
IEEE TRANSACTIONS ON NANOTECHNOLOGY , VOL. , NO. , MONTH. 2019 1

A modeling methodology for Resistive RAM based

on Stanford-PKU model with extended multilevel

capability
John Reuben, Dietmar Fey, and Christian Wenger

Abstract—Modeling of Resistive RAMs (RRAMs) is a her-
culean task due to its non-linearity. While the exigent need for
a model has motivated research groups to formulate realistic
models, the diversity in RRAMs’ characteristics has created a gap
between model developers and model users. This paper bridges
the gap by proposing an algorithm by which the parameters of
a model are tuned to specific RRAMs. To this end, a physics-
based compact model was chosen due to its flexibility, and the
proposed algorithm was used to exactly fit the model to different
RRAMs, which differed greatly in their material composition and
switching behavior. Further, the model was extended to simulate
multiple Low Resistance States (LRS), which is a vital focus of
research to increase memory density in RRAMs. The ability of
the model to simulate the switching from a high resistance state
to multiple LRS was verified by measurements on 1T-1R cells.

Index Terms—RRAM, physics-based models, multilevel mod-
eling, SET/RESET process, Stanford model, memristor, resistive
switching, 1T-1R

I. INTRODUCTION

RESISTIVE RAMs (RRAMs) are two terminal devices

capable of changing their resistance in response to

an applied voltage. Initially RRAM was researched as an

emerging Non-Volatile Memory (NVM) and a possible

replacement to FLASH memory. In the recent past, RRAM

has also extended its influence beyond memory to logic

circuits/computing. The emergence of the RRAM as a

NVM device which can compute, at a time when computer

architects are facing the memory wall problem, has set the

stage for RRAM to be efficiently deployed for in-memory

computing. A new field called ‘memristive logic’ [1] has

emerged, which is the methodology of designing logic circuits

using RRAM as the primary computing device. Consequently,

research in RRAM-based memories [2] and RRAM-based

computing circuits [3] are very active and ever increasing.

Such efforts need reliable models for RRAM to be used in

SPICE simulation for predictive analysis, feasibility analysis

and design space exploration. Considering the fact that
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RRAM is fabricated in a few labs, the majority of the RRAM

community heavily depends on models for research.

Being a non-linear device, the RRAM is difficult to be

modeled and formulating a realistic model which reproduces

its behavior involves significant effort. According to [4],

the fundamental reason why RRAM modeling is non-trivial

is that one is attempting to solve an inverse problem in a

complicated non-linear system. In spite of this, the exigent

need for a model has motivated research groups and at the

time of this writing, there are more than 15 distinct models

for RRAM. A detailed survey of these models, elaborating

their features and capabilities was carried out recently in

[5]. While more models are being developed by device

researchers, circuit designers and system architects who work

at higher levels of abstraction, need to ‘plug-in’ a model for

RRAM (with specific characteristics) without understanding

the device physics e.g. the properties of the switching oxide

used. There exists a ‘knowledge gap’ in the RRAM research

community with circuit/system designers perceiving the

RRAM as a simple switch (between two resistive states),

while device engineers perceiving the same as a field-directed

movement of oxygen vacancies with certain stochasticity

involved. RRAM model developers bridge this gap, to a

certain extent, by describing the complex switching process

in a compact model to be used by circuit/system designers.

In Section II-A, we classify RRAM models according to the

modeling philosophy and give a broad overview on RRAM

modeling.

Although models bridge the gap between device and

circuit/system designers, there still exists a barrier between

model developers and model users. In Section II-B, we sample

few recently fabricated RRAMs and highlight the diversity

in their characteristics (like threshold voltage at which the

RRAM switches its state, low resistance state (LRS), high

resistance state (HRS), resistance window, i.e. HRS/LRS ratio

etc). We identify the need for a model to be able to simulate

such diverse RRAM characteristics (Section II-C). In Section

III-A, we justify why we chose the Stanford-PKU model

to be that model which can simulate the heterogeneity in

RRAMs. We briefly describe the Stanford-PKU RRAM model

in Section III-B to familiarize the reader with the modeling

approach used in this model and the associated parameters.

Having described the key model features, we present our

algorithm which takes the target RRAM’s specification as
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input and tunes the parameters of the model to exactly fit the

RRAM’s characteristics (Section III-C).

Since data is stored as resistance of the switching oxide

in RRAM (which, in turn depends on the geometry of the

conductive filament formed), it is possible to store more

than two states. Memory designers have rightly exploited this

capability to increase memory density because, in principle,

the storage of n bits per cell will result in n times increase in

the storage density, achieving scaling of the silicon die area

by 1/n [6]. Moreover, for novel computing paradigms like

ternary computing, RRAMs are being explored for storing

‘trits’ and implementing ternary adders [7], [8]. In Section

IV-A, we review three ways by which multiple states have been

implemented in RRAM. Since implementing multiple LRS by

varying the compliance current (also called multilevel SET

process) in 1T-1R is a viable option, we investigate it further.

We extend the Stanford-PKU model to model the multilevel

SET process (Section IV-B). In Section IV-C, we contend the

case for a composite 1T-1R model, in which the transistor and

RRAM are modeled together as a single unit. We then propose

a 1T-1R fitting algorithm, in which we enumerate the steps to

fit the composite 1T-1R model to the behaviour of a fabricated

1T-1R structure (Section IV-D). Finally, we corroborate our

modeling methodology on 1T-1R cells fabricated at IHP1 in

Section IV-E and confirm that our model indeed conforms to

the 1T-1R cell’s behavior. Section V concludes our work with

some outlook for the future.

II. PROGRESS IN RRAM MODELING AND MOTIVATION

FOR THIS WORK

A. RRAM models: Classification

Based on the modeling philosophy, RRAM models can be

broadly classified as either ‘physics-based’ models or ‘black-

box’ models [4]. In the former modeling philosophy, the

physical properties of the device and the switching physics

are understood and modeled by appropriate equations. In the

‘black-box’ approach (also called ‘measurement’ approach),

the RRAM is modeled based on how it responds to dif-

ferent stimulus and the approach is agnostic to the device

structure. The measured experimental data are formulated as

mathematical equations, resulting in a model for RRAM.

Physics-based models tend to be more accurate since they

consider temperature related phenomenon like joule heating,

which influence the resistance to which the RRAM is pro-

grammed during SET/RESET operation. Moreover, certain

physics-based models not only capture switching physics (i.e.
SET/RESET operation), but also certain temporal characteris-

tics like reliability and technology related characteristic like

scaling [9].

Among physics-based models, the models can be further

classified on the basis of their resolution/scale as Atomistic,

Kinetic Monte Carlo (KMC), Finite Element Method (FEM)

and Compact models [9]. While ‘atomistic’ models try to

capture intricate details like ion/atom diffusion and migration

1Institute for High Performance Microelectronics – Leibniz-Institut für
innovative Mikroelektronik, Germany

TABLE I: A sample of recently fabricated RRAMs with

their median characteristics – SET/RESET voltage in volts,

LRS/HRS in Ω

Device SET RESET LRS HRS Ref

Pt/HfO2(5nm)/Ti/TiN 0.88 -0.5 3.65K 5.1M [10]

TiN/Hf1−xAlxOy/Ti/TiN 0.9 -1.07 6.66K 66.66K IHP [11]

Al/Ge/TaOx(10nm)/Pt 2 -0.96 826 37M [12]

Ti/SiO2(5nm)/C 2.4 -1.25 20K 100M [13]

mechanisms at atomistic scale (few nm3), the ‘compact’

models capture macroscopic details like geometry of the

conductive filament and temperature. Detailed classification

of physics-based models is presented in [9]. The authors in

[9] point out an important trade-off for circuit designers: the

more detailed a physical model is, the higher the computa-

tional cost/simulation time. The simulation time of physics-

based model increases drastically from ‘compact’ models to

‘atomistic’ models and hence accuracy and simulation time

must be judiciously balanced.

B. Diversity in RRAM characteristics

Different materials for the switching layer (metal oxide)

and top/bottom electrodes have been explored by researchers

to fabricate RRAMs with different characteristics. In Table I,

we list four different RRAMs and their median characteristics

(switching voltages for SET/RESET and the LRS/HRS).

The table is not comprehensive and represents a sample of

recently fabricated RRAMs. We deliberately chose different

switching materials/electrodes to highlight the diversity in

materials and their characteristics. One can easily observe that

the RESET voltage varies from as low as -0.5 V to -1.25 V

while the high resistance state (HRS) varies from 66.66 KΩ
to as high as 100 MΩ, among a random sample of RRAMs.

Each of these RRAMs have been optimized in some manner:

the RRAM device in [11] have been optimized for less

cell-to-cell variability (in the array) and post-programming

instabilities; [12] optimizes cycle-to-cycle and cell-to-cell

variability; [10], [12] have the advantage of a high resistance

window and [13] reports less HRS variability in addition to

a high resistance window. How can one model RRAMs with

such varied attributes?

C. The need for a fitting algorithm

Developing a physics-based model and extracting the model

parameters from the experimental data of the RRAM is a

complex research problem. Generally, research groups develop

a model and verify their model on a device fabricated in their

lab. After calibrating their model on measurements, the model

is released/published with a default set of parameters which

are fitted to that particular device (for example, the model

proposed in [14] was verified on Al-doped HfOx devices and

released with corresponding parameters which match their

device’s characteristics. Similarly, the ‘cone’ model in [15]

was verified on T i/ZrO2/Pt devices and released with fitting

parameters). Often, there arises a need to be able to use a
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model (or a modeling philosophy) for a device other than

the device on which the model was verified. A memory

designer might want to simulate a memory array with two

different RRAMs (one with high resistance window [12] and

another with low SET/RESET voltages [10]) and compare the

energy consumption during write/read operation. In the realm

of memristive logic, certain logic operations need RRAM with

specific characteristics. The implementation of boolean NOR

gate in an array needs a RRAM with a SET voltage twice it’s

RESET voltage [16]. We argue that every RRAM manufacturer

cannot formulate a model from scratch and one must be able to

use an already developed model to mimic a specific RRAM’s

behavior. All this necessitates an algorithm/methodology by

which a model can be fitted to a particular RRAM which suits

the application.

III. PROPOSED ALGORITHM TO FIT THE STANFORD-PKU

RRAM MODEL TO A SPECIFIC RRAM

A. Why Stanford-PKU RRAM model?

The Stanford-PKU is a physics-based, compact model de-

veloped for metal oxide bipolar RRAMs [14], [17]–[19]. The

model was well characterized on HfO2 and HfOx/T iOx bi-

layer devices [14]. The resistive switching behavior is modeled

by the growth (during SET) and rupture (during RESET) of the

conductive filament. Since filamentary switching is believed

to the switching phenomenon in both oxide-based RRAM

and conductive bridge RRAM (also called Electrochemical

Metallization (ECM)) [9], [20], the model is generic enough

to model a wide variety of RRAMs. For a model to be

flexible enough to simulate the switching characteristics of a

wide variety of RRAMs, it needs to have ‘structural stability’

(i.e. the qualitative properties of the model do not change

in response to small changes in model parameters [21]). In

other words, the model parameters can be varied (rather tuned)

without affecting the key qualitative property of the model i.e.

resistive switching behavior. This observation forms the basis

for choosing the Stanford-PKU model to formulate our generic

fitting methodology. In [14], the developers of the model depict

graphically, how a small change in each parameter influences

the overall behavior of the model marginally. This was the

starting point for our analysis and the proposed methodology.

In addition to structural stability, the model can simulate

other phenomena like non-linear switching kinetics and ‘fading

memory’ observed in fabricated devices [22].

The Stanford-PKU model has a few limitations. Adapting

the model to different devices involves significant effort and

this holds true of any physics-based model for RRAM. The

Stanford-PKU model does not incorporate Random Telegraph

Noise (RTN) which is believed to affect ‘read margin’. Fur-

thermore, being a compact model, it cannot capture endurance

and retention behaviour of RRAMs.

B. Stanford-PKU model in a nutshell

This model simplifies the resistive switching into the growth

and rupture of a single dominant filament. The gap distance, g
(between the tip of the filament and the counter electrode) is

the crucial parameter which determines the resistive state. The

parameter g is programmable between gapmin and gapmax

with the device being in HRS at gapmax and in LRS at

gapmin (default values of gapmin and gapmax are 0.2 nm

and 1.8 nm). Fig. 1 lists the equations governing the resistive

switching process. The key equation (shaded yellow) describes

the current (I) through the RRAM as a function of voltage

across (V ) across it and the gap in the conductive filament

(g). The current has an exponential dependence on g, which

together with hyperbolic dependence on the V , implements

the sudden increase (or decrease) of the current resulting in a

transition to LRS (or HRS). The reader is referred to [14] for

an elaborate description of the model.

I=I o∗exp(−
g

g0

)∗sinh(
V

V 0

)

g=∫(
dg

dt
+δg∗χ(t )). dt

dg

dt
=−υ0∗exp (−

Ea

kT
)∗sinh(γ .

a0

t ox

.
qV

kT )

δg(T )=
δg

0

1+exp([(T CRIT−T )

T SMTH
])

T=T 0+V . I .RTH γ=γ0−β . g3

Fig. 1: Equations of Stanford-PKU RRAM model: Key equa-

tion (yellow) describes current through RRAM as a function

of the voltage across it and filament gap. The other equations

describe the evolution of the gap and the associated tempera-

ture change [14]

The parameters Ea (activation energy), a0 (atomic spacing

of the switching oxide), tox (thickness of the switching oxide),

T0 (environment temperature) and RTH (thermal resistance)

are determined by device structure, material properties and test

environment. They can be easily obtained from the RRAM

manufacturer since they are process parameters. δ0g is the

fitting parameter for variations in the gap. TCRIT denotes

the threshold temperature, above which significant variations

in the gap occurs and TSMTH is the variations smoothing

parameter [14]. These three parameters (δ0g , TCRIT , TSMTH )

are related to variations in switching phenomenon and are

usually not relevant to model deterministic switching. The

parameters – I0, g0, V0, υ0, γ0 and β are called ‘switching

parameters’ by the model developers, and they determine the

median switching characteristics. The process parameters are

dictated by the fabrication aspects of the device and are not

tunable. Therefore, the six switching parameters are the key

knobs to tune the model to a particular RRAM.

C. Fitting algorithm

By observing Fig. 1, one can decipher that tuning the

six switching parameters to fit the model to a RRAM’s

specifications is a multi-faceted optimization problem. To do

so with minimal effort, one must be aware of the following:

1) which switching parameter affects which aspect of the

switching behavior? i.e. the role of each parameter in

the resistive switching behavior.

2) to what extent? i.e. the degree to which a change in

the switching parameter affects the overall switching

behavior.
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Fig. 2: The effect of 25 % perturbation in the switching parameters on the switching behavior: V along x-axis and I along

y-axis. The red curve corresponds to the default parameters and the blue curve corresponds to the particular parameter increased

by 25%, while all other parameters remain the same. If the perturbation of a particular parameter affects both SET and RESET

process equally, either of them is plotted. If no effect, it is not plotted (e.g. varying γ0 has no effect on the RESET process)

TABLE II: The effect of 25% perturbation in the switching

parameters of the model

Quantitative Qualitative (Predominant role)

I0 IHRS and ILRS increase by
25%

scales current uniformly (Fig. 2-a)

g0 IHRS and ILRS increase by
420% and 20%, respectively

determines resistance window i.e.
HRS/LRS ratio (Fig. 2-b)

V0 IHRS and ILRS both de-
crease by 23%

determines slope of HRS or LRS
(Fig. 2-c)

υ0 No change in current levels;
VSET and VRESET decrease
by 1.5 %

Since γ0 has a stronger influence
on VSET , this parameter can be
used to tune the voltage at which
the device RESETs (Fig. 2-d, e)

γ0 No change in current levels;
VSET decreases by 25%

determines the voltage at which the
device SETs (Fig. 2-f)

β No change in current levels;
VSET increases by 10% (Fig.
2-g); RESET process becomes
more gradual

determines RESET curvature∗

(Fig. 2-h)

∗ the model implements gradual RESET while SET is abrupt and this is
typical of RRAM devices

To investigate the correlation between the parameters and

resistive switching behavior, we applied perturbations (of

different degrees) to each of the six parameters and studied its

effect on the I-V curves. When the parameters were perturbed

simultaneously, the results were inconclusive and not useful.

Therefore, we perturbed a single parameter (keeping other

five constant) to find the predominant role of each parameter.

The default values of each of these switching parameters (I0
= 1e−3, g0 = 2.5e−10, V0 = 0.25, υ0 = 10, γ0 = 16, β = 0.8)

were increased by 25%, one parameter at a time, and the

resulting change in the I-V curves are plotted in Fig. 2 (tox
was set to 8 nm to represent a typical RRAM). In Table II, we

summarize the vital effects of the perturbation in each of the

six switching parameters. Except υ0, which influences both

VSET and VRESET equally, all the parameters have a specific

role. Understanding this role gives insights into the parameter

needed to be perturbed/tuned to fit the model to a particular

switching behavior. Next, we need to tune the switching

parameters in a particular order. For example, tuning γ0 (to

fix VSET ) followed by β (to fix RESET curvature) will alter

VSET because β also influences VSET . Moreover, tuning

the parameters in a random order will delay the convergence

process due to the large solution space. The amount to which

a parameter is tuned is important since a larger step in tuning
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    Vary ν0 to make the device

 RESET at -VRESET

Vary I0 to get ILRS at read voltage

TD: Increasing g0 decreases HRS/LRS

ratio 
TS: 0.01 

TD: Increasing I0 increases ILRS 

TS: 0.1 mA 

Set gapini = gapmax 

 i.e. the device is in HRS 

Vary γ0 to make the device SET at VSET

Vary V0 to match the HRS slope 

Simulate SET followed by RESET with 
READ pulses in between to verify 

correct operation 

TD: More β, more gradual the RESET 
TS: 0.1 

TD: Increasing γ0  decreases VSET 

TS: 0.05 

TD: Increasing V0 decreases HRS 

slope 
TS: 0.05

TD: Increasing ν0 decreases |VRESET|

TS: 0.5 

RESET process fitting

SET process fitting

Fig. 3: Fitting Algorithm: In each step of the algorithm,

‘TD’ denotes ‘Tuning Direction’ to give direction to the

tuning process and ‘TS’ denotes the ‘Tuning Scale’ to avoid

unfeasible results

will result in unfeasible results like current in kA (due to

exponential and hyperbolic dependence). Based on these

insights, we propose an algorithm which efficiently fits the

model to a specific RRAM with minimum effort in terms of

simulation iterations and time to fit.

Starting with the default parameters released with the model,

the algorithm described in Fig. 3 tunes the different parameters

of the model to fit to a target RRAM. In simulation, the

device must be set to an initial state, which is stable. This

is implemented by the ‘gapini’ parameter which must be set

to gapmin or gapmax. It is assumed that the RRAM to be

simulated is already ‘formed’ and hence the initial state is

known. We fit the RESET process first, due to the lack of

a parameter which strongly influences VRESET . A negative

pulse greater than the target device’s VRESET is applied with

‘READ’ pulses before and after the RESET process. The order

of tuning is g0 → I0 → V0 for the RESET process. This

is because g0 has the largest influence on the current levels,

followed by I0 and V0. When tuning I0, if the device reads

out ILRS at LRS, it will read out IHRS at HRS since g0 is

already tuned. Since varying V0 disturbs the ILRS fixed in

the previous step, I0 is tuned again after V0. Once the base

current levels are tuned to match the measured IV curves, we

proceed to fit the voltage at which the device RESETs. It must

be noted that υ0 must be tuned to match the voltage at which

the device starts to RESET and β must be tuned to match

the gradual nature of the RESET process. The fitting of the

SET process is simpler and requires the tuning of only γ0 to

fix VSET (the current levels during SET process are already

tuned since I0, g0, V0 affect both SET and RESET equally).

Since γ0 has no effect on the RESET process, the tuning

of γ0 towards the end does not ‘disturb’ the RESET curve

already fitted. Since the RESET curvature and the slope of

HRS/LRS are usually not quantified, V0 and β are tuned till the

simulated curves and measurement curves match sufficiently.

This algorithm was used to fit the model to different RRAMs

we considered in Table I. The simulated curves could not be

overlaid on the measured IV curves due to multiple curves

published by authors, showing cycle-to-cycle switching on

the same device. As a sample, we reproduce the multiple

curves published for T i/SiOx/C device in Fig. 4-(a). We

extracted the mean values and overlaid them on the model

curve to highlight the fitting obtained in simulation (Fig. 4-

(b)). The simulated waveforms of all the RRAMs of Table

I, during positive and negative voltages are graphed in Fig. 5

and Fig. 6 (the fitting of IHP’s RRAM is performed in Section

IV-E). The Stanford-PKU RRAM model is flexible enough to

model RRAMs of different materials (HfOx, TaOx, SiOx)

and different oxide thickness (5 nm < tox < 10 nm). The

tuned parameters are tabulated in Table III to make the curves

reproducible. However, this fitting algorithm couldn’t be used

to fit RRAMs with tox as high as 60 nm [23] and as low as

3 nm [24]. To fit those RRAMs, the algorithm or the model

itself may need to be significantly enhanced.

(a) Measured IV curves for 50 cy-
cles: Reproduced from Ref. [13] with
permission from the Royal Society of
Chemistry

-4 -3 -2 -1 0 1 2 3 4
Voltage

10 -12

10 -10

10 -8

10 -6

10 -4

(b) Mean curve of (a) extracted (red)
and overlaid on simulated curve (blue)

Fig. 4: The Stanford-PKU model fitted to T i/SiOx/C device

shows good correspondence

IV. EXTENDING STANFORD-PKU RRAM MODEL TO

MODEL MULTIPLE LOW RESISTANCE STATES

A. Multi-Level Cell storage (MLC) in RRAMs

In RRAMs, MLC can be achieved in the following ways

[25]:
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Voltage

10-12
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10-6

10-4

Pt/HfOx/Ti/TiN
Al/Ge/TaOx/Pt
Ti/SiOx/C

Fig. 5: Using the proposed algorithm, the model was fitted to

RRAMs with different RESET voltages, RESET curvatures,

HRS/LRS ratio, switching oxides and thickness

0 0.5 1 1.5 2 2.5 3
Voltage

10-12

10-10

10-8

10-6

10-4

Pt/HfOx/Ti/TiN
Al/Ge/TaOx/Pt
Ti/SiOx/C

Fig. 6: Using the proposed algorithm, the model was fitted to

RRAMs with different SET voltages. A transistor was used to

enforce a Current Compliance (CC) of 100 µA

1) By varying compliance current (also called multilevel

SET): from the initial HRS, the RRAM is programmed

to different LRS during the SET process.

2) By varying reset voltage (also called multilevel RESET):

from the initial LRS, the RRAM is programmed to

different HRS during the RESET process.

3) By varying programming pulse widths (not popularly

pursued due to being energy inefficient).

In arrays, multilevel SET is achieved in 1T-1R by varying the

gate voltage, which in turns varies the compliance (drain) cur-

TABLE III: The parameters of the model corresponding to

different RRAMs. Only tox and the parameters tuned in the

fitting algorithm are tabulated, the remaining parameters are

default values from the model release. δ0g=0.005 to minimize

variations

Device g0 I0 υ0 β γ0 V0

Pt/HfO2(5nm)/Ti/TiN 2.176e−10 0.17e−3 10.5 2.1 20.75 0.2

Al/Ge/TaOx(10nm)/Pt 1.495e−10 1.04e−3 15 1.5 12.15 0.25

Ti/SiO2(5nm)/C 1.8525e−100.374e−4 1e−9 1.8 18 0.375

rent. The physical phenomenon behind this process is believed

to be the formation and subsequent widening of the conductive

filament with increasing drain current [26], [27]. Multilevel

RESET, which is implemented by varying the maximum volt-

age applied during RESET can also be implemented in passive

arrays and 1S-1R (RRAM fabricated in series with a ‘Selector’

having bi-directional diode-like characteristics) configuration.

The physical phenomenon is believed to be the larger gap

(between the tip of the conductive filament and bottom elec-

trode) with increasing reset voltage, i.e. the device goes to a

deeper RESET with higher reset voltage [25]. Consequently,

VSET also increases for the subsequent SET operation because

more energy is needed to form the conductive filament again.

Therefore, implementing multilevel RESET in an array will

necessitate a peripheral circuitry capable of applying different

voltages (VSET1, VSET2). Moreover, HRS variability is more

compared to LRS variability in RRAM arrays [24], [28].

Since implementing multiple states narrows the separation

between neighboring states, multilevel SET may be preferred

due to lower variability in LRS, and consequently an error-

free sensing circuitry to distinguish between the different LRS

states.

B. Proposed modification to Stanford-PKU RRAM model

The Stanford-PKU model, as presented in [14], has the

capability to simulate multilevel RESET process. However,

it does not have the capability to simulate multilevel SET

process [29]. An enhanced version of the Stanford-PKU model

(beta version [29]) reported to model multilevel SET process

by incorporating the width of the conductive filament. But

the number of ‘switching parameters’ in this model doubled

(due to the inclusion of the radius of the filament), making

it difficult to tune the parameters to fit different RRAMs, in

a deterministic manner. Therefore, to retain its flexibility and

augment it with capability to simulate multilevel SET process,

a modification to the model proposed in [14] was necessary.

As already stated, the gap, g, is the state variable which

decides the resistance to which the RRAM is programmed

(gapmin < g < gapmax). During SET process, g changes from

gapmax (HRS) to gapmin (LRS). In the original model [14],

gapmin is a constant and hence the device goes from HRS

to a single LRS, i.e. binary switching. The key modification

to the model was to make gapmin a variable. The LRS to

which the 1T-1R cell is programmed is a strong function

of the gate voltage, i.e. higher the gate voltage, higher the

drain current and consequently a thicker filament or a lower

LRS. Furthermore, the inverse relation between the LRS and

gate voltage has a technology dependence, i.e. drive strength.

The W/L ratio of the transistor accounts for this drive strength.

LRS ∝

1

Vgate

(1)

Therefore, gapmin = Kth.
(W
L
)

Vgate

+ C (2)

where Kth and C are fitting constants for a particular 1T-1R

cell. Intuitively, Kth, being the slope, is a measure of how
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fast the filament grows laterally. Thickness co-efficient, Kth

and C can be calculated from measurements, as demonstrated

in Section IV-E. Since gapmin is no more a constant, the

modified model could simulate the transition from a HRS to

multiple LRS.

Modified Stanford 
RRAM model

IHP’s 250 nm 
nmos model

Gate

Top Electrode

Source

Fig. 7: Composite 1T-1R model

C. Composite 1T-1R model

The multilevel SET process is implemented by varying the

compliance current, i.e. the drain current of the transistor.

Since this can be implemented only in 1T-1R structure,

it is justifiable to create a composite 1T-1R model. In

1T-1R structure, during the SET process, the drain current

(which is decided by the voltage at the gate terminal of the

NMOS transistor) influences the LRS to which the RRAM is

programmed. Although the transistor and RRAM are modeled

separately, they must be ‘synchronized’ together to mimic the

1T-1R behavior. This is because, in practice, the transistor

is integrated with the RRAM (the bottom electrode is fused

with the drain terminal) and neither the transistor nor RRAM

can be characterized separately after fabrication. Moreover,

enforcing an external compliance current is not recommended

because of the latency involved (the current abruptly rises

during SET, destroying the RRAM) and therefore, current

compliance must be implemented inherently in the RRAM by

integrating it with a transistor. The composite 1T-1R modeling

approach (Fig. 7) is based on the premise that if RRAM and

transistor are fabricated together and characterized together

as one unit, they need to be modeled together.

Source Drain

Gate

TE

BE

  1.4 V

     0.9 V
SET operation 
(HRS→LRS)

Source Drain

Gate

TE

BE

V
RRAM

  2.7 V

  1.1 V

RESET operation 
(LRS→HRS)

Source Drain

Gate

TE

BE

  0.2 V
READ 
operation 

  1.4 V

V
RRAM

Fig. 8: Two pulses are applied simultaneously (one at the Gate

and other at Top Electrode (TE)/Source to program and read

from IHP’s 1T-1R devices

D. 1T-1R fitting algorithm

Given 1T-1R measurements from a lab, we propose the

following algorithm to fit the composite 1T-1R model to it.

TABLE IV: Multilevel SET process in IHP’s 1T-1R devices

State transition Voltages Read-out current at
0.2 V

(LRS1,2,3) → HRS 2.7 V at gate, 1.1 V at
source, TE grounded

3µA i.e. 66.66 KΩ

HRS → LRS1 1.2 V at gate, 0.9 V at TE,
source grounded

20µA i.e. 10 KΩ

HRS → LRS2∗ 1.4 V at gate, 0.9 V at TE,
source grounded

30µA i.e. 6.66 KΩ

HRS → LRS3 1.6 V at gate, 0.9 V at TE,
source grounded

40µA i.e. 5 KΩ

∗ denotes the default LRS during binary switching

1) From 1T-1R measurements, extract VRRAM (Fig. 8)

during SET and RESET process by DC analysis (this

is performed by replacing RRAM with a fixed resistor).

2) The extracted VRRAM values, LRS, HRS values, ILRS ,

IHRS are fed to the algorithm presented in Section III-C

to fit the Stanford-PKU model to the RRAM.

3) Scale gapmin to a higher value to have enough space

around it for neighboring LRS.

4) Calculate gapmin corresponding to different LRS with

other parameters fixed as in step 2.

5) Calculate Kth and C by plotting gapmin as a function

of transistor’s gate voltage.

6) Create a composite model with modified Stanford-PKU

RRAM model and NMOS model file as depicted in Fig.

7.

7) Simulate SET and RESET process and tune I0 and g0
if needed, to fit measurement results.

E. Model corroboration

To corroborate our modeling approach, we used the 4k

bit 1T-1R array fabricated at IHP [11]. The 1T-1R is con-

stituted by a NMOS transistor manufactured in IHP’s 0.25

µm CMOS technology, whose drain is connected in se-

ries to the RRAM. The RRAM is a Metal-Insulator-Metal

(T iN/HfI−xAlxOy/T i/T iN ) stack integrated on the metal

line 2 of the CMOS process. The pulses used for SET, RESET

and READ process are illustrated in Fig. 8 and the duration

of all pulses were 10 µs to maximize switching yield. Reader

is referred to [11] for detailed electrical characterization. To

achieve multiple LRS, the gate voltage was varied as shown

in Table IV. Gate voltage of 1.4 V was considered the default

LRS for binary switching and it resulted in a HRS/LRS of 10.

When gate voltage was increased to 1.6 V, the corresponding

increase in the drain current programmed the RRAM to an

even lower LRS of 5 KΩ. Similarly, when the gate voltage

was reduced from 1.4 V to 1.2 V, the decrease in drain

current programmed the RRAM to higher LRS of 10 KΩ. In

the former case, the conductive filament formed was thicker

due to the increased drain current and in the latter case, it

was thinner because of the decreased drain current. With the

aforementioned measurements (Table IV, read-out currents are

average values from cell-to-cell measurements in 4K bit array),

the generalized 1T-1R fitting algorithm presented in Section

IV-D was used to fit the composite 1T-1R model to IHP’s

1T-1R cells.
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(a) Gate Voltage of 1.4 V during SET process programs the RRAM to LRS2 (Read-out current of 32 µA)
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(b) Gate Voltage of 1.2 V during SET process programs the RRAM to LRS1 (Read-out current of 23 µA)
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(c) Gate Voltage of 1.6 V during SET process programs the RRAM to LRS3 (Read-out current of 40 µA)

Fig. 9: Composite 1T-1R model simulates IHP’s 1T-1R characteristic with multilevel capability. Irrespective of the LRS it is

programmed to during the SET process, the RRAM resets to the same HRS of 3 µA
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As already stated, the measurements were obtained from

1T-1R structure, and it was not possible to obtain the voltage

drop across the individual RRAM (denoted ‘VRRAM ’ in

Fig. 8). By replacing the RRAM with 66.66 KΩ resistor

(at the start of SET process, the RRAM is in HRS), a DC

analysis of the 1T-1R circuit was performed to confirm that

the transistor was operating in the triode region. In triode

region, the transistor behaves as a linear resistor of resistance,

rDS =
1

k′

n.
W
L
.VGS − Vt

(3)

For IHP’s 250 nm process parameters, this drain–to–source

resistance (rDS) was calculated to be 544 Ω. Consequently,

the voltage drop across the transistor was calculated to be

negligible (6.8 mV) and most of the voltage applied at TE

appeared across the RRAM at the start of the SET process

i.e. VRRAM = 0.89 V. A similar analysis was carried out

to calculate the voltage drop across RRAM at the start of

the RESET process (by replacing RRAM with 6.66 KΩ
resistor followed by DC analysis) and VRRAM was found

to be 1.03 V. Thus, VSET of 0.89 V and VRESET of -1.03

V was fed to the fitting algorithm presented in Fig. 3 along

with other values (ILRS of 30 µA and IHRS of 3 µA)

to arrive at an initial fitting for IHP’s standalone RRAM.

It must be noted that this initial fitting can only simulate

binary switching, i.e. from a single HRS to a single LRS

and vice versa. To accommodate the fitting of multiple LRS,

the binary switching is fitted to the central LRS of 6.66

KΩ. Although the end result is a composite 1T-1R model,

such an initial fitting (to RRAM alone) is necessary to start

with a good initial solution (just as in simulated annealing

optimization, a good initial solution is necessary to guarantee

faster convergence).

In the initial fitting to IHP’s individual RRAM, gapmin

was 0.2 nm. This value is too small to accommodate other

LRS around it. So, gapmin was scaled to 1 nm and the model

parameters were retuned to match HRS/LRS currents. Next,

the individual RRAM is simulated with different gapmin

and the exact gapmin corresponding to LRS currents of

20 µA, 30 µA and 40 µA were calculated as 1.15 nm, 1

nm and 0.89 nm, respectively. The W/L of transistors was

4.75 (1140 nm/240 nm). Substituting these gapmin and the

corresponding gate voltages in Equation 2, a line was fitted

and Kth and C were found to be 2.589e−10 and 1.21 e−10.

Therefore,

gapmin = 2.589e−10.
(W
L
)

Vgate

+ 1.21e−10 (4)

The Verilog-A code of Stanford-PKU model was modified

to reflect this change and connected with 250 nm NMOS

model file of IHP to create a composite 1T-1R model capable

of simulating IHP’s multilevel SET process. Fig. 9 shows

three wave-forms from simulation, where the SET process was

followed by a RESET process in a single simulation, with

READ process in between them. The gate voltage alone was

TABLE V: Fitted model parameters for IHP’s 1T-1R cells

Ea = 0.6 a0 = 2.5 e−10 tox = 6 e−9 T0 = 298 K

RTH = 1500 I0 = 8.54 e−4 g0 = 0.346 e−9 V0 = 0.26

υ0 = 0.05 γ0 = 19.5 β = 0.4 δ0g = 0.005

TCRIT = 450 TSMTH = 500 gapmax =
18.8e−10

gapmin = Eq.
4

NMOS model parameters: tox = 10 nm, W = 1.14 µm, L = 0.24
µm, Vt = 0.6 V

varied during the SET process to implement multiple LRS. The

model parameters used in simulation are provided in Table V.

V. CONCLUSION AND FUTURE WORK

In this work, we have proposed a modeling methodology in

which we demonstrate how to take a model with its default

parameters (usually published with the model) and tune the

parameters to a specific device. We chose the Stanford-PKU

RRAM model due to its versatility and demonstrated its

capability to model filamentary switching RRAMs of different

materials and characteristics. The presented methodology can

be automated, which is an important direction of future work.

The fitting algorithm can be used by circuit designers and

computer architects to fit the model to a device with no a priori

knowledge of RRAM switching mechanisms and associated

device physics. Although we restricted ourselves to one model

in this paper, our modeling methodology is generic and can

be summarized in three steps: perturb the parameters of a

model; understand its effect on the resistive switching behav-

ior; tune the parameters accordingly. Therefore, in principle,

the presented modeling methodology can be adopted for any

RRAM model with good structural stability. Consequently,

our approach will relieve RRAM based system designers

of modeling effort, in future. Since multilevel storage is an

emerging focus of RRAM research, we extended the Stanford-

PKU RRAM model to model multilevel SET process. The

composite 1T-1R model is able to simulate the switching

from a single HRS to multiple LRS states. The modeling

approach was verified on IHP’s 1T-1R cells and could model

four distinct states.
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[7] D. Wust, D. Fey, and J. Knödtel, “A programmable ternary CPU using
hybrid cmos/memristor circuits,” IJPEDS, vol. 33, no. 4, pp. 387–407,
2018.
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