the outcome of prior process element execution

or if the necessary context is not available.

Increase: Context-Awareness

Decrease: Stability

Advancing process elements within a

processs stage

A process element can be advanced within a

process stage for execution as early as permissible

if the necessary context is available and there are no

sequential dependencies on this process element.

Increase: Stability

Decrease: Context-Awareness

Moving process elements to a later

process stages

A process element can be postponed to a

downstream process stage if the condition for

delaying execution is present and the movement to

a later process stage would lead to satisficing of

softgoals for this process stage.

Increase: Context-Awareness,

Repeatability

Decrease: Stability

Moving process element to earlier process

stages

A process element can be advanced to an upstream

process stage if the condition for advancing is

present and the movement to an earlier process

stage would lead to satisficing of softgoals for this

process stage.

Increase: Stability

Decrease: Context-Awareness,

Repeatability

Moving process element into process

phases

A process element can be moved into a process

phase if the sequential execution of the process

element within that process stage is not of

consequence and to simplify the analysis of the

process architecture.

Increase: Simplicity, Efficiency

Decrease: Rigidity, Customizability

Moving process element out of process

phrases

A process element should be moved out of a

process phase if there exists sequential dependency

on that process element and the positioning of the

process element within the process stage helps with

the analysis of the process architecture.

Increase: Rigidity, Customizability

Decrease: Simplicity, Efficiency

141

Advancement and postponement are a well-known approach in several domains. In business

strategy, the aim is to minimize risks and maximize benefits by delaying some activities or

decisions that require precise, up-to-date information until later. In variability in software, key

components are introduced in a software system that can process data received in real-time and

adapt accordingly. Even recent innovations in software development practices (such as Agile), the

emphasis is to defer key development activities till the point where appropriate data is available to

be able to start performing the development task required. The inverse is true for advancement for

each of the domains above.

With a hiBPM model there may be several possible ways of moving around structural elements

from a temporal perspective. We discuss these below.

6.4.1 Moving Process Elements within a Process Stage

Within a process stage, a process element could be moved earlier or later to other process elements,

as shown in Fig. 6-7. The output of the process stage would not change; however, how the process

stage is executed would change. One reason for such movements would be to induce a change in

how softgoals are met. The process element, Perform Manual Testing, can be executed after the

Commit Code Change or before. In both these configurations, the output of the Design, Develop

and Test Software process stage still remains the same as the process stage still comprises of the

same process elements, but how the process stage goals are attained may change resulting in the

satisficing of certain softgoals over others.

The configuration shown in Fig. 6-7(A) creates a separation between software engineers and test

engineers where the software engineers first commit their code into a code repository which test

engineers then retrieve from. This is a more methodological way of working but comes at the

expense of agility of development operations. The configuration shown in Fig. 6-7(B) results in

software developers and test engineers working together to validate the developed code before it

is committed into the code repository. Any reported issues in the code can be quickly fixed through

this collaborative effort. Such a configuration would be preferred by an enterprise that values

agility over structured operations.

142

Fig. 6-7: (A) A process stage with several process elements, (B) The same process stage with the sequence of

process elements modified

6.4.2 Moving Process Elements Across Process Stages

A process element may move amongst process stages by either placing it in an upstream process

stage or a downstream process stage. In such situations the output of the process stage would

change, as illustrated in Fig. 6-8.

Fig. 6-8: (A) Two process stages connected through a sequence flow, (B) Same process stages but with a process

element moved from one process stage to another

The design of a software can be prepared in the form of Design Specifications, as shown in Fig. 6-

8(B), or as a working Software Prototype that is a manifestation of a validated design. Either one

of these outputs can be attained by the placement of the Develop Prototype process element. If it

Design, Develop and Test Software

Design

Software

Develop

Software

Perform

Manual

Testing

Commit Code

Change

B

A Design, Develop and Test Software

Design

Software

Develop

Software

Commit Code

Change

Perform

Manual

Testing

Requirements

Specifications

Requirements

Specifications

Software

Product

Software

Product

Design Software

Design

Software

Validate

Design

Develop Software

Develop

Software

Commit Code

Change

Perform

Manual

Testing

Design Software

Design

Software

Develop

Prototype

Validate

Design

B

A

Requirements

Specifications

Requirements

Specifications

Develop Software

Develop

Software

Commit Code

Change

Perform

Manual

Testing

Software

Product

Develop

Prototype

Software

Product

Software

Prototype

Design

Specifications

143

is placed in the upstream Design Software process stage (Fig. 6-8(A)) then the process stage

produces a validated design in the form of a Software Prototype. If the process element is placed

in the downstream Develop Software process stage (Fig. 6-8(B)) then the upstream process stage

produces the Design Specifications.

Moving a process element to an upstream process stage would be useful if the decisions made and

actions performed in that upstream process stage can be reused in multiple other process stages. It

would therefore make sense to put these in a process stage that feeds into several process stages,

thus saving time and cost during the execution of the initial process stage. An assumption here is

that moving the process elements to this new process stage would still have available the necessary

inputs required for successful process execution. Such an alternative hiBPM configuration, of

course, brings about additional complexity by possibly introducing new process stages or changing

the data flows, and the trade-offs to this new configuration would need to be carefully assessed.

6.4.3 Moving Process Elements across Process Phases

A similar situation would be for moving process elements across process phases, as shown in Fig.

6-9. The Commit Code Change process element moves within the process stage Design, Develop

and Test Software to the Test Software process phase. This is to signify that the execution order of

the process element is immaterial for the analysis of the model, and the model can be simplified

by placing it alongside other process elements within the Test Software process phase.

Fig. 6-9: (A) A process stage with several process elements and a process phase, (B) Moving a process element to a

process phase within the same process stage

Design, Develop and Test Software

Commit Code

Change

Perform

Manual

Testing

Perform

Automated

Testing

Test Software

Design

Software

Develop

Software

A

Design, Develop and Test Software

Commit Code

Change

Perform

Manual

Testing

Perform

Automated

Testing

Test Software

Design

Software

Develop

Software

B

Requirements

Specifications

Requirements

Specifications

Software

Product

Software

Product

144

As before, moving process elements from one phase to the next may result in changes to softgoal(s)

attainment for the process stage, including the quality of decisions made and the outcome of actions

performed. However, the goals of the process stage would not change as overall the process stage

still accepts the same inputs and generates the same output. From a scenario perspective, this is

not so much different from moving process elements within a process stage, the only distinction

here is to explicitly imply that the exact temporal placement with a process phase is not important.

6.4.4 Moving Process Elements within a Process Phase

Finally, it is important to discuss one more possible combination in the temporal change

dimension, i.e., moving a process element within a process phase. This would have no difference

with regards to the output of the process phase. The benefit of introducing the notion of process

phases in hiBPM was to eliminate such a case by reducing the possible number of process element

placement alternatives within a process stage, thus simplifying the analysis that needed to be

performed. The process elements, Commit Code Change and Perform Manual Testing within the

process phase Test Software, shown in Fig. 6-10, do not need to have a sequence flow associated

with them as changing their execution order doesn’t result in any change in the output of the

process phase.

Fig. 6-10: Moving process elements within a process phase

6.5 Reconfiguring User Engagements

In user engagement reconfigurability, a large space of possible options for how users engage with

information systems needs to be considered, with a variety of factors and the complexity of the

domain to be taken into consideration. One should not expect to be able to “design” a solution

where users engage through static business processes and it will just “work”, as there may be many

unknowns.

Develop and Test Software

Develop

Software
Commit Code

Change

Perform

Manual

Testing

Test Software

Review

Design

Design

Specifications

Software

Product

145

From an enterprise and user perspective, users are engaging with the new types of information

systems being introduced while dealing with real-world business situations. Both sides (i.e., the

users and the systems) need to adapt and adjust to each other and eventually converge to a workable

state; the users learning to execute their assigned business processes while the systems undergoing

cycles of iterative improvements to make them significantly more efficient and intelligent. Factors

affecting the adoption success (of the systems by the users) may include the knowledge/skills of

involved personnel, their aptitude for understanding the information systems’ capabilities and

limitations as well as their trust in such systems, willingness to learn and adapt, attitude towards

and trust in automation in general, labour relations, reward structures, business domain regulations,

etc.

From a systems perspective, how an information systems solution is accepted in an enterprise can

be very specific to the situation in that organization. Nevertheless, even this situation will continue

to evolve as the software systems get better or acquire new features. Employees would also gain

experience or learn new skills on the side of the user organization. Thus, information systems

should be capable of supporting a variety of process architecture configurations, with their roles

ranging from assistive, to advisory, to complete responsibility for decision making. Designers of

information systems cannot be expected to predict or prescribe exactly how the human side is

going to use these systems.

From a process perspective, the impact of process-level user engagement is not limited to just

direct system interactions but includes the related processes as well. By related (or surrounding)

processes, we mean upstream processes that contribute in some way to the primary business

process or downstream processes that benefit from the output of the business process. These

surrounding processes too evolve in response to changes in information systems’ capabilities.

Thus, multiple processes need to be considered for analyzing and designing user engagement.

Some of these processes may operate at the transactional level while others may execute

infrequently.

These configurations need to evolve together with the changes in the above parameters as well as

due to the feedback reflecting on how they meet their objectives. Thus, the relationship between

146

the processes where the systems are built, and where they are used cannot be static and needs to

be managed concurrently with business processes. As explained in Chapter 5, we refer to these as

user engagements. Therefore, we need to be able to characterize the space of alternative user

engagement configurations reflecting the whole spectrum of such configurations for a given

decision, their potential combinations, frequency and scope of their execution, and context, among

other things. There would be transitions across these configurations due to changing enterprise

requirements, contexts, etc. Finally, changes in these user engagements frequently affect related

processes and give rise to new processes.

There can be multiple user engagement modes (UEM) at the Manage Monthly Budget process

element. In Fig. 6-11, we show a user engagement between two process stages, Select User

Engagement and Manage Monthly Expenses, that allows the process element to transition from one

user engagement mode to another. Over time, the engagement between the system and the user

may change based on evolving situation. This change is initiated based on the plan, Selected UEM,

that is provided by the Select User Engagement process stage. Select User Engagement decides on

transitioning to another user engagement mode based on the input being provided to it, and by the

feedback User and System Activity that is the output of the Manage Monthly Expense. This output

would indicate whether a specific state has been reached (e.g. where the user has high confidence

in the outcome of the Manage Monthly Expense process stage), and there needs to be a transition

to another user engagement mode.

Fig. 6-11: Reconfigurability user engagement through selection of user engagement modes

Select User Engagement

Evaluate

Requirements

and Feedback

Select User

Engagement

Mode

Manage Monthly Expenses

Provide

Transactional

Records

Manage

Monthly

Budget

Review and

Adjust Future

Spending

User and System

Activity

Selected

UEM

Process Service Request

Receive

Service

Request

Request

Information

Service

Request Service

Response

Identify User Engagements

Identify User

Engagements

Select

Possible

Subsets

User

Engagement

Modes

Other Data

147

Indicating user engagements in hiBPM models is essential as user attitudes towards automation in

general, and the system they are interacting with, in particular, can change based on the

accumulated history of these engagements and the quality of the output the system produces. Shifts

in work allocation between both sides can be envisioned, which are triggered by well-defined

conditions that focus on system performance, users’ trust in systems’ recommendations, and other

main characteristics of user engagement. This engagement is not static. It varies over time-based

on not just the evolving capabilities of enterprise systems but also on user requirements and

enterprise context and objectives. This is not solely a design-time problem and needs to be

continually addressed at runtime as and when changes are incorporated and implemented. There

is also a lack of familiarity with how those adjustments and changes are going to happen in the

future. As a result, a space of possible options for user engagement with systems would need to be

considered, with a variety of factors and the complexity of the domain to be taken into

consideration. By separately denoting such user engagements in hiBPM, we can indicate where

the changes are to be introduced, with the possibility of having other supporting hiBPM changes,

as and when such shifts in user engagements happen.

6.6 Reconfiguring Recurrence Relationships

Any enterprise needs to analyze how to configure the recurrence relationship between two adjacent

process stages by balancing the cost, complexity and other factors. In the recurrence dimension,

there are multiple possible ways in which changes in the recurrence relationship can be used to

affect the behaviour and configuration of the hiBPM model. As explained in Chapter 5, within a

recurrence relationship, the process stage that executes more frequently is referred to having higher

recurrence (and exists at the higher recurrence side of the relationship) and the process stage that

executes less frequently is referred to as having lower recurrence (and exists at the lower

recurrence side of the relationship).

148

Table 8: The need and effect of reconfiguring recurrence relationships

Let us consider some examples of how recurrence reconfigurability would work between two

process stages that are connected via a recurrence relationship.

6.6.1 Moving Process Elements across Recurrence Boundary

A process element can be moved from a process stage with a higher recurrence to one with a lower

recurrence. Such a movement of the process element can change the non-functional properties of

the process stage in various ways. We illustrate this using the model presented in Fig. 6-12. Having

the process element Groom Release Backlog in the process stage Plan For Release that is at a lower

recurrence saves cost as the same process element does not have to be executed repeatedly.

Conversely, moving this process element from the lower recurrence process stage to Perform Sprint

Cycle, which is at a higher recurrence, has the opposite effect. The cost of the process stage

execution would increase, but this movement can assist with flexibility and adaptability as the

process element is executed based on updated and current information.

Reconfiguration Need for Reconfiguration Example Effect of Reconfiguration

Moving process element to higher

recurrence

A process element may be moved to a process

stage having higher recurrence if the context

required for execution of the process element is

rapidly changing and the process element can

provide improved output by using more recent

input data.

Increase: Responsiveness, Context-

Sensitivity

Decrease: Stability, Efficiency

Moving process element to lower

recurrence

A process element may be moved to a process

stage having a lower recurrence if either the context

required for the execution of the process element is

not rapidly changing or if the process element

doesn't require a more recent input data for

execution.

Increase: Stability, Efficiency

Decrease: Responsiveness, Context-

Sensitivity

Moving process stage to higher

recurrence

A process stage may be moved to a higher

recurrence if the input context required for process

stage execution changes rapidly and the process

stage execution can benefit from a more recent

execution for goal satisfaction.

Increase: Responsiveness, Context-

Sensitivity

Decrease: Stability, Efficiency

Moving process stage to lower recurrence

A process stage may be moved to a lower

recurrence if the input context required for process

stage execution changes slowly and the process

stage execution at a lower recurrence does not

result in goal non-satisfaction.

Increase: Stability, Efficiency

Decrease: Responsiveness, Context-

Sensitivity

149

Fig. 6-12: (A) Two process stages connected through a recurrence relationship, (B) Same process stages with a

process element moving across the recurrence boundary

6.6.2 Moving Process Stages across Recurrence Boundary

Similar to the previous case is one where the complete process stage is moved across a recurrence

boundary. This could be in either direction, i.e., the process stage moves from the lower recurrence

side to the higher recurrence side, or the process stage moves from the higher recurrence process

stage to the lower recurrence process stage. In both cases, the process stage would adopt the

recurrence of the side it has been placed in. Such a movement of the process stage is important as

it helps attain different enterprise softgoals.

For example, the enterprise may decide to move from a phase-based software development

methodology (such as Waterfall) to one that encompasses an agile mindset (such as Scrum). The

hiBPM models for both these methodologies are presented in Fig. 6-13. In Fig. 6-13(A), we show

that the Design Software and Develop Software process stages are performed once, with the

resultant output being repeated tested. However, adopting the Scrum methodology requires

iterative development. Thus, the Perform Sprint Cycle iterates repeatedly, with the high-level

Design Specification as an input, for developing individual software features which are then tested

in the Test Software process stage.

Plan for Release

Identify

Above-The-

Line Items

Create

Release

Backlog

Perform Sprint Cycle

Groom

Release

Backlog

Design

Feature

Develop

Feature

Product

Backlog

Software

Feature

Plan for Release

Identify

Above-The-

Line Items

Create

Release

Backlog

Perform Sprint Cycle

Design

Feature

Develop

Feature

Product

Backlog

Software

Feature

Groom

Release

Backlog

1:N

1:N

B

A

150

Fig. 6-13: (A) Process stages connected across a recurrence boundary, (B) Moving a process stage across the

recurrence boundary resulting in increased recurrence

Based on goal-based analysis, it could be determined that certain process stages do not need to be

executed as frequently as the process stage output does not vary significantly; thus, it would be

better for them to execute at a reduced frequency. Another situation could be where, through

automation, the cost of process stage execution is drastically reduced. Thus, it is possible to execute

this process stage at a higher frequency now, as there is no significant added cost to the enterprise.

It is obvious that such a temporal movement does not result in changing functional goal attainment,

but rather, pertains to how this goal is attained by its impact on softgoals.

6.6.3 Changing Recurrence Relationships

A final case is where the recurrence between two adjacent process stages change relative to each

other. In Section 5.4.2, we indicated that two process stages could have different recurrences and

represented them as 1:N, N:1, and N:M. The relative recurrence between process stages can shift

between these combinations, as dictated by softgoals. We use the same example as that of the

Test Software

Perform

Manual

Testing

1:N

A

Recurrence Boundary

Software

Product

Develop Software

Design

Software

Develop

Software

Design Software

Requirements

Specifications
Commit Code

Change

Test Software

Perform

Manual

Testing

B

Recurrence Boundary

Software

Product

Create High-

Level Design

1:N

[Design

Specifications]

Design Software

Requirements

Specifications

Design

Specifications

Perform Sprint Cycle

Design

Feature

Develop

Feature

Software

Feature

151

previous use case where an enterprise is transitioning from a phase-based development

methodology, presented in Fig. 6-14(A) to a more agile one, presented in Fig. 6-14(B).

Fig. 6-14: (A) Process stages connected with a sequence flow and no recurrence, (B) Process stages reconfigured

with recurrence relationships

It would also be prudent to consider any possible recurrence relationship with the ability of the

enterprise to detect changes that are to be meant as inputs to the process stage. E.g., executing a

process stage more frequently than the rate at which changes in the domain can be detected will

not produce tangible benefits. Such a situation could change if new software systems are

introduced that can do better and faster data sensing. In such a case, the recurrence relationship

will change. We consider various cases for this below.

• Let us start with the simple case, where the frequency of both the process stages are tied to

each other (say in a 1:1 recurrence relationship). The downstream process stage may move to

a higher recurrence than the upstream process stage, i.e., to a 1:N recurrence. This may happen

because the cost of repeatedly executing the process stage is reduced (through automation) or

the need to sense data is urgent (because of improved sensing, data availability, or rapid

response) than before.

• The upstream process stage may move to a higher recurrence than the downstream process

stage, i.e., to an N:1 recurrence. This may be necessary to re-process or re-calculation some

data input or plan that is sent down to the downstream process stage. Having the downstream

process stage execute at a lower frequency than an upstream process stage is appropriate when

the cost of process execution for the downstream process stage is high or rarely required.

Develop Software

Design

Software

Develop

Software

Software

Product

B Plan for Release

Identify

Above-The-

Line Items

Create +

Groom

Release

Backlog

Perform Sprint Cycle

Design

Feature

Develop

Feature

Software

Feature
1:N

Manage Requirements

Elicit Product

Requirements

Analyze

Requirements

Create

Specifications

Product

Roadmap

Devise Backlog

Elicit Product

Requirements

Product

Roadmap

A

1:N
[Product

Backlog]

[Release

Backlog]

[Design

Specifications]

152

• The recurrence relationship may change to one where the two process stages are operating at

different degrees of recurrence (i.e., an M:N recurrence) or one that is on-demand (i.e., where

a trigger is directed from the output of one process stage to another). Such an arrangement is

accommodated to show that recurrence relationships in hiBPM are not always precise, and a

higher degree of reconfigurability is needed that matches real-world situations.

6.7 Reconfiguring Design-Use Relationships

Design-use reconfigurability supports the identification and analysis of flexible design variations

of the tool or capability. Generally, the tool or capability being produced are considered rigid in

the sense that they are assumed to be developed elsewhere and cannot be modified during use.

They are designed for certain functions and their use is not adaptable at run-time. However,

evolving enterprises require flexible designs whose use can vary considerably resulting in different

business outcomes. These designs need to be considered as evolvable objects, which can be easily

redesigned at use time to accommodate changes in the external environments and business or

system requirements. Here a focus is on the flexibility of the tool or capability being produced in

the design process stage. The more single purpose (less flexible) the tool is, the simpler it is to use

and the more optimized it can be, particularly for automating the execution of process stages. For

a more flexible design (for supporting usage-time modifiability of the design), the design

complexity may increase resulting in additional process overhead.

In design-use relationships, process elements can be placed in the design process stage or a use

process stage. In the example presented in Fig. 6-15, we show how design-use reconfiguration is

attained by positioning a process element on the design process stage or the use process stage, i.e.,

whether the process element is invoked as part of a design process, or is invoked during the use of

that artifact, tool, or capability that is the outcome of the design. The Make Environment Template

design process stage produces a complete design Environment Template in Fig. 6-15(A). A

complete design is one where all decisions to be made during process execution have been made.

Complete designs facilitate automated tool usage as no decisions need to be made in the use

process stage for design use but they introduce rigidities and inflexibilities in the overall domain.

This is because the decisions made during tool design may not match the execution context well.

153

Conversely, partial designs, as shown in Fig. 6-15(B), have unresolved design decisions, which

are passed on to the use process stage.

Fig. 6-15: (A) A design-use relationship between two process stages, (B) The same process stages with a process

element moved from the design process stage to the use process stage

The Configure Environment process element has moved from the design process stage to the use

process stage. Thus, the Environment Template produced by the Make Environment Template is no

longer a complete design as the use process stage, Deploy Software, have to first configure

Environment Template before it can be use. Here, we show that the process element responsible

for completing the design has been moved to the use process stage.

Positioning a process element in the design process stage leads to increased artifact sophistication

(through greater design), whereas placing the process element in the use process stage results in

greater run-time customizability of the artifact (through manual control of a simpler design). If the

process element is placed on the design process stage, it results in the following changes.

A

Design-Use Boundary

Deploy Software

Package

Software for

Deployment

Instantiate

Environment

Install

Software

Configure

Software

Make Environment Template

Create

Environment

Install Third-

Party

Dependencies

Configure

Environment

Create

Environment

Template

Environment

Template

U

B

Design-Use Boundary

Deploy Software

Configure

Environment

Template

Instantiate

Environment

Install

Software

Configure

Software

Make Environment Template

Create

Environment

Install Third-

Party

Dependencies

Package

Software for

Deployment

Create

Environment

Template

Environment

Template

U

154

• In case of an activity, this means that the tool takes on more functionality, thus increasing the

level of automation in the use process stage.

• In case of a decision, it means that it is bound in the design process stage and becomes fixed

in the use process stage, thus reducing the customizability of the produced tool.

On the contrary, moving an activity in the other direction reduces the level of automation available

to the use stage, while moving a decision increases the level of customizability of the tool since

the decision is no longer built into the tool and can be changed during its use. When analyzing

choices in a design-use relationship, we consider other factors in addition to increasing flexibility

and evolving design capability. Having a pre-built design that is repeatedly used in other process

stages greatly reduces the overall cost as the design is no longer built into the use process stage

before it is to be used.

While partial designs may be beneficial when allowing for run-time incorporation and utilization

of contextual data, they may reduce the automation of the use process stage because of the need

for human involvement prior to processing. There may also be present process stages where there

is no clear distinction between design and use activities and all process elements are collectively

executed within that process stage. There is no design tool being produced and nothing that a

downstream consumption process stage can use. Such a process architecture configuration offers

advantages in terms of the preciseness of implementation, but at the expense of formal design and

reusability in different contexts.

6.8 Reconfiguring Plan-Execute Relationships

An important consideration for enterprise agility is deciding whether activities should be part of

the planning process or to be left later for the executing process. In hiBPM, we allow for the

explicit representation of planning activities separately from the execution of these planned

activities. The plan-execute reconfiguration dimension supports the identification and analysis of

variations of the completeness of plans being produced, through reasoning about the possible

placement of a process element on either side of a plan-execute boundary. The main focus is on

analyzing how much to pre-plan in the planning stage and how much to leave to the execution

stage to achieve the desired level of enterprise flexibility. Through this, we introduce the ability

155

for enterprises to evolve processes in the face of changes, which is crucial in highly volatile

domains.

A process element can move from an executing process stage to a planning process stage (and vice

versa) based on the goal-driven analysis of their contribution to relevant non-functional goals.

Such movements create variations in the plan-execute behaviour and allow for either increased

pre-planning (by moving a process element to the planning stage) or shifting more responsibility

to the execution process stage (by moving a process element to the execution stage). Moving a

process element to the execution stage results in decreasing plan completeness. This brings about

flexibility and allows for handling of change at the time of execution, yet this also burdens the

execute process stage with monitoring for change and processing additional data to best complete

the partial plan that is provided to it. Thus, there has been a careful analysis about the degree of

plan completeness.

A plan produced by a process stage either fully specifies the execution in advance or partially

constrains the behaviour of the subsequent stages. We show how complete and partial plans are

attained by positioning a process element on the planning process stage or the executing process

stage in Fig. 6-16. In Fig. 6-16(A), we show the Plan for Test planning process stage and the Test

Software executing process stage, with the plan process stage producing a complete plan, Software

Test Plan. A complete plan consists of primitives that can be executed by the execute process stage

without needing to make any decisions or figure anything out. Such a plan would be inflexible and

restrictive, as it fully describes the execution of the downstream process stage. This is contrary to

the concept of partial plans, shown in Fig. 6-16(B), where a partial plan is one containing unbound

decisions and/or abstractions that are intentionally left open in the planning process stage. This is

attained by moving the Define Execution Sequence process element to the executing process stage.

156

Fig. 6-16: (A) A plan-execute relationship between two process stages, (B) The same process stages with a process

element moved from the plan process stage to the execute process stage

Partial plans are not executable until all decisions are made. They are required in situations where

partial plan reuse is needed or having complete plans is not possible because of dependency on up-

to-date contextual data. With partial plans, we can separate the confirmed activities from those that

are uncertain or undetermined when the plan is being devised. As an example, consider the

possibility where (depending on where an enterprise is in their software product release cycle),

they want to have control over the test cases that are executed, and the order in which they are to

be executed. Having a partial plan for software testing that leaves out the determination of the test

case execution sequence for later is useful to have. Thus, the planning process stage generates a

partial plan which permits the execute process stage a certain degree of freedom in its execution.

Complete or partial plans are considered based on the needs of downstream process stages. E.g.

complete plans may be produced on a per-instance basis, fully customized for the needs of a

particular process instance and therefore to be executed just once. Alternatively, partial plans may

be general enough that downstream execution stages may have the flexibility of adjusting these

Plan-Execute Boundary

Plan for Test

Define

Execution

Sequence

Test Software

Perform

Manual

Testing

Software

Test P lan

X

Define Test

Pass Criteria

B

Review

Requirements

Create Test

Cases

Define Input

and Output

Parameters

Plan for Test

Define

Execution

Sequence

Test Software

Perform

Manual

Testing

Software

Test P lan

X

Define Test

Pass Criteria

Review

Requirements

Create Test

Cases

Define Input

and Output

Parameters

A

Plan-Execute Boundary

157

partial plans at execution time through binding different execution process stage decisions.

Decreasing plan completeness increases flexibility and ability to handle change when executing

the plan. It allows separating stable and volatile portions of specifications. Conversely, this puts

pressure on the execution stage to monitor for change (which might incur data collection and

processing costs) and to complete the partial specification provided to it by the planning stage

based on the current context.

6.9 Reconfiguring Sense-and-Control Relationships

Enterprises need to develop business processes that are nimbler and more responsive to change.

Traditionally, sense-and-respond portions of the enterprise may be situated at different locations

in a hiBPM model. The sensing portion may be focused on operational process execution while

the responding area may be more strategic. From a hiBPM modeling perspective, we considering

differentiating between these two enterprise areas by situating them in different process levels.

The structural elements in these process levels would have different types of relationships spanning

process boundaries, including recurrence relationships, design-use relationships and plan-execute

relationships. Under certain conditions, it may be desirable to have both sense and control activities

at the same level. Therefore, there has to be a means to depict such feedback paths in the enterprise

and determine what the optimum configuration should be with regards to the placement of process

stages that are responsible for sense and control activities. Through feedback path

reconfigurability, we can show and analyze the different ways of configuring the sense-and-control

relationships in a hiBPM model. Some of these possible ways of reconfiguring sense-and-control

paths are given in Table 9.

158

Table 9: The need and effect of reconfiguring sense-and-control relationships

Feedback paths reconfigurability can take one of two forms. In the first, only structural elements

are relational elements are involved, whereas in the second, the boundary between the sensing and

control is also a factor.

6.9.1 Modifying hiBPM Structural and Relational Elements

Let’s consider a hiBPM model that contains a sense-and-control adaptive path, as shown in Fig.

6-17. As evident in Fig. 6-17(A), there are multiple process stages involving both the sensing path

as well as the controlling path of the hiBPM model. The sense flow is between the Monitor

Environment and the Review Environment Metrics, where the metrics captured from the production

environment are analyzed and studied. The output of the Review Environment Metrics is a

controlling flow that provides input to the subsequent design and development iteration of the

software.

This hiBPM model can be modified to better handle the feedback cycle by adding process stages

to or removing them from the adaptive path, as shown in Fig. 6-17(B). Here, the control flow is

Reconfiguration Need for Reconfiguration
Example Effect of Reconfiguration on

Softgoals

Adding process stages to the adaptive

loop

A process stage can be added in either the sensing

path or the controling path. Adding process stages

to the adaptive path can result in better analysis of

the sensed data or improved determination of

controlling actions.

Increase: Methodicalness, Cost

Decrease: Responsiveness

Removing process stages to the adaptive

loop

Process stages can be removed from the sensing

path or the controlling path. Removing process

stages from the adaptive path results in faster

enteprise response with the removed process

stages becoming planning or designing process

stages.

Increase: Configurability

Decrease: Simplicity

Moving process stages to higher

recurrence

Having the adapative path entirely contained within

a higher recurrence results in autonomous sensing

and responding to context where human

intervention is not needed.

Increase: Perceptability

Decrease: Scriptability

Moving process stages to lower

recurrence

Having the adaptive path cross a a recurrence

boundary makes possible for strategic planning and

human intervention. The sensing part can be done

at a higher recurrence with the analyzing part at a

lower recurrence.

Increase: Automation

Decrease: Customizability

159

directly connecting to the Setup Software process stage, thus by-passing the Design, Develop and

Deploy Software. This is to have faster control input to modify the production environment based

on analyzed production metrics.

Fig. 6-17: (A) Process stages in a sense-and-control adaptative loop, (B) Reduce the process stages in the sense-and-

control adaptive loop

The need to add or remove process stages to the sense and control path arises to simplify particular

parts of the adaptation loop or to add processes for additional planning and designing. In order to

appropriately configure the hiBPM adaptation loop, the softgoals are first determined. In some

cases, the primary softgoal may be for faster responding to sensed data; in others, it may be a more

accurate determination of what needs to be done,

• For the former, improving execution of the process stage(s) could be done by selectively

reviewing and removing process elements from within the loop execution path. These process

elements could be eliminated from the hiBPM model or moved elsewhere to other process

stages, and whose pre-processed output would be used by process stages within the loop.

Review Environment Metrics

Study User

Behavior

Review

System

Parameters

Software

Design

Tasks

C
Monitor Environment

Monitor

Systems

Measure Key

Metrics

Production

Metrics

S
1:N

A

Setup Software

Setup and

Configure

Environment

Review Environment Metrics

Study User

Behavior

Review

System

Parameters

Software

Setup

Parameters

C
Monitor Environment

Monitor

Systems

Measure Key

Metrics

Production

Metrics

S
1:N

B

Setup Software

Setup and

Configure

Environment

Design, Develop and Deploy Software

Design

Software

Develop

Software

Deploy

Software

Requirements

Specifications

Design, Develop and Deploy Software

Design

Software

Develop

Software

Deploy

Software

Requirements

Specifications

160

• For the latter, more accurate determination could be done by adding additional structural

elements that provide additional validation to the output of the previous process stages. This

can be done by executing test plans that are prepared outside of the loop.

6.9.2 Moving Structural Elements across Process Boundaries

In some cases, the sense-and-control paths can cross process boundaries. The sensing process stage

Monitor Environment could be automated and executing rapidly, based on the capability of

underlying software systems to detect and sense change. This sensed data would be sent to the

Review Production Metrics process stage (after spanning the recurrence process boundary) that

executes at a lower recurrence, possibly due to humans requiring to review the data and come up

with a response for a future course of action. We show this in Fig. 6-18(A) where both the sense

flow and the control flow cross a process boundary. We use the generic process boundary here as

the arguments apply equally to recurrence boundary, design-use boundary or plan-execute

boundary.

If additional capabilities are built in the hiBPM model, so that the responding side can process the

incoming sensing data effectively, and suitably produce a course of action, then the adaptation can

occur within the same process boundary, without going across process boundaries. This, for

example, can be done through automation through which the Review Production Metrics process

stage executes at the same recurrence level, shown in Fig. 6-18(B). This enables a dramatic

increase in efficiency and effectiveness in both sensing and interpreting the environment and

allows for real-time adjustments to the production environment.

In hiBPM models, such adaptive loops are used for revealing unique adaptation relationships

between two “orders” of processes. A higher-order process stage is considered to be a design or

plan process stage to its lower-order use or execution process stages, respectively. It senses how

well its lower-level process works and may change the way it operates. The change is either

through a “control” flow constraining the possible options for the target process at runtime or

through an “execute” flow that changes the space of options for its target process by creating new

capabilities. Hence, there is a hierarchy among processes that reflects their relative control order.

The execution frequencies of both these levels typically differ as well.

161

Fig. 6-18: (A) Sense-and-control adaptive loop spanning a process boundary, (B) Sense-and-control adaptive loop

within a process boundary

Process Boundary

Review Environment Metrics

Study User

Behavior

Review

System

Parameters

Develop and Deploy Software

Develop

Software

Deploy

Software

Requirements

Software

Control

Tasks

C
Monitor Environment

Monitor

Systems

Measure Key

Metrics

Production

Metrics

S
1:N

A

Setup Software

Setup and

Configure

Environment

Process Boundary

Review Environment Metrics

Study User

Behavior

Review

System

Parameters

Develop and Deploy Software

Develop

Software

Deploy

Software

Requirements

Software

Control

TasksC
Monitor Environment

Monitor

Systems

Measure Key

Metrics

Production

Metrics

S
1:N

B

Setup Software

Setup and

Configure

Environment

162

6.10 Conclusion

Enterprises tend to optimize their processes to ensure maximum efficiency and speed of execution.

This is possible if the enterprise is operating in a static environment with unchanging

circumstances or evolving requirements. Here the processes can be designed once and contain little

to no design variation. However, most enterprises in dynamic and changing environments,

particularly those that are software-enabled, need to rapidly adapt to, and innovate in response to,

evolving requirements. Thus, the hiBPM model needs to be modifiable to support the enterprise.

In order to do this effectively, flexibility is introduced at appropriate places so that the enterprise

can add necessary design reconfigurations in a low-cost manner.

For managing enterprise transformation, we need to understand the possible space of design

options that are necessary and permissible, which allows for contemplation of possible alternative

hiBPM model options. Navigating the space of such possible hiBPM model configurations while

considering goals and softgoals is difficult and may result in trial-and-error practices being

employed without convergence to an acceptable solution. Enterprise architects need to be prepared

to explore this design space of hiBPM configurations by employing techniques from their

repertoire to point out the design decisions and possible alternative configurations, while

considering aspects such as trust and confidence in the systems’ decision-making ability, effort

required to help with decision making, compliance with industry regulations and company rules,

the cost of deployment, etc.

In this chapter, we discussed how a hiBPM model can reflect the domain characteristics while

considering the dynamics and volatility that is present in an enterprise. It should help organizations

determine the appropriate level of flexibility and rigidity necessary to meet the various functional

and non-functional goals. We presented several possible hiBPM process architectural

configurations that exist in the design space. However, the configurations presented are not meant

to be exhaustive and there could be additional ways in which the hiBPM model could be

configured.

163

7 Case Study – Enterprise Process Innovation

Acknowledgement: This chapter is partially based on the following paper;

• Babar, Z., Yu, E.: Integration of Software Applications into Evolving Enterprise Business Processes.

In Proceedings of the 22nd International Conference on Enterprise Information Systems (ICEIS), Vol

2, pp. 778-786 (2020)

7.1 Background and Context

The first case study was conducted at a large Canadian food retailer and general merchandise

provider. The company has hundreds of retail stores located in several provinces across Canada.

In addition to these stores, the retailer has several distribution centers and a trucking fleet that is

part of its supply chain service. The retailer is in the midst of an overall industry transformation

where companies in this space are increasingly relying on digital technologies to transform key

business processes to improve operational efficiency and customer-centricity. To ensure the

anonymity of the retail organization, this case study abstracts away from specific details and the

organization context is described in a more generalized manner.

The company was continuously looking to improve the efficiency of the entire demand and supply

chain to better serve its customers. An essential operation in the supply chain is that of planning

and forecasting the sales volume of various products at individual stores across the country. Such

a planning exercise requires several crucial business, technology and software processes to come

together to be able to calculate predicted sales volumes for several future periods at different levels

of granularity (daily, weekly, and monthly).

As part of the case study research activities, we studied multiple business, IT and software

processes that were part of the sales forecasting and promotion management area, and the usage

of data analytics applications within them. Through these business processes, knowledge workers

were able to forecast future product sales across multiple stores for geographical regions. Through

software processes, the organization developed and delivered in-house and vendor-provided retail

applications that are used during the execution of the business processes. Operations and

maintenance of these retail applications, data sourcing and ingestion, and ad hoc data analysis were

part of the information technology (IT) processes. Being a large retail organization, there were

164

several enterprise applications that were part of our study domain. These included software

systems in the data ingestion pipeline that sourced software from retail stores and stored a

transformed form into the enterprise data warehouse, and software systems through which data

evaluation and analysis could be performed.

The enterprise required a software solution that would not only provide more accurate sales

forecasting numbers (using a data analytics application) but also have an approach that would

allow for evaluating about how to best integrate the analytics solution across several enterprise

businesses, software and information technology processes while comparing and analyzing

between multiple alternative configurations of these processes. Such an approach would help the

enterprise decide on the optimum business process design for that data analytics solution.

7.2 Case Study Investigation Parts

There were three parts to the case study,

Enterprise data analytics: The organization wanted to use a data analytics application to help

with sales forecasting and promotion planning while considering the multiple types of promotions

could exist, and their effect on sales uplift. In the first part for the case study, the aim was to

deliberate on the design of a prototype data analytics solution that would provide improved

accuracy for the forecasted sales orders. The solution would also facilitate coordination among the

various stakeholders that are part of the existing sales forecasting and promotion planning

operations, while enabling faster solution development and shortening cycle times for simulations

performed for promotion planning and sales ordering.

Enterprise process innovation: The data analytics application, while providing the necessary

benefits in forecasting accuracy, would need to be well integrated with organizational business,

technology, and software processes. The existing constraints in the process design could also

influence the design of the data analytics solution. In the second part for the case study, the aim

was to provide guidance into how such a data analytics application could integrate into a complex

enterprise process environment while ensuring that processes are configurable and amenable to

165

change without significant redesigns, particularly as the data analytical solution could evolve, or

new data analytics applications could be adopted.

Building up enterprise capabilities: All enterprises have inherent capabilities that allow them to

develop and produce goods and services. For the third part, the aim was to analyze the

dependencies between business capabilities, other organizational capabilities, and advanced

technology capabilities. The intention was to determine presently enabled enterprise capabilities,

including capabilities that constraint technology and process innovation. Through capability

modeling, we could determine the required capabilities over both short-term and long-term

timescales, including those needed to support ongoing attainment of the enterprise objectives for

this data analytics application, and determine effective designs for introducing agility in critical

areas of the enterprise.

7.3 Objective

In the case of this thesis, the second investigation part was more relevant and this researcher

approached the case study from the perspective of modeling and reconfiguring the process

architecture to support the needed enterprise innovation using the hiBPM framework. Thereby, the

research objective was to evaluate the effectiveness of the hiBPM framework by demonstrating its

use in the context of this case study. This objective was carried out through the following,

Modeling and analyzing a set of interrelated processes: There were changing requirements to

support a data analytics solution, in the form of the changes to the software processes that develop

the solution, the technology processes that provide the necessary data that help with training the

solution, and finally the business process where the solution is finally used. The interrelated

processes would need to be designed around variation points to accommodate the final solution.

We needed to validate the hiBPM framework’s ability to visually model and analyze a multitude

of business, technology and software processes while accommodating design uncertainty.

Analyzing integration of data analytics application in existing processes: There were

bidirectional dependencies between the design of the data analytics solution and the business

processes. Thus, the data analytics application that integrates into the business process also needed

166

to be designed to accommodate existing process design and the expected usage of the software.

We needed to validate the effectiveness of the hiBPM framework in influencing the software

design while considering the interplays of software and process redesign.

7.4 Activities

In Chapter 1, we presented a method for attaining research structure and rigour in our case studies

with three distinct areas. We detail the specific research activities performed for each of those

areas below.

7.4.1 Area 1 – Research Design

A well-defined business problem was presented to the research team by a senior member of the

company at the initiation of the case study. This was in the form of a one-page document that

defined the scope of the study and a desired outcome. The business problem also defined the

primary business processes that needed to be studied, thus limiting and providing a context for the

case study. The problem statement was then decomposed into the three distinct parts, as described

in the previous section.

The research team consisted of members from both the company and the university. From the

organization, the team members included individuals from the IT department and business

department with senior management staff periodically reviewing the progress of the project. There

was one main contact person from the company side, a manager in the IT department, who was

responsible to provide the necessary data and to review the produced hiBPM models and

contributing to the direction of future investigation.

From the university’s side, the team consisted of three PhD students and their supervisor. Each of

the above investigation parts was assigned to an individual based on their research interests and

applicable background. As mentioned in Section 7.2, the second part (pertaining to enterprise

process innovation) was more relevant to this thesis and was this researcher’s primary focus and

the research objective was defined accordingly. However, to ensure that the case study findings

across the different areas supported each other, there were collaborative discussions and iterative

refinements in both the data collection and data analysis research activities.

167

7.4.2 Area 2 – Data Collection

Research activities were defined for data collection early in the case study. On establishing a frame

of reference and research guidelines, various individuals across the organization were identified

who could help with the gathering of data and review the outcome of the data analysis. These

individuals were selected from both the technology and business side of the organization. The

project duration was 12 months. At the beginning of the project, this researcher spent several hours

a day, and multiple times a week, on-site at the organization’s corporate headquarters to understand

the business domain, including the technology and business processes in the defined research

context, and to study documentation that was only available for access through the corporate

network.

The data collection area involved reviewing corporate documents, understanding the company’s

use of different software artifacts and tools, and existing conceptual diagrams of business

processes and enterprise architecture. Staff members from the organization were available to both

explain and supplement the information provided in the documents and conceptual models. A case

study database was maintained where a repository of the collected data was stored for later review

and analysis. The data collection was iterative, with the outcome of a previous data analysis step

determining the next set of data to be sourced for analysis.

7.4.3 Area 3 – Data Analysis

The provided documents were supplemented with field notes that captured the verbal discussion

for later analysis. The data collected from these multiple sources were reconciled with the actual

process of data analysis following either a logical chain of evidence or explanation building. In

logical chain of evidence, we established a connection between the problem presented earlier in

this chapter to subsequent evidence trails that were apparent in the data collection. This led us to

hiBPM modeling constructs that aided in analyzing the situation under study. By reviewing our

notes, we could associate which hiBPM construct could be used to model an identified item from

the notes. In explanation building, we looked at the collected evidence (as explained in the data

collection area) and attempted demonstrate the capability of hiBPM modeling constructs to help

in both visualizing and analyzing alternative configurations for the situation.

168

As the findings from data analysis activities were verified, they were shared with the broader

research group, usually once a month. These team meetings included members from both the

organization and the university, including the project facilitators on the organization’s side. The

research findings and feedback received during these meetings were consolidated in a final report.

This shared at the conclusion of the case study with certain members on the organization's side for

confirmation of its accuracy.

7.5 Modeling the Domain

To solve the presented problem, we focused on how hiBPM constructs can be used to model and

analyze the software artifacts and their integration into the overall process architecture. For this,

we take individual examples and explain them further in this section. As part of this case study

research, there was not a significant emphasis from the participating organization on comparing

and contrasting between alternative configurations of the hiBPM model on the basis of non-

functional requirements. Rather, these reconfigurations were considered more from the standpoint

of the possible ways to configure the existing processes, with a cursory understanding of the

benefits (and drawbacks) offered by each variant. Thus, the hiBPM models below do not have

detailed accompanying goal models, as these were not developed significantly for this case study.

7.5.1 Evolving Design Capabilities

In the case of software applications, components are designs built by different software processes

which are then used during the execution of the business (or another software) process. The hiBPM

model was able to capture the relationship between both sides, i.e., where the software component

is produced and where it is used. Through design-use relationships, we can show the process stages

that result in the building of a design (i.e. software artifact) and using of that design.

We show a simplified model with two process stages in Fig. 7-1, each of which has multiple

process elements. The process stage Develop Analytical Model is responsible for creating the

designed artifact (i.e., an Analytical Model) and Perform Weekly Analysis is responsible for

(repeatedly) using the designed artifact. Here, the Analytical Model is a design that is used by

another downstream stage. Thus, a design-use relationship exists between these stages.

169

Fig. 7-1: Design-use relationship between the process stages that are part of the weekly sales revision function

In Fig. 7-2, we show how variation in design-use behaviour is attained by positioning a process

element on the design side or the use side of a process boundary, i.e., whether the process element

is invoked as part of a design process stage, or is invoked during the use of that artifact, tool, or

capability that is the outcome of the design. In Fig. 7-2(A), the use of the Analytical Model is shown

to be fully automated to simplify the process of creating new analytical models with minimum

effort or deliberation; here, the design plus build process stage takes on more functionality, thus

increasing the level of automation in the use process stage. By automation we mean that the

Perform Weekly Analysis process stage can be entirely scripted for execution without needing any

human intervention.

Conversely, having a partially designed Analytical Model allows for customizing the use of the

Analytical Model to fit specific needs, in this case being able to change various model attributes to

ensure that the sample analytical model can be used repeatedly. For this, Fig. 7-2(B) shows a partial

design that is then used during the Perform Weekly Analysis process stage. Recall in Chapter 6 that

reducing process elements in, or moving process elements across, the design process stage to the

use process stage reduces the level of automation available and increases the customizability of

the tool. At use time, through human intervention, the Analytical Model behavior can be modified

through assigning different model attributes. Such customizability may be necessary based on

changing enterprise objectives.

Develop Analytical Model

Build Model
Validate

Model

Perform Weekly Analysis

Process

Weekly Data

Generate

Revised

Uplifts

Analytical

Model

U

170

Fig. 7-2: Evolving capabilities through design-use relationships for the weekly sales revision function

7.5.2 Flexibility of Process Execution

Fig. 7-3 shows a plan-execute relationship between two process stages, Plan for Analytical Model

that provides instructions on how to go about with the building of an Analytical Model, and Develop

Analytical Model where the provided plan is executed to design and build the actual model. The

Plan for Analytical Model process stage determines the goal and purpose of this model, including

the attributes that are to be contained within this template. These are codified as a plan that is then

executed by the downstream process stage during its execution.

Fig. 7-3: Plan-execute relationships between the process stages that are part of the weekly sales revision function

Develop Analytical Model

Build Model

Assign Value

to Model

Attributes

Perform Weekly Analysis

Process

Weekly Data

Generate

Revised

Uplifts

Analytical

Model

U

Validate

Model

A

Develop Analytical Model

Build Model
Validate

Model

Perform Weekly Analysis

Process

Weekly Data

Assign Value

to Model

Attributes

Generate

Revised

Uplifts

Analytical

Model

U

B
OR OR

Perform Weekly

Analysis

Analytical

Model

[Automated]

Analytical

Model

[Partially

Automated]

Speed Accuracy

Plan for Analytical Model

Determine

Goals

Select

Algorithm

Develop Analytical Model

Build Model
Validate

Model

Analytical

Model Plan

X

171

In Plan for Analytical Model, the plan on how to build the Analytical Model can be fully elaborated

or certain design decisions (such as the attributes to use when building the instance) left for later

determining. Locking the selection of the attributes is helpful when there is no uncertainties when

building the Analytical Model and the same instantiation would be repeatedly required.

Alternatively, leaving these parameters open is beneficial when a model may be used across

different settings and custom values provided during the building process. Both of these

alternatives are shown in Fig. 7-4(A) and Fig. 7-4(B).

Fig. 7-4: Execution flexibility through plan-execute relationships for the weekly sales revision function

7.6 Enterprise Agility through Flexible Planning and Evolving Designs

Generally, software systems, artifacts or tools need to be designed for automation or re-usability.

In practical terms, such software architecture designs are produced through well-defined

interfaces, class structures and hierarchies, and code components, frameworks and libraries. While

such software can be designed in a manner that allows for reusability by other software systems

or users, crucial design decisions need to be made regarding their deployability and usage over a

range of conditions and settings. On the other hand, plans can be used to inform and guide the

execution of processes that use software systems and tools. Through the collective use of design-

Plan for Analytical Model

Determine

Goals

Select

Algorithm

Develop Analytical Model

Select

Attributes
Build Model

Validate

Model

Analytical

Model Plan

X

Plan for Analytical Model

Determine

Goals

Select

Algorithm

Develop Analytical Model

Build Model
Validate

Model

Analytical

Model Plan

X

Select

Attributes

A

B

OR OR

Develop

Analytical

Model

Analytical

Model [Fully

Planned]

Analytical

Model

[Partially

Planned]

Speed Flexibility

172

use and plan-execute relationships, we can provide the ability to express and analyze these

situations.

The design-use relationship allows for handling various kinds of situations; however, it does not

indicate how to have flexible execution at runtime. This needs to be shown separately from the

design-use relationship in the form of plan-execute relationships. Thus, using both plan-execute

and design-use relationships can allow for introducing flexible design capabilities, simultaneously

helping to understand when and how to introduce change in execution behaviour. Here, a plan can

influence how a design is used by providing varying instructional input to the process stage that is

using the design. We show how both relationships come together to bring about both flexible

planning and evolving design capabilities in the enterprise in Fig. 7-5.

Fig. 7-5: Combining design-use and plan-execute relationships for flexible plans and evolving designs

Introducing design-use and plan-execute relationships to the process architecture may require

additional changes as well, particularly in the case of supporting evolving design capabilities.

Representations of design, development or other tool acquisition processes need to be integrated

into a process architecture to allow modeling of evolving capabilities available to the enterprise

while supporting continuous design. For instance, being able to evaluate tool redesign cycles

relative to other changes in the enterprise allows the identification of rigidities in organizations

and the evaluation of cost-effective ways to remove them. Often, these necessitate the addition of

supporting process stages that surround the locations at which the design-use and plan-execute

relationship are introduced. These are done to ensure that the use process stage or the execute

Plan for Analytical Model

Determine

Goals

Select

Algorithm

Develop Analytical Model

Select

Attribute
Build Model

Assign Value

to Model

Attributes

Analytical

Model Plan

X

Perform Weekly Analysis

Process

Weekly Data

Provide

Causal

Inferences

Analytical

Model

U

Validate

Model

Generate

Revised

Uplifts

173

process stage has all the requirements available to process design or plans. For example, in Fig. 7-

5, the Plan for Analytical Model process stage provides the necessary information for the execution

of the Develop Analytical Model process stage, specifically the need for having an Analytical Model

Plan that would be used during the execution of the Develop Analytical Model process stage.

There is an essential distinction in how designs and plans are conceptualized in hiBPM. As was

discussed in Chapter 5, designs are considered to be pre-built black box artifacts that can adopt

different forms; they may be physical objects, a digitized entity or even be informational. The

designs are black-boxes as a user of the design should not care (neither is informed) about the

(internal) structure of a design artifact or how it is built, and is only concerned about whether the

functional and non-function objectives are achieved when invoked during using of the design.

Contrary to this, a planning process stage devises the plan irrespective of how the execution

process stage will execute it. The execution process stage is aware of the plan internals to interpret

and best execute the plan based on requirements and trade-off analysis that can be done as part of

its execution.

This is important to understand in the context of this case study. As part of the university’s

engagement, a prototype Analytical Model was to be developed. Based on the merits of this

exercise, the organization could decide to further develop the Analytical Model in-house or source

it from a vendor. The aim was that despite the uncertainty in the form of the final data analytics

application, the organization’s processes should not have to substantially change from what was

designed and determined in the case study. Through the design-use and plan-execute relationships,

we were able to show what designs are needed, and what plans are to be devised, so as to support

different possible forms of data analytics applications.

Driven by changing business needs and external environments, as well as based on the feedback

from the use of the current version of the tool, the design process stage can be re-executed when

appropriate. This will produce or acquire new versions of the capability, thus evolving the

enterprise and its systems. Therefore, product innovation and process innovation both can be

considered simultaneously, including how they are socially integrated into the enterprise.

174

7.6.1 Fully Automated Forecast Adjustment

Additional possible solution configurations were identified by the research team during the

deliberation process. Analyzing and adjusting the product sales number every week is less than

optimum as it does not factor in the daily fluctuations. However, that is a necessary compromise

as doing the same operation on a daily basis against daily sales data would be additionally time-

consuming and computationally intensive.

In Fig. 7-5, we presented how the sales forecast was either positively or negatively adjusted in the

Perform Weekly Analysis by forecast planners in the business department after a round of sales

review and using their collective experience. This adjustment was an automated activity performed

by a data analytics system that automatically generated revised uplifts. However, this is a simplistic

solution and merely mimics the current process behaviour present at the enterprise (albeit

automating critical aspects of it). The Analytical Model designed adjusts uplifts on a weekly level

without considering the daily variations in forecasted sales and actual sales. A more sophisticated

solution would have both daily and weekly forecasted sales adjustments, with the process architect

adjusting the workflow as needed.

Such a solution would require a redesign of both the analytical model and the processes where the

analytical model is used. The redesign trigger is the Monitor Context process stage, which actively

determines on a daily basis if the forecasted sales and actual sales numbers are sufficiently

different. Once it detects that the deviation is statistically significant, it would initiate a redesign

by calling the Plan for Analytical Model and Plan for Process Config process stages with the

appropriate data. Note, this reconfiguration of both the Analytical Model and the hiBPM model is

not done on a per-instance level. Rather it is meant to be an infrequent reconfiguration when there

are sufficient changes in context to warrant such an expensive operation. The hiBPM model

snippet showing the new process architecture configuration is shown in Fig. 7-6.

Both these processes accept the Filtered Context and initiate replanning activities that result in a

redesign plan - Analytical Model Plan in the case of Plan for Analytical Model, and Process Reconfig

Plan in the case of Plan for Process Config. As before, the Develop Analytical Model takes the

Analytical Model Plan, along with accepting a Model Catalogue consisting of analytical model

175

design patterns, to produce an Analytical Model. This Analytical Model can generate uplifts either

at daily or weekly periods. Similarly, the Plan for Process Config generates a Process Reconfig

Plan that is then processed by the Execute Process Config Plan to reconfigure the internal process

elements of the Perform Sales Analysis stage. Note, the process stage name is different as it is no

longer just dedicated to weekly analysis but the sales analysis can be done on either a daily or

weekly, depending on how it has been reconfigured for execution.

Fig. 7-6: Introducing surrounding process stages for full automated forecast adjustment function

7.6.2 Partially Automated Forecast Adjustment

The hiBPM model in Fig. 7-6 provided full autonomy of sales forecast adjustment at the cost of

manual control. Another possible solution configuration was one in which the forecast planners in

the business team would still have some manual control on the adjustment process and be able to

use various “levers” to adjust the sales uplifts manually and evaluate the simulated forecasted

numbers for the next several daily and weekly periods. This was important as the individuals from

Plan for Analytical Model

Determine

Goals

Select

Algorithm

Develop Analytical Model

Select

Attribute
Build Model

Assign Value

to Model

Attributes

Analytical

Model Plan

X

Perform Sales Analysis

Process Sales

Data

Provide

Causal

Inferences

Analytical

Model

U

Validate

Model

Generate

Revised

Uplifts

Reconfigure Process

Identify

Process

Changes

Identify

Software

Changes

Reconfig

Based on Plan

Monitor Context

Identify

Context

Variables

Monitor for

Changes

Plan for Process Config

Replan based

on Context

Evaluate

against Goals

Process

Reconfig PlanX

Filtered

Context

External

Context

176

the business team wanted to adjust the forecasted numbers based on their extensive experience and

tacit knowledge that they brought from field operations. Some of the causal factors that affect the

sales orders were not captured in the data warehouse, and thus the Analytical Model could not be

trained against them. Having manual control to simulate and adjust the forecasted sales allowed

for improved accuracy beyond what the Analytical Model could provide.

Fig. 7-7 shows the hiBPM model configuration for such a scenario. To simplify the scenario, here

we consider weekly analysis and adjustments. The process element Generate Revised Uplifts now

accepts a set of input parameters that influence the calculation of revised uplifts.

The forecast planner may manually modify different variables that have causal relationships with

sales activity for a particular product or location. Examples of such variables may be weather

patterns, seasonal holidays, competitor activity, etc. User Assess Weekly Data is the process stage

that reviews the weekly sales numbers and attempts to simulate new sales forecast by providing

different values for the causal variables than would have been otherwise provided to the Perform

Sales Analysis process stage from elsewhere in the system.

Fig. 7-7: Manual control for partial automation of the forecast adjustment function

Plan for Analytical Model

Determine

Goals

Select

Algorithm

Develop Analytical Model

Select

Attribute
Build Model

Assign Value

to Model

Attributes

Analytical

Model Plan

X

Perform Sales Analysis

Process Sales

Data

Provide

Causal

Inferences

Analytical

Model

U

Validate

Model

Generate

Revised

Uplifts

User Assess Weekly Data

Process

Weekly Data

Compare

Actual vs.

Forecasted

Eliminate

Items

Uplifts

177

7.7 The Complete hiBPM Model

We show the complete hiBPM model with several business, technology and software processes in

Fig. 7-8 that collectively help the organization accurately predict product sales and calculate orders

for its many stores while keeping in mind customer product purchase demands and any associated

promotions that influence this demand.

The information technology process stages Collect Sales Data, Preprocess Sales Data, and

Aggregate and Load Data collect, aggregate and transform data to be used for forecasting future

sales for product items across various product categories that are to be sold in multiple retail

locations. The Forecast Future Items Sales process stage predicts how many items are going to be

sold by day-of-week for the next several weeks, across all retail stores. The promotion planning

department devises promotions to nudge customers to purchase particular products more than they

would otherwise; these promotions are planned and determined in Prepare Merchant Promotion

Plan and an adjustment factor (called uplifts) that would indicate how much higher the sales would

be because of the promotion, are computed in Calculate Promotion Uplifts. For more personalized

recommendations, the loyalty department generates individualized product offers through loyalty

campaigns in the Prepare Loyalty Mass Promotion process stage. The loyalty offers for each item

are mapped to targeted loyalty plan members, and an uplift calculated for each unique customer-

item mapping to Generate Loyalty Targeted Offers.

Calculate Product Order process stage calculates the product order (at a product-location level) for

the next several weeks, which are sent to the suppliers. Despite all the effort put into forecasting

future product sales, there is still some difference between the forecasted numbers and the actual

sales that happened. Hence, in Perform Weekly Analysis process stage, a review of the previous

week’s actual vs. predicted performance is done, and if required, uplift adjustments are made to

future week forecasted sales to align the forecasted sales to the actual sales expectations better.

Uplift values greater than 1 indicate an upward sales adjustment, while values less than 1 indicate

a downward sales adjustment.

178

Fig. 7-8: Complete hiBPM diagram for the Enterprise Process Innovation case study

Prepare Loyalty Mass Promotion

Create Annual

Loyalty Plan

Review

Loyalty Plan

Develop

Detailed Plan

Generate Loyalty Targeted Offers

Determine

Eligible

Members

Select

Applicable

Items

Calculate

Offers for

Members

Product

List

Calculate Promotion Uplifts

Review

Promotion

Generate

Uplifts

Prepare Merchant Promotion Plan

Identify

Merchants

Select

Promotion

Items

Map

Merchants

and Items

Promotion

Plan

Review from

Store

Retrieve from

Other Sources

Collect Sales Data

Structure

Data

Preprocess Sales Data

Poll for Data
Audit and

Filter Data

Apply Data

Fixes

Aggregate and Load Data

Import Data

Transform

and Cleanse

Data

Integrate Data

Forecast Future Item Sales

Generate

Sales Forecast

Review

Forecast

Adjust

Forecast

Processed

Data

Sales

Data

Calculate Product Orders

Organize

Forecast

Compute

Orders

Perform Weekly Analysis

Process

Weekly Data

Compare

Actual vs

Forecasted

Provide

Causal

Inferences

Generate

Revised

Uplifts

Weekly

Forecasted

Data

Build Business Understanding

Define

Problems

Determine

Objectives

Define

Decisions and

Questions

Business

Needs

Plan for Analytical Model

Determine

Analytical

Goals

Select

Algorithm

Select

Parameters

Define Data Preparation

Determine

Data Entities

Identify Entity

Relationships

Create Data

View

Create Analytical Model

Build Model
Compile

Model

Train and Validate Analytical Model

Prepare

Training Data

Assign Value

to Model

Attributes

Train Model
Evaluate

Accuracy

S
C

Loyalty

Uplifts

Promotion

Uplifts

Actual

Sales

Forecasted Sales

Analytical

Model Plan

Analytical

Model

Data

View

U

X

Business

Needs

179

7.8 Data Analytics Solution

As mentioned earlier in this chapter, there were bidirectional influences between the design of the

process architecture and the design of the software architecture. Any software architecture that

was determined would need to integrate into the existing processes while adhering to design

constraints placed by these processes, and still satisfy the functional and non-functional goals.

Through componentization, the solution should also be adaptable to change.

Fig. 7-9: UML component diagram for the prototype data analytics application

The prototype architecture of the data analytics solution is partially illustrated in Fig. 7-9 as a UML

component diagram. This diagram shows the primary software components and the necessary data

exchanges between them. Here we emphasize the primary logical UML deployment artifacts

(enclosed with the double arrows <<>> in the diagram). These components were determined

through an analysis of the hiBPM models where we reviewed the hiBPM models to determining

designs, plans, and data flows that were present in those models. These were abstracted out as

software components.

We describe each component, and how they were determined, in the bullet points below.

• Context Monitor monitors and evaluates for external context. Evolving enterprise requirements

and environmental circumstances causes changes in external context. Not all context is useful

Model Builder

Model Trainer

Model

Evaluator

Data Extractor

Sales

Forecaster

And Adjustor

Model

Replanner

Process

Replanner

Data

Transformer

processed

data

adjusted

forecasted

data

analytical

model

sales data

<<Analytical Modeler>> <<Data Provider>><<Solution Planner>>

Context

Monitor

external

context

algorithm

cata logue

analytical

model plan

filtered

context

analytical

goals data view

180

therefore this external context is first processed and a Filtered Context is then passed to the

Solution Planner for triggering either process redesign, software redesign or a data preparation

redesign. This component is determined based on the Monitor Context process stage shown in

Fig. 7-6.

• Solution Planner component is triggered on context change and determines a suitable plan to

modify the analytical model design or the process design. The Solution Planner evaluations the

filtered context and produces an Analytics Model Plan that provides instructions on how to select

appropriate machine learning algorithms to form a solution design. This is then used by the

Analytical Modeler as an input. The Solution Planner relies on Analytical Goals to provide

necessary details, such as the business goals and enterprise strategies, which guide the asking

of suitable analytical questions through which the Analytics Model Plan is produced. The

Solution Planner component is based off the Plan for Analytical Model, Plan for Process Reconfig

and Reconfigure Process process stages.

• Analytical Modeler builds, compiles and trains an Analytical Model that is used to adjust the sales

forecast that was previously calculated elsewhere. The Analytical Modeler receives as the input

a wide range of machine learning algorithms ML Algorithms, and the instructions provided in

the Analytical Model Plan, to come up with a design for the machine learning solution, i.e., the

Analytical Model to solve the business problem. The Analytical Model is expected to change and

evolve based on context changes. This may require periodically retaining the model, tuning

model parameter to ensure forecasting accuracy, or a complete rebuilding of the model. This

component was determined by looking at the Create Analytical Model and Train and Validate

Analytical Model process stages.

• Data Provider is responsible for retrieving, cleaning, and transforming the raw sales data. This

processed data is then used by other components. The Data Provider included a wide range of

tasks and techniques that pertain to data preparation, including activities such as data cleansing,

data transformation, data manipulation, etc. This component requires certain inputs; the first is

the actual sales data that needs to be processed, the second is a plan, Data View, that provides

the data preparation workflows that are needed to select, transform and pre-process the input

181

data into an appropriate format. The Data Provider component is determined based on the Define

Data Preparation and Aggregate and Load Data process stages.

• Sales Forecaster and Adjustor component is the component that produced the final predicted

sales orders by using the Analytical Model as an input. Further, it can also positively or

negatively adjust these forecasted numbers based on the previous week’s actual sales order.

This is necessary as there may have been inaccuracies in previous forecasts (by either over or

under forecasting) that need to be rectified in the current forecasting cycle. Finally, the sales

forecasts can be adjusted by human users to simulate various scenarios by triggering different

user controls. This component is encapsulates functions from several process stages, including

Forecast Future Item Sales, Calculate Product Orders, and Perform Weekly Analysis.

7.9 Evaluation

The evaluation of the hiBPM models was performed both during and at the conclusion of the

research project. During the course of the case study, periodically team meetings were held where

the hiBPM models were presented to show the ability of the hiBPM framework to visualize and

analyze portions of the domain that were being studied in that period, with feedback being

solicited. These meetings were held approximately every month, however the schedule could vary

based on the availability of the team members. The result of these periodic and iterative evaluations

guided the next round of study and modeling. Additionally, this researcher would also periodically

(i.e. 2-3 times a month) meet the designated contact person from the company’s side to review the

produced hiBPM model for providing feedback and guiding the direction of investigation for the

next iteration.

At the end of the case study, two activities were performed. Members of the company qualitatively

evaluated the hiBPM models, including their quality and ability to capture the domain properties

to understand the stated problem. Also, a concluding questionnaire (presented in the Appendix)

was also filled out by the main contact person from the company’s side where the effectiveness of

the hiBPM framework was evaluated. This individual was best qualified to evaluate the

effectiveness of the hiBPM framework based on their frequently review of the hiBPM models. The

questionnaire attempted to find out the effectiveness of the hiBPM framework by asking specific

182

questions on the ability of hiBPM models to characterize the domain, the usefulness of the hiBPM

modeling notations for analyzing the domain, and if hiBPM aided in determining at an optimum

design faster compared to a situation if hiBPM had not been used.

7.9.1 Evaluation against Research Objectives

As mentioned previously, the research objective was to evaluate the effectiveness of the hiBPM

framework by demonstrating its use in (1) modeling and analyzing interrelated processes, and (2)

analyzing the integration of data analytics application in existing processes. A summarization of

the feedback received as part of the questionnaire is given below.

Modeling and Analyzing Interrelated Processes: As per the responses provided in the

questionnaire, the hiBPM framework was able to capture the essential activities across several

software, technology and business processes. This was necessary to be able to understand the

overall structure of how the data for the sales order generation was initially retrieved (from the

PoS machines at retail stores) and transformed before being stored in data repositories (i.e., data

warehouses), to subsequent processes where this data was then used to generate sales orders for

future weeks. Of particular interest was understanding the relationship between the processes that

review and alter the forecasted sales order numbers, and the processes that adjust orders due to

promotion planning.

Overall, the ability for the hiBPM framework to capture and analyze the domain from a process

architecture perspective was positively evaluated by the questionnaire respondent. The ability to

bring into focus only those activities that are meaningful to the analysis was further appreciated,

without having to be burden by capturing all the necessary details for the sake of an accurate

domain depiction. Organizing the processes around goal achievement made it easy to comprehend

the reason why the processes existed in the first place.

Integration of Data Analytics Solution in Existing Processes: As per the responses in the

questionnaire, the organization could visualize design-use relationships where software artifacts

could integrate into existing business processes. This was needed to see the changes that would

need to be introduced to accommodate a data analytics application in the existing business

183

processes, and the modifications that would need to happen to the technology processes that

provided the data for the data analytics solution. The addition of supporting processes to facilitate

the adjusting of the sales order forecasts by the data analytics application through the hiBPM

framework was also confirmed.

The software components were presented as designs in the hiBPM model with the design

completeness providing guidance to supporting evolvability requirements for those software

artifacts, particularly as the organization moved to a different (and final) form of the data analytics

solution. Flexibility in process execution was provided through the creation of plans that would

guide the execution.

7.9.2 Shortcoming of the hiBPM Framework

While the questionnaire responses confirmed the effectiveness and usefulness of the hiBPM

framework in the understanding of the stated problem and determining suitable configurations of

the processes to solve them, there were some shortcomings raised as well by the individual when

filling out the questionnaire.

A primary limitation was that the hiBPM modeling notation did not provide sufficient

expressiveness to help go beyond very abstract software artifact visualization in the models. It was

also not possible for the hiBPM models to provide detailed requirements for onwards software

systems design. Further, the relationships between the software components were not apparent,

and they appeared to be disparate components with just data flows between them. Such limited

support for visualizing the software components that are either produced or used in the hiBPM

model made the range of analysis difficult beyond the support provided by design-use and plan-

execute dimensions. These expressions could not be used for developing requirements for any

software application. Further, there was limited traceability of design configuration between the

process-side and the software-side, where design reconfigurations introduced on the process

architecture side could not be conclusively traced to corresponding changes at the software

architecture side. Hence, there was no surety that the determined software architecture was indeed

compatible with the design of the hiBPM model.

184

7.9.3 Learnings from the Case Study

There was a general perception by the questionnaire participant that the hiBPM model was able to

determine possible configurations of the business and technology processes that would support the

integration of the data analytics solution. The individual further agreed that determining such a to-

be state of the processes would have taken longer without the use of hiBPM as the processes

themselves were separately designed, with separate departments overseeing the management and

design of these processes. The to-be state would have required significant study, including cycles

of experimentation and review, to understand how the technology processes would need to change

to support the data requirements for the data analytics application, which would then be used in

the business processes. The hiBPM model helped iterate through different design alternatives, and

to narrow down the possible options to ones that would be more appropriate considering the

problems that were to be solved. The participant also appreciated the limited number of hiBPM

modeling notations in helping understand the models quickly, including the rationale for including

the process elements that are only needed for analysis.

In this case study, not all hiBPM modeling notations were required or used for actual model

construction and analysis. Generally, there was a greater emphasis on the hiBPM relational

elements (such as design-use and plan-execute, along with the other relationships) due to a need

for introducing evolvable software design artifacts and a certain flexibility in the process

architecture. Some relationships, like user engagement, were not considered as the software

artifacts were assumed to be immutable over time. Another hiBPM construct that was not heavily

utilized in the analysis was process phase. The participant in the study assumed that there was

some temporal sequencing of activities and moving them out-of-sequence was not necessary.

7.10 Conclusion

In this chapter, we present a case study where the hiBPM framework was applied to a large retail

enterprise to understand better how to design the integration of a data analytics solution to existing

business processes while considering that both the business processes themselves would evolve,

as may the data analytics application.

185

This study was particularly relevant to this organization as the retail industry is fast-moving, and

enterprises in this space are increasingly incorporating data analytics software to help with decision

making, sales forecasting and product ordering [190]. The retail domain has high rates of evolution

and change, can have sections in the enterprise which change at different rates, can be software-

enabled or rely less on technology etc. There is a strong emphasis on enterprise agility and

flexibility, customer focus and centricity, data-driven decision making, and automation of business

process execution. Despite this, some decision making was still based on practical experience

gained through field exposure. A primary reason for this is that it is difficult for the enterprise to

capture all the parameters that affect product sales, thus requiring individuals with retail store-

level experience to make minor and ongoing adjustments to the calculated sales forecast.

The organization was already using conceptual modeling techniques to capture the design of

individual business processes in detail. However, hiBPM was appreciated for its ability to show

the relationships between several processes, spanning multiple organizational units, as a single

model. This hiBPM model proved useful in capturing alternative hiBPM configurations,

highlighting the varying degrees of plan and design completeness suitable to different contexts and

situations within the enterprise. This was done using design-use and plan-execute relationships, as

these relationships not only show how an analytical application can be introduced within the

hiBPM model but also help understand the changes in process architecture configuration that can

be possible to ensure flexibility of process execution.

186

8 Case Study – Cognitive Business Operations

Acknowledgement: This chapter is partially based on the following papers;

• Babar, Z., Yu, E., Carbajales, S., Chan, A.: Managing and Simplifying Cognitive Business Operations

Using Process Architecture Models. In International Conference on Advanced Information Systems

Engineering (CAiSE), pp. 643-658, Springer Cham (2019)

• Babar, Z., Lapouchnian, A., Yu, E., Chan, A., Carbajales, S.: Modeling and Analyzing Process

Architecture for Context-Driven Adaptation: Designing Cognitively-Enhanced Business Processes for

Enterprises. In Proceedings of the 22nd International Enterprise Distributed Object Computing

Conference (EDOC), pp. 58-67, IEEE (2018)

• Lapouchnian, A., Babar, Z., Yu, E.: Designing User Engagement for Cognitively-Enhanced Processes.

In Proceedings of the 27th Annual International Conference on Computer Science and Software

Engineering (CASCON), pp. 227-233 (2017)

• Lapouchnian, A., Babar, Z., Yu, E., Chan, A., Carbajales, S.: Designing Process Architectures for User

Engagement with Enterprise Cognitive Systems. In IFIP Working Conference on The Practice of

Enterprise Modeling (PoEM), pp. 141-155, Springer Cham (2017)

8.1 Background and Context

IBM Business Automation Workflow (previously known as IBM Business Process Manager) is a

software product offered by IBM Corporation to help with business process design for improving

enterprise operations productivity by coordinating activities between tasks performed by (human)

knowledge workers and automated software systems [191]. This product is needed to manage the

increased complexity of designing and maintaining business processes in large enterprises. The

IBM Business Automation Workflow software provides a user interface for creating visual models

through which business processes (also referred to as workflows in the product) can be created and

configured for a given enterprise. Work activities are sequenced together for execution and

delegation in the form of workflows through this user interface. Accompanying tools are used to

evaluate the design of the workflows and improve upon them as applicable, based on rule-based

automation and process optimization analysis.

Enterprises often use intelligent business process management platforms (of which IBM Business

Automation Workflow is an example) to understand and automate key activities in situations

where information processing is needed for some business process execution [192]. Business

processes often require a human knowledge worker to use tacit knowledge and decision-making

187

abilities (built over years of experience) to come to a optimum decision when executing a specific

activity. An example could be that of a bank employee who is processing a loan application based

on provided information, while supplementing the loan information with additional enterprise

policies, guidelines and personal experience, before deciding on the approval or rejection of the

loan application. Through IBM Business Automation Workflow, enterprise architects and process

designers can capture such scenarios, including the information needed for decision-making, the

act of decision-making itself, and the outcome of this decision-making.

Recent years have seen rapid advancement in cognitive computing technologies and artificial

intelligence that leverage growing volumes of readily-accessible data, increasingly powerful data

analytics and machine learning algorithms. The IBM Business Automation Workflow product

team wanted to consider how to automate key decision-making activities that presently required

human decision-making to one where the decisions were performed using cognitive software

systems (also referred to as cognitive agents). By cognitive systems we mean applications that

have certain critical characteristics that help differentiate them from other enterprise information

systems [193]; these include, being able to function with a degree of autonomy while

demonstrating continuous learning behaviour, perceiving events within the surrounding

environment and respond appropriately, and showing ongoing adaption in response to evolving

circumstances and changing environment. Such tasks performed by these cognitive systems

previously relied on human experience and judgement; these are difficult to automate simply using

rule-based algorithms or logical operations.

Traditional human-based decision making relies on the intuition and experience of human

knowledge workers which are subject to human biases and have variations in the accuracy and

speed of decision-making, whereas the expectation from incorporating cognitive agents in existing

business processes was the enabling of faster, more uniform, and consistent decision-making

despite changing business contextual and situational factors, and staff rotation. There has to be a

management of ongoing changes without re-engaging these knowledge workers or undergoing

expensive redesigns at both a system and process level. As the enterprise is dynamic, there could

be changes in engagements between the knowledge workers and the cognitive agents, while

188

including self-learning requirements from cognitive agents and managing evolving contexts and

adaptation.

A team of researchers from the University of Toronto and IBM Canada participated in a multi-

year case study to study the design of cognitive-enhanced business processes. In this project, the

phrase Cognitive Business Operations (or CBO) was used to collectively cover the spectrum of

enterprise business operations and their involved processes, decision-making activities using

insights from available data, and the engagements between business workers and cognitive agents.

The term "cognitive" was used in the product as part of the positioning of a broader strategy for

this vendor; similarly, the term “cognitive agent” was used to indicate a software system that relies

on machine learning and deep learning techniques to aid and assist in decision-making as part of

business process execution.

8.2 Case Study Investigation Parts

The case study had three investigation parts. These were as follows,

Requirements for Simplifying CBO Adoption: Understand how to simplify the adoption and

integration of cognitive services as part of an enterprise’s routine business operations, thus moving

it towards “Simplified CBO”. The challenge in designing and deploying CBO in any enterprise is

in how to minimize the overall cost of the solution, reduce the need for individuals with specialized

skill sets (such as data scientists and business analysts), and shorten the overall duration of any

project engagement. Cognitive business processes do not have simple success criteria as there may

be a possible spectrum of processing outcomes by these processes, with these outcomes changing

over time as the cognitive agents evolve. Thus, a support structure of processes may be needed to

ensure the quality and accuracy of cognitive operations across different conditions, along with

minimizing the range of possible changes and reduce the impact and cost of these changes.

Business Process Model with Continuous Improvement: Design a business process model that

integrates continuous improvement in the outcome of the business process execution through

ongoing training and learning for the cognitive agents. The learning draws on data analytics of

past instances as well as dynamic contextual data. The availability of context helps with improved

189

decision-making and involves both human users and cognitive agents while ensuring continuing

satisfaction of enterprise objectives. The ability to redesign sections of the business process, where

cognitive agents are integrated to aid with human decision making, in response to evolving domain

context is needed to ensure ongoing satisfaction of objectives. Such a conceptual model will

support improvement analysis that results from ongoing training and learning.

Cognitive Solution Catalogues and Design Patterns: Develop a knowledge-based method for

simpler and faster development and adoption of cognitive agents in business processes. This

method would reduce the high cost and skill level requirements of developing and deploying

cognitive solutions (due to scarcity of data scientists) through reusable business domain knowledge

that characterizes client business problems and objectives, thus overcoming a significant adoption

barrier. On the solution side, a method for creating and maintaining cognitive solution catalogues

was to be provided where the catalogue contains multiple design patterns for each business

problem along with a selection criterion for choosing between the design patterns for meeting the

design objectives of the cognitive solution. The design patterns would be solutions to frequently

occurring business problems and would be close to being adoptable in CBO with some

customization and adjustments, subject to the target environment.

8.3 Objective

The research objective was to evaluate the effectiveness of the hiBPM framework by

demonstrating its use in the context of this case study. This objective was carried out through the

following,

Use Goal Model to Design hiBPM Model: The NFR framework was used to determine and

evaluate key tasks and goals (through a goal model) to consider during any CBO adoption exercise.

We needed to validate if the hiBPM model for a target organization could be designed by using

goal model(s) as a starting point while also uncovering additional processes that would need to be

introduced to the enterprise for supporting Simplified CBO objectives.

Incorporate Context for Continuous Reconfiguration: Changing enterprise context would

result in changes to the design of both the business processes and the cognitive agents that involved

190

in the execution of the business processes. We needed to validate the ability of the hiBPM

framework to model and analyze business processes to allow enterprises to better incorporate

contextual data into the overall hiBPM process architecture design, including the interactions

between these processes and cognitive agents.

Develop Pre-Built hiBPM Design Patterns: Various solution patterns for business process

design could be pre-determined that offered a systematic way of attaining different design

objectives for Simplified CBO adoption. We needed to validate if hiBPM models could offer

visualization of how design knowledge could be expressed in a reusable form that would address

a wide range of business problems, particularly around reducing the complexity of CBO adoption.

8.4 Activities

In Chapter 1, we presented a method for attaining research structure and rigour in our case studies

with three distinct areas. We detail the specific research activities performed for each of those

areas below.

8.4.1 Area 1 – Research Design

The principal architect for the product provided a clear business problem to the research team. This

business problem was then decomposed into the distinct parts, as mentioned in the previous

section. A research team was formed that consisted of participants from both the university and

the company. The university research team consisted of two PhD students, one post-doctoral

researcher, and their research supervisor. From the company, the team included the principal

architect for the product, the software development manager, and several members of the technical

staff. The research project took three years to complete.

Each investigation part was assigned to a primary individual. The first part (defining the

requirements for CBO adoption) and the second part (adoption process models with continuous

improvement) was a primary focus for this researcher. For the third part (cognitive solution

catalogues), there was collaborative work with this researcher focusing on the design of process

architectures and another PhD student focusing on the design of the cognitive agent. In this chapter

we include the findings from all three parts for which this researcher was responsible. To ensure

191

that case study findings from each investigation part supported each other, there were periodic in-

person team meetings, both with just the university team and with the broader research team.

8.4.2 Area 2 – Data Collection

Research activities were defined for data collection early in the case study. The research team (with

participants from both the university and the company) usually met once a month, based on need

and research progress, to review the stated problem and to apply constructs from each individual

conceptual modeling approach (based on their respective areas) to see how the models could help

better build understanding of the stated problem.

Apart from the initial problem document, additional documentation was provided that helped with

a better understanding of the product; these included high-level product design documents and

architectural diagrams. Access to the product was also provided for allowing the university

researchers to experiment with and understand the product’s existing features and capabilities.

These documents (including the produced conceptual models and meeting notes) were stored in a

company-provided online cloud storage platform that was used by the entire research team for

project collaboration.

8.4.3 Area 2 – Data Analysis

Notes were taken after each meeting for later analysis and record keeping. We used logical chain

of evidence to establish a connection between (a) the research problem presented earlier in this

chapter, (b) to uncovering the requirements for Simplified CBO for an enterprise, and (c) to

determining the hiBPM modeling constructs that would help us in analyzing the particular situation

under study. This was an iterative exercise as each uncovered requirement result in a hiBPM model

snippet with the models then ideated and subsequent models being produced, and their

effectiveness determined.

This process was repeated for each of the main investigation parts of the case study that this

researcher was responsible for, and the results shared with the broader research group in the

periodic team meetings. The meetings were often held in-person at the IBM Software Labs office

in Markham, Ontario. On occasion, the meetings would be held virtually if some individuals could

192

not be present in-person. On project conclusion, a case study report was shared with the senior

team member (and main contact person) from the company for confirmation of its accuracy.

8.5 Understanding Simplified CBO

To illustrate and discuss some key concepts of this case study, we consider an enterprise about to

adopt cognitive computing capabilities to support its routine business operations, thus moving

towards Cognitive Business Operations (CBO). A simple repetitive business process, loan

application process at a financial institution, was selected by the research team that could be used

for analysis purposes. Key decisions in this business process are made by human knowledge

workers based on their experience and information presented to them by information systems. In

a cognitive-enhanced business process, a Cognitive Business Agent (CBA) (also simply called the

cognitive agent) leverages recommendation systems (also known as recommenders) [194] to assist

humans knowledge workers with decision making. A recommender is a software system that

tasked with providing advisory services and personalized product recommendations.

Recommenders have gradually evolved from generating non-personalized to increasingly

personalized recommendations by adopting progressively more complicated approaches, ranging

from probabilistic and mathematical modeling to machine learning and deep learning algorithms.

In our case, the cognitive agent utilizes a recommender to provide an action (e.g., “approve loan”,

“reject loan”, etc.) to the human worker. Increasingly sophisticated cognitive agents can initially

help their human workers with recommendations for key decisions and later take complete

responsibility for decision making, without the knowledge workers involvement. Usually,

recommendation personalization is provided to the end-user (who may also be the enterprise

customer) but in this motivating example, it is for the company staff who are responsible for or

involved in the repetitive business process operations.

In our experimental system, the recommender considers evolving (business and technological)

contextual and transactional process data before generating a recommendation. The analysis of

that experience identified several design challenges about the recommender’s adoption and use in

enterprise business processes. These include:

193

• Changing business and/or regulatory environment. The recommender needs to detect and

incorporate business parameters while generating recommendations during process execution.

This way, recommendations are more aligned with enterprise objectives, despite these

objectives evolving.

• Retraining recommender models. The recommender needs to be retrained when there are

significant changes in data, such as switching from batch to streaming data, shifting data trends,

or data availability (e.g., whether customer credit scores or customer profiles are made

available for loan decisions). These result in ongoing relevance of recommendations.

• Decreasing accuracy of the analytical model. Various measures, such as precision, recall, etc.,

are used to measure model accuracy. Accuracy below some threshold results in the

recommender model being retrained (with new datasets or different parameter settings) or

being rebuilt (utilizing a different set of algorithms or approaches).

The above situations align with realistic business situations where changes in business, technology

or data context invariably result in changes in how the cognitive agent is designed and utilized in

the business process. Here, both the knowledge workers and the cognitive systems need to adapt

and adjust to each other as progressively more advanced and accurate advisors take on increased

responsibility and autonomous decision making.

8.5.1 The As-Is Situation for CBO Adoption

We present the As-Is hiBPM model of the loan approval scenario in an enterprise that is adopting

Cognitive Business Operations (CBO), with the loan approval/rejection decision being the focus

of analysis. As explained previously, this business process was selected by the research team as an

example representation of the business processes that the company’s product would be expected

to optimize for Simplified CBO. In the As-Is situation, the enterprise relies on highly skilled

individuals for the adoption of cognitive capabilities and utilizes a traditional analytical model-

based solution. In Fig. 8-1, the domain-specific process stages Process Loan Application, Setup

Loan Repayment, and Repay Loan are centrally shown as process stages, with the cognitive system-

specific process stages Create Analytical Model, Tune Analytical Model, and Validate Analytical

Model producing the software artifacts necessary for enabling cognitive decision making. Process

194

Loan Application contains a single process phase that pertains to the collection of decision-making

process elements that produce and present a recommendation.

Fig. 8-1: As-Is Process Architecture Model for the Loan Application Process

The domain-specific business processes rely on different systems artifacts to help with processing

a loan application. Analytical Model is a design artifact that is "used" as part of the Process Loan

Application processing. Thus, there exists a design-use relationship between the Validate Analytical

Model and the Process Loan Application process stages. Build Business Understanding produces a

plan that is executed by the Determine Analytical Design. Similarly, there exists a plan-execute

relationship between these two process stages. While not part of the hiBPM modeling notation,

Process Loan Application

Setup

Repayment

Terms

Get

Customer

Approval

Setup Loan Repayment

Repay Loan

Portion

Repay Loan

1:N

Business

Outcome

Feedback

1:N

Define

Problems

Determine

Objectives

Build Business Understanding
Define

Decisions

and

Questions

Business

Needs

Apply ML

Algoritm

Build

Analytical

Model

Create Analytical Model

Determine

Analytical

Goals

Select

Algorithm

Select

Params

Determine Analytical Design

Business

View

U

Analytics
Design

[Business Analyst]

[Data Scientist] [Data Scientist]

Analyze Business

Outcome

Improve Business

Agreement

Feedback

Model

Feedback

[Business Analyst]

Client

Data

X

Prepare

Training

Data

Train and

Validate

Model

Valiate Analytical Model

Interpret

Results

Check

Model

Parameters

Tune Analytical Model

Change

Model

Parameter

Model Feedback

[Data Scientist] [Data Scientist]

1:N

Analytical

Model

U

Prepare

Data

Perform Feature Engr.

Identify

Relevant

Data

[Data Engineer]
1:N

Notify

Customer

Get Loan

Request

Comm.

Case Data

Comm.

Decision

Params

Produce

Recom-

tion

Present

Recom-

tion

Explain

Recom-

tion

Approve

Recom-

tion

195

some process stages are annotated with process participants responsible for their execution to

indicate different domain actors and their involvement. Through these annotations, we emphasize

the need for highly skilled individuals for any implementation project. Several process stages

require the involvement of Data Scientist who performs manual operations to execute the activities

within that process stage; this incurs time and cost, with the Analytical Model produced generally

being custom developed for a specific environmental context.

8.5.2 Analyzing CBO using the NFR Framework

We use the NFR Framework [94] for determining the essential softgoals that are relevant to the

particular enterprise adoption of cognitive agents in their existing business processes. Each

enterprise may have different softgoals based on their definition of Simplified CBO. E.g., some

enterprises may prioritize ease of deployment whereas others may prioritize the minimum

maintenance of the overall system. These identified Simplified CBO softgoals for an enterprise

can then help with determining a suitable hiBPM model for that enterprise, we can characterize

the CBO adoption of our target enterprise using the following softgoals. An explanation of these

softgoals is also provided, as they apply to the target enterprise.

• (High) Learnability: Learnability implies feedback and higher-order analysis of options by

applying previous experience. Considering this, business operations powered by cognitive

agents should be dynamically reconfigured to respond differently based on learnings from prior

instances. The changes in response could take many forms, from how knowledge workers

engage with cognitive agents, to how to respond to external stimuli, etc.

• (High) Reusability: A fundamental premise in cognitive solutions is the ability to have

reusable knowledge artifacts that provide best practices and patterns-based solutions to

commonly occurring problems. Such a reusable knowledge base is built over time in the form

of knowledge catalogues with the cognitive solution being designed to leverage these to reduce

the effort of solving known problems and handling situations.

• (High) Configurability: Ongoing reconfigurations of any cognitive-enhanced enterprise

solution to support evolving enterprise requirements and changing circumstances. Thus, the

ability to reconfigure aspects of the solution (such as the processes, the systems, or the

196

engagement between the knowledge worker and the systems) is essential to reduce continuous

project cost and human involvement at both deployment and post-deployment time.

• (High) Developability: Any cognitive-enhanced solution needs to be customized to

intelligently handle different environments, requirements, and changing circumstances. The

product should allow for some form of development to extend, enhance or modify functionality

after it has been released. Due to the variations in the business and technical requirements and

contexts for cognitive agents, it is impractical to identify all possible configurations required

for different organizations.

There are two possible mean to achieve Simplified CBO objectives which are presented as two

alternatives using the NFR Framework. While each alternative will satisfy the CBO functional

goals, there may be trade-offs when it comes to satisficing the softgoals. These alternatives

(represented as Alternative A and Alternative B) are represented as OR decompositions in the goal

model (shown in Fig. 8-2). Here, we make slight adjustments to the goal modeling notation

provided by the NFR framework to show how softgoals can be attained by goals and tasks,

including the resources needed. The goal model was developed by this researcher based on

information provided by researcher members from the company and was used as a method for

determining the relevant softgoals for the enterprise example.

Alternative A shown is for the As-Is situation with the enterprise attaining its functional

requirements for CBO by utilizing a traditional analytical model-based solution. The softgoals for

Simplified CBO are decomposed down to their operational goals with the roles required for their

attainment annotated in blue. For example, we see that a Data Scientist (shown through annotations

in the goal model) is responsible for several operationalized goals, which include Select

Algorithms, Develop Analytical Models, etc. Similarly, the Business Analyst is responsible for

studying the enterprise space and helping Develop Business Solutions for that particular

organization. These collectively help convey the significant involvement of these high-skilled

individuals in the overall project activities, which prevent the attainment of the softgoals of

Learnability and Reusability.

197

Made Easy

[Business User]

Made Easy

[Line-of-Business]

Made Easy

[IT]

Made Easy

[LoB Owner]

Accuracy

Performance

Usability

Interoperable

Robustness
Manageability

Made Easy

[Product]

Developability

Codeable

Configurability

Low Cost

Reusability

Extensibility

Learnability

Reusable

Artifacts

Reusable

Knowledge

Made Easy

[Cognitive

Advisor]

Low Complexity

Low Resource

Adaptability

Configure at

Runtime

Application

Parameters

Database

Parameters

Configure

before Runtime

Configure at

Deploy time

Configure at

Build time

Modular

Components

Develop

Solution

Catalogues

Well-Defined

Logic

Develop

Problem

Catalogues

Develop Data

Preparation

Catalogues

Develop

Algorithm

Catalogues

Develop

Business

Questions

Catalogue

Check for

Constrain

Violation

Sense Context

Monitor Context

Variables

Monitor

Changes

Monitor

Availability

Evaluate Plans

Detect Changes

Replan on

Context Change

Changed

Context
Plan Catalogue

Algorithm

Catalogue

Redesign CBA

Reconfigure BPA

Reconfigure

Process

Structure

Reconfig Plan
Select

Alternative

Select Suitable

Algorithm

Select

Algorithms

Determine

Analytical Goals

Business View

Model

Algorithm

Catalogue

Substitutable

Algorithms

Determine

Analytical

Design Define Data

Preparation

Define Decisions

and Questions

Define Problem

and Objectives

Machine

Learning

Algorithms

Analytical Goals

Develop

Catalogues

Extensibility

[Data Scientist]

[Data Scientist]

[Data Scientist]

[Data Scientist]

[Business

Analyst]

[Data Engineer]

Made Easy

[Analytical

Model]

Reusability

Learnability

Monitor

Performance

Tune Analytical

Models

Select

Algorithms

Develop

Analytical

Models

Develop

Business

Solutions

Devise Reusable

Architecture

B A

Softgoal

Legend

AND Contribution

Contribution

Satisficed
Weakly

Satisficed
Denied

Weakly

Denied

Goal Task Resource

Fig. 8-2: Goal Model showing two alternatives for attaining Cognitive Business Operations

We use a goal satisfaction analysis technique [172] to qualitatively assess whether the softgoals

can be satisficed (✓) or denied (). Weakly satisficed or weakly denied conditions are shown using

198

the same symbols, but with a “dot” added. As can be seen in Fig. 8-2, the primary softgoals of

Simplified CBO for the Line-of-Business is not satisficed; thus Alternative A is not ideal, despite

attaining the functional goals.

The branch marked Alternative B in Fig. 8-2 pertains to the incorporation of a cognitive agent that

helps attain the softgoals of Learnability, Reusability, Developability and Configurability. The

cognitive agent leverages recommenders to aid and assist with decision making (e.g. loan

approved, loan rejected etc.) for the knowledge workers. The cognitive agent alternative is

qualitatively analyzed against the same set of softgoals; however, the solution provided in this

alternative contributes to the softgoals differently. The Reusability softgoal comes at the cost of

runtime flexibility. The selection of either one is made based on the priority and preference of the

enterprise (as ascertained through goal analysis). E.g. one enterprise may feel that there are no

unpredictable situations expected to occur in the future, and thus, Pre-Built Catalogues (limited in

scope as they may be) would suffice. Another organization may be uncertain with regards to

changing situations and would wish for Data Scientists to be engaged to populate the Algorithm

Catalogue until a stable state is achieved. In order to achieve Reusability, there is a reliance on

creating reusable knowledge nuggets and artifacts as part of pre-deployment activities. Learnability

is achieved through ongoing Sense Context and Detect Change, based on which suitable actions

are performed to process context changes and selection configurations.

For both Alternative A and Alternative B, Configurability is managed at runtime and pre-runtime

respectively through having configurable settings. By runtime, we mean reconfiguring the

cognitive agent (or Analytical Model) to behave differently during the execution of business

operations, which can be done through changing application or database parameters. Pre-runtime

configuration is achieved through configuration settings done at either build or deploy time.

Finally, Developability of the product is attained through having modular components, no-code /

low-code and codeable architecture for extending product features.

By identifying and prioritizing the softgoals for the domain under study, we devise a to-be solution

that encompasses the interplay of systems, processes, and user engagements. Such a solution (a)

reduces the cost, time and complexity of integration of cognitive agents in business processes, and

199

(b) minimizes the process reconfiguration and systems reimplementation as the enterprise

environment changes.

8.5.3 The To-Be Situation for Simplified CBO

We come up with the to-be hiBPM model shown in Fig. 8-3 by following the steps mentioned in

Chapter 4 for determining a hiBPM model from a goal model. In this figure, we show both the

domain-specific process stages for the Loan Approval process, as well as surrounding and

supporting process stages that help attain the functional goals and the softgoals for Simplified CBO

that were determined through the goal model; both sets of process stages are reviewed below. This

To-Be hiBPM model is provided for the target enterprise based on the initial As-Is scenario and

softgoals provided by the different members of the research team.

We Reusability and Adaptability softgoals to present the additional process stages that emerge out

of the analysis for ensuring the satisficing of these softgoals. The Reusability softgoal was achieved

by having reusable artifacts and reusable knowledge nuggets. Particularly, reusable knowledge is

attained through having Solution Catalogues that provide the necessary patterns for quickly

determining the solution to a commonly occurring business problem. We show the creation of this

catalogue by the process stage Develop Solution Catalogues. Another means for attaining the

Reusability softgoal was by having reusable artifacts that are pre-built and quickly incorporated

into the analytical solution as and when needed. These reusable artifacts are built by the Determine

Analytical Design process stage.

Similar to the process used above for the Resuability softgoal, the Adaptabilty softgoal can be

achieved by introducing additional process stages to the domain-specific business process. To have

Adaptabilty in the system, both the process architecture and the cognitive agent needs to be

amenable to redesign. Further, there should be higher level processes that plan for reconfiguring

the process architecture and the cognitive agent when the enterprise context changes. For this, we

introduce the Reconfigure Process Structure and Redesign Cognitive Agent process phases in the

Reconfigure Cognitive Operations process stage. These (the overall hiBPM model for enabling

these softgoals) collectively come together as the cognitive agent solution that encompasses both

process-level and systems-level reconfigurations.

200

Fig. 8-3. To-Be Process Architecture Model for Simplified CBO

Determine

Analytical

Goals

Select

Suitable

Algorithms

Set

Parameter

s

Determine Analytical Design

Analytic

Design

Sense Context
Application

Context

Data

Analytical

Design Goal

Replan

Based on

Context

Changes

Replan Based on Context
Evaluate

Plans

Against

Goals

Monitor

CV for

availability

Combine

Constraints

from

multiple CVs

Check for

Constraint

Violations

Monitor

CV for

changes

Reconfig

Process

Structure

Reconfigure BPA

Redesign

Cognitive

Systems

X

Evaluate

UEM

Model

Feedback

Determine

Analytical

Goals

Select

Suitable

Algorithms

Set

Parameter

s

Create Analytical Model

Plan

Catalogue

Process Loan Application

Setup

Repayment

Terms

Get

Customer

Approval

Setup Loan Repayment

Repay Loan

Portion

Repay Loan

1:N

1:N

U

Client

Data

1:N

Business

Outcome

Feedback

Analyze Business

Outcome

Improve Business

Define

Problems

Determine

Objectives

Build Business Understanding
Define

Decisions

and

Questions

Business

Needs

Determine

Source

Entities

Identity

Entity

Relationship

Create

Data View

Define Data Preparation

Business

View

Organize ML

Algorithms

Evaluate ML

Algorithm

Performanc

e

Map ML

Algorithms

to Analytical

Goals

Develop Algorithm Catalogue

Algorithm

Catalogue

Data View

Agreement

Feedback

Analytical

Model

Reconfig

Plan

Notify

Customer

Get Loan

Request

Comm.

Case Data

Comm.

Decision

Params

Produce

Recom-

tion

Present

Recom-

tion

Explain

Recom-

tion

Approve

Recom-

tion

201

8.6 Context and Adaptation

In the previous section, we mentioned that the cognitive agent needs to be designed to operate

under evolving circumstances and varying contextual situations. The need to continually identify,

monitor and sense context can result from (a) the changing of enterprise or process goals resulting

in context changes (as it pertains to the attainment of those goals), (b) non-availability of the

information pertaining to domain entities, and (c) the changing values of domain entities’ attributes

beyond a certain threshold.

In this section, we consider the need to monitor and manage external context, and how changes in

the context in one area of the model can influence a hiBPM redesign in another area. We consider

context as entities (including their attributes) of the domain under study (or some particular portion

thereof) that are relevant to the attainment of particular enterprise or process functional or non-

functional objectives. Considering the complete domain context may be not possible or necessary,

therefore a more localized context is selected to consider it’s impact on hiBPM model

reconfiguration. We consider both the processes that need to handle context in the hiBPM model,

and also the processes that need to respond to context stage changes. Thus, the entire hiBPM model

needs to be holistically analyzed as we determine how ongoing changes in context sensed in one

part of a model can result in discrete redesigns of related cognitive-enhanced business processes

in another part. Further, it would be unrealistic to expect that the relevant context, once identified,

does not need to be re-evaluated later, therefore these analyses need to be periodically performed,

as and when context changes.

Suppose in our example domain, we want to ensure that the hiBPM model needs to be designed in

a manner that ensures corporate policies (with regards to customer satisfaction and accuracy) are

suitably satisfied in the execution of the operational business process. In this case, the context

would be limited to customers (and the processing of customer service requests) while other areas

of the domain can be ignored. As before, this example was developed through discussions with

the broader research team and was designed to reflect actual environments that the company’s

product would be deployed into.

202

8.6.1 Modeling and Analyzing Context-Induced Reconfigurations

We consider an initial stage of the cognitive agent adoption in a business process at an enterprise.

When the business processes are first setup and operations start, detailed data about customer

behaviour and profile is generally not available and the cognitive agent relies on collaborative

filtering approaches for recommendation generation [194]. Collaborative filtering is an approach

for implementing recommender systems where the cognitive agent would provide non-

personalized recommendations in the absence of customer profile information. As additional

customer and transactional data are accumulated, profiles may emerge for the customers, and it

may be possible to generate more customer-specific recommendations using personalized

approaches in the cognitive agent implementation. This requires the selection of different machine

learning techniques that provide more personalized and context-based recommendations [194]. A

reconfiguration to the process architecture is also needed whenever this additional contextual state

is made available.

We adopt the method of determining context based on goal model analysis originally proposed in

[79] for our research. The sequence of reasoning and analysis steps to manage a hiBPM is

presented below.

Step 1 - Determine Domain Goal: Domain goals need to be identified before any context can be

studied. This is important as business goals can evolve and this situation necessitates reconsidering

of what context should be captured and studied to ensure the satisfaction of these evolving goals.

Fig. 8-4 shows a goal model that emphasizes the need for personalized loan application

recommendations for customers. The model decomposes the functional goal Get Loan

Recommendation into sub-goals using OR refinement. Here, the customer profile is the context

that is of interest, and based on its availability or non-availability, either one of the two sub-goals

is the more suitable alternative. In Fig. 8-4, the Customer Data contextual tag is shown as a blue

annotation on the Personalized Recommendation goal alternative, thus indicating that this

alternative will not be available in the absence of Customer Data.

203

Fig. 8-4: Goal model for the Loan Application process

The activities involved in determining the business goals in Step 1 are represented in a process

stage called Determine Goals with several process elements as shown in Fig. 8-5 below.

Fig. 8-5: Process stage for determining business goals

Step 2 – Identify Context and Contextual Variables: The required context and associated

contextual variables can now be identified using either ER diagrams [195] or UML class diagrams

[196]. We previously stated that context is considered as domain entities, and their attributes help

in the attainment of applicable enterprise goal. Certain aspects of the domain are not pertinent to

the attainment of enterprise goals and do not need to be considered further. In our case, the goal is

to provide personalized recommendations to help with a customer’s loan application decision and

we consider just those domain entities that are part of processing the customer loan.

Fig. 8-6 shows an ERD with four entities Customer, Loan, Loan Officer, and Bank, with selected

attributes for each. Monitoring the context can be done using context variables, which are the

attributes of these entities that can be sensed and can help in the attainment of the selected

enterprise goal.

OR OR

Get Loan

Recommendation

Non-Personalized

Recommendation

Personalized

Recommendation

Customer

Specific
Low Cost

{{ Customer Data }}

Determine Goals

Determine

Business Goal

Eliminate

Alternatives

using Context

Decompose

into Sub-

Goals

204

Fig. 8-6: Context and context variables selection using ERD diagram

We represent the activities in Step 2 as a process stage Identify Context Variables with the

individual activities represented as Identify Entities to Achieve Objectives, Identify Attributes of

Entities, and Select Variables from Attributes process elements.

Fig. 8-7: Process stage for determining domain context variables

Step 3 – Analyze Context Variables: Capturing, monitoring and analyzing context variables

incur some cost to the enterprise and it would be preferable only to identify those context variables

that are relevant for the enterprise goals. Further, context variables may not always be available to

be sensed and their unavailability should also be considered during this analysis step. Thus, only

those context variables that are available and contribute to the attainment of domain goals and

softgoals should be monitored.

In the previous step, we identified various context variables Customer Demographics, Customer

Profile, Loan Type, Loan Amount, Loan Terms, etc. as having relevance to the Personalized

Recommendation goal. By following the multi-step analysis process provided in [79], we can

reduce the context variables of interest to just one (Customer Profile) in this case. Based on the

outcome of this qualitative analysis, the Customer Profile context variable is deemed to be (in

Customer

Loan Bank

Loan Officer
interacts

with

approvesapplies for works at

provided by

Profile

Type

Amount

Terms

Experience

Personality

Judgement

Financial

State

Objectives

Demographics

Macroeconomic

Situation

Identify Context Variables
Identify

Entities to

Achieve

Objectives

Select

Variables

from

Attributes

Identify

Attributes of

Entities

205

comparison to the other variables) providing customer-specific recommendations for their loan

applications. The process stage Analyze Context Variables shown in Fig 8-8 below contains several

process elements that present the activities that need to be performed in this step.

Fig. 8-8: Process stage for identifying context variables and their applicability

Step 4 – Monitor Context Variables for Availability and Change: In this step, we first consider

the validity and availability of this context variable. By availability, we mean that not only should

the context variable be available in the real world, but it should also be available to be sensed.

Further, the validity of the context variable means that its value is an accurate reflection of real-

world data. As previously mentioned, there is no guarantee that the Customer Profile would always

be available, and, indeed, it is only after the accumulation of customer data and transactional

history, are machine learning techniques able to intelligently create profile clusters of customers

based on common behavioural attributes. Also, customer profiles already calculated may become

invalidated because of a variety of reasons (e.g., corporate policy changes, economic environment

changes, updated government regulations, etc.).

In the Sense Context process stage, contextual variables at suitable sensing points are continuously

monitored for breaches to defined parameter thresholds or state changes while evaluating the

satisficing of relevant softgoals. For example, there may be a revision in how Customer Profiles

are calculated, rendering the previous values stale. Such a change needs to be monitored and

processed. Fig. 8-9 shows that external Application Context Data is communicated to the Sense

Context process stage. Context is, by definition, external to the system under consideration,

therefore, feedforward paths are better suited to show how external context changes can be used

to pass a control signal to a system. We show Application Context Data as an input as that is a more

generic term and covers different specific contexts. In this example, the Application Context Data

is the Customer Profile.

Analyze Context Variables

Identify

Evaluation

Criteria

Evaluate

Variable

Sensing

Options

Map Variables

to Objectives

Select

Variables to

Achieve

Objectives

206

Fig. 8-9: Process stage for monitoring the availability and validity of context variables

Step 5 – Maintaining Pre-Build Plan Catalogues: Pre-built plans exist as a catalogue of design

patterns that help guide the selection of various alternatives. These are for situations that manifest

themselves as the context evolves. For example, having Customer Profile available means that the

cognitive agent (and the surrounding processes) should be configured to take advantage of this

changed context. In our example here, we can consider the catalogue consisting of two plans, one

corresponding to Non-Personalized Recommendation with the other for Personalized

Recommendation. These plans would have been inserted in the catalogue by some other processes

at an earlier time, i.e. before an enterprise engages in a Simplified CBO adoption exercise. In Fig.

8-10 below, we show how pre-built Plan Catalogue can be used for determining the replanning of

the process architecture, the software system, or the user engagements (discussed in Step 7).

Design catalogues are discussed in more detail in the next section of this chapter.

Fig. 8-10: Process stage for replanning the solution using pre-built plan catalogues

Step 6 – Determine and Select Suitable Plan: The availability (or change in state of) Customer

Profile is communicated to the Sense Context process stage, which then informs the Replan Based

on Context process stage, as shown in Fig. 8-11. This stage utilizes pre-built plans from the

catalogue and evaluates them against the business goal while considering the new state of the

context variables. The stage selects the plan corresponding to Personalized Recommendation and

passes it along to the execution stage where the reconfiguration is carried out at a variation point.

Hence the plan informs the variation point of this situation and guides the follow-up action using

data passed through feedback paths. Triggers are also present at the Replan Based on Context and

Application

Context Data

Sense Context

Monitor

Variable for

Availability

Combine

Constraints

from Multiple

Variables

Monitor

Variable for

Changes

Check for

Constraint

Violations

C

Replan Based on Context

Replan Based

on Context

Changes

Evaluate Plan

Against GoalsPlan

Catalogue

207

are “fired” once non-satisficing of softgoals is determined and the appropriate plan selected. The

Customer Profile is shown as a flow in Fig 8-11 (generalized as Application Context Data) into the

Sense Context process stage, while the pre-built Plan Catalogue is a resource enabler and thus is

shown as a flow into the Replan Based on Context.

Fig. 8-11: Process stages for determining and selecting suitable plans for adaptability

Step 7 – Reconfigure Process Architecture: The execute stage receives the plan and is now

responsible for reconfiguring the hiBPM model to handle the context stage change better, and (by

extension) the continuing satisfaction of enterprise goals. Here, reconfiguring the hiBPM model

can mean one or more of the following,

• Rearranging the structure of the process stages in the model, including their relationships along

various change dimensions.

• Redesigning cognitive agents that are used as part of the business process execution so that

they provide different results on subsequent use.

• Changing the nature of engagements between the systems and the business process.

Fig. 8-12: Process stages in a plan-execute relationship for reconfiguring the process architecture

The hiBPM model reconfiguration results from the execution of the plan, with the plan guiding

the selection of suitable variants. This is shown in Fig. 8-12 where the as-is process architecture

configuration is geared towards providing non-personalized recommendations whereas the to-be

configuration provides personalized recommendations for use in the business process. The Replan

Application

Context

Data

Sense Context

Monitor

Variable for

Availability

Combine

Constraints

from Multiple

Variables

Monitor

Variable for

Changes

Check for

Constraint

Violations

Replan Based on Context

Replan Based

on Context

Changes

Evaluate Plan

Against Goals

C

Goals

Plan

Catalogue

Replan Based on Context

Replan Based

on Context

Changes

Evaluate Plan

Against GoalsPlan

Catalogue

Reconfigure Process Architecture

Reconfig

Process

Structure

Evaluate User

Engagement

Redesign

Cognitive

Systems

X

208

Based on Context informs the execute process stage Reconfigure Process Architecture to now

generate personalized recommendations.

8.6.2 The Complete hiBPM Model

We can now show the complete hiBPM model for the enterprise in Fig. 8-13. Here, the enterprise

may have a defined corporate policy with regards to processing loans for customers who cannot

be matched to an individual pre-defined profile, possibly because of insufficient customer data.

When starting, the company may take a more conservative approach towards loan approval and

refuse to process such customer cases. However, over time, it may revise its corporate policy and

start to process them differently. Thus, there is a change in the enterprise goal, i.e., Process Non-

Profile Customers, and the additional context Customer needs to be incorporated. With sufficient

transactional history, customers may now be adequately profiled and thus, an additional context

Customer Profile is now available for the enterprise to use as part of the loan application process.

Attributes of the context (for example, the information on when the corporate policy was changed)

can also be monitored.

Managing context requires the addition of meta-level processes for sensing and retrieving

contextual data. The monitoring of context at sensing points is done to ensure that associated

sensing goals are continuously being attained, including confirming their validity, applicability,

and suitability. In the case of non-attainment, a plan is selected and executed from a catalogue of

pre-defined plans. Specifically, the process stages about context management are Identify Context

Variables, Analyze Context Variables and Sense Context, and they confirm that the availability of

and changes to Customer Profile data will be detected and specific actions are taken based on the

satisficing of associated softgoals.

209

Fig. 8-13: hiBPM model for context based adaptation for the loan approval domain example

Perform Feature Engineering process stage now actively collects customer data so that Customer

Profile can be calculated through some separate process stage using machine learning techniques

Notify

Customer

Approve Loan

Setup

Repayment

Terms

Get

Customer

Approval

Setup Loan Repayment

Repay Loan

Portion

Repay Loan

1:N

Prepare

Data

Perform Feature Engr.

Prepare

Training

Data

Train and

Validate

Model

Validate Analytical Model

Interpret

Results

Identify

Relevant

Data

1:N

Analytical

Model

U

Get Loan

RequestOther

Data

1:N

Client

Data

Determine

Analytical

Goals

Select

Algorithms

Set

Parameter

s

Determine Analytical Design

Define

Problem &

Objectives

Define

Decisions &

Questions

Build Business Understanding

Determine

Source

Entities

Identify

Entity

Relationship

Create

Data

Preparatio

n View

Define Data Preparation

Business

Need

Business

View Model

X

Organize ML

Algorithms

Evaluate ML

Algorithm

Performanc

e

Map ML

Algorithms

to Analytical

Goals

Develop Algorithm Catalogue

Determine

Source

Entities

Identify

Entity

Relationship

Create

Data

Preparatio

n View

Develop Data Preparation Catalogue

Identify

Entities to

Achieve

Objectives

Identity

Attributes

of Entities

Select CVs

from

Attributes

Identify Context Variables

Data Prep

View

Algorithm

Catalogue

Data Prep

Catalogue

Sense Context

Application

Context Data

Apply ML

Algorithm

Create Analytical Model

Build

Analytical

Model

1:N

Model

Feedback

Determine

Business

Goal

Decompose

into

subgoals

Determine Goals

1:N

Analytical

Design Goal

Replan

Based on

Context

Changes

Replan Based on Context
Evaluate

Plans

Against

Goals

Identify

Evaluation

Criteria

Map CVs to

Objectives

Evaluate

CVs

Sensing

Options

Analyze Context Variables

Select CVs

to Achieve

Objectives

1:N

Monitor

CV for

availability

Combine

Constraints

from

multiple CVs

Check for

Constraint

Violations

Eliminate

Alternatives

using

Context

Monitor

CV for

changes

Plan

Catalogue

Reconfig

Process

Structure

Reconfigure Process Architecture

Redesign

Cognitive

Systems

X

Evaluate

UEM

Reconfigured BPA

C S

Analytics

Design

1:N

Reconfig Plan

X

S

C

Goals

Comm.

Case Data

Comm.

Decision

Params

Produce

Recom-

tion

Present

Recom-

tion

Explain

Recom-ion

Approve

Recom-ion

Agreement

Feedback

210

and continuously updated. The Determine Analytical Design process stage selects a different

recommender approach, specifically for personalized recommendations, and machine learning

algorithms. This is the Analytical Model Design that is subsequently used by the cognitive agent to

generate recommendations. How the cognitive agent is engaged in the Loan Approval business

process execution could also have changed; instead of playing an advisory role, the cognitive agent

can automatically approve or deny the loan application without any human oversight. The shift in

engagement between the cognitive agent and the human knowledge worker is represented through

user engagement relationships.

8.7 Design Catalogues and Patterns

Some enterprises may be cautious in relation to cognitive technology and automation. To simplify

the adoption of cognitive agents for such enterprises, essential types of business problems can be

analyzed ahead of time and a relevant set of identified design patterns be reused by multiple

enterprises as applicable. Such a knowledge-based approach helps in reducing the high cost and

high skills requirements for developing and deploying cognitive solutions, thus overcoming a

significant adoption barrier. As a result, solution catalogues consisting of sets of reusable design

patterns are pre-built before the solution is deployed at a target enterprise. The solution is then

adopted with instantiated patterns that are identified as part of the solution analysis activity. These

patterns would be particular to each enterprise environment and would be selected accordingly.

Here, a design pattern is in the form of a conceptual model that provides guidelines on solving

particular enterprise problems as they exist in some business situations. As part of this research,

we explicitly consider hiBPM model patterns. Other research threads within the CBO research

project considered design patterns from a cognitive solution design perspective. Our approach of

developing and using patterns to solve design challenges is certainly not unique, and examples of

various approaches can be found in different research disciplines, such as business processes

[197][198], enterprise architecture [199], requirements engineering [200][201] and software

engineering [202][203].

In this section, we present several different design patterns against common business problems

that we encountered during our research team deliberations. These again pertained to the design

211

and adoption of the cognitive agent at the example enterprise. The objective was the instantiation

of these hiBPM models (as provided by the solution catalogue) to reduce the dependency on

individuals with specialized skills (such as data scientists, data engineers, and business analysts)

during the deployment of the solution. The patterns discovered as part of this case study were

found to be either generalizable enough to cover a range of enterprise adoption scenarios or

specific to certain situations that would limit their reusability. We share examples of both in the

following sections.

We start by providing a simple baseline, i.e., the loan application process presented in the previous

section. There may be many different types of service request types that need to be processed. The

human knowledge workers processing these requests may have different capabilities and skills,

with some requests being processed more efficiently by some workers than other requests. The

manager of the knowledge workers thus needs to make a conscious and deliberate choice on which

service request should be assigned to which worker, based on the need for higher overall team

efficiency. This is done by the process stage Assign Request to Worker. We show a hiBPM model

for this situation in Fig. 8-14.

Fig. 8-14: hiBPM model for the baseline business process

8.7.1 Learnability with Control

We consider the case of where the manual activity of selecting the most suitable knowledge worker

Select Next Best Worker is now performed by a cognitive agent. Here, the business problem is the

considering the suitability and applicability of a knowledge worker to a service request type; a

suitable worker is determined through reviewing the past performance of all knowledge workers

Handle Income Service Request

Get Incoming

Request

Review

Service

Request

Assign Request to Worker

Review

Worker List

Select Next

Best Worker

Assign to

Worker

Process Service Request

Process

Service

Request

Produce

Service

Outcome

Notify

Customer

Service

Request

Service

Request

212

against each type of service request. This involves mining process logs for historical execution

instances for determining insights where each knowledge worker is ranked based on their ability

to process certain service request types. This processing is represented by the process stage Mine

Process Execution.

These performance insights (by knowledge worker) are then made available to the process stage

Develop Cognitive Agent that develops and trains the cognitive agent to offer a suggestion on the

most suited knowledge worker for the incoming service request. Fig. 8-15 below shows a hiBPM

model with the design pattern for the mining of data needed for support learnability for the

cognitive agent.

Fig. 8-15: hiBPM model for the learnability design pattern

Determine Process Design

Understand

Processes

Determine

Deviations

and Variations

Aggregate

Multiple

Processes

Harmonize

Processes

Capture

Process Data

Mine Process Execution

Generate

Insights

Determine

Efficiency

Levers

Visualize and Analyze

Explore

Processes

Review

Patterns and

Causality

Handle Income Service Request

Get Incoming

Request

Review

Service

Request

Assign Request to Worker

Review

Worker List

Select Next

Best Worker

Assign to

Worker

Process Service Request

Process

Service

Request

Produce

Service

Outcome

Notify

Customer

Service

Request

Service

Request

Develop Cognitive Agent

Determine

Worker

Attributes

Process

Previous

Outcomes

Map Request

Type to

Worker

Cognitive

Agent

U

Process

Execution Data

213

8.7.2 Learnability through Mimicking Humans and Control

In the previous example, we explained how the cognitive agent can decide which knowledge

worker would be best suited for a service request. There was an implicit assumption there that the

historical process execution logs contain sufficient information to obtain meaningful information

and be able to accurately rank knowledge workers against service request types. However, this

may not be practically possible as often there is insufficient data available. For example, a

knowledge worker may have recently joined the company and they may not have serviced many

requests to correctly profile their execution ability by service request types (also commonly known

as a cold start problem [204]). Alternatively, there may be tacit knowledge that is leveraged by a

human manager to make service request assignments that is not typically captured in process

execution logs. In such cases, the cognitive agent would not benefit from the historical process

logging data and the service request assignments to knowledge workers may be misaligned with

natural abilities of individual knowledge workers.

In such situations, we consider another hiBPM pattern where the cognitive agent makes an

assignment decision by supplementing it with mimicking human decision-making. In cases where

the cognitive agent cannot confidently make a service request assignment to a knowledge worker

(as measured by recommender-based metrics), the agent relies on recent human manager

assignment behaviour and mimics that to the degree possible. We show this in Fig. 8-16, where

each instance of the process execution (including contextual data and process outcomes) is

captured, reviewed and processed for learnability purposes by the Capture Environment, Monitor

Process Execution, and Assess Process Execution Outcome process stages. The cognitive agent

now has an ensemble of methods to make an assignment of service request utilizing historical

process execution behavior or recent human manager decision making.

214

Fig. 8-16: hiBPM model for the learnability with human mimicking design pattern

8.7.3 Advisory User Engagement

The engagement between the human user and the cognitive agent is not static; shifts in work

allocation between human users and cognitive agents can be envisioned. They are triggered by

well-defined conditions that focus on system performance, user trust in systems’

recommendations, and other vital characteristics of user engagement. It varies over time based on

not just the evolving capabilities of enterprise systems but also on user requirements and enterprise

context and objectives. Previous examples assumed that the assignment was entirely performed by

a fully autonomous cognitive agent. However, there are a spectrum of possibilities here, ranging

from advisory recommendations by the cognitive agent to fully autonomous where the agent

Process

Execution Data

Determine Process Design

Understand

Processes

Determine

Deviations

and Variations

Aggregate

Multiple

Processes

Harmonize

Processes

Capture

Process Data

Mine Process Execution

Generate

Insights

Determine

Efficiency

Levers

Visualize and Analyze

Explore

Processes

Review

Patterns and

Causality

Handle Income Service Request

Get Incoming

Request

Review

Service

Request

Assign Request to Worker

Review

Worker List

Select Next

Best Worker

Assign to

Worker

Process Service Request

Process

Service

Request

Produce

Service

Outcome

Notify

Customer

Service

Request

Service

Request

Develop Cognitive Agent

Determine

Worker

Attributes

Process

Previous

Outcomes

Map Request

Type to

Worker

Cognitive

Agent

U

Process

Execution Data

Capture Environment

Determine

Process

Design

Select

Quantitative

Metrics

Select Desired

Outcomes

Monitor Process Execution

Capture

Process Data

Track

Quantitative

Metrics

Assess Process Execution Outcome
Compare

Metrics

Against

Outcomes

Determine

Outcome

Plan for Task Selection

X

215

performs all the necessary process execution. In this hiBPM pattern, we consider the case where

the cognitive agent provides an advice to the human knowledge worker who can then decide to

approve or reject the provided recommendation.

Looking at the hiBPM model in Fig. 8-17, we see that Select Next Best Worker executes the

transitions based on a plan prepared by Select User Engagement. The Select User Engagement

process stage decides a chosen user engagement pattern by reviewing the possible set of user

engagement patterns that can exist for that decision-making process element, instructing which

form of user engagement to execute. A context change, in this case, may trigger a transition to a

different user engagement pattern. E.g., as the collected data becomes more significant, the

provided recommendation is deemed to be more accurate and the Select Next Best Worker can be

shift from advisory to fully autonomous. However, if there are external changes which affect the

quality of autonomous decision making by the cognitive agent, the Select Next Best Worker user

engagement may shift from fully autonomous to a more conservative (less-automated) user

engagement pattern until the model has been retrained; this is the advisory user engagement.

Fig. 8-17: hiBPM model for the advisory user engagement design pattern

Handle Income Service Request

Get Incoming

Request

Review

Service

Request

Assign Request to Worker

Review

Worker List

Assign to

Worker

Process Service Request

Process

Service

Request

Produce

Service

Outcome

Notify

Customer

Service

Request

Service

Request

Develop Cognitive Agent

Determine

Worker

Attributes

Process

Previous

Outcomes

Map Request

Type to

Worker

Cognitive

Agent

U

Identify User Engagements

Indentify User

Engagements

for Decision

Select

Possible

Subset

Select User Engagement

Evaluate

Requirements

Select User

Engagement

Type User

Engagement

Plan

X

Select Next

Best Worker

216

8.7.4 Using Autonomous User Engagement with Human Governance

Users’ attitude towards automation in general, and the system they are interacting with in

particular, can change based on the accumulated history of the performance of the cognitive agent,

including the quality of the output the agent produces. If we view this as a progression, then the

cognitive agent outcome would be first treated as an advisory recommendation at one end, to a

fully autonomous decision at the other end. Quality requirements and organizational domain

constraints will affect the transitions as well, with organizations and individual decision-makers

striving for hiBPM models that reflect their changing enterprise requirements, business domain

constraints, and level of trust in cognitive agents they are employing.

Fig. 8-18: hiBPM model for the human governance design pattern

Review Cognitive Agent Decisions
Capture

Process

Execution

Outcomes

Analyze Based

on Accuracy

Metrics

Contrast with

Human

Worker

Outcomes

Generate

Reconfig Plan

Handle Income Service Request

Get Incoming

Request

Review

Service

Request

Assign Request to Worker

Review

Worker List

Assign to

Worker

Process Service Request

Process

Service

Request

Produce

Service

Outcome

Notify

Customer

Service

Request

Service

Request

Develop Cognitive Agent

Determine

Worker

Attributes

Process

Previous

Outcomes

Map Request

Type to

Worker

Cognitive

Agent

U

Identify User Engagements

Indentify User

Engagements

for Decision

Select

Possible

Subset

Select User Engagement

Evaluate

Requirements

Select User

Engagement

Type User

Engagement

Plan

X

Select Next

Best Worker

217

In Fig. 8-18, we show another hiBPM model with the governance function added to the previous

example. In cases where there is not complete trust in the quality of decision making, a governance

function may be introduced where, at some defined interval and aggregate level, the outcomes of

cognitive agent decision-making would be collectively reviewed and audited. Here, the nature and

impact of this user engagement is not limited to the process containing the decisions that cognitive

agents are assisting human decision-makers with, but also introduces new supporting processes

that monitor and evaluate the cognitive-enhanced business processes to enable humans and

cognitive agents to adapt to their changing capabilities.

8.8 Evaluation

The evaluation of the case study research was performed both during and after the conclusion of

the case study. Periodic project group meetings were held with the stakeholders where the hiBPM

models were presented that pertained to the domain segment that was the focus of that particular

period. Feedback was solicited on the ability of the hiBPM models to visualize and analyze the

domain segment under study, with the result of the evaluations guiding the next round of study

and modeling. These meetings were scheduled and moderated by main contact point (the Secnior

Software Engineer) from the company.

At the conclusion of the case study a qualitative evaluation of the performance of the overall

hiBPM framework, the modeling notation, and the methods provided was done. This qualitative

evaluation was done in the form of a concluding questionnaire (presented in the Appendix) that

was filled out by the Senior Software Engineer from the company where the effectiveness of the

hiBPM framework was evaluated against the measures of hiBPM’s quality and ability to capture

the domain and provide a means to understand and reason about possible solutions to the stated

business problem. This individual was ideally suited for evaluating the effectiveness of the hiBPM

models against the previously mentioned objectives based on their involvement in the reviewing

of hiBPM models during the periodic meetings. The questionnaire attempted to find out the

effectiveness of the hiBPM framework by asking specific questions on the ability of hiBPM

models to characterize the domain, the usefulness of the hiBPM modeling notations in analysis,

218

and if hiBPM aided in determining at an optimum design faster compared to a situation if hiBPM

had not been used.

8.8.1 Evaluation against Research Objectives

The results from the questionnaire against the research objectives (mentioned in Section 8.3) are

given below,

Use Goal Model to Design hiBPM Model: The term “simplified” in Simplified CBO could mean

differently from enterprise to enterprise. The NFR framework was used to determine key softgoals

to consider during any CBO adoption exercise. These softgoals were then used to design the

hiBPM model for the target organization while considering the satisficing of those softgoals. Goals

and tasks were mapped to hiBPM constructs, such as process stages, process phases, and process

elements. The questionnaire respondent confirmed that the structured methods provided as part of

the hiBPM framework were able to produce a hiBPM model for the target enterprise considering

their Simplified CBO objectives, including the supporting processes that needed to be introduced

for those objectives.

Incorporate Context for Continuous Reconfiguration: The questionnaire participant confirmed

that the hiBPM framework provided the mechanisms (in the form of the modeling notations and

accompanying methods) to identify contextual variables at context sensing points in the hiBPM

model that were necessary for introducing continuous redesigns in the hiBPM model. Further, the

hiBPM models could emphasize the capturing and managing of context and relaying this context

to variations points for redesigning sections of the hiBPM model for ensuring continuing

satisfaction of enterprise business objectives for simplified CBO adoption.

Develop Pre-Built hiBPM Design Patterns: Multiple solution patterns could offer a systematic

way of attaining different design objectives for the simplified CBO adoption. The questionnaire

participant confirmed that the hiBPM framework was able to offer visualization of how design

knowledge could be expressed in a reusable form that would address a wide range of business

problems, particularly around reducing the complexity of CBO adoption. Further, the participant

confirmed that the examples of hiBPM design patterns that were created for several commonly

219

occurring scenarios identified during the project discussion phase could be considered to be part

of a design catalogue that the company could build over time to reduce the time and cost of CBO

adoption.

8.8.2 Shortcoming of the hiBPM Framework

The responses in the questionnaire also identified several limitations to the hiBPM framework. It

was not possible to model or analyze the full range of design possibilities for integrating supporting

processes, including where the cognitive agent was to be used, due to a lack of support in the

hiBPM framework for specific design characteristics of cognitive agents.

The hiBPM framework could neither entirely visualize nor provide methods to analyze where the

context needed to be captured and analyzed and where reconfiguration of the hiBPM model should

happen. Context could be of many types, and different contexts could change at different

frequencies. Being able to differentiate between these scenarios was not possible in hiBPM

models. When to trigger changes in the hiBPM model was also not supported. Finally, the

mechanism of how the appropriate plan is selected, and how the redesign was performed, could

not be explained by the present notations and constructs in hiBPM.

Finally, the hiBPM framework was not able to combine the different perspectives that would

invariably be part of a single solution pattern. For example, a pattern that involved a design for the

cognitive agent, a process architecture configuration, and a specific way of having this cognitive

agent being engaged in the business process, could not be expressed. Showing relationships where

process stages are responsible for creating “parts” (i.e., a design pattern) for a “whole” (i.e., a

solution catalogue) is also not present.

8.8.3 Learnings from the Case Study

The hiBPM framework (along with the application of the NFR framework) proved valuable to

understand what the requirements for Simplified CBO adoption would be for different enterprises.

The hiBPM framework was applied to a range of situations and suitable models were produced

that showed possible hiBPM model configurations. The answers to the questionnaire indicated that

overall, the hiBPM framework was able to help (a) determine the (re)configuration of the process

220

architecture that was needed for simplifying adoption of cognitive agents in an existing business

process, (b) uncover any additional processes that needed to be introduced to attain non-functional

requirements for the enterprise, and (c) minimize the cost and duration of any implementation

exercise by utilizing knowledge-based hiBPM model patterns present in pre-populated solution

catalogues. Through the above, the cycle of discovery would be significantly reduced, as would

be the requirement for highly skilled technical staff required for any project implementation.

As with the previous case study covered in Chapter 7, not all hiBPM modeling notations were

required or used for actual model construction and analysis. The availability of different hiBPM

constructs was appreciated by the participating company as different client environments would

require using different modeling constructs. All of the modeling notations were found to be useful

in the example that we used in the case study. However, the different ways of configuring the

hiBPM model were not fully explored or utilized. For example, there are many ways of showing

data flows or sequence flows between various structural elements. Not all of those were needed

for our example in this case study. The same applies to other hiBPM modeling notations as well.

Goal modeling was particularly useful in this case study as it allowed the construction and analysis

of both brownfield and greenfield customer environments, i.e., environments with existing

business processes and environments where business processes did not presently exist.

Finally, a limitation to the evaluation was the inability to validate the hiBPM framework in actual

client settings, i.e., where the users of the IBM Business Automation Workflow software could

create hiBPM models and analyze the different configurations based on their non-functional

objectives.

8.9 Conclusion

Enterprises are increasingly taking advantage of cognitive computing to improve their business

operations, resulting in greater operational efficiencies through better decision-making and

ongoing cycles of learning and improvement. Organizational adoption of such advanced

capabilities is difficult as user acceptance of advice and recommendations from an automated

system requires the development of trust over time. Business processes and the processes

responsible for user engagement with enterprise cognitive systems need not only to be designed,

221

but also have to change together with the supporting processes that can emerge and evolve over a

period of time to monitor, evaluate, adjust, or modify the cognitive-enhanced business processes

to enable employees to adapt to the enhanced capabilities of cognitive systems. As part of this case

study, we discovered these hiBPM user engagement relationships that would signify the changing

of relationships between the use of cognitive systems in these cognitive-enhanced business

processes.

Any solution needs to be multi-dimensional and consider the design of the cognitive systems, their

integration in business processes, and their usage by human users; while considering the changing

nature of the business, human engagements, and systems complexity. At design-time, these are

often unknown, so it is challenging to design the business process integration and simultaneously

being able to achieve non-functional requirements of simplifying the cost and complexity of the

overall solution. Thus, it is imperative not just to consider the design requirements of the cognitive

systems for integrating into business processes, but also the context (and the possibility of changes

to context) in which they are to operate.

In this chapter, we present a case study where the hiBPM framework was applied to the design of

cognitive-enhanced business processes. Specifically, we considered designing and configuring

hiBPM models when non-functional requirements for simplifying the adoption of cognitive agents

in enterprises needed to be considered. The NFR framework was used to determine and prioritize

the softgoals to consider during such an adoption. In order to achieve certain softgoals, such as

adaptability and learnability, we identified the external context that was to be monitored and to be

then used to determine alternative hiBPM model configurations at key variation points. We used

solution catalogues to identify design patterns that could be used to propose hiBPM model

configurations for reducing the adoption barrier. Through the application of the hiBPM framework

in this case study, we found some interesting patterns on how hiBPM models could be configured.

222

9 Conclusions

9.1 Summary

The objective of this PhD research project was to characterize the fundamental types of software-

enabled enterprise transformations and to provide conceptual modeling techniques for analyzing

and designing process architectural reconfigurations to analyze these transformations. An essential

assumption in this thesis was that having reconfigurable and flexible business processes enables

these software-enabled enterprises to respond to changing situations by selecting suitable process

architectural alternatives that help best meet enterprise business goals. We now review the stated

research objectives in Chapter 1 against the research work performed as part of this thesis project.

Our first research objective was “to identify a set of characteristics of enterprises undergoing

change due to software technology innovations and determine a set of requirements for a

conceptual modeling framework that can model and analyze the reconfigurations of enterprise

process architectures”. In Chapter 3, we performed a systematic literature review to identify

common traits present in enterprises that are incorporating emerging digital technologies and

software to foster innovation and change. By performing a systematic literature review, we

discovered commonalities across multiple organizations and industry segments and extracted them

as a set of characteristics of such enterprises. These characteristics were then abstracted to uncover

a set of requirements for an conceptual modeling framework that would allow modeling and

analyzing these characteristics. The requirements were deduced by studying each characteristic

with regard to its implications to the enterprise from a process perspective.

Our second research objective was “to use these requirements to design a conceptual modeling

framework that identifies the upstream factors (i.e., the “whys”) that should be considered in the

design of business and software processes that can be traced to enterprise business objectives”. In

Chapter 5, we introduced the hiBPM framework that can visualize multiple business and software

processes and their relationships as part of an overall process architecture, including various

possible configurations that can occur. In Chapter 6, we provided accompanying methods and

techniques to guide the selection of alternative process architecture configurations that help meet

223

certain enterprise objectives through modeling and analyzing changes in the hiBPM model. This

thesis extends the preliminary work done in [26] and [27] by developing the hiBPM framework

and adding new constructs, details and preciseness to the previously introduced notations.

Our third research objective was “to consider the downstream effect (i.e., the “hows”) of software

systems design and software usage during the design of business processes, including

acknowledging the interplays between software design and the design of business processes that

use these software”. In Chapter 5 and Chapter 6, we emphasized the existence of different types

of hiBPM process constructs for modeling the interactions between processes responsible for

developing software tools and artifacts, and the processes where these software are used. Process

stages offered insight into where software artifacts and tools are built versus where they are used,

and the existence of planning process stages that influences the execution of the process stages

responsible for either building or using the software artifacts. These were captured as design-use

and plan-execute relationships in a hiBPM model. Further, through sense-and-control pathways,

areas of the enterprise responsible for collecting data and using it for adaptation and transformation

were identified.

9.2 Contributions

In Chapter 3, we presented several requirements for a conceptual modeling framework that would

help understand and analyze the type of transformations that could be undertaken in software-

enabled enterprises. We revisit those requirements individually below;

R1 - Relationship Amongst Processes: hiBPM models were able to show the relationships

between multiple business and software processes that result in a process architecture by

representing aggregations of activities as process stages and using relational linkages to show the

associations between them. The resulting process architecture differed from other, prior, notions

of business process architecture, for example, as presented in [50] and [51]. In the process

architecture presented in [50], only three types of relationships were highlighted, sequences,

decomposition and specialization, whereas additional ways of considering the relationship

between processes by considering notions such as composition, specialization, trigger, and

information flow were defined in [51]. We went beyond these prior contributions by introduction

224

relationships such as plan-execute, design-use, and sense-and-control that allow additional

dimensions of changes to be analyzed in the process architecture. These relationships helped

analyze ongoing changes in the enterprise through hiBPM models and use process architectures to

model those changes and analyze possible variants of process architecture configurations that can

exist.

R2 - Multiple Types and Levels of Processes: As part of our motivating arguments in Chapter

1, we mentioned that it is no longer sufficient to study and optimize individual and isolated

business processes to accommodate change in enterprises. Instead, when considering the process

architecture, we need to ignore the traditional boundaries that demarcate the different types of

processes, such as business or software, and find additional possibilities for redesigning that goes

beyond what the analysis of a single process could offer. There would be different levels of

processes, with some processes being responsible for strategic planning that influence the

behaviour of operational processes, whereas other processes would be building software artifacts

that are used elsewhere in the process architecture. hiBPM was able to capture these different

process types and levels using the relational elements of plan-execute, design-use, and sense-and-

control. Process boundaries are used to highlight the segregation between different areas in the

hiBPM model. The approach is different from that of other enterprise modeling approaches. For

example in ArchiMate [44], the enterprise layers map to different functional areas, such as

business, application, and infrastructure, whereas the hiBPM framework highlights the process

types and levels based on their contribution to other parts of the hiBPM model.

R3 - Enterprise and Process Goals: As part of the hiBPM framework, we used goal models to

help determine the structure of the process architecture by constructing and navigating the goal

graphs and seeing how a goal structure can be applied to an appropriate configuration of the

process architecture model. Using goal models for analyzing and comparing alternative options is

well established in scholarly literature. There is already significant work done on associating goal

models and process models [93][188][189][205]. Our work differs from these as we consider

associating process stages with goals or softgoals, as these process stages indicate some

accomplishment of enterprise functional or non-functional objective. The goal models are further

225

able to provide a relational structure to the hiBPM model, while also helping populate the internals

of these process stages.

R4 - Trade-Off Analysis: Enterprise are expected to function in uncertain environments. Thus,

these enterprises need to have ingrained in their process architecture a certain degree of flexibility

that permits the enterprise to reconfigure its process architecture as needed. However, maintaining

this flexibility comes at a cost; this cost can be analyzed through trade-off analysis using goal

models. Further there are many ways of designing the hiBPM model, with each design

configuration still attaining the enterprise or process functional goal but other non-functional goals

may not be satisfied. The goal models were additionally used for deciding between hiBPM model

alternatives by analyzing possible configurations of the process architecture that satisfy both

functional and non-functional goals. This was done by identifying variation points in the hiBPM

model where there could exist alternative process architecture configurations. Reconfigurations to

attain functional goals can be shown as multiple choices using OR decompositions in the goal

model. We used existing techniques for creating goal models and performing goal satisfaction

analysis [172]. However, we associated the goal models (for performing trade-off analysis) at

variation points in the hiBPM model; there were locations where the hiBPM model was open to

reconfiguration.

R5 – Abstract Software Artifact Design: Through the use of design-use and plan-execute

relationships, hiBPM models could indicate where software tools and artifacts were being built

and where they were being used, including the planning that needed to be done for the building of

and using of these software tools and artifacts; these were presented as designs in the hiBPM

model, with the design completeness providing guidance to supporting evolvability requirements

for those software artifacts. Flexibility in process execution was provided through the creation of

plans that would guide the execution. These abstract designs permitted conceptual and visual

analysis of their contribution to, and participation in, the overall enterprise business and software

processes, particularly those which need to be altered to introduce change. Having such abstract

software artifacts as part of the design of the hiBPM model allows the capturing of processes that

are responsible for their building and the processes where these artifacts are used, without

necessarily having to detail the complete requirements and structure of the artifacts being

226

developed. This differs from other artifact-centric process modeling approaches such as those

proposed in [80].

R6 – Pushing Design Decisions Downstream: Through design-use relationships, the hiBPM

framework was able to show the existence of two levels of processes, one where the process is

responsible for the creation of the software artifact while the other is where the process is

responsible for (repeatedly) using the designed artifact. Further, there were many possible ways of

designing this software artifact, ranging from full designing where all design decisions have been

made for that artifact to minimum designing where a lot of choices regarding artifact use are left

at use-time. Such a dimension of change allowed considering situations where moving an activity

in the other direction reduces the level of automation available to the use process stage, while

moving a decision increases the level of customizability of the tool since the decision is no longer

built into the tool and can be changed during its use. We consider designs to be black-box artifacts

in hiBPM, tools that are produced in one part of the hiBPM model, and to be used at another part.

This notion of designs differs from approaches proposed by other researchers where designs are

considered to be absolute or completely defined [181] or where designs are considered along with

the environment in which they are to be used in [182].

R7 – Upfront Planning vs. Deferred Planning: Through hiBPM models, we were able to show

planning relationships between different process stages, with various plans being prepared based

on their execution by downstream processes. Some plan-related activities were left for later

because of the unavailability of data required for processing the plan. Through plan-execute

relationships, the hiBPM model was able to illustrate a degree of planning, ranging from full

planning where each downstream activity is entirely planned, to minimum planning where a lot of

decisions regarding process execution are left at execution time. The motive for having plan-

execute relationships in hiBPM is to maintain a degree of enterprise flexibility by analyzing how

much to pre-plan in the planning stage and how much to leave to the execution stage. Plan-execute

relationships also help identify different parts of the hiBPM model, such as those responsible for

planning, and those responsible for executing, irrespective of the areas of the organization those

processes are placed in. The plan-execute relationship in hiBPM provides reasoning about how the

227

plan came about and how much to pre-plan. This differs from the ArchiMate servicing relationship

as that is a simple service relationship with one layer providing a service to another layer.

R8 – Feedback and Feedforward Paths: In hiBPM, paths of change were identified and analyzed

as sense-and-response feedback paths through which the enterprise adapts and improves. Process

stages would be designated as either sensing or responding to the sensed data, based on sense-and-

control relationships. Sensing and responding take place in business and technology processes that

exist at different levels of dynamics and timescales. By differentiating control and design inputs

from regular data inputs, and sensing from regular outputs, the hiBPM framework was able to

locate adaptive loops as they exist within a model. hiBPM was also able to highlight the various

relative timescales (based on the different process levels, and recurrence relationships between

process stages) that such a loop would traverse. The inclusion of feedback paths in hiBPM models

differs from other, somewhat similar, approaches of adaptive process design, such as that presented

in [90] where the feedback paths are used to assign resources and take corrective actions in the

execution of processes, rather than redesigning them at an architectural level. In hiBPM, we are

mostly interested in emphasizing the information flow back into a higher-order process stage rather

than the iterative executions of the same activities. Such information flows can then assist with

determining appropriate selection of hiBPM process configurations.

R9 – Represent and Reason about Speed, Timescales and Process Cycles: Once a hiBPM

model had been created, it was possible to reason about the design of the process architecture,

particularly around the speed of execution of various process stages that produce an enterprise

deliverable. Through adjustments and modifications to this hiBPM model, it was possible to

reconfigure the model for improved recurrence of the process stages or faster delivery of the

enterprise product of service. These design modifications can be done by making changes to the

hiBPM structural elements, by making changes to the hiBPM relational element, or a combination

of both. As detailed in Chapter 5 and Chapter 6, hiBPM offers many different ways of defining

the process architecture along various dimensions of change, which help attain diverse enterprise

requirements around the speed and frequency of product or service delivery. By determining and

maintaining variation points in the process architecture, it is possible to incorporate the design

228

modifications as needed once the necessary information is available to aid in decision making and

trade-off analysis.

9.3 Limitations

As part of the hiBPM framework, we provided a modeling notation, and accompanying methods,

to aid enterprise architects and process architects in designing and analyzing process architectural

configurations. However, there exist both limitations to the hiBPM framework and threats to the

validity of the research performed. We discuss these below,

Limitations in the Systematic Literature Review: In Chapter 3, we provided the systematic

literature review process employed for independent reproduction by other researchers. This review

relied on qualitative reasoning and analysis of articles and it is conceivable that other reviewers

executing a similar review process may see slightly different results or uncover additional

characteristics. Further, a reviewer may come up with a different set of characteristics if other

industry trends are selected at the initiation of the literature review. This list of characteristics was

not meant to be exhaustive or absolute, as the identification process may be prone to observer bias.

Our intention was not to provide a precise definition of software-enabled enterprises but to

discover characteristics for developing an understanding of the key challenges in modeling

enterprises that are underdoing transformation due to emerging digital technologies.

Limitations in the Design of the hiBPM Framework: Our research has been grounded in the

positivist epistemological theory, and that is reflected in the selection of design science research

as the methodology used for developing our hiBPM framework. As a result of this approach, we

explain the causal relationships and structuring of order in the organizations through a sequence

of activities for theorizing, justifying, building and evaluating the hiBPM framework. This is

opposed to other research methodologies, like action research, which promotes a more

collaborative approach towards the development and refinement of a theory where the researcher

and practitioner iteratively and cooperatively work towards solving research problems (that can

include the development of artifacts) in an organizational context. Thus, the use of other methods

in this research project could have uncovered additional research findings.

229

Limitations in the Case Study Evaluation: There were some limitations with regards to the

research projects with industry partners, particularly around the nature and availability of research

data and team members. Both research projects were time bounded and a predetermined problem

was presented that required understanding and analysis. Relevant stakeholders were made part of

the research team and were available to have team discussions and analyze alternative design

choices, including reviewing suitable alternatives that would solve the identified problem. In some

case studies, additional data was provided in the form of written documents and architectural

diagrams to supplement the team discussions. The defined structure of the research projects both

provided and limited the context of the case study and influenced the research activities performed.

Not all hiBPM modeling constructs were equally utilized in analyzing the problem domain across

both case studies.

Limitations in the Usage of hiBPM: hiBPM does not provide complete coverage for modeling

and designing the processes and software for enabling enterprise transformations but rather is an

initial step towards this direction. In hiBPM, we focus on the problem space rather than the solution

space. We try to understand the situation that an organization finds itself in and propose alternative

ways of solving that problem. We abstract away from implementation details by not providing the

implementation of the solution. This is left to other modeling approaches (conceptual or otherwise)

to continue the design activities that lead towards solution implementation. Moreover, when

studying a domain, hiBPM models only capture sufficient detail that is necessary for analyzing

alternative ways of configuring the space, as the expanse of detail is difficult to assess and may

require multiple rounds of iterations to determine what details to include, and what to omit out.

This is a subjective exercise and different modelers may approach this exercise differently and

produce different hiBPM models for the same domain being studied.

9.4 Significance

This work contributes to several research areas, including enterprise architecture, business process

design, and software process design. We discuss each area below,

230

Enterprise Architecture: Existing enterprise architecture frameworks and approaches, such as

ArchiMate [44] and TOGAF [45] allow for designing enterprises by considering multiple

enterprise layers and functions. However, they do not cater to periodic and variable changes

including the ability to decide between multiple alternative enterprise configurations and dealing

with design uncertainty. Through the hiBPM framework, we consider the bidirectional adaptation

influences between business and technology, particularly those enabled by software systems and

business processes. hiBPM provides the necessary notations and methods to allow enterprise

architects to study and analyze granular and ongoing shifts in process architecture over shorter

periods, particularly for enterprises in uncertain environments. hiBPM models allow modeling of

fundamental transformation requirements of enterprises from multiple perspectives (process, goal,

and artifact) while reasoning about interplays and influences amongst (as well as within) these

perspectives. The plan-execute and design-use relationships in hiBPM permit enterprise architects

to reason about how the plan or the design came about (thus allowing contemplation of alternative

configurations) as opposed to being a simple service relationship between two adjacent layers in

enterprise architecture.

Business Process Design: Present approaches to modeling and analyzing business process

architectures are used to provide an abstract representation of multiple processes that exist in an

enterprise [50][51]. These also provide a means for developing a more holistic view of the

organization by associating business process modeling and enterprise architecture while

additionally decomposing processes into a higher level of granularity that provides increased

visibility on the constituent parts of the integrated processes. By introducing the hiBPM

framework, we contribute to these existing approaches by focusing on the need for ongoing change

in the enterprise and the ability to accommodate uncertainty in the design of process architectures.

Through hiBPM models, we can analyze possible variants of process architecture configurations

that exist through emphasizing alternative designs that exist at variation points in the hiBPM model

and various means of reconfiguring the hiBPM model for enabling fundamental transformation of

the enterprise. Through the design and plan artifacts, we can identify processes that produce

software tools and artifacts, and processes that aid other processes in the production of these tools.

231

This way, we can determine an ecosystem of processes (including their relationships) that exist,

and collectively analyze them, without having to focus on individual processes at a time.

Software Processes Design: There have been significant innovations in the design of software

process to better support software development and production activities, including process

automation, by focusing on activities, software artifacts to be produced or used, and the

participants in these processes [80][86][87][88]. However, changing business models or strategic

direction requires successfully introducing software process reconfigurations to influence the

continuous delivery of value, product and services. Thus, it is no longer sufficient to consider

software processes separately from business processes. Through hiBPM models, we can

understand these possible forms of software process reconfigurations to identify critical points of

process variations and the influencing factors that contribute towards these reconfigurations. We

can also link the impact of software process reconfigurations to business goals and requirements

in order to exploit synergies and mitigate negative consequences in software production. We can

show how the capturing and usage of various software metrics can be used for ongoing software

process design improvement, mainly through studying the hierarchical relationship between the

processes in all stages of the feedback loop, i.e., sensing, interpreting, deciding and acting.

9.5 Future Directions

As part of this thesis research, several areas were identified that we plan on expanding on and

incorporating into the hiBPM framework as part of future work. Additionally, some of the

limitations in the hiBPM framework mentioned in the previous section can also be considered. We

discuss these in further detail below,

Goal-based and Actor-based Analysis of hiBPM models: Presently we offer limited guidelines

on how hiBPM models and goal models can be associated with reconciliation and traceability

purposes. However, additional work remains to be done for better associating both these sides,

including providing methods for traceability of analysis. We can further leverage other goal

modeling techniques and introduce actor modeling to supplement the analysis that can be

performed in hiBPM. This may result in the introduction of additional constructs, notations and

232

methods to hiBPM models. Further, there may be extensions proposed to existing goal modeling

and actor modeling techniques.

Use of Software in Processes: Through the use of hiBPM designs and plans, we show the types

of software processes that can be designed, including the software artifacts that they need to build.

As mentioned previously, our aim was primarily to reason about the design of software processes,

and the artifacts they produce, through better evaluation of the problem space. The design of these

produced software artifacts is considered at an abstract level (as explained using design-use

relationships) without discussing the details on how these software systems would be

implemented. We wish to extend hiBPM to be able to better contribute towards the formulation of

the requirements of these software systems.

Design Patterns and Solution Catalogues: We introduced the hiBPM solution catalogues in this

thesis and provided some preliminary design patterns for common business problems that we

encountered during our case study research. We aim to further populate our solution catalogues

with new design patterns as we discover them. The expectation is that these catalogues would

contain commonly accepted patterns for solving problems from an enterprise configuration

perspective. The solution catalogues would not just include hiBPM models but would also show

how the software systems design could be determined and how it would satisfy enterprise goals

and actor goals.

Data and Context Integration: Monitoring and analyzing the external environment is necessary

for enabling agility in enterprises, with flexible processes and adaptable software systems being

designed accordingly. This requires identifying and capturing the external data and monitoring for

its availability. This data can then be utilized at variation points to determine the appropriate

hiBPM variant after suitably assessing the trade-offs involved. We will further expand on how the

external context is monitored and the necessary plans determined for reconfiguring of portions of

the hiBPM model, including the degree of planning and designing that needs to be done. Another

area where we envision additional research being required is the modeling and use of internal

context and its effect on the requirements of system design and process reconfiguration.

233

Moving to Automated Processes: The introduction of intelligent systems in enterprises usually

results in increased automation, resulting in changes in responsibility assignments among humans

and automated systems. The modes of engagement between users and systems were covered

preliminarily in this thesis; however, we plan to study this change dimension in more detail. We

aim to identify further the requirements for process automation, including the expressiveness

needed to cover an initial set of cognitive services, business patterns, recommendation types, and

user engagement modes, while identifying meta-level processes that would help with learning and

ongoing improvement for both enterprises and systems.

Formalization: The hiBPM framework relies on model visualization to capture and analyze a

domain, with textual explanations provided on how the modeling constructs are to be used.

Therefore, users of the hiBPM framework can quickly adopt the modeling approach without

needing to spend significant effort in learning the notation and its usage. However, as the hiBPM

modeling user base grows and the framework is used more widely, a more precise definition may

be needed to ensure that the notation is used correctly. For this, algebraic definitions may be needed

for key constructs in the hiBPM framework. Such formalizations would also help with traceability

and transformation between different modeling languages (e.g., hiBPM to goal models).

Improvement to hiBPM Notation: There are several enhancements that can be made to the

hiBPM modeling notations. Additional sequencing information can be made part of the hiBPM

model to improve readability and help differentiate between multiple levels. Notations and rules

for collapsing processes can be added to simplify the model and hide portions that are irrelevant

for analysis. Improved documentation and a user guide can accompany the hiBPM framework that

would allow for practical adoption by a wider user base. Symbols can be introduced that show

which elements in the hiBPM model are associated with corresponding elements in a goal model.

Additionally, variation points can be explicitly highlighted in the hiBPM model.

234

Appendix - Questionnaire

235

References

1. Slaughter, S. A., Levine, L., Ramesh, B., Pries-Heje, J., Baskerville, R.: Aligning software processes with

strategy. MIS Quarterly, pp. 891-918 (2006)

2. Wilkinson, M.: Designing an “adaptive” enterprise architecture. BT Technology Journal, 24(4), pp. 81-92

(2006)

3. Westerman, G., Bonnet, D., McAfee, A.: The Nine Elements of Digital transformation. MIT Sloan

Management Review (2014)

4. Fuggetta, A.: Software process: A roadmap. In Proceedings of the Conference on the Future of Software

Engineering, pp. 25-34, ACM (2000)

5. Dietz, J.: Enterprise Ontology: Theory and Methodology. Springer, Berlin-Heidelberg (2006)

6. Dijkman, R., Vanderfeesten, I., Reijers, H.: Business process architectures: Overview, Comparison and

Framework. Enterprise Information Systems, 10(2), pp. 129-158 (2016)

7. Yu, E., Deng, S., Sasmal, D.: Enterprise architecture for the adaptive enterprise–A vision paper. In Trends in

Enterprise Architecture Research and Practice-Driven Research on Enterprise Transformation, pp. 146-161,

Springer Berlin Heidelberg (2012)

8. Ridley, D.: The Literature Review: A Step-by-Step Guide for Students. Sage Publications Ltd (2008)

9. Brereton, P., Kitchenham, B. A., Budgen, D., Turner, M., Khalil, M.: Lessons from applying the systematic

literature review process within the software engineering domain. The Journal of Systems & Software, 80(4),

pp. 571-583 (2007)

10. Petticrew, M., Roberts, H.: Systematic reviews in the social sciences: A practical guide. Blackwell Publishing

(2006)

11. Okoli, C., Schabram, K.: A Guide to Conducting a Systematic Literature Review of Information Systems

Research. Sprouts: Working Papers on Information Systems, 10(26) (2010)

12. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design Science in Information Systems Research, MIS

Quarterly, 28(1), pp. 75-105 (2004)

13. Papas, N., O'Keefe, R. M., Seltsikas, P.: The action research vs design science debate: Reflections from an

intervention in eGovernment. European Journal of Information Systems, 21(2), pp. 147-159 (2012)

14. Valverde, R., Toleman, M., Cater-Steel, A.: Design science: A case study in Information Systems re-

engineering. Strategic Information Systems: Concepts, Methodologies, Tools, and Applications. Information

Science Reference (IGI Global), pp. 490-503, Hershey PA, USA (2010)

15. Dubé, L., & Paré, G.: Rigor in Information Systems positivist case research: Current practices, trends, and

recommendations. MIS Quarterly, 27(4), pp. 597-636 (2003)

16. Iivari, J., & Venable, J.: Action research and design science research–seemingly similar but decisively

dissimilar. In European Conference on Information Systems, Vol. 17, pp. 1-13 (2009)

17. Peffers, K., Rothenberger, M., Tuunanen, T., & Vaezi, R.: Design science research evaluation. In International

Conference on Design Science Research in Information Systems, pp. 398-410, Springer Berlin Heidelberg

(2012)

236

18. Yin, R. K.: Case study research: design and methods (4th ed.). Sage Publications, Los Angeles, California

(2009)

19. Kitchenham, B., Pickard, L., & Pfleeger, S. L.: Case studies for method and tool evaluation. IEEE Software,

12(4), 52-62 (1995)

20. Cavaye, A. L. M.: Case Study Research: A Multi-faceted Research Approach for IS. Information Systems

Journal, Vol. 6, pp. 227-242 (1996)

21. Lee, A. S.: A Scientific Methodology for MIS Case Studies. MIS Quarterly, Vol. 13, pp. 33-50 (1989)

22. Shanks, G.: Guidelines for Conducting Positivist Case Study Research in Information Systems. Australasian

Journal of Information Systems, 10(1) (2002)

23. Easterbrook, S., Singer, J., Storey, M. A., Damian, D.: Selecting empirical methods for software

engineering research. In Guide to Advanced Empirical Software Engineering, pp. 285-311, Springer

London (2008)

24. Miles, M. B., Huberman, A. M., Huberman, M. A., Huberman, M.: Qualitative data analysis: An expanded

sourcebook (1994)

25. Dubé, L., Paré, G.: Rigor in information systems positivist case research: Current practices, trends, and

recommendations. MIS Quarterly, pp. 597-636 (2003)

26. Lapouchnian, A., Yu, E., Sturm, A.: Re-designing process architectures towards a framework of design

dimensions. In 2015 IEEE 9th International Conference on Research Challenges in Information Science, pp.

205-210 (2015)

27. Lapouchnian, A., Yu, E., Sturm, A.: Design dimensions for business process architecture. In International

Conference on Conceptual Modeling, pp. 276-284, Springer Cham (2015)

28. Olanrewaju, T.: The rise of the digital bank, McKinsey on Business Technology, McKinsey & Company,

Washington DC, Number 33, (2014)

29. Denecker, O., Gulati, S., Niederkorn, M.: The Digital Battle That Banks Must Win. McKinsey & Company

(2014)

30. Burke, W. Warner: Organization change: Theory and practice. Sage Publications (2013)

31. Aritomo, K., Desmet, D., Holley, A.: More Bank for your IT buck, McKinsey & Company (2014)

32. The Economist: Organisational Agility: How Business can Survive and Thrive in Turbulent Times. A report

from The Economist Intelligence Unit (2009)

33. Bang, S. K., Chung, S., Choh, Y., Dupuis, M.: A grounded theory analysis of modern web applications:

knowledge, skills, and abilities for DevOps. In Proceedings of the 2nd Annual Conference on Research in

Information Technology, pp. 61–62, ACM (2013)

34. Lwakatare, L. E., Kuvaja, P., Oivo, M.: Dimensions of DevOps. In International Conference on Agile Software

Development, pp. 212–217. Springer International Publishing (2015)

35. Smeds, J., Nybom, K., Porres, I.: DevOps: A Definition and Perceived Adoption Impediments. In International

Conference on Agile Software Development, pp. 166 –177, Springer International Publishing (2015)

36. Wasserman, A.: Software engineering issues for mobile application development. In Proceedings of the

FSE/SDP workshop on Future of software engineering research, pp. 397-400, ACM (2010)

237

37. Haeckel, S.: Adaptive enterprise: Creating and leading sense-and-respond organizations. Harvard Business

Press (2013)

38. Cummins, F. A.: Building the agile enterprise: with SOA, BPM and MBM. Morgan Kaufmann (2010)

39. Hoogervorst, J.: Enterprise Architecture: Enabling Integration, Agility and Change. International Journal of

Cooperative Information Systems, Vol 13, pp. 213–233 (2004)

40. Opdahl, A. L., Berio, G., Harzallah, M., Matulevicius, R.: An ontology for enterprise and information systems

modeling. Applied Ontology, Vol 7(1), pp. 49–92 (2012)

41. Anaya, V., Berio, G., Harzallah, M., Heymans, P., Matulevičius, R., Opdahl, A. L., Verdecho, M. J.: The

unified enterprise modeling language—overview and further work. Computers in Industry, Vol 61(2), pp. 99-

111 (2010)

42. Fuggetta, A., Di Nitto, E.: Software process. In Proceedings of the on Future of Software Engineering, pp. 1-

12, ACM (2014)

43. Krafzig, D., Banke, K., Slama, D: Enterprise SOA: Service-Oriented Architecture Best Practices. Prentice Hall

Professional (2005)

44. ArchiMate® 3.0 Specification. Retrieved from http://pubs.opengroup.org/architecture/archimate3-doc/

45. TOGAF® Version 9.1, Retrieved from http://pubs.opengroup.org/architecture/togaf9-doc/arch/index.html

46. Svahnberg, M., Van Gurp, J., Bosch, J.: A taxonomy of variability realization techniques. Software: Practice

and Experience, Vol. 35(8), pp. 705-754 (2005)

47. Van Gurp, J., Bosch, J., Svahnberg, M.: On the notion of variability in software product lines. In Proceedings

of IEEE/IFIP Working Conference on Software Architecture, pp. 45-54, IEEE (2001)

48. Souza, V. E. S., Mylopoulos, J.: Requirements-based software system adaptation. PhD Thesis, University of

Trento, Italy (2012)

49. Doyle, J. C., Francis, B. A., Tannenbaum, A. R.: Feedback control theory. Courier Corporation (2013)

50. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.: Fundamentals of Business Process Management, Chapter

2. Springer-Verlag Berlin Heidelberg (2013)

51. Eid-Sabbagh, R., Dijkman, R., Weske, M.: Business process architecture: use and correctness. In Proceedings

of 10th International Conference on Business Process Management (BPM'12), pp. 65–81, Springer-Verlag

Berlin Heidelberg (2012)

52. Rosemann, M., vom Brocke, J.: The six core elements of Business Process Management. In Handbook on

Business Process Management 1, pp. 105-122, Springer Berlin Heidelberg (2015)

53. Business Process Model and Notation v2.0, Retrieved from http://www.omg.org/spec/BPMN/2.0/PDF/

54. De Giacomo, G., Dumas, M., Maggi, F. M., & Montali, M.: Declarative process modeling in BPMN. In

International Conference on Advanced Information Systems Engineering, pp. 84-100, Springer Cham (2015)

55. Bhattacharya, K., Gerede, C., Hull, R., Liu, R., & Su, J.: Towards formal analysis of artifactcentric business

process models. In International Conference on Business Process Management, pp. 288-304, Springer Berlin

Heidelberg (2007)

http://pubs.opengroup.org/architecture/archimate3-doc/
http://pubs.opengroup.org/architecture/togaf9-doc/arch/index.html
http://www.omg.org/spec/BPMN/2.0/PDF/

238

56. Hull, R.: Artifact-centric Business Process Models: Brief survey of research results and challenges. In OTM

Confederated International Conferences, On the Move to Meaningful Internet Systems, pp. 1152-1163,

Springer Berlin Heidelberg (2008)

57. Bhattacharya, K., Caswell, N. S., Kumaran, S., Nigam, A., Wu, F. Y.: Artifact-centered operational modeling:

Lessons from customer engagements, IBM Systems Journal, Vol 46(4), pp. 703-721 (2007)

58. Gerede, C. E., Bhattacharya, K., & Su, J.: Static analysis of business artifact-centric operational models.

In IEEE International Conference on Service-Oriented Computing and Applications (SOCA'07), pp. 133-140,

IEEE (2007)

59. Liu, R., Bhattacharya, K., Wu, F. Y.: Modeling business contexture and behaviour using business artifacts. In

International Conference on Advanced Information Systems Engineering, pp. 324-339, Springer Berlin

Heidelberg (2007)

60. Nigam, Anil, Caswell, N. S.,: Business artifacts: An approach to operational specification. IBM Systems

Journal, Vol. 42(3), pp. 428-445 (2003)

61. Kumaran, S., Liu, R., Wu, F. Y.: On the duality of information-centric and activity-centric models of business

processes. In International Conference on Advanced Information Systems Engineering, pp. 32-47, Springer

Berlin Heidelberg (2008)

62. Bhattacharya, K., Hull, R., Su, J.: A data-centric design methodology for business processes. In Handbook of

Research on Business Process Modeling, pp. 503-531, IGI Global (2009)

63. Kapoor, S., Bhattacharya, K., Buckley, S., Chowdhary, P., Ettl, M., Katircioglu, K., Phillips, L.: A technical

framework for sense-and-respond business management. IBM Systems Journal, 44(1), pp. 5-24 (2005)

64. Hull, R., Nezhad, H.: Rethinking BPM in a cognitive world: Transforming how we learn and perform business

processes. In International Conference on Business Process Management (2016)

65. Reijers, H. A., Mansar, S. L.: Best practices in Business Process Redesign: An overview and qualitative

evaluation of successful redesign heuristics. Omega, Vol 33(4), pp. 283-306 (2005)

66. La Rosa, M., Aalst, W.M.P. van der, Dumas, M., Milani, F.P.: Business process variability modeling: A

survey. ACM Computing Surveys (2013)

67. Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information Systems: Challenges, Methods,

Technologies. Springer-Verlag Berlin (2012)

68. Weber, B., Reichert, M., Rinderle-Ma, S.: Change Patterns and Change Support Features – Enhancing

Flexibility in Process-Aware Information Systems. Data and Knowledge Engineering, Vol (3), pp. 438–466

(2008)

69. Simidchieva, B. I., Clarke, L. A., Osterweil, L. J.: Representing process variation with a process family.

In International Conference on Software Process, pp. 109-120, Springer Berlin Heidelberg (2007)

70. Santos, E., Pimentel, J., Castro, J., Finkelstein, A.: On the dynamic configuration of business process models.

In Enterprise, Business Process and Information Systems Modeling, pp. 331-346, Springer Berlin Heidelberg

(2012)

71. Ayora, C., Torres, V., Weber, B., Reichert, M., Pelechano, V.: VIVACE: A framework for the systematic

evaluation of variability support in Process-Aware Information Systems. Information and Software

Technology, Vol 57, pp. 248-276 (2015)

239

72. Henricksen, K., Indulska J.: A Software Engineering Framework for Context-Aware Pervasive Computing

(2004)

73. Ceri, S., Daniel, F., Facca F., Matera, M.: Model-Driven Engineering of Active Contextawareness. World

Wide Web, Vol 10(4), pp. 387-413 (2007)

74. Mattos, T.C., Santoro, F.M., Revoredo, K., Nunes, V.T.: A formal representation for context-aware business

processes. Computers in Industry, Vol 65, pp. 1193-1214 (2014)

75. Marrella, A., Mecella, M., Sardina, S.: Intelligent Process Adaptation in the SmartPM System. ACM

Transactions on Intelligent Systems Technology, Vol 8(2) (2016)

76. Marrella, A., Mecella, M.: Cognitive Business Process Management for Adaptive Cyber-Physical Processes. In

Business Information Processing Workshop Co-located with Business Process Management, Vol 308, Springer

Cham. (2018)

77. Nunes, V.T., Santoro, F. M., Werner, C. M. L., Ralha, C. A.: Real-Time Process Adaptation: A Context-Aware

Replanning Approach. IEEE Transactions on Systems Man Cybernetics-Systems, Vol 48, pp. 99-118 (2018)

78. Lapouchnian, A., Mylopoulos, J.: Modeling domain variability in requirements engineering with contexts. In

Conceptual Modeling Conference, pp. 115-130, Springer Berlin Heidelberg (2009)

79. Lapouchnian, A., Yu. E.: Exploring Context Sensing in the Goal-Driven Design of Business Processes. In

IEEE 18th Conference on Business Informatics, Vol. 1, pp. 45-54, IEEE (2016)

80. Kuhrmann, M., Fernández, D. M., Knapp, A.: Who cares about software process modeling? A first

investigation about the perceived value of process engineering and process consumption. In Product-Focused

Software Process Improvement, pp. 138-152, Springer Berlin Heidelberg (2013)

81. Henderson-Sellers, B., Ralyté, J.: Situational Method Engineering: State-of-the-Art Review. Journal for

Universal Computer Science, Vol 16(3), pp. 424–478 (2010)

82. Software & Systems Process Engineering Metamodel Specification (SPEM) Version 2.0. Retrieved from

http://www.omg.org/spec/SPEM/2.0/

83. Jacobson, I., Booch, G., Rumbaugh, J., Rumbaugh, J., Booch, G.: The unified software

development process, Vol. 1, Addison-Wesley Reading (1999)

84. Rumbaugh, J., Jacobson, I., Booch, G.: Unified Modeling Language Reference Manual. The Pearson Higher

Education (2004)

85. Fernández, D. M., Penzenstadler, B., Kuhrmann, M., Broy, M.: A meta model for artefact orientation:

Fundamentals and lessons learned in requirements engineering. In Model-Driven engineering languages and

systems, pp. 183-197, Springer Berlin Heidelberg (2010)

86. Pedreira, O., Piattini, M., Luaces, M. R., & Brisaboa, N. R.: A systematic review of software

process tailoring. ACM SIGSOFT Software Engineering Notes, Bol 32(3), pp 1-6 (2007)

87. Washizaki, H.: Building software process line architectures from bottom up. In Product Focused Software

Process Improvement, pp. 415-421, Springer Berlin Heidelberg (2006)

88. Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., Kern, J.: Manifesto for

Agile Software Development (2001)

89. Schwaber, K., Beedle, M.: Agile software development with Scrum. Prentice Hall (2002)

http://www.omg.org/spec/SPEM/2.0/

240

90. Madachy, R. J.: Software Process Dynamics. John Wiley & Sons (2007)

91. Yu, E., Giorgini, P., Maiden, N., Mylopoulos, J.: Social Modeling for Requirements Engineering. MIT Press

(2011)

92. Yu, E., Mylopoulos, J.: Why goal-oriented requirements engineering. In Proceedings of the 4th International

Workshop on Requirements Engineering: Foundations of Software Quality, Vol 15 (1998)

93. Lapouchnian, A., Yu, Y., Mylopoulos, J.: Requirements-driven design and configuration management of

business processes. In Business Process Management, pp. 246-261, Springer Berlin Heidelberg (2007)

94. Chung, L., Nixon, B. A., Yu, E., Mylopoulos, J.: Non-functional requirements in software engineering, Vol 5,

Springer Science & Business Media (2012)

95. Horkoff, J., Yu, E.: Analyzing goal models: different approaches and how to choose among them. In

Proceedings of the 2011 ACM Symposium on Applied Computing, pp. 675-682, ACM (2011)

96. Ali, R., Chopra, A., Dalpiaz, F., Giorgini, P., Mylopoulos, J., Silva Souza, V.: The evolution of Tropos:

Contexts, commitments and Adaptivity (2010)

97. Borgida, A., Mylopoulos, J.: A sophisticate’s guide to information modeling (2009)

98. Angelopoulos, K., Souza, V. E. S., Pimentel, J.: Requirements and architectural approaches to

adaptive software systems: A comparative study. In Proceedings of the 8th International Symposium

on Software Engineering for Adaptive and Self-Managing Systems, pp. 23-32, IEEE Press (2013)

99. Sutcliffe, A. G., Maiden, N. A., Minocha, S., Manuel, D.: Supporting scenario-based requirements engineering.

IEEE Transactions on Software Engineering, Vol 24(12), pp. 1072-1088 (1998)

100. America, P., Rommes, E., Obbink, H.: Multi-view variation modeling for scenario analysis. In Software

Product-Family Engineering, pp. 44-65, Springer Berlin Heidelberg (2004)

101. Jackson, M.: Problem frames: analysing and structuring software development problems. Addison-Wesley

(2001)

102. Salifu, M., Yu, Y., Nuseibeh, B.: Specifying monitoring and switching problems in context. In 15th IEEE

International Requirements Engineering Conference, pp. 211-220, IEEE (2007)

103. Nuseibeh, B., Easterbrook, S.: Requirements Engineering: A roadmap. In Proceedings of the Conference on the

Future of Software Engineering, pp. 35-46, ACM (2000)

104. Hurtado Alegría, J. A., Bastarrica, M. C., Quispe, A., Ochoa, S. F.: An MDE approach to software process

tailoring. In Proceedings of the 2011 International Conference on Software and Systems Process, pp. 43-52,

ACM (2011)

105. Weiss, D. M.: Software product-line engineering: A family-based software development process. Addison-

Wesley (1999)

106. Coplien, J., Hoffman, D., Weiss, D.: Commonality and variability in software engineering. IEEE Software, Vol

15(6), pp. 37-45 (1998)

107. Gomaa, H.: Designing Software Product Lines with UML, pp. 160-216, IEEE (2005)

108. Bayer, J., Flege, O., Knauber, P., Laqua, R., Muthig, D., Schmid, K. DeBaud, J. M.: PuLSE: A methodology to

develop Software Product Lines. In Proceedings of the 1999 Symposium on Software Reusability, pp. 122-131,

ACM (1999)

241

109. Frakes, W., Prieto, R., Fox, C.: DARE: Domain Analysis and Reuse Environment. Annals of Software

Engineering, Vol 5(1), pp. 125-141 (1998)

110. Liaskos, S., Lapouchnian, A., Yu, Y., Yu, E., Mylopoulos, J.: On goal-based variability acquisition and

analysis. In 14th IEEE International Conference on Requirements Engineering, pp. 79-88, IEEE (2006)

111. Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., Peterson, A. S.: Feature-Oriented Domain Analysis

(FODA) feasibility study (No. CMU/SEI-90-TR-21). Software Engineering Institute, Carnegie-Mellon

University, Pittsburgh PA (1990)

112. Kang, K. C., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: FORM: A Feature-Oriented Reuse Method with

domain-specific reference architectures. Annals of Software Engineering, Vol 5(1), pp. 143-168 (1998)

113. Jacobson, I., Griss, M., Jonsson, P.: Software Reuse: Architecture, process and organization for business

success. ACM Press/Addison-Wesley Publishing Co. (1997)

114. Griss, M. L., Favaro, J., Alessandro, M. D.: Integrating feature modeling with the RSEB. In Proceedings of

Fifth International Conference on Software Reuse, pp. 76-85, IEEE (1998)

115. Robak, S., Franczyk, B., & Politowicz, K.: Extending the UML for modeling variability for system families.

Applied Mathematics and Computer Science, Vol 12(2), pp. 285-298 (2002)

116. von der Maßen, T., Lichter, H.: Modeling variability by UML use case diagrams. In Proceedings of the

International Workshop on Requirements Engineering for Product Lines, pp. 19-25 (2002)

117. Simmonds, J., Bastarrica, M. C., Silvestre, L., Quispe, A.: Variability in software process models:

Requirements for adoption in industrial settings. In 4th International Workshop on Product Line Approaches in

Software Engineering (PLEASE), pp. 33-36, IEEE (2013)

118. Simmonds, J., Bastarrica, M. C.: Modeling variability in software process lines. Departamento de Ciencias de

la Computación. Universidad de Chile (2011)

119. Martıınez-Ruiz, T., Garcııa, F., Piattini, M., Munch, J.: Modeling software process variability: an empirical

study. Software, IET, Vol 5(2), pp. 172-187 (2011)

120. Schnieders, A., Weske, M.: Activity diagram based process family architectures for enterprise application

families. In Enterprise Interoperability, pp. 67-76, Springer London (2007)

121. Babar, Z., Lapouchnian, A., Yu, E.: Modeling DevOps Deployment Choices Using Process Architecture

Design Dimensions. In The Practice of Enterprise Modeling, pp. 322-337, Springer International Publishing

(2015)

122. Andal-Ancion, A., Cartwright, P., Yip, G.: The digital transformation of traditional business. MIT Sloan

Management Review, Vol 44(4), pp. 34-41 (2012)

123. Patel, K., McCarthy, M.: Digital transformation: the essentials of e-business leadership. McGraw-Hill

Professional (2000)

124. Reis, J., et al.: Digital transformation: A literature review and guidelines for future research. World Conference

on Information Systems and Technologies, pp. 411-421, Springer Cham (2018)

125. Henriette, E., Feki, M., Boughzala, I.: The shape of digital transformation: A systematic literature review.

Ninth Mediterranean Conference on Information Systems Proceedings, pp. 431-443 (2015)

242

126. Morakanyane, R., Grace, A. A., O'Reilly P.: Conceptualizing Digital Transformation in Business

Organizations: A Systematic Review of Literature. BLED eConference, pp. 427-443 (2017)

127. Bossert, O.: A Two-Speed Architecture for the Digital Enterprise. In Emerging Trends in the Evolution of

Service-Oriented and Enterprise Architectures. Intelligent Systems Reference Library, Vol 111, Springer Cham

(2016)

128. Haffke, I., Kalgovas, B., Benlian, A.: The transformative role of bimodal IT in an era of digital business.

(2017)

129. Tallon, P. P.: Inside the Adaptive Enterprise: An Information Technology capabilities perspective on business

process agility. Information Technology and Management, Vol 9(1), pp. 21-36 (2008)

130. Berman, S. J.: Digital transformation: opportunities to create new business models. Strategy & Leadership,

Vol. 40(2), pp. 16-24 (2012)

131. Resca, A., Za, S., Spagnoletti, P.: Digital platforms as sources for organizational and strategic transformation:

A case study of the Midblue project. Journal of Theoretical and Applied Electronic Commerce Research, Vol.

8(2), pp. 71-84 (2013)

132. Lan, F., Liu X.: Business model transformation in digital enablement context through frugal innovation:

Learning from Chinese experience. International Journal of Technology, Policy and Management, Vol. 17(4),

pp. 360-373 (2017)

133. Schallmo, D., Williams, C. A., Boardman, L.: Digital transformation of business models—Best practice,

enablers, and roadmap. International Journal of Innovation Management, Vol. 21(08) (2017)

134. Remane, G., et al.: Discovering digital business models in traditional industries. Journal of Business Strategy,

Vol 38(2), pp. 41-51 (2017)

135. Kotarba, M.: Digital transformation of business models. Foundations of Management, Vol. 10(1), pp. 123-142

(2018)

136. Matt, C., Hess, T., Benlian, A.: Digital transformation strategies. Business & Information Systems

Engineering, Vol. 57(5), pp. 339-343 (2015)

137. Loonam, J., et al.: Towards digital transformation: Lessons learned from traditional organizations," Strategic

Change, Vol. 27(2), pp. 101-109 (2018)

138. Delmond, M., et al.: How Information Systems Enable Digital Transformation: A focus on Business Models

and Value Co‐production. HEC Paris Research Paper No. MOSI-2016-1161 (2016)

139. Earley, S.: The digital transformation: staying competitive. IT Professional, Vol. 16(2), pp. 58-60 (2014)

140. Berman, S., Marshall, A.: The next digital transformation: from an individual-centered to an everyone-to-

everyone economy. Strategy & Leadership, Vol. 42(5), pp. 9-17 (2014)

141. Westerman, G.: Why digital transformation needs a heart. MIT Sloan Management Review, Vol. 58(1), pp. 19

(2016)

142. Hossain, M., Lassen, A. H.: How Do Digital Platforms for Ideas, Technologies, and Knowledge Transfer Act

as Enablers for Digital Transformation?. Technology Innovation Management Review, Vol. 7(9), pp. 55-60

(2017)

243

143. Heavin, C., Power, D. J.: Challenges for digital transformation–towards a conceptual decision support guide

for managers. Journal of Decision Systems, Vol. 27(1), pp. 38-45 (2018)

144. Andriole, S. J.: Skills and Competencies for Digital Transformation. IT Professional, Vol 20(6), pp. 78-81

(2018)

145. Burden, A., et al.: Technical debt might be hindering your digital transformation. MIT Sloan Management

Review, Vol. 60(1), pp. 1-5 (2018)

146. Shrivastava, S.: Digital Disruption is Redefining the Customer Experience: The Digital Transformation

Approach of the Communications Service Providers. Telecom Business Review, Vol. 10(1), pp. 41 (2017)

147. Narayanan, V. K.: Customer-focused IT: a process of continuous value innovation. Strategy & Leadership,

Vol 43(4), pp. 11-17 (2015)

148. Kaivo-Oja, J., Roth, S., Westerlund, L.: Futures of robotics. Human work in digital

transformation. International Journal of Technology Management, Vol. 73(4), pp. 176-205 (2017)

149. Shaughnessy, H.: Creating digital transformation: strategies and steps. Strategy & Leadership, Vol 46(2), pp.

19-25 (2018)

150. Wahi, A. K., Medury, Y.: Digital businesses: Creation of a research framework for organizational readiness for

Enterprise 2.0. Big Data: Concepts, Methodologies, Tools, and Applications. IGI Global, pp. 1832-1858 (2016)

151. Weill, P., Woerner, S. L.: Is Your Company Ready for a Digital Future?. MIT Sloan Management Review,

Vol. 59(2), pp. 21-25 (2018)

152. Masuda, Y., et al.: Architecture board practices in adaptive enterprise architecture with digital platform: A case

of global healthcare enterprise. International Journal of Enterprise Information Systems, Vol. 14(1), pp. 1-20

(2018)

153. Troilo, G., De Luca, L. M., Guenzi, P.: Linking data‐rich environments with service innovation in incumbent

firms: A conceptual framework and research propositions. Journal of Product Innovation Management,

Vol 34(5), pp. 617-639 (2017)

154. Gölzer, P., Fritzsche, A.: Data-driven operations management: organisational implications of the digital

transformation in industrial practice. Production Planning & Control, Vol 28(16), pp. 1332-1343 (2017)

155. Kolbjørnsrud, V., Amico, R., Thomas, R. J.: Partnering with AI: how organizations can win over skeptical

managers. Strategy & Leadership, Vol 45(1), pp. 37-43 (2017)

156. Pikkarainen, M., et al.: Data as a driver for shaping the practices of a preventive healthcare service delivery

network. Journal of Innovation Management, Vol. 6(1), pp. 55-79 (2018)

157. Masuda, Y., et al.: An adaptive enterprise architecture framework and implementation: Towards global

enterprises in the era of cloud/mobile IT/digital IT. International Journal of Enterprise Information Systems,

Vol 13(3), pp. 1-22 (2017)

158. Basole, R. C.: Accelerating digital transformation: Visual insights from the API ecosystem. IT Professional,

Vol 18(6), pp. 20-25 (2016)

159. Alos-Simo, L., Verdu-Jover, A. J., Gomez-Gras, J.: How transformational leadership facilitates e-business

adoption. Industrial Management & Data Systems, Vol 117(2), pp. 382-397 (2017)

244

160. Ardolino, M., et al.: The role of digital technologies for the service transformation of industrial

companies. International Journal of Production Research, Vol 56(6), pp. 2116-2132 (2018)

161. Schwarzmüller, T., et al.: How does the digital transformation affect organizations? Key themes of change in

work design and leadership. Mrev management revue, Vol 29(2), pp. 114-138 (2018)

162. Sainger, G.: Leadership in Digital Age: A Study on the Role of Leader in this Era of Digital

Transformation. International Journal on Leadership, Vol 6(1), pp. 1 (2018)

163. Nwaiwu, F.: Review and Comparison of Conceptual Frameworks on Digital Business Transformation," Journal

of Competitiveness. Vol. 10(3), pp. 86-100 (2018)

164. Weber, M. S., Monge, P. R.: Industries in turmoil: Driving transformation during periods of

disruption. Communication Research, Vol 44(2), pp. 147-176 (2017)

165. Andriole, S. J.: Five myths about digital transformation. MIT Sloan Management Review, Vol. 58(3) (2017)

166. Newman, S.: Building Microservices. O'Reilly Media, Inc. (2015)

167. Bosch, J. (Ed.): Continuous Software Engineering. Springer (2014)

168. Ståhl, D., Bosch, J.: Modeling continuous integration practice differences in industry software development.

Journal of Systems and Software, 87, pp. 48–59 (2014)

169. Paasivaara, M., Durasiewicz, S., Lassenius, C.: Using scrum in distributed agile development: A multiple case

study. In Fourth IEEE International Conference on Global Software Engineering, pp. 195–204, IEEE (2009)

170. Fitzgerald, B., Stol, K. J.: Continuous software engineering and beyond: trends and challenges. In Proceedings

of the 1st International Workshop on Rapid Continuous Software Engineering, pp. 1–9, ACM (2014)

171. Van Lamsweerde, A.: Goal-oriented requirements engineering: A guided tour. In Fifth IEEE International

Symposium on Requirements Engineering, pp. 249-262, IEEE (2001)

172. Horkoff, J., Yu. E.: Comparison and evaluation of goal-oriented satisfaction analysis techniques. Requirements

Engineering, Vol 18(3), pp. 199-222 (2013)

173. Emeakaroha, V. C., Brandic, I., Maurer, M., Breskovic, I.: SLA-aware application deployment and resource

allocation in clouds. In 35th Annual IEEE Computer Software and Applications Conference Workshops, pp.

298-303, IEEE (2011)

174. Xu, Y., Chen, N., Fernandez, A., Sinno, O., Bhasin, A.: From infrastructure to culture: A/B testing challenges

in large scale social networks. In Proceedings of the 21th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pp. 2227-2236, ACM (2015)

175. Pinheiro, C., Vasconcelos, A., & Guerreiro, S.: Microservice Architecture from Enterprise Architecture

Management Perspective. In International Symposium on Business Modeling and Software Design, pp. 236-

245, Springer Cham (2019)

176. Taibi, D., Lenarduzzi, V., Pahl, C.: Architectural Patterns for Microservices: A Systematic Mapping Study.

In CLOSER, pp. 221-232 (2018)

177. Seidewitz, E.: What models mean. IEEE Software, Vol 20, pp. 26-32 (2003)

178. NIST. Integration Definition for Function Modeling (IDEF0), 1993. Retrieved from

http://www.idef.com/pdf/idef0.pdf

http://www.idef.com/pdf/idef0.pdf

245

179. CMMI for Development, Technical Report Version 1.3. Retrieved from

https://resources.sei.cmu.edu/asset_files/TechnicalReport/2010_005_001_15287.pdf

180. Simon, H. A.: The sciences of the artificial. 3rd Edition, MIT Press (1996)

181. Baldwin, C. Y., Clark, K. B.: Design rules: The power of modularity, Vol 1, MIT Press (2000)

182. Garud, R., Jain, S., Tuertscher, P.: Incomplete by design and designing for incompleteness. Organization

studies, Vol 29(3), pp. 351-371 (2008)

183. Vernon, D.: Artificial cognitive systems: A primer, MIT Press (2014)

184. Dix, A. Human-computer interaction. In Encyclopedia of database systems, pp. 1327-1331, Springer (2009)

185. Shedroff, N.: Information interaction design: A unified field theory of design. Information design, pp. 267-292

(1999)

186. Bouquet, P., Ghidini, C., Giunchiglia, F., Blanzieri, E.: Theories and uses of context in knowledge

representation and reasoning. Journal of Pragmatics, Vol 35(3), pp. 455-484 (2003)

187. Rosemann, M., Recker, J.: Context-aware process design: exploring the extrinsic drivers for process flexibility.

In Proceedings of the International Conference on Business Process Modeling, Development and Support,

Luxembourg (2006)

188. Koliadis, G., Ghose, A.: Relating Business Process Models to Goal-Oriented Requirements Models in KAOS.

In: Advances in Knowledge Acquisition and Management. PKAW 2006. Lecture Notes in Computer Science,

Vol 4303. Springer, Berlin, Heidelberg (2006)

189. Nurcan, S., et al.: A strategy driven business process modeling approach. Business Process Management

Journal, Vol 11(6), pp. 628–649 (2005)

190. Gandomi, A., Haider, M.: Beyond the hype: Big data concepts, methods, and analytics. International Journal of

Information Management, Vol 35(2), pp. 137-144 (2015)

191. IBM Business Automation Workflow. Retrieved from https://www.ibm.com/ca-en/marketplace/ibm-business-

automation-workflow

192. Gartner Peer Insights, Intelligence Business Process Management Suites Market. Retrieved from
https://www.gartner.com/reviews/market/intelligent-business-process-management-suites

193. Ogiela, L., Ogiela, M. R.: Advances in cognitive information systems. Springer Science & Business Media,

Vol 17 (2012)

194. Ricci, F., Rokach, L., Shapira, B.: Introduction to Recommender Systems Handbook. In Recommender

Systems Handbook, pp. 1-35, Springer US (2011)

195. Chen, P.: The Entity-Relationship Model - Toward a Unified View of Data. ACM Transactions on Database

Systems, Vol 1(1), pp. 9-36 (1976)

196. Object Management Group. Unified Modeling Language (UML), Version 2.5, 2015. Retrieved April 29, 2016

from www.omg.org/spec/UML/2.5.

197. Barros, O.: Business process patterns and frameworks: Reusing knowledge in process innovation. Business

Process Management Journal, Vol 13(1), pp. 47-69 (2007)

198. Eriksson, H. E., & Penker, M.: Business modeling with UML, pp. 1-12, New York (2000)

https://resources.sei.cmu.edu/asset_files/TechnicalReport/2010_005_001_15287.pdf
https://www.ibm.com/ca-en/marketplace/ibm-business-automation-workflow
https://www.ibm.com/ca-en/marketplace/ibm-business-automation-workflow
https://www.gartner.com/reviews/market/intelligent-business-process-management-suites
http://www.omg.org/spec/UML/2.5

246

199. Perroud, T., & Inversini, R.: Enterprise architecture patterns: Practical solutions for recurring IT-architecture

problems. Springer Science & Business Media (2013)

200. Gross, D., Yu, E.: From non-functional requirements to design through patterns. Requirements Engineering,

Vol 6(1), pp. 18-36 (2001)

201. Cunha, H., Sampaio do Prado Leite, J. C.: Reusing non-functional patterns in i∗ Modeling. In IEEE 4th

International Workshop on Requirements Patterns (RePa), pp. 25-32, IEEE (2014)

202. Pree, W., Gamma, E.: Design patterns for Object-Oriented Software Development, Vol 183, Addison-Wesley,

Reading MA (1995)

203. Johnson, R., Vlissides, J.: Design patterns. Elements of Reusable Object-Oriented Software Addison-Wesley,

Reading MA (1995)

204. Lika, B., Kolomvatsos, K., Hadjiefthymiades, S.: Facing the cold start problem in recommender

systems. Expert Systems with Applications, Vol 41(4), pp. 2065-2073 (2014)

205. Kueng, P., Kawalek, P.: Goal-Based Business Process Models: Creation and Evaluation. Business Process

Management Journal, Vol 3(1), pp. 17-38 (1997)

206. Paulk, M. C., Curtis, B., Chrissis, M. B., Weber, C. V. (1993). Capability Maturity Model for Software,

Version 1.1, Technical Report. SEI - Carnegie Mellon University.

207. García-Borgoñon, L., Barcelona, M. A., García-García, J. A., Alba, M., & Escalona, M. J. (2014). Software

process modeling languages: A systematic literature review. Information and Software Technology, 56(2),

103-116.

208. Cugola, G., & Ghezzi, C. (1998). Software Processes: a Retrospective and a Path to the Future. Software

Process: Improvement and Practice, 4(3), 101-123

