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Abstract—This paper describes a method of modeling the char-
acteristics of a singing voice from polyphonic musical audio signals
including sounds of various musical instruments. Because singing
voices play an important role in musical pieces with vocals, such
representation is useful for music information retrieval systems.
The main problem in modeling the characteristics of a singing
voice is the negative influences caused by accompaniment sounds.
To solve this problem, we developed two methods, accompaniment
sound reduction and reliable frame selection. The former makes
it possible to calculate feature vectors that represent a spectral
envelope of a singing voice after reducing accompaniment sounds.
It first extracts the harmonic components of the predominant
melody from sound mixtures and then resynthesizes the melody by
using a sinusoidal model driven by these components. The latter
method then estimates the reliability of frame of the obtained
melody (i.e., the influence of accompaniment sound) by using two
Gaussian mixture models (GMMs) for vocal and nonvocal frames
to select the reliable vocal portions of musical pieces. Finally, each
song is represented by its GMM consisting of the reliable frames.
This new representation of the singing voice is demonstrated to
improve the performance of an automatic singer identification
system and to achieve an MIR system based on vocal timbre
similarity.

Index Terms—Music information retrieval (MIR), singer identi-
fication, singing voice, vocal, vocal timbre similarity.

I. INTRODUCTION

T
HE singing voice is known to be the oldest musical instru-

ment that most people have by nature and plays an impor-

tant role in many musical genres, especially in popular music.

When a song is heard, for example, most people use the vocals

by the lead singer as a primary cue for recognizing the song.

Therefore, most music stores classify music according to the
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singers’ names (often referred to as artists’ names) in addition

to musical genres.

As the singing voice is important, the representation of its

characteristics is useful for music information retrieval (MIR).

For example, if the name of a singer can be identified without

any information of the metadata of songs, users can find songs

sung by a certain singer using a description of singers’ names

(artists’ names). Most previous MIR systems based on meta-

data, however, have assumed that the metadata including artists’

names and song titles were available: if they were not available

for some songs, these songs could not be retrieved by submit-

ting a query of their artists’ names. Furthermore, detailed de-

scriptions of the acoustical characteristics of singing voices can

also play an important role in MIR systems because they are

useful for systems based on vocal timbre similarity by com-

puting acoustical similarities between singers. Hence, a user can

discover new songs rendered by the singing voices they prefer.

To identify singers’ name and compute similarities between

singers without requiring the metadata for each song to be pre-

pared, in this paper, we focused on the problem of representing

the characteristics of the singing voice. This problem was diffi-

cult to solve because most singing voices are accompanied by

other musical instruments and the feature vectors extracted from

musical audio signals are influenced by the sounds of accompa-

nying instruments. It is therefore necessary to focus on the vo-

cals in polyphonic sound mixtures while considering the nega-

tive influences from accompaniment sounds.

We propose two methods of solving this problem: accompa-

niment sound reduction and reliable frame selection. Using the

former, we can reduce the influence of instrumental accompa-

niment. We first extracted the harmonic structure of the melody

from audio signals, and then, resynthesized it using a sinusoidal

model. This method reduces the influence of accompaniment

sounds. The latter method is used to select reliable frames that

represent the characteristics of the singing voice. We also ap-

plied these techniques and implemented an automatic singer

identification system and an MIR system based on vocal timbre

similarity.

II. RELATED STUDIES

The novelty of this paper compared to the previous singer

identification methods lies in our two methods that solve the

problem of the accompaniment sounds. Tsai et al. [1], [2] have
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pointed out the problem of negative influences caused by the ac-

companiment sounds and have tried to solve it by using a statis-

tically based speaker-identification method for speech signals in

noisy environments [3]. On the assumption that singing voices

and accompaniment sounds are statistically independent, they

first estimated an accompaniment-only model from interlude

sections and a vocal-plus-accompaniment model from whole

songs, and then estimated a vocal-only model by subtracting

the accompaniment-only model from the vocal-plus-accompa-

niment model. However, this assumption is not always satisfied

and the way of estimating the accompaniment-only model has

a problem, i.e., accompaniments during vocal sections and per-

formances (accompaniments) during interlude sections can have

different acoustical characteristics. Although Mesaros et al. [4]

have tried to solve this problem by using a vocal separation

method similar to our accompaniment sound reduction method,

their method did not deal with the existence of interlude sec-

tions where singing voice does not exist and they conducted ex-

periments using the data containing only vocal sections. In other

previous studies [5]–[9], the accompaniment sound problem has

not been explicitly dealt with.

From the view point of content-based MIR studies, this paper

is important because our system enables a user to retrieve a

song based on the specific content of the music. We considered

that there can be various ways of expressing the content of the

music and it is practical for users to retrieve songs using simi-

larities based on various aspects of the music. Although some

studies [10], [11] attempted to develop MIR systems based on

baseline similarity and instrument existence, most previous con-

tent-based MIR systems used low-level acoustic features such

as the MFCCs, the sectral centroid, and rolloff and can retrieve

songs based on only vague similarities [12]–[21]. Pampalk [18]

pointed out such limitation of the low-level acoustic features and

it is demanded to discover new features and similarity measures

that can represent more detailed content of the music.

III. REPRESENTATION OF SINGING VOICE ROBUST

TO ACCOMPANIMENT SOUNDS

The main difficulty in modeling the characteristics of a

singing voice in polyphonic music lies in the negative in-

fluences of accompaniment sounds. Since singing voice is

usually accompanied by musical instruments, the acoustical

features that are directly extracted from the singing voice will

depend on the accompaniment sounds. When such features as

cepstral coefficients or linear prediction coefficients (LPC) are

extracted, which are commonly used in music-modeling and

speech-modeling studies, those obtained from musical audio

signals will not solely represent the singing voice but a mixture

of the singing voice and the accompaniment sounds. Therefore,

it is essential to cope with this accompaniment sound problem.

One possible solution to this problem is to use data influ-

enced by accompaniment sounds for both training and identi-

fication. In fact, most of the previous studies [5]–[8] adopted

this approach. However, this often fails because accompaniment

sounds usually have different acoustical features from song to

song. For example, the acoustics between two musical pieces

that are accompanied by a piano solo and a full band will not be

sufficiently similar, even if they are sung by the same singer.

Fig. 1. Overview of our method.

We propose a method that can reduce the negative influence

of accompaniment sounds directly from a given musical audio

signal to solve this problem. This feature vector represents vocal

characteristics better than features vector like MFCCs that only

represents a mixture of accompaniment sounds and the singing

voice.

This method consists of the following four parts: accompani-

ment sound reduction, feature extraction, reliable frame selec-

tion, and stochastic modeling. To reduce the negative influence

of accompaniment sounds, the accompaniment sound reduction

part first segregates and resynthesizes the singing voice from

polyphonic audio signals on the basis of its harmonic structure.

The feature extraction part then calculates the feature vectors

from the segregated singing voice. The reliable frame selection

part chooses reliable vocal regions (frames) from the feature

vectors and removes unreliable regions that do not contain vo-

cals or are greatly influenced by accompaniment sounds. The

stochastic modeling part represents the selected features as pa-

rameters of the Gaussian mixture model (GMM). Fig. 1 shows

an overview of this method.

A. Accompaniment Sound Reduction

For the accompaniment sound reduction part, we used a

melody resynthesis technique that consisted of the following

three steps:

1) estimating the fundamental frequency (F0) of the vocal

melody using Goto’s PreFEst [22];

2) extracting the harmonic structure corresponding to the

melody;

3) resynthesizing the audio signal corresponding to the

melody using sinusoidal synthesis.
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1) F0 Estimation: We used Goto’s PreFEst [22] to estimate

the F0 of the melody line. PreFEst can estimate the most pre-

dominant F0 in frequency-range-limited sound mixtures. Since

the melody line tends to have the most predominant harmonic

structure in middle- and high-frequency regions, we can esti-

mate the F0 of the melody line by applying PreFEst with ade-

quate frequency-range limitations.

The following is a summary of PreFEst. After this, is the

log-scale frequency denoted in units of cents (a musical-interval

measurement), and is discrete time. Although a cent originally

represented a tone interval (relative pitch), we use it as a unit of

absolute pitch using Hz as a criterion, according

to Goto [22]. The conversion from hertz to cent is expressed as

(1)

where represents frequency in cents and represents it

in hertz.

Given the power spectrum, , where denotes fre-

quency in cents and denotes frame number, we first apply

a bandpass filter (BPF) that was designed so that it would

cover most of the dominant harmonics of typical melody

lines. The filtered frequency components can be represented

as , where is the BPF’s frequency

response to the melody line. In this paper, we designed the BPF

according to Goto’s specifications [22]. To make it possible to

apply statistical methods, we represent each of the bandpass-fil-

tered frequency components as a probability density function

(pdf), called an observed pdf,

(2)

Then, we deem each observed pdf to have been generated from

a weighted-mixture model of the tone models of all the possible

F0s, which is represented as

(3)

(4)

where is the pdf of the tone model for each F0, and Fh

and Fl are defined as the lower and upper limits of the possible

(allowable) F0 range, and is the weight of a tone model

that satisfies

(5)

A tone model represents a typical harmonic structure and indi-

cates where the harmonics of the F0 tend to occur. Then, we

estimate using an EM algorithm and regard it as the

F0’s pdf. Finally, we track the dominant peak trajectory of F0s

from using a multiple agent architecture.

2) Harmonic Structure Extraction: By using the estimated

F0, we then extract the amplitude of the fundamental frequency

component and harmonic components. For each component, we

allow cent error and extract the local maximum amplitude in

the allowed area. The frequency and amplitude of the

th overtone at time can be represented as

(6)

(7)

where denotes the complex spectrum, and denotes

F0 estimated by the PreFEst. In our experiments, we set to 20.

3) Resynthesis: Finally, we use a sinusoidal model to resyn-

thesize the audio signal of the melody by using the extracted

harmonic structure, and . Changes in phase are ap-

proximated using a quadratic function so that the frequency can

change linearly. Changes in amplitude are also approximated

using a linear function. Hereafter, represents continuous time

in units of seconds and represents the duration between two

consecutive frames in units of seconds. The resynthesized audio

signals, , are expressed as

(8)

(9)

(10)

(11)

(12)

(13)

where is the largest integer not greater than . Note that

represents a (discrete) frame number where the signal at time

belongs and represents relative time from the beginning of

the frame.

4) Evaluation: To evaluate accompaniment sound reduction,

we calculated a difference in the average spectral distortion (SD)

between original signals and segregated signals. Given the spec-

trum of a vocal-only signal , an original polyphonic signal

, and a segregated signal , we define the difference of

the average SD by using the following equation:

(14)

where denotes the SD (in dB) of 2 spectra and

, denotes the total number of frames that include a singing

voice, and denotes frame number. The difference in the av-

erage SD of 40 songs used in the experiments in Section IV-B

was 4.77 dB on average. Note that the vocal-only signals are

obtained from the multitrack data of these songs. This value rep-

resents the harmonic component of the accompaniment sound
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Fig. 2. Example harmonic structure extraction. (a) An original spectrum and its
envelope. (b) An extracted spectrum and its envelope. (c) A spectrum of vocal-
only signal and its envelope.

that is reduced by our method, and indicates that this method

functions effectively.

Fig. 2 shows an example of the harmonic structure extraction.

Fig. 2(a)–(c) shows an original spectrum and its envelope, an ex-

tracted spectrum and its envelope, and a spectrum of vocal-only

data and its envelope, respectively. The envelopes were calcu-

lated by using the linear prediction coding (LPC). As seen in the

figures, a spectral envelope of extracted spectrum precisely rep-

resents formants of singing voice, compared with that of original

spectrum.

To clarify the effectiveness of accompaniment sound reduc-

tion, we show a spectrogram of polyphonic musical audio sig-

nals, that of the audio signals segregated by the accompani-

ment sound reduction method, and that of original (ground-

truth) vocal-only signals in Fig. 3. It can be seen that harmonic

components of accompaniment sound are decreased by exe-

cuting the accompaniment sound reduction method. Note that

some errors of F0 estimation that can be seen in the figure will

be removed by after-mentioned reliable frame selection method.

B. Feature Extraction

We calculate feature vectors consisting of two features, from

the resynthesized audio signals.

1) LPC-Derived Mel Cepstral Coefficients (LPMCCs): It is

known that the individual characteristics of speech signals are

expressed in their spectral envelopes. LPMCCs are mel-cepstral

coefficients of a LPC spectrum [23], [24], which is the method

to estimate the transfer function of vocal tract. Cepstral analysis

Fig. 3. Example of accompaniment sound reduction. (a) A spectrogram of
polyphonic signals. (b) A spectrogram of segregated signals. (c) A spectrogram
of vocal-only signals.

on the LPC spectrum plays a role of orthogonalization and is

known to be effective in pattern recognition.

2) F0s: We use which represent the dynamics of

F0’s trajectory, because a singing voice tends to have temporal

variations in its F0 as a consequence of vibrato and such tem-

poral information is expected to express the singer’s character-

istics.

C. Reliable Frame Selection

Because the F0 of the melody is simply estimated as the most

predominant F0 in each frame [22], the resynthesized audio sig-

nals may contain both vocal sound in singing sections and other

instrument sounds in interlude sections. The feature vectors ob-

tained from them therefore include unreliable regions (frames)

where other accompaniment sounds are predominant. The reli-

able frame selection part removes such unreliable regions and
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TABLE I
TRAINING DATA FOR RELIABLE FRAME SELECTION

makes it possible to use only the reliable regions for modeling

the singing voice.

1) Procedure: To achieve this, we introduce two kinds of

GMMs, a vocal GMM and a nonvocal GMM . The

vocal GMM is trained on feature vectors extracted from the

singing sections, and the nonvocal GMM is trained on those

extracted from the interlude sections. Given a feature vector

, the likelihoods for the two GMMs, and ,

correspond to how the feature vector is like a vocal or a

(nonvocal) instrument, respectively. We therefore determine

whether the feature vector is reliable or not by using the

following equation:

(15)

where is a threshold.

It is difficult to determine a universal constant threshold for

a variety of songs because if the threshold is too high for some

songs, there are too few reliable frames to appropriately calcu-

late the similarities. We therefore determine the threshold that

is dependent on songs so that the of all the frames in each

song are selected as reliable frames. Note that most of the non-

vocal frames are rejected in this selection step.

2) Evaluation: We evaluated the reliable frame selection

method by conducting experiments to confirm the following

two facts: 1) the method can reject nonvocal frames and 2)

the method can select frames which are less influenced by

the accompaniment sound. We trained GMM for vocal and

nonvocal using songs listed in Table I and used the 40 songs

listed in Table II for evaluation. All of these data are the same

as those used in the experiments in Section IV-B. First, to

confirm 1), we evaluated a precision rate and a recall rate of

the method and Fig. 4 shows the results. When is 0.15, the

precision rate is approximately 79% and, thus, we can confirm

that many nonvocal sections are rejected. Then, to confirm 2),

Fig. 5 shows a dependency on of spectral distortion of frames

that are selected by reliable frame selection. The average SD is

positively correlated with . Therefore, we could confirm that

TABLE II
SONGS USED FOR EVALUATION. NUMBERS IN TABLE

ARE PIECE NUMBERS IN RWC-MDB-P-2001

Fig. 4. Precision rate and recall rate of reliable frame selection.

Fig. 5. Dependency of spectral distortion of selected frames on �.

the method can select frames that are less influenced by the

accompaniment sound, by setting to a smaller value.

D. Stochastic Modeling

Finally, we model a probability distribution of the feature vec-

tors for a song using GMM and estimate the parameters of the

GMM with the EM algorithm. In our experiments, we set the

number of Gaussians to 64.

IV. SINGER IDENTIFICATION

This section describes one of the applications of our vocal

modeling techniques, i.e., the system for identifying the singer

by determining a singer’s name from given musical audio sig-

nals. The target data are real-world musical audio signals such

as popular music CD recordings that contain the singing voices

of single singers and accompaniment sounds.
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A. Determination of Singer

First, we prepare the audio signals of target singers as training

data and calculate the GMMs for all singers by using the method

described in Section III. Given input audio signals, we also cal-

culate the GMM for the song. Then, the name of the singer is

determined through the following equation:

(16)

B. Experiments Using RWC Music Database

We conducted experiments to evaluate our singer identifica-

tion system.

1) Condition and Results: We conducted experiments on

singer identification using the “RWC Music Database: Popular

Music (RWC-MDB-P-2001)” [25] under the following four

conditions to find out how effective our methods of accompa-

niment sound reduction and reliable frame selection were as

follows:

1) without either reduction or selection (baseline);

2) with reduction, without selection;

3) without reduction, but with selection;

4) with both reduction and selection (ours).

We used 40 songs by ten different singers (five were males

and five were females), listed in Table II, taken from the

RWC-MDB-P-2001. Using these data, we conducted the four-

fold cross validation, that is, we first divided all the data into

four groups, ( ) in Table II, and then repeated

the following step four times; each time, we left out one of

the four groups for training and used the one we had omitted

for testing. We used 25 songs of 16 different singers listed in

Table I, also taken from the RWC-MDB-P-2001, which differ

from the singers used for evaluation, as the training data for the

reliable frame selection. We set to 15%, using the experiment

described in Section IV-B2 as a reference. To evaluate the

performance of the LPMCCs, we use both the LPMCCs and the

MFCCs as the feature vectors and compare the result. Acuracy

was defined by a ratio of the number of correctly identified

song to the number of songs used for evaluation.

Fig. 6 shows the results of the experiments. As seen in the

table, accompaniment sound reduction and reliable frame selec-

tion improved the accuracy of singer identification. When these

two methods were used together, in particular, the accuracy was

significantly improved from 55% to 95%.

Fig. 7 shows the confusion matrices of the experiments when

the LPMCCs are used. As can be seen, confusion between

males and females decreased by using the reduction method.

This means that, under conditions 2) and 4), the reduction

method decreased the influence of accompaniment sound,

and the system could correctly identify the genders. However,

without the reduction method [conditions 1) and 3)], the in-

fluences of accompaniment sound prevented the system from

correctly identifying even the genders of the singers.

When we compare the MFCCs and the LPMCCs, we can find

that the accuracies of the LPMCCs exceed those of the MFCCs

in all the conditions. This is particularly remarkable when we

Fig. 6. Results of the experiments using RWC Music Database, where “reduc.”
and “selec.” correspond to accompaniment sound reduction and reliable frame
selection, respectively.

use both the accompaniment sound reduction method and the re-

liable frame selection method. We can confirm that the LPMCCs

represent the characteristics of the singing voice well.

2) Dependence of Accuracy on : We conducted experi-

ments by setting to various values to investigate how depen-

dent the accuracies were on , which represents the percentage

of frames determined to be reliable by using the reliable frame

selection method. These experiments used the same dataset as

that used in the previous experiments. The experimental results

in Fig. 8 indicate that the accuracy of classification was not af-

fected by small changes in . We can also see that the value

of that yielded the highest accuracy differed. The reason for

this is as the follow: accompaniment sound reduction method re-

duced the influence of accompaniment sounds and emphasized

the differences between reliable and unreliable frames. Thus, if

we increased excessively, the system selected many unreliable

frames and the performance of the system decreased.

3) Combination of Accompaniment Sound Reduction and Re-

liable Frame Selection: To confirm an effectiveness of reli-

able frame selection in combination with the accompaniment

sound reduction method, we conducted experiments under the

following three conditions.

1) Only hand-labeled vocal sections are used. We execute

accompaniment sound reduction using ground-truth

F0s. We do not execute reliable frame selection.

2) Only hand-labeled vocal sections are used. We execute

accompaniment sound reduction using F0s estimated by

Prefest. We do not execute reliable frame selection.

3) An entire region of a song are used. We execute ac-

companiment sound reduction using F0s estimated by

PreFEst and reliable frame selection.

Table III shows the results of the experiments. When we com-

pare condition 3) with condition 2), the accuracy was improved

by 12 points (from 83% to 95%). This fact indicates that the re-

liable frame selection method can achieve higher accuracy than

the manual removal of nonvocal sections. When we compare

condition 3) with condition 1), the accuracy was improved by 7

points (88% to 95%). This fact indicates that, even if there were

no F0 estimation errors, it was difficult to achieve high accu-

racy without reliable frame selection. In contrast, this fact also

indicates that some F0 estimation errors did not degrade system

performance if we use a reliable frame selection method because
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Fig. 7. Confusion matrices. Center lines in each figure are boundaries between males and females. Note that confusion between males and females decreased by
using the accompaniment sound reduction method.

Fig. 8. Experimental results for dependence of accuracy on�.�� of all frames
was determined to be reliable.

TABLE III
EVALUATION OF A COMBINATION OF ACCOMPANIMENT SOUND

REDUCTION AND RELIABLE FRAME SELECTION, WHERE “SELEC.”
MEANS RELIABLE FRAME SELECTION

the method rejected the region in which PreFEst failed to esti-

mate correct F0s.

C. Experiments Using Commercial CD Recordings

We also conducted experiments using commercial CD

recordings available in Japan. The experiments were done

under the four conditions described in Section IV-B. 246 songs

by 20 singers (8 males and 12 females) listed in Table IV were

used in these experiments. These artists were selected from

the Japanese best-seller list of CD in 2004. The same as in

the previous experiments, the 25 songs by 16 singers listed

in Table I were used as the training data for reliable frame

selection. Using these data, we conducted the fourfold cross

validation.

The bar chart in Fig. 9 shows the results of these experi-

ments. We confirmed that the accuracy improved by approxi-

mately 12% by using both methods, while accuracy improved

by approximately 8% by using each of the two methods.

Fig. 10 shows the confusion matrices. As can be seen, the

system more often misidentified songs by female singers than

TABLE IV
ARTISTS SELECTED FROM COMMERCIAL CD RECORDINGS

TABLE V
QUERY SONGS AND RETRIEVED CORRESPONDING SONGS USED FOR

SUBJECTIVE EXPERIMENT: THREE-DIGIT NUMBER INDICATES THE PIECE

NUMBER OF THE RWC-MDB-P-2001. GIVEN EACH QUERY SONG,
TOP-RANKED SONG BY BASELINE METHOD (MFCC) AND TOP-RANKED

SONG BY OUR METHOD ARE SHOWN ON SAME LINE

those by males. We consider this is because the pitch of female

singing is generally higher than that of male singing. We found

spectral envelopes estimated from high-pitched sounds by using

cepstrum or LPC analysis are strongly affected by spectral val-

leys between adjacent harmonic components.
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Fig. 9. Results of the experiments using commercial CD-recordings, where
“reduc.” and “selec.” mean accompaniment sound reduction and reliable frame
selection, respectively.

The accuracy of the baseline method (Condition 1) in the ex-

periments using the commercial CDs was higher than that of the

RWC Music Database by approximately 15%. This is because

songs on the same album tend to use the same instruments and

be homogenous in sound quality. Berenzweig et al. [6] called

this phenomenon the “Album effect” and they pointed out that

the performance of a singer identification system depends on

what kind of dataset is used. On the other hand, since the RWC

Music Database consists of a variety of genres and instruments

even for songs by the same singer, the accuracy of the base-

line method was only 55%. However, since the proposed method

(Condition 4) was extremely accurate for the experiments using

the RWC Music Database, we found that our method can iden-

tify the singers’ names correctly even if there were a variety of

songs in the database.

V. MIR BASED ON VOCAL TIMBRE SIMILARITY

We also applied our technique to a new MIR system based

on vocal timbre similarity and developed a system named Vo-

calFinder. In this paper, the term vocal timbre means a shape of

a spectral envelope of the singing voice. By using this system,

we could find a song by using its musical content in addition

to traditional bibliographic information. This kind of retrieval

is called content-based MIR, and our system, which focuses on

singing voices as content, falls into this category.

A. Similarity Calculation

We chose symmetric Kullback–Leibler divergence [26] to be

the similarity measure between two songs. Since it is difficult

to calculate this similarity measure in a closed form, we ap-

proximate it as follows (this approximation is called “cross-like-

lihood ratio test”[26]); the similarity between songs X and Y

is calculated by

(17)

where and correspond to the feature vectors of reliable

frames, which could be MFCCs or LPMCCs, in songs X and

Y, respectively, and correspond to the GMM parameters

of songs X and Y, respectively, and represents the

likelihood of GMM with parameter .

B. System Operation

Fig. 11 shows a screenshot of the system. As the training data

for the vocal and nonvocal GMMs, we used the same 25 songs

listed and used in the experiences in Section IV-B. We registered

the other 75 songs from the RWC-MDB-P-2001 in the system

database, which were not used to construct these GMMs. In

the figure, the song “PROLOGUE” (RWC-MDB-P-2001 No.7)

sung by the female singer “Tomomi Ogata” is given as a query.

Given a query song, it took about 20 seconds to calculate sim-

ilarities and output a ranked list of retrieved songs. As seen in

the Fig. 11, the retrieval results list the ranking, the song titles,

the artists’ names, and similarities.

In most of songs retrieved given various queries, the vocal

timbres of the top ten songs were generally similar to that of

each query song in our experience. For example, in Fig. 11, the

top 21 songs were sung by female singers, and the vocal timbres

of the top 15 songs in this figure were similar to the query song.

Note that four songs by “Tomomi Ogata” who was the singer

in the query took first, second, ninth, and twelfth places. This is

because the singing styles of the ninth and twelfth songs were

different from those of the first and second songs and the query.

C. Subjective Experiment

We conducted a subjective experiment to compare our system

using the proposed vocal-based feature vector with a baseline

system using the traditional MFCCs of the input sound mixtures.

Six university students (two males and four females) partic-

ipated in this experiment. They had not received any profes-

sional training in music. They first listened to a set of three

songs—a query song (song X), the top-ranked song retrieved

by our system (songs A/B), and the top-ranked song retrieved

by the baseline system (songs B/A)—, and then judged which

song was more similar to the query song (Fig. 12). They did

not know which song was retrieved by our system and the song

order of A and B was randomized. We allowed them to listen to

these songs in any order for as long as they liked.

We selected ten query songs from the system database taking

into consideration that these songs were sung by different gen-

ders and in different genres. For each query song, we asked the

subjects the following questions.

• Question 1: When comparing the singing voice timbres of

songs A and B, which song resembles song X?

• Question 2: When comparing the overall timbres of songs

A and B, which song resembles song X?

Figs. 13 and 14 show the results of the experiment. On av-

erage, 80% of the responses for ten songs judged that the timbre

of the singing voice obtained by our method was more sim-

ilar to that of the query song (Fig. 13). A binominal test, in

which significance was set at 0.05, was performed on these re-

sults and the degree of significance was 0.0000086, which indi-

cates that there were significant differences between our method

and the conventional method. On the other hand, 70% of the re-

sponses judged that the overall timbre obtained by the baseline

method was more similar to that of the query song (Fig. 14).
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Fig. 10. Confusion matrices of experiments using commercial CD-recordings. Center lines in each figure are boundaries between males and females.

Fig. 11. Screenshot of the system.

Fig. 12. Interface used for subjective experiment.

We also preformed a binominal test and the degree of signifi-

cance was 0.033. Therefore, we confirmed that our method can

reduce the influence of accompaniment sounds and find songs

by using vocal timbres. We also found that our method finds

not only songs with similar vocal timbres (or by same singer)

but also songs with similar singing styles. For example, when

song RWC-MDB-P-2001 No.53 was used as a query, both our

method and the baseline method retrieved the top-ranked songs

by the singer to be the same as that in the query, but 5 out of 6

Fig. 13. Evaluation results: Question 1: singing voice timbre.

Fig. 14. Evaluation results: Question 2: overall timbre.

subjects judged that the song obtained by our method was more

similar to the query song in terms of the vocal timbre similarity.

VI. DISCUSSION

This section discusses the novelty and effectiveness of the

method proposed in this paper.

A. Novelty and Effectiveness of Accompaniment Sound

Reduction

We clarified the problem caused by accompaniments when

modeling the singing voice, which has not effectively been

dealt with except for a few attempts. We provided two effective

solutions, i.e., accompaniment sound reduction and reliable

frame selection. The accompaniment sound reduction method
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is characterized by the way it dealt with accompaniment sound:

it segregated the singing voice directly from the spectrum of

the singing voice without modeling the accompaniment sound.

Although the conventional method dealt with this problem by

modeling the accompaniment sound, it was generally difficult

to model the accompaniment sound.

In this paper, we conducted two disparate experiments to con-

firm the effectiveness of this method. First, we evaluated the

difference in the average spectral distortion and found that the

method reduced the spectral distortion by 4.77 dB. Second, the

results of the experiments on singer identification showed that

the method improved identification accuracy from 70% to 95%

for the data taken from the RWC Music Database and from

88.6% to 95.3% for the data taken from commercial CD record-

ings.

B. Novelty and Effectiveness of Accompaniment Sound

Reduction

The reliable frame selection method made it possible to con-

sistently select reliable frames that represented the characteris-

tics of the singing voice. It needs to be noted that this method

even rejected unreliable vocal frames as well as nonvocal frames

to improve the robustness. Although similar methods were used

in previous studies, they focused on distinguishing vocal and

nonvocal frames; they did not consider the reliability of each

frame.

The effectiveness of the reliable frame selection method is

confirmed by the following two comparisons. First, we com-

pared the spectral distortion between frames selected and those

rejected by the method. The spectral distortion of the former

was smaller than the letter, and therefore, we could say that

the method can select frames that are less influenced by the ac-

companiment sounds. Then, we compared the results of exper-

iments on signer identification. The accuracy of the experiment

in which the hand-labeled vocal sections are used without the se-

lection method was 83%, while that with the selection method

was 95%. This result indicates that it is important not only to

detect the vocal regions but also to select reliable frames.

C. Effectiveness of a Combination of the Two Methods

It needs to be noted that the reliable frame selection method

is robust to the error of the accompaniment sound reduction

method because the reliable frame selection method can reject

frames in which the singing voice was not properly segregated

by the accompaniment sound reduction method. This is con-

firmed by the experiments using the ground-truth F0 for the ac-

companiment sound reduction method. Though methods sim-

ilar to the accompaniment sound reduction have been used to

improve the noise robustness in the field of speech recognition

[27], this is the first paper that proposed a method that can be

used in combination with the accompaniment sound reduction

method and increase robustness to F0 estimation errors.

VII. CONCLUSION

We described two methods that work in combination to

model the characteristics of the singing voice. To deal with

the singing voice including sound mixtures of various musical

instruments, our method solved the problem of the accompa-

niment sound influences. We developed an automatic singer

identification system and an MIR system based on vocal timbre

similarity by applying the new representation of the singing

voice, and tested and confirmed the effectiveness of these

systems by conducting objective and subjective experiments.

In the future, we plan to extend our method to represent

singing styles of singers in addition to the vocal timbre by

modeling F0’s trajectories of the singing voices. We also plan

to integrate this system with content-based MIR methods based

on other musical elements to give users a wider variety of

retrieval methods.

REFERENCES

[1] W.-H. Tsai and H.-M. Wang, “Automatic detection and tracking of
target singer in multi-singer music recordings,” in Proc. 2004 IEEE

Int. Conf. Acoust., Speech, Signal Process. (ICASSP 2004), 2004, pp.
221–224.

[2] W.-H. Tsai and H.-M. Wang, “Automatic singer recognition of popular
music recordings via estimation and modeling of solo vocal signals,”
IEEE Trans. Audio, Speech, Lang. Process., vol. 14, no. 1, pp. 330–341,
Jan. 2007.

[3] R. C. Rose, E. M. Hofstetter, and D. A. Reynolds, “Integrated models
of signal and background with application to speaker identification in
noise,” IEEE Trans. Speech Audio Process., vol. 2, no. 2, pp. 245–257,
Mar. 1994.

[4] A. Mesaros, T. Virtanen, and A. Klapuri, “Singer identification in poly-
phonic music using vocal separation and pattern recognition methods,”
in Proc. 8th Int. Conf. Music Inf. Retrieval (ISMIR 2007), 2007, pp.
375–378.

[5] B. Whitman, G. Flake, and S. Lawrence, “Artist detection in music with
minnowmatch,” in Proc. 2001 IEEE Workshop Neural Netw. Signal

Process., 2001, pp. 559–568.
[6] A. L. Berenzweig, D. P. W. Ellis, and S. Lawrence, “Using voice seg-

ments to improve artist classification of music,” in Proc. AES 22nd Int.

Conf. Virtual, Synth., Entertainment Audio, 2002.
[7] Y. E. Kim and B. Whitman, “Singer identificatin in popular music

recordings using voice coding features,” in Proc. 3rd Int. Conf. Music

Inf. Retrieval (ISMIR2002), 2002, pp. 164–169.
[8] T. Zhang, “Automatic singer identification,” in Proc. IEEE Int. Conf.

Multimedia Expo (ICME 2003), 2003, vol. I, pp. 33–36.
[9] W.-H. Tsai, S.-J. Liao, and C. Lai, “Automatic identification of simul-

taneous singers in duet recordings,” in Proc. 9th Int. Conf. Music Inf.

Retrieval (ISMIR 2008), 2008, pp. 115–120.
[10] T. Kitahara, M. Goto, K. Komatani, T. Ogata, and H. G. Okuno, “In-

strogram: Probabilistic representation of instrument existence for poly-
phonic music,” IPSJ J., vol. 48, no. 1, pp. 214–226, 2007.

[11] Y. Tsuchihashi, T. Kitahara, and H. Katayose, “Using bass-line fea-
tures for content-based mir,” in Proc. 9th Int. Conf. Music Inf. Retrieval

(ISMIR 2008), 2008, pp. 620–625.
[12] J.-J. Aucouturier and F. Pachet, “Music similarity measures: What’s

the use?,” in Proc. 3rd Int. Conf. Music Inf. Retrieval (ISMIR2002),
2002, pp. 157–163.

[13] B. Logan, “Content-based playlist generation: Exploratory experi-
ments,” in Proc. 3rd Int. Conf. Music Inf. Retrieval (ISMIR 2002),
2002, pp. 295–296.

[14] E. Allamanche, J. Herre, O. Hellmuth, T. Kastner, and C. Ertel, “A
multiple feature model for musical similarity retrieval,” in Proc. 4th

Int. Conf. Music Inf. Retrieval (ISMIR 2003), 2003, pp. 217–218.
[15] A. Berenzweig, B. Logan, D. P. W. Ellis, and B. Whitman, “A large-

scale evaluation of acoustic and subjective music similarity measures,”
in Proc. 4th Int. Conf. Music Inf. Retrieval (ISMIR 2003), 2003, pp.
63–70.

[16] M. F. McKinney and J. Breebaart, “Features for audio and music clas-
sification,” in Proc. 4th Int. Conf. Music Inf. Retrieval (ISMIR 2003),
2003, pp. 151–158.

[17] G. Tzanetakis, J. Gao, and P. Steenkiste, “A scalable peer-to-peer
system for music content and information retrieval,” in Proc. 4th Int.

Conf. Music Inf. Retrieval (ISMIR 2003), 2003, pp. 209–214.
[18] E. Pampalk, “Computational models of music similarity and their ap-

plication in music information retrieval,” Ph.D. dissertation, Univer-
sitat Wien, Vienna, Austria, 2006.



648 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 18, NO. 3, MARCH 2010

[19] A. Flexer, F. Gouyou, S. Dixon, and G. Widmer, “Probabilistic com-
bination of features for music classification,” in Proc. 7th Int. Conf.

Music Inf. Retrieval (ISMIR 2006), 2006, pp. 628–633.
[20] T. Pohle, P. Knees, M. Schedl, and G. Widmer, “Independent compo-

nent analysis for music similarity computation,” in Proc. 7th Int. Conf.

Music Inf. Retrieval (ISMIR 2006), 2006, pp. 228–233.
[21] D. P. W. Ellis, “Clasifying music audio with timbral and chroma fea-

tures,” in Proc. 8th Int. Conf. Music Inf. Retrieval (ISMIR 2007), 2007,
pp. 339–340.

[22] M. Goto, “A real-time music-scene-description system: Predomi-
nant-F0 estimation for detecting melody and bass lines in real-world
audio signals,” Speech Commun., vol. 43, no. 4, pp. 311–329, 2004.

[23] B. S. Atal, “Effectiveness of linear prediction characteristics of the
speech wave for automatic speaker identification and verification,” J.

Acoust. Soc. Amer., vol. 55, no. 6, pp. 1304–1312, 1974.
[24] K. Shikano, Evaluation of LPC spectral matching measures for pho-

netic unit recognition Comput. Sci. Dept. Carnegie Mellon Univ., Tech.
Rep. CMU-CS-96-108, 1986.

[25] M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka, “RWC music data-
base: Popular, classical, and jazz music databases,” in Proc. 3rd Int.

Conf. Music Inf. Retrieval (ISMIR 2002), Oct. 2002, pp. 287–288.
[26] T. Virtanen and M. Helen, “Probabilistic model based similarity

measures for audio query-by-example,” in Proc. 2007 IEEE Workshop

Applicat. Signal Process. Audio Acoust. (WASPAA 2007), 2007, pp.
82–85.

[27] T. Nakatani and H. G. Okuno, “Harmonic sound stream segregation
using localization and its application to speech stream segregation,”
Speech Commun., vol. 27, pp. 209–222, 1999.

Hiromasa Fujihara received the B.S. and M.S. de-
grees from Kyoto University, Kyoto, Japan, in 2005
and 2007, respectively. He is currently pursuing
the Ph.D. degree in the Department of Intelligence
Science and Technology, Graduate School of Infor-
matics, Kyoto University.

He is currently a Research Scientist of the Na-
tional Institute of Advanced Industrial Science and
Technology (AIST), Tsukuba, Japan. His research
interests include singing information processing and
music information retrieval.

Mr. Fujihara was awarded the Yamashita Memorial Research Award from the
Information Processing Society of Japan (IPSJ).

Masataka Goto received the Doctor of Engineering
degree from Waseda University, Tokyo, Japan, in
1998.

He is currently a Leader of the Media Interaction
Group, Information Technology Research Institute,
National Institute of Advanced Industrial Science
and Technology (AIST), Tsukuba, Japan. He serves
concurrently as a Visiting Professor in the De-
partment of Statistical Modeling, The Institute of
Statistical Mathematics, and an Associate Professor
(Cooperative Graduate School Program) in the De-

partment of Intelligent Interaction Technologies, Graduate School of Systems
and Information Engineering, University of Tsukuba.

Dr. Goto received 24 awards over the past 17 years, including the Commen-
dation for Science and Technology by the Minister of MEXT “Young Scien-
tists’ Prize,” DoCoMo Mobile Science Awards “Excellence Award in Funda-
mental Science,” IPSJ Nagao Special Researcher Award, and the IPSJ Best
Paper Award.

Tetsuro Kitahara (M’07) received the B.S. degree
from Tokyo University of Science, Tokyo, Japan, in
2002 and the M.S. and Ph.D. degrees from Kyoto
University, Kyoto, Japan, in 2004 and 2007, respec-
tively.

He is currently a Postdoctoral Researcher at
Kwansei Gakuin University, Hyogo, Japan, for the
CrestMuse Project funded by CREST, JST, Japan.
His research interests include music informatics and
computational auditory scene analysis.

Dr. Kitahara received several awards including the
Second Kyoto University President Award.

Hiroshi G. Okuno (SM’06) received B.A. and Ph.D.
from the University of Tokyo in 1972 and 1996, re-
spectively.

He worked for NTT, JST, and Tokyo University
of Science. He is currently a Professor of Graduate
School of Informatics, Kyoto University, Kyoto,
Japan. He was a Visiting Scholar at Stanford Uni-
versity, Stanford, CA, from 1986 to 1988. He has
done research in programming languages, parallel
processing, and reasoning mechanism in AI. He is
currently engaged in computational auditory scene

analysis, music scene analysis, and robot audition. He coedited Computational

Auditory Scene Analysis (Lawrence Erlbaum Associates, 1998), Advanced Lisp

Technology (Taylor and Francis, 2002), and New Trends in Applied Artificial

Intelligence (IEA/AIE) (Springer, 2007).
Dr. Okuno received various awards including the 1990 Best Paper Award of

the JSAI, the Best Paper Award of IEA/AIE-2001 and 2005, and the IEEE/RSJ
IROS-2001 and 2006 Best Paper Nomination Finalist. He is a member of the
AAAI, ACM, ASJ, ISCA, and five Japanese societies.


