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A MODELING OF COMPRESSIBLE DROPLETS IN A FLUID∗

LAURENT BOUDIN † , LAURENT DESVILLETTES ‡ , AND RENAUD MOTTE §

Abstract. In this work, we are interested in a complex fluid-kinetic model that aims to take into
account the compressibility of the droplets of the spray. The ambient fluid is described by Euler-like
equations, in which the transfer of momentum and energy from the droplets is taken into account,
while the spray is represented by a probability density function satisfying a Vlasov-like equation.
Implicit terms crop up because of the compressibility of the droplets. After having derived the
model, we prove that global conservations are satisfied. Then we present two numerical tests. The
first one enables us to validate the numerical code, while the second one is performed in a physically
realistic situation.

1. Introduction

Complex two-phase fluids can be modelled in many different ways. The model
known as (fully) Eulerian gives a description of both phases by physical quantities
only depending on the variables t and x (typically, for example, the density, flow
velocity and energy of each phase [RAV]).

We are here interested in a mixed fluid-kinetic modeling (a.k.a. particle-gas or
Eulerian-Lagrangian), where the particles (or droplets) are described by a probability
density function (PDF) solution of a kinetic equation in a phase space (including at
least the variables t, x and the velocities up of the particles), whereas the contin-
uous fluid satisfies traditional fluid equations. This type of model was introduced
by Williams [WIA] (see also [CEC]). It is particularly suited to polydispersed flows,
i.e. flows in which the size of the droplets can vary in a wide range. The same frame-
work was used, for instance, by O’Rourke [ORO] (and his team in the Los Alamos
National Laboratory), to develop the Kiva code [KIV], [KIW], and by many other
authors (for example, Sainsaulieu [SAA], Domelevo [DOA] or Massot and Villedieu
[MAS]).

This work is an attempt to take into account the compressibility of the droplets in
a fluid-kinetic model at both modeling and numerical levels. This question has arisen
in the framework of the study of a spray, in the context of the French military nuclear
agency (CEA-DAM), after Motte’s first approach [MOT]. The droplets remain spher-
ical but their radii can vary. Note that, in some papers, e.g. [KIV], the assumption of
sphericity is not systematically made. Moreover, we do not take into account the ex-
changes of mass between a particle and the ambient medium (vaporization, chemical
reactions, etc.) or between two (or several) particles (collisions, coalescence, breakup
[BAA]...). That implies, in particular, that each particle has a constant mass. More-
over, at a thermodynamic level, we shall use the density ρ and the specific internal
energy e as state variables, as in [MOT].

Note that we shall not tackle the problem of boundary conditions in this work.
In section 2 we derive the equations of our model and give some elements showing

its coherence. Then, in section 3, we briefly discuss the numerical method and present
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some numerical results.

2. Presentation of the model

2.1. The unknowns of the problem. We consider a complex two-phase
flow made up of a fluid and droplets (or particles). The unknowns for the fluid are
the volume fraction α(t, x), the density ρg(t, x), the flow velocity ug(t, x), the mass
internal energy eg(t, x), the temperature Tg(t, x) and the fluid pressure p(t, x).

The particles are described by the PDF f . The value f(t, x, up, ep, mp) is the
number density of particles of mass mp located at coordinate x at time t, moving with
the velocity up and having the internal energy ep. Afterwards, since mp is a parameter
which does not change, we shall write f(t, x, up, ep) instead of f(t, x, up, ep, mp). We
also assume the equality of pressures inside and outside a droplet, so that we do
not introduce an extra quantity pp. This assumption is classical (see [LAN] p. 57
or [DRA]): the pressures between two phases reaching an equilibrium is a very fast
(mechanical) phenomenon with respect to the (thermodynamical) phenomenon of
temperatures equilibrium. That implies in particular that the radius rp of a droplet
and its density ρp are not variables of the PDF, as in [KIV], but are functions of ep,
mp and the pressure p(t, x). It is a significant difference compared to other already
existing models (e.g. [KIV], [SAA]), in which one considers mass transfers, but not
the compressibility of the particles, and where rp is a variable of the PDF.

2.2. Equation of state. The two equations of state for the fluid make it
possible to obtain two algebraic relations between p, ρg, eg and Tg, that is to say

p(t, x) = P1(ρg(t, x), eg(t, x)), (2.1)

Tg(t, x) = T1(ρg(t, x), eg(t, x)). (2.2)

Moreover, one can define ρp(t, x, ep) by the formula

p(t, x) = P2(ρp(t, x, ep), ep), (2.3)

which is the pressure equation inside the droplet. Finally, one defines the temperature
Tp inside the droplet by

Tp(t, x, ep) = T2(ρp(t, x, ep), ep). (2.4)

That implies that ρp does not depend on the variables up and mp. Moreover,
since the mass of each droplet is invariant, rp is obviously a function of t, x, ep and
mp. More precisely, we have

mp

ρp
=

4

3
πrp

3. (2.5)

2.3. The compressible model. The model considered here is an extension of
the already existing model with incompressible droplets used by Motte in [MOT], in
which we add the terms due to the compressibility of the particles.

2.3.1. Equations of the model. We propose the following system closed by
the equations of state (2.1)–(2.4) :
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∂t(αρg) + ∇x · (αρgug) = 0, (2.6)

∂t(αρgug) + ∇x · (αρgug ⊗ ug) + ∇xp = −

∫

up,ep

mpΓf, (2.7)

∂t(αρgeg) + ∇x · (αρgegug) + p [∂tα + ∇x · (αug)] (2.8)

=

∫

up,ep

[

(mpΓ +
mp

ρp
∇xp) · (ug − up) − 4πrpλNu(Tg − Tp)

]

f,

α = 1 −

∫

up,ep

mp

ρp
f, (2.9)

mpΓ = −
mp

ρp
∇xp − Dp(up − ug) + ρgCa

mp

ρp
2

dρp

dt
(up − ug), (2.10)

mpΦ = 4πrpλNu(Tg − Tp) +
pmp

ρp
2

dρp

dt
, (2.11)

∂tf + up · ∇xf + ∇up
· (fΓ) + ∂ep

(fΦ) = 0, (2.12)

where

dρp

dt
=

∂ρp

∂t
+ up · ∇xρp + Φ

∂ρp

∂ep
.

Let us comment the choices carried out in (2.6)–(2.12).

Equations (2.6)–(2.8) come from the local conservation of mass, momentum and
internal energy for the fluid. The right-hand sides model the feedback (transfer of
momentum and energy) of the droplets on the fluid (we shall later detail their meaning
while commenting equations (2.10)–(2.11)) and their form is usual [ORO], [KIV],
[MOT]. One can recognize in the left hand sides of the equations the usual terms of
the two-phase flow equations. Note that (2.7) can be rewritten, thanks to (2.9)–(2.10),
under the more usual form

∂t(αρgug)+∇x · (αρgug ⊗ ug)+α∇xp=

∫

up,ep

[

Dp(up−ug)−ρgCa
mp

ρp
2

dρp

dt
(up−ug)

]

f.

Equation (2.9) expresses the fact that the total volume is the sum of the volume of
the fluid and the volume of the droplets. Moreover, thanks to this equation (2.9) and
the fact that f ≥ 0 (since f is initially nonnegative and satisfies a Vlasov equation),
it is clear that α ≤ 1. Although it is not obvious to mathematically prove that
α ≥ 0, such models are assumed to be reliable only when α remains close to 1 (the
volume of the droplets remains negligible to the volume occupied by the fluid). In the
computations shown later, this is always verified.

Equations (2.6)–(2.9) together with (2.12) are more or less standard (cf. [ORO]
for example).

The Vlasov equation (2.12) is obtained by writing down the conservation of the
number of particles in a volume of the phase space (in t, x, up and ep). Note that
one does not take into account the abrasion of the droplets and the mass transfers
between both phases, whereas it is done in the Kiva code [KIV], for instance.

The form of relations (2.10) and (2.11) is specific to the case of compressible
droplets. The quantities Γ and Φ appear as the variations of up and ep in the phase
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space, and are thus respectively given by the fundamental relation of dynamics (2.10)
and by the equation of energy transfer (2.11) applied to a given particle.

In (2.10), the first two terms already appear when the droplets are incompressible :
they represent the pressure force and the drag force. The last term is specific to the
compressible case, and models an effect of mass addition. As a matter of fact, the
volume variation of the droplet implies some local movements of the fluid which are
very similar to a classical added mass force. The main term

mp

ρp
2

dρp

dt represents the

volume variation of the droplets due to their compressibility and the remaining terms
are obtained by analogy with the standard added mass force [CLG], [RAN]. Note
that in the computations shown here, this term is very small with respect to the drag
force.

In the equation of energy transfer (2.11), the term 4πrpλNu(Tg − Tp) is already
taken into account when the droplets are incompressible. It represents the heat trans-
fer between both phases. The term with dρp/dt models the mechanical work due to
the compressibility of the particles.

Eventually, the various physical coefficients (Nu, Dp, etc.) which appear here are
defined in the appendix. They depend on the various quantities of the problem, such
as up, ug, etc.

Remark 1. The system (2.1)–(2.12) is implicit in the sense that there are time
derivatives (of ρp) in right hand sides of some equations. Those can be written in
terms of ∂tp because of (2.3), then in terms of ∂tρg, ∂teg because of (2.1), of ∂tα
because of (2.6)–(2.8), and finally of ∂tρp itself because of (2.9) (and (2.10)–(2.11)).
Thus one can prove that

∂tρp(t, x, ẽp) =

∫

up,ep

F(t, x, up, ep, ẽp) ∂tρp(t, x, ep) f(t, x, up, ep) dupdep + G(t, x, ẽp),

(2.13)
where there are no time derivatives in the expressions of F and G.

We only detail the expression of F in the one-dimensional case (the expression of
G is even more intricate than the one of F , so we choose not to write it down). We
introduce the state equations derivative coefficients

Ag(t, x) =

(

∂p

∂ρ

)

fluid

(ρg(t, x), eg(t, x)),Bg(t, x) =

(

∂p

∂e

)

fluid

(ρg(t, x), eg(t, x)),

Ap(t, x, ep) =

(

∂ρ

∂p

)

drop

(p(t, x), ep),Bp(t, x, ep) =

(

∂ρ

∂e

)

drop

(p(t, x), ep), (2.14)

and the following coefficient (which equals γ when the droplets constitute an ideal
gas)

ζp(t, x, ep) =

(

1 −
p(t, x)

ρp(t, x, ep)2
Bp(t, x, ep)

)−1

.

For the sake of simplicity, we do not write the dependence of the functions in the
variables t and x. We can then write down

F(up, ep, ẽp) = −
Ap(ẽp)

α

mpζp(ep)

ρp(ep)2

[

Agρg + Bg

(

p

ρg
+ Ca|up − ug|

2

)]

.

We shall explain in Section 3 how this difficulty is tackled at the numerical level.
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2.3.2. Global conservations. First note that the system (2.1)–(2.12) is closed.
Like for most of the systems describing complex fluids, we verify that the properties
of conservation hold.

Proposition 1. The total energy, momentum and mass of the system (2.1)–(2.12)
are conserved.

Proof. For the convenience of the proof, we set

Hp =
pmp

ρp
2

dρp

dt
,

so that equation (2.11) writes

mpΦ = 4πrpλNu(Tg − Tp) + Hp. (2.15)

We successively verify the conservations of the total energy, momentum and mass
of the system. We first notice that

αρg∂tug = −αρg(∇x · ug)ug −∇xp −

∫

up,ep

mpΓf (2.16)

by using (2.6) and (2.7) together. Moreover, by using (2.12) and (2.14), the derivation
of (2.9) with respect to t gives

∂tα =

∫

up,ep

mp

(

∂tρp

ρp
2

f −
1

ρp
∂tf

)

=

∫

up,ep

mp

[

∂tρp

ρp
2

f +
1

ρp

(

up · ∇xf + ∇up
· (fΓ) + ∂ep

(fΦ)
)

]

=

∫

up,ep

mp
∂tρp

ρp
2

f +

∫

up,ep

mp

ρp
up · ∇xf +

∫

up,ep

mpΦ

ρp
2

Bpf. (2.17)

Now let us compute the variations of the total energy E of the system

dE

dt
=

d

dt

∫

x

αρg

(

eg +
|ug|

2

2

)

+
d

dt

∫

x,up,ep

mp

(

ep +
|up|

2

2

)

f

=

∫

x

∂t(αρgeg) +
1

2

∫

x

∂t(αρgug) · ug +
1

2

∫

x

αρgug · ∂tug

+

∫

x,up,ep

mp

(

|up|
2

2
+ ep

)

∂tf.

By using (2.8), (2.7), (2.16) and (2.12) and by directly eliminating the integrated
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conservative terms, one obtains

dE

dt
= −

∫

x

p∂tα −

∫

x

p∇x · (αug)

+

∫

x,up,ep

mpΓ · (ug − up)f +

∫

x,up,ep

mp

ρp
∇xp · (ug − up)f

−

∫

x,up,ep

4πrpλNu(Tg − Tp)f

+
1

2

∫

x

ug ·

[

−∇x · (αρgug ⊗ ug) −∇xp −

∫

up,ep

mpΓf

]

+
1

2

∫

x

ug ·

(

−αρg(∇x · ug)ug −∇xp −

∫

up,ep

mpΓf

)

−

∫

x,up,ep

mp

(

|up|
2

2
+ ep

)

(∇up
· (fΓ) + ∂ep

(fΦ)).

With (2.16)–(2.17), we find

dE

dt
= −

∫

x,up,ep

p
mp

ρp
2
∂tρpf −

∫

x,up,ep

p
mp

ρp
up · ∇xf −

∫

x,up,ep

p
mpΦ

ρp
2

(

∂ρp

∂ep

)

f

+

∫

x

αug · ∇xp +

∫

x,up,ep

mpΓ · (ug − up)f

+

∫

x,up,ep

mp

ρp
∇xp · (ug − up)f −

∫

x,up,ep

4πrpλNu(Tg − Tp)f

−

∫

x

ug · ∇xp −

∫

x,up,ep

mpΓ · ugf +

∫

x,up,ep

mpΓ · upf +

∫

x,up,ep

mpΦf.

Thanks to an integration by parts in the second integral, and using (2.9) and (2.15),
we get

dE

dt
= −

∫

x,up,ep

p
mp

ρp
2
∂tρpf +

∫

x,up,ep

mpup · ∇x

(

p

ρp

)

f

−

∫

x,up,ep

p

ρp
2
mpΦ

(

∂ρp

∂ep

)

f −

∫

x,up,ep

mp

ρp
∇xp · ugf

+

∫

x,up,ep

mp

ρp
∇xp · (ug − up)f +

∫

x,up,ep

Hpf,

hence

dE

dt
= −

∫

x,up,ep

p
mp

ρp
2
∂tρpf +

∫

x,up,ep

mp

ρp
up · ∇xpf

−

∫

x,up,ep

p
mp

ρp
2
up · ∇xρpf −

∫

x,up,ep

p

ρp
2
mpΦ

(

∂ρp

∂ep

)

f

−

∫

x,up,ep

mp

ρp
up∂xpf +

∫

x,up,ep

Hpf

= 0.
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The total mass conservation holds

d

dt

∫

x

αρg +
d

dt

∫

x,up,ep

mpf

=

∫

x

∂t(αρg) +

∫

x,up,ep

mp∂tf

= −

∫

x

∇x · (αρgug) −

∫

x,up,ep

mp(up · ∇xf + ∇up
· (fΓ) + ∂ep

(fΦ))

= 0,

and so does the total momentum conservation

d

dt

∫

x

αρgug +
d

dt

∫

x,up,ep

mpupf

=

∫

x

∂t(αρgug) +

∫

x,up,ep

mpup∂tf

= −

∫

∇xp + ∇x · (αρgug ⊗ ug) −

∫

x,up,ep

mpΓf

−

∫

x,up,ep

(mp(up · ∇xf)up + mp∂ep
(fΦ)) +

∫

x,up,ep

mpΓf

= 0.

That ends the proof of Proposition 1. �

3. Numerical tests

3.1. Numerical method. Our method is close to that of [MOT] and was
originally developed for a simulation code in the context of the nuclear industry.
We use a splitting of the fluid part (2.6)–(2.8) of the model and of its kinetic part
(2.10)–(2.12). We refer to [BDM] for more details about the scheme.

3.1.1. Solving the fluid equations. The numerical method for solving (2.6)–
(2.8) is time-split into two steps, respectively called Lagrange and “re-map” (or trans-
port). In the first step (Lagrange), we solve a system which is quite similar to the
Lagrange reformulation of (2.6)–(2.8) (see [GOR]): that means that we solve these
equations in a referential which follows the fluid flow. The second step (re-map) gets
us back from the Lagrange referential to the fixed one. The reader will find the study
of a similar scheme for the compressible Euler equations (without source term) in
[DEL].

We here use a finite volume method to discretize this system. This method is
space-split itself: every fluid quantity is computed at the center of each volume,
except the fluid velocities, which are computed at the borders of each volume.

3.1.2. Solving the kinetic equation. We use a particle method to solve
the Vlasov equation (2.12): the PDF f is discretized by a sum of Dirac masses.
Consequently, when we need to compute some quantity at point x, we are led to use
control volumes. The whole physical space is divided into such control volumes that
do not depend on the droplets but are a priori defined. For the sake of simplicity, in
this code, control volumes are chosen to coincide with the finite volumes used in the
solving of the fluid equations.

For instance, if we want to compute the fluid volume fraction at time t and
position x, we consider the control volume V which contains x. Then we replace
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Table 3.1. Thermodynamic state of the fluid and the droplets

pressure (×106 Pa) temperature (K) density (kg.m−3)
fluid 1.00 1000 0.388

droplet 1.00 100 12.1

the Dirac masses (with respect to position) by characteristic functions. Hence, the
discretized value of the fluid volume fraction at time t and position x writes

αV (t) = 1 −
∑

p

mp

ρp
|V |−11{xp∈V },

where one sums over all the droplets inside the computation domain.

3.1.3. Implicit in time feature of the equations. As we already pointed out
in Remark 1, the system (2.1)–(2.12) is time-implicit. We noticed that we had to first
solve the implicit integral equation (2.13). In theory, (2.13) should be solved by a fixed
point method: more precisely, at each time step, this fixed point method should be
implemented. However, since we are only interested in weakly compressible droplets,
we are led to replace this (very expensive) procedure by the simple approximation

∂tρp(t
n+1, x, ẽp) =

∫

up,ep

F(tn, x, up, ep, ẽp) ∂tρp(t
n, x, ep) f(tn, x, up, ep) dupdep

+G(tn, x, ẽp).

3.2. Droplets in thermal imbalance with the fluid. In order to test the
validity of our code, we consider a situation in which the initial datum does not depend
on the variable x (uniform medium): inside each mesh (the volume of which equals
to V = 0.025 m3), there are n = 5000 droplets. Both phases are supposed to be ideal
gases. The thermodynamic states of the fluid and each droplet are given in table 3.1.
Note that the fluid and the droplets have the same pressure because of the isobaric
equilibrium assumption.

In this particular case, there exists a semi-explicit solution. As a matter of fact,
first, the uniformity with respect to x implies that there is no dependence on x for
every studied quantity. Next, since there is initially no motion inside both the spray
and the fluid, it is clear that we can take ug = 0 and that the spray has only one
celerity up = 0. Then f now only depends on t and ep, so that we can choose f as a
Dirac mass: f(t, ep) = δep=ep(t). Finally, we have to note that the equations of state
are very simple because both phases are ideal gases. Consequently, all the quantities
are algebraic functions of eg and ep, which satisfy the following system of ordinary
differential equations

e′g = −(γg − 1)
α′

α
eg −

1

Mg

n

V
4πrpλNu

(

eg

cvg

−
ep

cvp

)

,

mpγpe
′
p = 4πrpλNu

(

eg

cvg

−
ep

cvp

)

+ (γp − 1)mpep

(

e′g
eg

−
α′

α

)

,
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Fig. 3.1. Towards the equilibrium of temperatures.

where cvg
(resp. cvp

) is the fluid (resp. droplets) isochoric (that is, when the volume
is fixed) specific heat, γg (resp. γp) the ratio of the fluid (resp. droplets) specific
heats, Mg is the constant value of αρg, and where α and rp are given by

α =

(

1 +
n

V

γp − 1

γg − 1

mp

Mg

ep

eg

)−1

,

rp =

(

3

4π

γp − 1

γg − 1

αmp

Mg

ep

eg

)1/3

.

Two physical phenomena happen almost simultaneously:
• the temperatures of both fluid and droplets are well-balanced (see fig. 3.1);
• to balance the increasing of the temperature, each droplet density decreases

to reach an equilibrium value (see fig. 3.2).
Fig. 3.2 also shows that the numerical results obtained thanks to our code fit very

well to the semi-explicit solutions (computed by Maple).
This test was very accurate to get both mathematical and programming valida-

tions of the model. Still the thermodynamics lead to very important and unrealistic
variations of the densities of each droplet. The following computation has been per-
formed in a more realistic thermodynamic setting.

3.3. Hollow-cone spray. This second numerical test has been set in [DUA]
and allows us to compare the numerical results for both compressible and incom-
pressible droplets. The droplets are injected with the same velocity 100 m.s−1 in a



666 A MODELING OF COMPRESSIBLE DROPLETS IN A FLUID

0 2e-05 4e-05
time (s)

0

200

400

600

800

1000

te
m

p
er

at
u
re

s 
(K

)

CEA
Maple

0 4e-06 8e-06 1.2e-05
time (s)

0

0.4

0.8

D
en

si
ty

 (
k
g
/m

3
)

CEA
Maple

Fig. 3.2. Temperature and density of a droplet.

fluid following the border of a hollow-cone (with angle 45◦). The fluid is initially not
moving and has a higher temperature than the droplets (500K for the fluid, 300K for
the spray). Both phases satisfy realistic equations of state (stiffened gas for the fluid,
standard tin for the spray).

Fig. 3.3 describes the occurring phenomenon: the droplets make the fluid move
and cool down. We here propose the evolution of a sample droplet: densities (see
fig. 3.4) and temperatures (see fig. 3.5). In fig. 3.4, the density of the incompressible
droplet remains constant, whereas the one of the compressible droplet decreases to
balance the increasing of the droplet temperature. The analysis of fig. 3.5 is a bit
more intricate: the curve for the compressible droplet is behind the one for the in-
compressible droplet. As a matter of fact, since there is first the mechanical reaction
of the compressible droplet (increasing radius), its temperature does not increase as
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Fig. 3.3. Evolution of the fluid temperature due to the droplets.

Fig. 3.4. Density of the sample droplet.
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Fig. 3.5. Temperature of the sample droplet.

fast as the temperature of the incompressible droplet. And we already pointed out
in subsection 2.1 that mechanical phenomena occur faster than thermodynamic ones.
But eventually, we note that for both figures, there is approximately a 1% difference
between the incompressible and compressible curves.

In fact, we noticed in other numerical tests that, in the context of the nuclear
industry, the density of a given droplet typically varies by 1 % during the evolution of
the spray, so that we can state that the effects of the compressibility of the droplets
seem to be small for realistic thermodynamics. Therefore, the intricate model studied
here should be used only when very precise results are needed. On the other hand,
the numerical comparison is not much more expensive when the compressibility is
taken into account, because of this small variation of the density of a droplet. As a
matter of fact, one solves the implicit equations only approximately, and with a fine
accuracy.

Appendix: value of the physical coefficients. To complete our modeling,
we give the value of every coefficient which appears in (2.8)–(2.11). The physical
justifications of our choices can be found in [RAN], for instance.

First of all, let us give some precisions about the drag coefficient Cd, the added
mass coefficient Ca and the Nusselt number Nu.

We empirically fix the coefficient Ca = 0.5.
To write Cd and Nu, let us begin to recall the definition of some standard coeffi-

cients, such as the Reynolds, Mach and Prandtl numbers

Re =
2rpρg|up − ug|

η
, Ma =

|up − ug|

c
, Pr =

ηC

λ
, (3.1)

where the fluid viscosity η is a given constant, c is the local sound velocity in the fluid
and the fluid specific heat C and thermal conductivity λ are given.

We then take for Cd the formula

Cd = C̃d(Re)θ̃(Ma), (3.2)
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with

C̃d =
24

Re
(α−2.65 +

1

6
Re2/3α−1.78) if Re < Rec := 1000,

C̃d =
24

Rec
(α−2.65 +

1

6
Re2/3α−1.78) if Re > Rec,

and

θ̃ = 1 if Ma < 0.5,
= 2.22 if Ma > 1,
= 2.44Ma − 0.22 if 0.5 < Ma < 1.

We also take for the Nusselt number the formula

Nu = α−7/4 + 0.3Re1/2Pr1/3α−1/2.

Finally, the term Dp in the expression of the drag force is fixed by the expression

Dp =
1

2
πr2

pρgCd|up − ug|.
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