
AD-A264 793

NASA Contractor Report 191443

ICASE Report No. 93-12

ICASE E
A MODELING STUDY OF THE TPC-C BENCHMARK

DTIC
S EL CTE

MAY 26 19931

Scott T. leutenegger A

Daniel Dias

This do>vinent has be-en cippioved

tow public teleass and sale; its
aistribution as unlirie4.

NASA ('ontrac:t Nos, NAS 1- 1948(0 and NAS 1- 1605

Ma\•ch 1993

Intitute for Computer Appliications in Science and Fri'incerrIfIL

NASA Langley Research Center

I lampton, Virginia 2368 I -(•(() 1

Operated by the tUnivermities Spa-ce Research Asso6ciatirO

National Aeronautics and
Space Administration

Langley Research Center
Hampton. Virginia 23681-0001 93-11832

A Modeling Study of the TPC-C Benchmark

Scott T. Leutenegger Daniel Dias
ICASE: Institute for Computer Applications IBM Research Division

in Science and Engineering T.J. Watson Research Center
Mail Stop 132c P.O. Box 704

NASA Langley Research Center Yorktown Heights, NY 10598
Hampton, VA 23681-0001 dias@watson.ibm.com

leut@icase.edu

Abstract

The TPC-C benchmark is a new benchmark approved by the TPC council intended for com-

paring database platforms running a medium complexity transaction processing workload. Some

key aspects in which this new benchmark differs from the TPC-A benchmark are in having several

transaction types, some of which are more complex than that in TPC-A, and in having data access

skew. [n this paper we present results from a modelling study of the TPC-C benchmark for both

single node and distributed database management systems. We simulate the TPC-C workload to

determine expected buffer miss rates assuming an LRU buffer management policy. These miss rates

are then used as inputs to a throughput model. jFrom these models we show the following: (i) We

quantify the data access skew as specified in the benchmark and show what fraction of the accesses

go to what fraction of the data. (ii) We quantify the resulting buffer hit ratios for each relation as

a function of buffer size. (iii) We show that close to linear scale-up (about 3% from the ideal) can

be achieved in a distributed system, assuming replication of a read-only table. (iv) We examine

the effect of packing hot tuples into pages and show that significant price/performance benefit can

be thus achieved. (v) Finally, by coupling the buffer simulations with the throughput model, we

examine typical disk/memory configurations that maximize the overall price/performance.

I *-~ ~ Ph 712V D 53
0• ~ ~ ~ ~ ~ ~ ~-..'.........+'.J+:O•3

*A significant portion of this work was done while Leutenegger was a Post-Doctoral Researcher at IBM T..1. Watson

Research Center. Support for Leutenegger was also provided by the National Aeronautics and Space Administratio

under NASA C ontract Nos. NASI-18605 and NASI-19480 while lie was in residence at the Institutc for C(olnputer

Applications in Science and En7iineering (ICASE), NASA Langley Research C(entcr, flahtipton, VA 236081-9001. :-4ndJes

Ijor

I i I

1 Introduction

The TPC Benchmark C (TPC-C) [7, 9] is intended to model a mnedium complexity online transactiojn

processing (OLTP) workload. It is patterned after an order-entry workload, with multiple transaction

types ranging from simple transactions that are comparable to the simple debit-credit workload in

the TPC-A/B benchmarks [6], to medium complexity transactions that have two to fifty times the

number of calls of the simple transactions.

An important aspect of the workload is that is specifies skewed (i.e. non-uniform) access within

individual data types/relations. By contrast, the TPC-A benchmark assumes uniform access within

each relation/data type. The skewed access, which is typical for many OLTP workloads [4] allows

better use of the main memory database buffer by allowing it to capture the hot data items.

The benchmark specifies a non-uniform random number generation. function to be used for gen-

eration of tuple-ids. We provide Xmsight into the distribution of this skew by simulating this function

as specified by the benchmark. The output -)f this simulation specifies the skew at the tuple level,

yet most typical DBMS's access and store data in pages. Therefore, to estimate the skew at the

page level we also simulate the function assur..ing tuples are packed sequentially into pages. These

results provide insight into the workload and help explain the miss rate results obtained in our buffer

simulations. In addition we use the distribution obtained from this simulation to guide us in packing

tuples into pages so that all tuples of similar "hotness" will be in the same page.

We assume the use of the LRU buffer replacement policy for the database buffer and simulate the

buffer pool to determine the expected miss rates for each relation. We use the miss rates obtained

from our buffer simulations as inputs to a throughput model. Using this model, we explore optimal

buffer sizes to minimize hardware costs. Finally, we consider the impact of running the benchmark

on a clustered/distributed database system, examining the impact of replicating one of the read-only

relations.

We focus only on the access patterns and processing requirements of the benchmark. We do not

consider terminal emulation, ACID properties, or pricing. When we present price/performance curves

we will only consider hypothetical costs of hardware and do not include considerations such as terminal

emulation or software maintenance costs as outlined in the TPC-C specification [9]. We describe the

benchmark transactions only in the level of detail required to model the workload, primarily in terms

of the access patterns and the number of database calls per transaction. Readers interested in details

such as which fields are retrieved and updated are referred to the benchmark specification.

The rest of the paper is organized as follows. In Section 2 we provide a synopsis of the TPI'('-(C

workload, so that the paper is reasonalbly self conta iined. In Sortion 3 w, p)resenl simulaiti(m results

for the non-uniform random number generation routines to determhine the doegree of acc-,.s sko,.

A description of our buffer model simulation including roodel results is c(otaiinvd iM Secti,,i 1. A

throughput model and price/Iperformance results for both a single and a (list ribtotd system are g•iVel

in Section 5. Concluding remarks appear in Section 6.

2 TPC-C Workload Synopsis

This section gives a summary of the TPC-C workload. For a more thorough treatment see the

TPC P spýeification [91 and overview [7]. In this paper, we focus only on the access patterns arnd

processing requirements of the benchmark. For concreteness, we will assume a relational database

model, though most of the development is applicable to other data models. We first give an overview

of all five transaction types in the benchmark and then give a more detailed account of each of the

transactions in the following section.

2.1 TPC-C Overview

The TPC-C benchmark is intended to represent a generic wholesale supplier workload. The workload

is primarily a transaction processing workload wit]) multiple SQL calls per transaction, but also has

two aggregates, one non-unique select, and a join. The workload specifies skew (i.e. non-uniform

access) at the tuple level for three of the relations.

Figure 1 shows the Business Environment Hierarchy of the TPC-C workload. This figure is a

reproceuction of that found in the TPC-C benchmark specification [9]. The overall database consists

of a number of warehouses. Each warehouse is composed of ten districts where each district has

3,000 (3K) customers. There are 100K items that are stocked by each warehouse. The stock level

for each item at each warehouse is maintained in the Stock relation. Customers place orders that are

maintained in three relations: in the Order relation a permanent record of each order is maintained; in

the New-Order relation, pending orders are maintained and later deleted by a Delivery transaction; in

the Order-Line relation, an entry is made for each item ordered. A history of the payment transaction

is appended to the History relation.

The logical database design is composed of 9 relations as listed in table I and shown in Figure

2. In the table, W represents the number of warehouses. We make the assumption that onlY integral

units of tuples fit per page. The cardinality of the Warehouse, District, Customer, and Stork rl:ations

scale with the number of warehouses. This is similar to the TP(C-A benchmark where the cardinalitv

of the Branch, Teller, and Account relations scale with the number of branches. The lien, relit• inn

2

Table 1: Summary of Logical Database

Relation Tuple - Tuples Per
Name Cardinality Length 4K Page
warehouse W 89 bytes 46

district W * 10 95 bytes 43
customer W * 30K 655 bytes 6

stock W * 100K 306 bytes 13
item 100K 82 bytes 49

order 24 bytes I 0
new-order 1 8 bytes 512

order-line 54 bytes 75
history 46 bytes 89

Table 2: Summary of Transactions

Transaction Minimum % Assumed % Selects Updates Inserts Deletes Non-Unique Select Join
New Order * 43 23 11 12 0 0 0
Payment 43 44 4.2 3 1 0 0.6 0
Order Status 4 4 11.4 0 0 0 0.6 0
Delivery 4 5 130 120 0 10 0 0
Stock Level 4 4 0 0 0 0 0 1

does not scale with the number of warehouses. The Order, Order-Line, and History relations grow

indefinitely as orders are processed.

There are five transaction types in TPCC as listed in table 2. Further details of the specific

relations accessed and the access skew are given in Sections 2.2 and 3. The New Order transaction

places an order for 10 items from a warehouse, inserts the order, and for each item updates the

corresponding stock level. The Payment transaction processes a payment for a customer and updates

balances and other data in the Warehouse, District and Customer relations. The customer can be

specified either by a unique customer-id, or by a name. In the latter case, on the average three

customers qualify from which one is selected. When specified by customer-id, this transaction is of

comparable complexity to the TPC-A transaction. The Order Status transaction returns the status

of a customer's last order. As in the Payment transaction, the customer may be specified by the

customer-id or by name. Each item in the last customer order is examined. The Delivery transaction

processes orders corresponding to 10 pending orders, one for each district, with 10 items per order.

The corresponding entry in the New-Order relation is deleted. Finally, the Stock Leve; transaction

examines the quantity of stock for the items ordered by each of the last 20 orders in a district.

Table 2 summarizes the transactions based on the percent of the workload each transaction

comprises, and the number of selects, ul)dates, inserts, deletes, non-unique selects, and joins for a

3

relational model. There is a coliie for inhinittilie poreetit of worlJkh;ad and a (•ml f6,r ;i aýýmid

percent of workload. The Ibenchmark specifies a minimum |ircent tor all tie 1,r;•in.ac1i,,n Iyp•e 'xcp,

the New Order transaction. The benchia rk metric is the ntmber of New Order I pta ,:t'cti,, •i i(ý,''-•,i

per minute. hence, it is desirable to set the percent New Order as high as pos)0iblj h 15'/) fkinig il,

account that the size of the New-Order relation will grow without bound inills. the relative rate of

Delivery transactions is sufficient to delete the entries in the New-Order relation at the same rato

that the New-Order transaction inserts them. 'rite third column in the table is ,th percenT ,,f the

workload mix that we have assumed for All studies in this paper. W\e have assumed the percenI of

Dehvery transaction is 5% to ensure that the size of the New-Order relation remains tsmall .,ince our

simulations must maintain the contents of tLe relation as the simulation proceeds. Note. the percetnt

New-Order versus Delivery is a key parameter of this benchmark and should be tuned carefully to

achieve the maximum New-Order transactions per second. If the percent New-Order is .!W and the

percent Delivery is 4% then the New-Order relation will grow without bound causing more misses on

the New-Order relation to occur and a need for more storage. Tile join is an equi-join, where the two

relations involved each have at most 200 tuples that meet the selection predicate. Further description

of each of these transactions is found in section 2.2.

2.2 Transaction Access Patterns

In this section we summarize the access patterns for each database call of each transaction. For

each transaction we first fist how the random variables are generated, and then list the(database

operations made by that transaction in a simplified pseudocode. Although our pseudocode is not in

SQL it succinctly conveys the function of each transaction. The TPC-C specification includes sample

code [9] for each transaction. In the description of how the input data is generated many of the

tuple-ids are generated from the NU() function. We define qnd simulate this function in section 3.

for now just view this as a non-uniform distribution.

New Order Transaction

This transactions places an order that consists of an average of 10 items. The input is generated

as follows:

whouse-id uniform
dist-id uniform
customer-id NU(1023,1,3000)
number of items uniformn(5,10)
item-id NIU(8191,1,100000)

The benchmark specifies that there are 10 districts per warehouse, amd (each district has one

terminal. All transactions initiated by a terminal use that termii al's (list rict and warehmise ni imher.

Since we are not explicitly modeiling the terminals. we assume the whouse-id and dist-id are tmi i 'rnlv

4

distributed. This assumption is reasonable since each terminal is submitting requests at the same

rate.

Below we list the simplified format of the New-Order transaction:

1. Select(whouse-id) from Warehouse

2. Select(dist-id, whouse-id) from District

3. Update(dist-id, whouse-id) in District

4. Select(customer-id, dist-id, whouse-id) from Customer

5. Insert into Order

6. Insert into New-Order

7. For each item (10 items):

(a) Select(item-id) from Item

(b) Select(item-id,whouse-id) from Stock

(c) Update(item-id,whouse-id) in Stock

(d) Insert into Order-Line

8. Commit

In the benchmark, a district is associated with a specific warehouse, hence, the key used to

uniquely identify a district tuple is composed of two fields: (dist-id, whouse-id). Similarly, the key

used to uniquely identify a customer tuple is composed of three fields: (customer-id, dist-id, whouse-

id). In the benchmark the number of items ordered is uniformly distributed between 5 and 15. We

assume all transaction have a fixed number of items ordered equal to 10. This assumption also has no

effect on our results since we only report mean miss rates and throughputs. For each of the 10 items

ordered, the supplying warehouse is the local warehouse 99% of the time and uniformly distributed

among all the other warehouses 1% of the tmne. The implication of a having a remote warehouse

involved is that the tuple retrieved from the stock relation may be on a different node if the warehouse

is remote and the database is configured across a distributed system. We will assume that calls to

remote warehouses located on the same node incur the same overhead as a call to the local warehouse.

To uniquely identify a stock tuple the key has two fields: (item-id, whouse-id). A specific Stock tuple

contains the number of that particular item in stock at that particular warehouse. In addition, the

benchmark specifies that 1% of the transactions should be rolled back to simulate entry errors. We

ignore this aspect.

Payment Transaction

This transaction processes a payment by one of the customers. There are two cases. In the first

case, which occurs 40% of the time, ithe customer is selected by customer-id. In the second case,

5

which occurs 60W of tile time. tie custoilier is Shlected by last Ia I . l);I(I)h1 4ret I(I I >,(CIil41(

by the benchmark for the population of the datiabase (each district has" 3000 risornr, 611f 'billt

1000 nalnes). on average three customers will have the same lass itit ari. th •t 111 ;llil Custloltie4r cIoleri

is determined yly selecting all customers with thait nainie, sorting on the first lname. and 1akili rg 0w

middle one. To define the accesses to the relation we will assUmie that this ionii-unique se Irci has- th,,

satire overhead as 3 selects.

Regardless of the method used for selecting the customer, 1.5W of the tranisactios as.surne, the

customer is paying through a warehouse other than the customer's home warehouse. The input is

generated as follows:

whouse-id uniform
dist-id uniform

case 1 customer-id NU(1023,1,3000
case 2 customer-name NU(255,lbotund,ubound)

Note that, in case two, the customer name is drawn from the NU funtion from lbound to ubound. We

assume one of three (lbound,ubound) pairs are chosen with equal probability as (1,1000). (1001.2000).

(2001,3000). In actuality there are 1000 unique names per district and the remaining 2000 names are

uniformly drawn from these 1000 names. Hence, when a customer is specified by name on average

three tuples satisfy the predicate and are distributed across the 3000 tiples in some manner similar

to above. We have chosen the distribution above to keep the simulations simple. Below we list the

SQL calls made by the transaction in a simplified format.

1. Select(whouse-id) from Warehouse

2. Select(dist-id,whouse-id) from District

3. (a) Case 1: Select(customer-id,dist -id,whouse-id) from Customer

(b) Case 2: Non-Unique Select(customer-name,dist-id,whouse-id) from Customer

4. Update(whouse-id) in Warehouse

5. Update(dist-id,whouse-id) in District

6. Updaetecustomer-id,dist-id,whouse-id) in Customer

7. Insert into History

8. Commit

Order Status Transaction

This transaction determines the status of a customer's last order, returning information abouit tlre

customer, and a summary of the order. The customer is determined as in the Payment tranisaclion,

i~e. 60% of the time by name and 40% by customer id.

• I I 6

whouse-id uniform
dist-id uniform

case 1: customer-id NU(1023,1,3000)
case 2 customer-name NU(255,1bound,ubound)

1. (a) Case 1: Select(customer-id,dist-id,whouse-id) fome Customer

(b) Case 2: Non-Unique Select(customer-name,dist-id,whouse-id) from Customer

2. Select(Max(order-id),customer-id) from Order

3. for each item in the order:

(a) Select(order-id) from Order-Line

4. Commit

The database call "Select(Max(order-id),customer-id) from Order" is the selection of the tuple in

the Order relation that is the most recent order placed by the customer. This could be implemented

as a max aggregate, or an order by descending order-id and return only the first tuple. Since the

Order relation keeps on growing without bound, both of these approaches could be expensive. This
could be implemented using an ordered multi-keyed index so that correct tuple can be fetched in just

one index look up. Hence, in our studies we assume this requires the overhead of a single select.

Delivery Transaction

This transaction processes a delivery. The transaction assumes that during a delivery the oldest
order not yet delivered for each district within a warehouse is processed. Hence, there are really 10

deliveries per delivery transaction. The benchmark specifies that this transaction has less stringent

rsponse time constraints avd can be executed in batch mode, i.e. deferred execution. The only

input to the transaction is the whouse-id which is uniformly distributed. The transaction proceeds

as follows:

1. For each district within the warehouse (i.e. ten times):

(a) Select(Min(order-id),whouse-id,dist-id) from New-Order

(b) Delete(order-id) from New-Order

(c) Select(order-id) from Order

(d) Update(order-id) Order

(e) For each item in the order (i.e. ten times):

i, Select(order-id) from Order-Line

ii. Update(order-id) Order-Line

(f) Select(customer-id) from Customer

(g) Update(customer-id) Customer

2. Commit

7

T'he dlatabase call '"Select (ý% ni %I (~ i ill). "ciii. jd.,dI-t d) fvuii Orderi�' i4

the I uple ~in t he New-Order relat ion t hat Is I lie okil"I t''.t o r I'm 1r ;l (1- ill nt .11(1 % .,ililw (.I n h

New-Order relation. As in the %Tax select inl tile Orde~r ti uIrii-o Illi I wild tnhl i, iii'~ii.

using ai mtutti-keved ind(ex~ si t hat the(cirrect t it an l-;ie I, fthui'(Ill n- jliii (ll. ll'ir-

used in the Select fromt C ustomter is obtained fromIi 1w inplo iii thle Order-I, rioll~aii

Stock Level Transaction

This tranisactio-n determinites the timitber oh itemS. Mih(I bY ordeps frmoijt I ll, 1.is 211 ohrdo-(,;

specific (district that have a stock lE-vel below a cert ai thireshold. Theip't ar-e!s illld 1 t id. wOll,1

is uniformly (list ributed , and the thIireshold. Below we (luote the amiinple SQL I.-ci ol dirv Ic 1Y from Ti he

tpcc Cdocumlent [9] so that we (10 not confuse the query by ove~rsilinpfhibra iIIIII.

SELECT d-nex-o-id INTO :ojd
FROM District
WHERE d-wid =:wijd AND d-id =:dIid

SELECT COUNT(DISTINCT (sliid)) INTO :stock-count

FROM Order-Line, Stock

WVHERE
oLw-id =.wid AND

oLd-id = :d-id AND oLo-ld < :oid AND

oLo-id > (:ojd - 20) s~wld = :w-id AND

s-iid = o~l-id AND s-quantity < :threshold

In the above query, oLd-id specifies the dist-id attribute of a ~IV ple tinthe orderlino relation. o-id is

the order-id attribute_ L~id is the item attribute, and w-id is the warehouse attribute. The first select

acquires the current order number for the (district and p~lace's it Iin the vaibe:01(. wlilch d

for order-id. H-aying obtained the current order-idl for that district. the qierly coimiput es a) 'intl of thie

Order- Line and Stock relations to tii 0(the n11umber Of distinict itViiis, orilered in tlw ili'sti-HCts lae-i 201

orde~rs which have a stock quantity b~elow the specified threshold.

Assuming an index onl the order-id field of the(Order- Line relaition am ;t1 twoi keyeod inidex mitil

whouse-id and] itemi-id of the stock relation, the(query results *Iin ;n average iii '210 O() uj i -1,H oi d

Stock tuples each being fetched.

To summnarize the- access p~at terns of the five t rauisact ion we list thie iiii iii lr (it acci>seýý - e .I

rela tioin for each transaction type and the average inunmber of acev p)er I raiiý;w saci-n Ili T idc 3:t li,

latte~r assumeos the p)ercen~tages for eac-h t.ra usaction listed in Tiable 2. Wi tthin (lie I a ile. I lwi imlot1

(/(x) signifies that x tupJles are chosen Uniiformily from thel relaitioii. VU(r) deiiiil es Non~inl'Iturm

randoml sele~ctionl of X tuip]es using thit(NV(function. 1(.r) letiolies xr 1illies ;-v Appetidnil Ii, tho

relation, and P(x) dleinotes x tup1 les are chosen where 1 e ii 1)105s chosen were recentlv iia'll' by

Past biehavior (in Other words there, is a formn of I em lira~l locallit~y). Note 1.thatilhue tilpules aice-sei I

Table 3: Su,,,nary of Relation Accesses

Reltio 1 eil P-ayment Ordecr 1)elivery Stork1A rge

ICIrderI ____ Stat us _____ Levelj __

warehous [T(1) UM') _______ ___________ _______

district U(i) 1(l) P O(1) 0.93:
-ustomer NU(1) N ! 1(2.2) N l '(2.2) P(10) 1.5241

stock N NU(10) P_(_ _2_0_0) r2.4
i tem N U(10) ,__,_
order A(1) P(1) P(10) 0.__ 053

new-order A(t) P(10) _ 0.49

order-line A(10) P(0) P(100))(200) 131.
'Ahistory A(_) ." _ 0).113

by the Or-ler-Status. Delivery, and Stock-Level transactions are more likely to be buffer pool hils

since they are for tuples that have been recently put in the buffer pool by the New-Order transaction.

Many of the tuple-ids are generated from the NU() function. We define and simulate this function in

the next section.

3 Analysis of Data Access Skew in TPC-C

The TPC-(' benchmark assumes access to the tuples are skewed, i.e. within a rlation some tul)ies

are referenced more frequently than others. In this section we define and simulate the non uniform

random number function, as specified by the TP('-(' docuients., use(d for tht., generation of tuple

id's. The non-uniform random number generating function, NU(), which we paraphrase from hle

benchmark specification (9., is defined as follows:

N.U(A. X,y)= (U(rand(O, A) I rand(.ry)) + ()X(y -(- x))+ (1)

wl~ers-:

* randimiX(x.y) donoltes a iriformlv disiril)tiute(l integer ranrlomn number In Ie' cli->sd iMllrval x..

0 (' is a constant within [0..A].

* A is a constant chosen according to the size of Ilhi range x.y],

* (N V, M) stands for N mirodulo NI.

o and (N I M) stands for the bitwise logical OR ,of N arnd M.

For I lit, ieinaimndi- o t his paper we asstInel C 'pial, Zero 114 ITe1'(tiiliiI i 1WIi~ii ;L11f)%

;tni arl-htrarv ch-lice of C wVithjin f() ... \ X . W(' clioiu (e A t \ o andi I. ~o f I I Iig t I tlI{ ~of, cpqifif ;1 14omn. t*(,u ih

tipeiben gonerated.

Virst we consider accsses to the(stock and item roatioms. .All tih ple d' for;if,~ iO

relatiflos art, drawn front the N U(8 ý191.1,100000) distribuition. Ini FIgu're 3 we iulot the poiOlii

iiialssý fliitct io (P'M F) for this (listribllitioii a~s ob~tainedl front siiiulating one hill imn samiiples. The plot

t ~w the non-m-, iformnity Vin access anid the periodicity of the(access probability in the(first paramlot '

4 91 o the(NU function above. The mn ii ner of rycles eq uals tilie (floor of thle) third para met(er

div-ided by the first para meter of the N U fu iiitioni. or 12 cycles for this case, lit the A ppcmiidix We

show thal if the(third p~aramnete'r of the N U function is a pow~er of two, then these, cycles are, exact

andl we de~rive a closed form exlpressiorn for tithe resulting PNIF. Figure 3~ is hard to interpret becauise

of the large, miniher (1 00,6030) of points; hence, we plot tlie(sante (list ribii tion for tu pies I to 10.000

inl Figure 4. In this figure, the nion-uniformnity Wit hin a cycle (8191 points) is clear.

While the non - iniforinity of access is apparent in Figure 4, the degree of skew is Tno1 clear. Let

ot lie the(probability of acces.sinig tuiple i'. Let 3i, be the fraction of the relation represented by that

ulple. Note ý'J = 3 V Z.j' for stock tuiples. [in Figure 5 we order the tuples by inicreasing order of

(k(inicreasýing order of hotness) and p)lot T o, versus E 3,, i.e. the cumulative probability of access

versus the cumulative fraction of the relation. If a relatiotn has iio skew the curve would lIe(linear.

henice the more convex the curve is, the more skew there is. For the mnomeInt ignore the top two

curves,, and focus on the lower curve which represents the access skew at the, tuiple level. The graph

.shows that 16%, of the accesses go to about 80%c of the. tuples, or alternativeiv, 84%/' of the accesses go

to abouit 20% of the tuples. There is even more skew in the tail of the distributiotn, so that. abouit T1I

of the accesses go to ab~out 10%, of the (hottest) tuples and about 39"X of the accesses go to about 2%7

of the (hottest) tuples.

In most typical databases dlata is stored in pages, hence we need to dletermnine the skew at the page

level. We first assume tuiples are packed into pages in sequential order with the maximuinminmber of

whole tuiples that fit per page. We assumne the reniaindler of the page is wastedl. For the stock relationl

1:3 (26) tuples fit in each 4K (8K) page.

Again, we order the(, pages by frequtency of access and plot the cumiulative probability of accessý

ve~rsujs the. curmniative fraction of the database in Figuire 5 (top two curives). Ihte top curve is ior an

S 'vt page size an(] t00e second curve is for a liy, page size. For a IN Byte page size, we e

that 257, of the access go to 80%A of the data, or viewed the, other way 757% of thle accesses go to

20'X of the(data. This is siml"ar to the so called **80-20" rule where 80'/' of the accesse-s A') to 2WX 4 i

the dat~a. Again, there is a. more skew in the(tail of the (list.rilmit o ii a~od about .59W of thle accesses-

go to about 10%r, of the hotte-st, pages, andl abouit 28%ý' of the(accesses go to about 2W (if t lie pages.

Thel(sinaller page size resuflts in mnore skew than the(lairger page size ii", t. iiere is less (if aI cli'l nce- ifi

I p

spread out the hot tuples among the pages

The milder skew at tihe page level leads to the question of whether the tup levlwI kew c;ii, h,

obtained at the page level. Packing tuples into pages in sequential order spreads ,iit lh, •tiipI,

aniong all the pages of the relation. A simple optimization is to firs. sort the tup pýs fromn holte-1 t•

coldest and then pack them into pages in that order. Since the distribution paraniever.> for TI((

are know a priori and are static in time, this could be done. (In this Context we nolte thiat It l TP(('

standard (Clause 1.4.1) allows c!ustering of Iuples within pages.) This technique would alf, ýwork for

any workload where we know the distribution of accessing tuples within the relations of the databaf-e.

and where the distribution does not vary with time, (We note, however, that in many real NvorkloaW.

while there is considerable skew in data access, the access distribution is often not static in time.,

The bottom curve in Figure 5 is the resultant skew when this optimized packing of tuples is use¢d.

and is virtually indistinguishable from the tuple level skew. Hence. the optimized pa(king results in

more skew at the page level which should result in lower miss rates in the buffer pool. As a flirther

note, this optimized tuple to -)age packing approach was insensitive to page size.

Accesses to the item relation exhibits a similar skew except there is less skew for the non-optimized

packing approach since 49 (99) tuples fit per 4K (8K) page.

Access to the customer relatiorn *s less skewed than the stock and item relations since tuples

are accessed by both tuple-id and customer-name. Hence, there are two different access patterns

which are superimposed upon the relation. If the customer-id is used as the selection key. one

tuple is selected from the NU(1023,1,3000) distribution. If the (ustomer-name is used, we make

the simplifying assumption that the customer name is selected fron. one of the NU(25..1,1000),

NU(255,1001,2000) and NU(255,2001,3000) distributions with equal probability. Hence, as can be

derived from the transaction access patterns as specified in section 2.2, 41.86'X of the accesses to

the customer relation use the NU(1023,1,3000) distribution and 58.14% are divided equally among

NU(255,1,I000), NU(255,1001,2000), and N1(2001,3000) distributions. In Figure 6 we plot the PMF

for the customer relation and in Figure 7 we plot the J>, versus Ei3,. We note that there is

considerauly less skew for the customer relation than for the Stock relation.

4 LRU Buffer Simulation

In this section we outline our buffer simulation model and present miss rates obtained fromn oir model.

We siunulat-d the buffer pool for the TPC-C benchmark assuming an LRIU roplacenieunt policy. We

hypothesize that more sophisticated replacenient policies could result in an even larger difFrence

lbtw('en optimized packing of tuplos and non-optifiized packing of tuples since the'y shmould he able tt,

capitalize more on the access skew. In our sinilulations we (-ollected confidence imtervals using hat ch

Mians with 30 batches ,per siniulation and a ba;tchsize of 100,000 samples. All results (i.e. the' miss

Il

rates of each relation) have confidenc v nt ervals of 5"" of less akt a1 () on: (Ih de Ie l(el

I n the hufler model, we sit mulate transaction s ent ering th I ',ý's Iv eIi s"eqeI) tat aIy a\ ;i I I(I j4tIt IIon (Iri(I,

the(Case Where Miultiple transact ions nIay he in the sYstemi at thle saile' Iiniie. '1 114 prv~eolc (it

concurrent transact ions does not change the hbuffer hli', ratio) signilican t l becawiie thle fra tim 4 fpae

accessed by any transaction is smnall comapared to thle bi kfl'hr size. We includeI Coil CiirrenIltt aisaI

in the throughput model in Section 5.1. W'hen a transaction enters it Is chosen as or~o ofthe, fiVetpe

according to the distribution for each, type. Each transaction generates tufplo re-quets antd in.sert>;v

seiidin Section 2.2. The simulation keeps track of thc !ast order p~laced Iw eacth c iistonier. the !;I.,

20 orders for each district, and which tuJples are in the New-Order relation. This informationm is ii'ed

by the the Order-Status, Delivery, anid Stock-Level transactions. The output. fromt tiie siiiimlaltioi, is

the miiss rates for each relation summned over all transaction types, and] also the(miss rMteS for fill'

accesses by the Order-Status, Delivery, and Stock-Level tranisactions in isolation to be used as inlputs

for the throughput model.

In Figure 8 we plot the miss rates versus the buffer size for the Stock. Customer, antd Item

relations. The other relations all have significantly lowc. miss rates. We include curves for both the

sequential packing of tuples into pages and the optimized packing of tuples. 'lthe curves aire, fromt

top to bottom, the Customer relation, Stock relation, and Item relation. For each of Ihe relations.

the optimized packing of tuples results in significantly lower miss rates. T here ;4re two reasoinswh

the Customer relation exhibits a larger miss rate than the Stock relation even though the ('." omen~

relation is the smaller of the two. The first is that the customer relation has less skew as show in
Section .3. The second is that the stock relat~ion is accessed more frequently as show iii tabile 3.

The itemn relation has a much lower miss rate since the relation is much smaller th-in thr stock aind

ciustomer relations clue to the fact that the item irela~tion dhoes not scalewxii ithen ihrowahoe.

The optimal packing approach results in signifi cant ly lower miss rates Ib him Ithe seqpientiial packing!_

approach. For example, the inkss rate for the stock relation for aI buffer size oif 71~2Ml i, 310'7 lower ill

absolute terins for the optimized packing alpliroch than f ir the sequential a ppri acli. Thel(Iill>,- ralt

for thIie stock relat ion averageol over all bufrer sizes con.li si(recI is 1 37, loiwer inl ati Iiieteri ii for

the optirmiized packing approach t han for thle sequenitial approach. 'lhiV significantit Iklv h wer miss, raito

I~;tra ii lt(is direct ly to a lower 1/0 rate. aTid hienice bettler performuanuce. Simiila r impr1 liovrieii , airt -(,(,

for ile(, Ciistomier relation miss rates atit]id) a lesser extent for thle It em rokt'lion,

We assmei 20 Warehoiises at. a node. 'I lie rveasom for chotslnýimig I liecse of 201\atltse A~ ~
toi thle throuighpit, inodhel inl Secti. io 6, Where it is estinuiated that about 20 Waeomscould be

supported by a. If) MIPS processor. Beyond a suifliciemutY Lv lrge wiunidier of warehoiises, tie, biiffer

hit characteristics apjiroxitmIlatvlY scale Witlli tine 11urriber of Warehouses. t[le reaison that t lie scaling,

i's niot exact. i's that, the iteni relaionT doeVs not scale with thef number tof W.,eioiss bumit'elit

dimiliinislis With an increase in the nmbiuiile of Warehousesý. Thie Walrehlouse arid Di1st rict rvelat t uis re

siilli iently smlall t hat, they fit iii the uImb'Or (miss rate 0`%,ý for all slimitulat ions considered,

12

'fable 4: Throughput Model Summary : Single Node

resource parameter n overhead NewOrder Payment Status 1J.livery S, k -

V, t 2 " 1 V4 I5
..?PU _ select I 20K 23 4,2 13.2 130 F

('PU update 2 20K 11 3 0 120 j
(PTU insert 3 20K 12 1 0 0 II

CPU delete 4 20K 0 0 0 ..
FCPU commit 5 40K 1 I I

(PU initlO 6 5K 1 + mc l+2.2(m7) 2.2(nic) 1 +l0(ni'ni,.+nui 200~ns+101;
+ 10(mi + Ins) +Imet_+ 101+ 1() + 1 30(1n1)

("I'U application 7 OAK 47 8 13 2G1

CPU send/receive 8 15K 0 0 0 0 .
CPU prepConuiiit 9 40K 0 0 0 0 _

CP! initTransaction 10 50K I I 1 111

CPU " releaseLocks 11 35K 1 1 1 "I_ _ _

C(PI non-unique-select 12 50K 0 0.6 0.6 3 0 0
C(PU join 13 2000K 0 0

disk [10 14 J + + 10e+1i + 0m} + 10(mcnio+inn) m

5 System Model and Performance Estimates

5.1 Throughput Model Description

In this section we describe our throughput model. The parameter values used in the model are

similar to those in [3, 5]; they do not reflect any particular system, but are intended to be somewhat

representative. The objective is to identify trends rather than providing specific throughput or price-

performance estimates. Our model incorporates both the CPU and the data disks. We assume that

the system is configured with a sufficient number of disk arms to ensure disk arm utilization remains

below .50% and hence the CPU is the bottleneck, To calculate CPU utilization the model suIiIs

the average CPU demand per transaction, divides by the MIPS rating of the processor, and then

multiplies by the throughput. Our primary metric is imaximunm throughput which we obtain by fixing

the CPU utilization and calculating the throughput. To calculate the disk utilization we sum the

average disk demand per transaction in milliseconds, divide by the number of disk arms. and then

multiply by the system throughput. We assume that there is a separate log disk.

In table 4 we summarize the assumned parameter values and visit counts for each transaction type

for a single node system. The column label n is the subscript of the parameter. In the equations

below we will use o,, to denote the overhead for a parameter n call. We define visit count as tie

number of times a transaction requires a certain operation per transacttion type. 'rhe visit colints are

in the columns heading V1 ... V5. We define Vi,, to be the visit, count for transaction i to operation j.

Most, of the parameters in the table are self evident from the natres with the following possible

except iors. Thle parameter application is for apl)lication code betwevei SQI, calls, thre paraoeler

s. il/td/rf'i Ce is for tle CPI'U overhead at one node to sell(and receive uiew,-sage ac'ross ho' net ,Wi rk.

1:;

the parameter r as(Locks is for the release lock portion of th0 cn)I I III I pI Ii', 1 111m) it 7 ,,

the pepare to commit portion of a 2 phase commit, and IitIO is thle ('iv overhead f'or ihiit Lu

an 1/0. The overhead for releasing locks is obtained by sunminihg the overtead t,, rlv'a>,. re)d lock>

and write-locks thines the number of locks held by each Iran sactiio I le weighlod by IIhIe perccill 4

the workload comprised by each transaction type. "'o assume an oveirhvad of IK :islrru'licms fir

releasing each lock.

The parameters mc, mi, ms. me, and mil found in V'>,; and], i E 5. are the iniss rat's

for the Customer, Item, Stock, Order, and OrderLine relations respectively. These miss rates are

obtained from the buffer model. Note that for completeness we coild have also included the miss

rates for the Warehouse, District and New-Order relations in the performance estimates, but these

miss rates are always negligibly small and hence are omitted from the table.

The overhead for the non-unique select is based on the fact that on average three values are

returned and need to be sorted. The overhead for the join is estimated as follows. On average there

are 200 items ordered by the last 20 order transactions and hence a range scan returning an average

of 200 items is invoked to create a temporary table for the outer relation. Each one of these tuples

will join with exactly one tuple from the inner relation. Assuming that appropriate indexes exists on

the inner relation, each outer relation tuple requires an indexed select on the inner relation. Finally,

the result must be sorted to eliminate duplicate items. We assume the overhead for the range scan is

5K per tuple, the overhead for the indexed select is 5K instructions per tuple, and the overhead for

the final sort is 40K resulting in a total CPU overhead of 2040K instructions.

In table 6 we summarize the visit counts which differ from the single node case for a distributed

environment when the Item relation is replicated across all nodes, i.e. we include remote calls and

distributed commits. In table 7 we summarize the visit counts assuming the Item relation is not

replicated. The visit counts for the Payment transaction are the same for both replication and no

replication since the Payment transaction does not access the Item relation. Note that only the New-
Order and Payment transactions differ from the single node case since the other transaction only

access local warehouses as specified by the benchmark.

The notation found in tables 6 and 7 is defined in table 5. The values for these terms are derived in
Appendix 1.

We first expliin the terms when the Item relation is replicated, i.e. table 6. In this case all

accesses to the Item relation are local because the relation is accessed read only. We assume that

the distributed Concurrency Control (CC) protocol allows retention of read locks across transactions.

and only requires a broadcast/semicast when acquiring an exclusive lock. 2

2 Such a distributed CC protocol is optimized for read-only sharing of replicated data, and farcns poorly when th,,rc

is sigr.ificant write sharing. Many distributed CC protocols with replication are optimized for significant write sharing.

and consequently are worse for read-only sharing. See [I, 2] for a good summary of distributed (C(protocols and [31 for

14

Table 5: Definition of Notation

symbeol meaning

RC(Tst expected number of calls for obtaining and updating stock tuples
RC .ut expected number of calls for obtaining and updating customer tuples
RCiUtm expected number of calls for obtaining and updating item tuples
Uf 0ok expected number of unique remote sites that supply stock tuples
I" expected number of unique remote sites that supply customer tuples
Uitemr expected number of unique remote sites that supply item tuples
U~itern+sto~k expected number of unique remote sites that supply item or stock tupl es

Lstork probability that all stock tuples are supplied from the local warehouse

The visit counts for four parameters change: commit, send/receive, prepCommit, and initlO.

Although portions of these overheads actually occur at the other nodes, all the other nodes will be

using the modeled node for remote calis, so by symmetry we can sum the overhead at the modeled

node.

We first consider the NewOrder transaction. The only remote calls are for retrieving and updating

stock tuples. The number of remote nodes involved in a 2 phase commit is Usto,. The visit counts for

commit and initlO are each increased by Ustok since a commit must be done at each node involved.

The count for prepCommit is changed from zero to Ustock + 1 - Lsto0 k since the prepare portion of

the two phase commit must be done at every site plus the coordinator minus the probability that the

transaction is purely local. The count for send/receive is change from zero to 4 tfsto• + 2 RC,'3 ,ok

since we assume 2 round trip messages must be sent to each unique remote node involved in the 2

phase commit, and one round trip message for each remote call for retrieving or updating a stock

tuple. Note the multiplier is 4 for Utock (2 for RC.tock) not 2 (1) since we model the overhead at all

nodes involved on the coordinator by symmetry arguments.

For the Payment transaction the only remote calls are for obtaining and updating customer tuples.

The number of unique remote sites involved in a two phase commit for the Payment transaction is
U,,,,t. The new visit counts for the payment transaction are found in table 6 and are expressed in

terms of the expectations expressed above.

We now explain the terms when the Item relation is not replicated, i.e. table 7. The visit counts
for the Payment transaction are the same as for the replicated case since the Payment transaction
does not access the Item relation. The visit counts for the NewOrder transaction differ since the 10
retrievals of the item tuples may require a remote call in addition to the remote calls for stock tuples.

The item tuples are accessed read only, hence a 2 phase commit is need only for those nodes supplying

a stock tuple. The number of remote nodes involved in the 2 phase commit is U,,f,,k. Thus, the visit
counts for initlO and prepCommit are the same as when the item relation is replicated. A I phase

commit, is necessary at each node that supplies an item tul)le but no stock tuples. ltlnce, the number

of nodes involved in a 1 phase commit is U --, =,1,,.k+it,,- ls,,c,. Relative to the replicafe#d case,

an analytical comparison of distributed CC(with data replication.

1.5

Table 6: Throughput Model Summary Multi Node with Replication

resource parameter n overhead NewOrder Payineut
V1 V,

CPU commit 5 30K 1 + I 1 + VIuj

CPU initlO 6 5K 1 + mc 1 + 2.2 mc

+IO(mi + ins) +11,,
+Utfot.k +Ucu,,

CPU send/receive 8 10K 4 rt. "2 2Cus

+2 RC.,C.,k +4 1cs

CPU prepCommit 9 15K Utock + 1 Ucst
-Lstock

the visit count for send/receive is increased by RCitem for obtaining item tuples and by 2Uitm for the

round trip message necessary for each node that participates in a one phase commit. The visit count

for commit is changed to include commit overhead at all remote nodes U.,!ock+jt,,,, whether they be

involved in a 1 phase or 2 phase commit.

Let Vi,,, equal the visit count of a type i transaction to the CPU as a type n request. The values

of Vi,,, are obtained from tables 4, 6, or 7 depending on whether the system being modeled is a single

node system, distributed system with the Item relation replicated, or a distributed system without

replication of the Item relation. Let A equal the system throughput and ai denote the fraction of the

workload from transactions of type i. The utilization of the CPU is calculated as:

A F_---1 a i .Win 'On

Utilcpu = MIPS (2)

Let DA = the number of disk arms. The utilization of the disk is calculated as:

Utildisk = A (ia,:• i " Vi, 1 4 014) ()
DA

16

Table 7: Throughput Model Summary : Multi Node No Replication

resource parameter n overhead NewOrder
V,

CPU commit 5 30K 1 + Uoc,+ie,•

CPU initIO 6 5K 1 + mc + 10(rni + ms)

+Ustck

CPU send/receive 8 10K 2RCt,,k + 2FWt,,m

+ 4 Ustoc• + 2 bU•en

CPU prepCommit 9 15K U,,ock + I - Latock

5.2 Single Node Performance Estimates

In this section we present our results for a single node system running the TPC-C benchmark, for
the parameter values and assumptions given above. We assume the MIPS rating of the processor is

10 MIPS. We obtain the maximum throughput by fixing the maximum CPU utilization at 80% and

calculating the throughput using the throughput model outlined above. We then obtain the number

of disks needed by fixing the maximum disk utilization at 50% and finding the minimum number

of disks such that disk utilization is less than or equal to 50%. Note that typical configurations

are designed so that the average disk utilization is lower than the 50% we assume, so as to take into

account variance in the disk load (for example see [8]). However, in a benchmark environment a higher

disk utilization may be permissible because of a smalier variance in the disk load. All experiments

assume a 4K page size.

In Figure 9 we plot the maximum throughput in new-order transactions per minute versus buffer

size. The curves from top to bottom are for optimized packing of tuples into pages and non-optimized

packing of tuples into pages.

The maximum percentage difference between the methods occurs at a buffer size of 44 imegahytes

where the optimized workload results in a 2.5% higher throughput relative to the non-optimized

workload. The average throughput improvement (averaged over all 64 buffer sizes plotted in Figure 9

is 1.0% relative to the non-optimized workload. Hence, based on maximum throughput there is little

incentive to pack all the hot tuples into separate pages versus just loading the database in sequential

order.

In Figure 10 we plot the cost per transaction/minute versus buffer size, where wo dtefine cost as

17

the cost of the memory, disks (including suflicient sIo rag(, -•p]aCe for all rImt h .ns), a 1 il , lit' ;,r' ,.c',Ž,,r.

Wie emphasize that this is not thu cost (is spcifit d by thl TCi-('-(f iht hoirk .im' it dIil S1t dM'bltd

sofirare cost. miaifltctnlaf"c cost, terminal cost, Oit'. Ah(ilt(i• is It) fsi lft hf tl ptiiml dthoha.",
bnimory buffer size in the trade-off betwc ii memorl (1l disks. Ihe .•,rag,, (nst is tn!:,,i ii hv

summing the storage needs for the Warehouso, District, ('ustoier, Sock-. arid tirn rla imts a,

specified in table 1. Assuming 20 warehouses per node (which loads to about 80'7, (1I" uwilization).

the space required is 1.1 ('bytes. In addition, we must include sufficient storage for ruillning the
benchmark for 180 8 hour days as specified by the benchmark. Each NewOrder transaction inserts I

order tuple, and 10 order-line tuples. In addition each Payment transaction inserts one tlistry tuplh.

By multiplying the transaction rate times the number of bytes needed for these inserts we arrive

at approximately 11 Gbytes of disk space per node needed for storing these three relations. This

space requirement scales linearly with the throughput. We assume each 3 (;bvte disk costs $5000.

the processor costs $10000, and memory costs $100 per megabyte. Although these hardware costs

are debatable and will quickly be out of date, they enable us to present a methodology which can be

used for determining the optimal price/performance point. This method is beneficial in determining

how much memory versus disk arms the system should be configured with.

We first focus on the bottom two curves in Figure 10. These two curves do not include the storage

capacity needed for maintaining the Order, Order-Line, and History relations. The top curve of these

two is for a workload with sequential packing of tuples into pages, while the bottom curve is for the

case of optimal packing of tuples into pages (we will refer to this as optimal packing). The jagged

shape of the curves results from the adding of memory until the disk utilization (Imps sufficiently

to configure the system with one less disk and still have a utilization of less than 50%. The lowest

point on the y axis for each curve corresponds to the optimal cost/performance point and shows the

corresponding amount of database buffer memory. (Note again that this is not the entire system

cost.) The lowest points occurs for a 154 Mbyte buffer with a value of about $139/tpm for sequential

packing, and at 84 Mbyte with a value of about $107/tpm for the optimal packing case. Thus, the

optimized packing of tuples results in about a 30% improvement of price performance relative to
sequential packing.

The top two curves in Figure 10 include the the storage capacity needed for maintaining the Order.

Order-Line, and History relations. In this case, adding memory causes the disk utilization to drop
sufficiently to configure the system with less disks, but the required storage capacity precludes removal
of additional disks. A minimum of 4 disks are required for storage capacity requirements. The lowest

points occurs at a 52 Mbyte buffer with a value of about $167/tpm for sequential packing, and at 26

Mbytes with a value of about $154/tpm for the optimal packing case. Thus, the optimized packing

of tuples results in about an 8% improvement of price performance relative to seqiential packing.

Put another way, the system is disk bandwidth bound for niemnory sizes less than 26 nmegabytes (52)

for the optimized (non-optimized) case, and storage capacity bound for larger nienmory sizes. Hence.

18

there is no benefit obtained from adding additional memory beyond these points. Note, given the rate

at which disk size is currently increasing the system will become disk bandwidth bound in the near

future rather than storage capacity bound, in which case the cost/performance difference will become

closer to the 30% predicted when storage costs are not included. For example, when a '5000 6 Gbyte

disk is assumed the cost/performance improvement resulting form optimal packing is 207X. If a 12

Gbyte disk is assumed the entire database fits on one disk and the cost/performance improvement is

30%.

From this simple model, we conclude that depending on the disk bandwidth to storage capacity

ratio, the (hardware cost)/performance ratio may be improved by up to 30% by careful loading of

the database, i.e. packing all hot tuples into the same set of pages. Note, this does not take into

consideration the cost of the software or software maintenance which when all Jumped touether will

reduce the percent difference significantly.

5.3 Multiple Node System Estimates

In this sectiu• ,. %, res.ýit our iesuits for a multiple node distributed system running the TPC-C

benchmark. We assume each node contains 20 warehouses and all data pertaining to the node

(except the item relation in the non-replicated case) is located c that node. We consider two cases.

The first case is when the item relation is replicated across all sies. Since the item relation is read-

only, replication protocols could be optimized for this case resulting in little/no overhead for replica

management. Note that in a real database this would not be a trivial task if the Item relation can

be changed. The second case assumes that the Item relation is not replicated, but rather partitioned
equally among the nodes. In this case, all accesses to the item relation will incur a remote call with

probability I"-, where N is the number of nodes in the system. In addition a one-phase commit

involving each node that supplies an item tuple is necessary.

In Figure 11 we plot the maximum throughput versus the number of nodes for a buffer size of 102
Mbytes. We only plot results for the optimized packing model; results for the non-optimized model

are similar. The top curve is for comparison purposes only, and represents a perfectly linear growth

in maximum throughput with the number of nodes. The second curve is for the case where the Item

relation is replicated, and the third curve is for the case where the Item relation is not replicated.

The benchmark scales almost linearly when the Item relation is replicated. This excellent scaleup

occurs because only 10% of the New-Order transactions and 15% of the Payment transactions involve

a remote warehouse. When the Item relation is not replicated the benchmark does not scale as well

since each New-Order transaction must make 10 N remoted calls, one for each item ordered. The

replicated case has a 10, 30, and 39% higher throughput than the non-replicated case for 2, 10, and

30 nodes respectively. Ilence, if the benchmark is to be run on a distributed system, rel)lication of lhe

19

Item relation will greatly improve ,,steni perfoirmance. We should ertipliasize t hat this as.-iulies t he

use of a concurrency protocol (CC) which only requires remote access only when acquiring exclusiv,

locks, i.e. the concurrency control (CC) protocol is optimized for read-only sharing so That no remo•te

calls are made for CC for the replicated item relation. If a protocol optimized for write sharing were

used, the performance would drop considerably. For instance if the primary copy protocol [2] were

used for replication, there would be little performance gain over the non-rephicated system since locks

would have to be acquired remotely for each access.

The TPC-C benchmark specifies that for each item ordered in the New-Order transaction only

1% are stocked by a remote warehouse. In addition, the benchmark specifies that 15',/ of customers

making payment via the Payment transaction are making the payment through a remote warehouse.

These specifications result in a very low percentage of remote calls and hence the good scale-1ip'.

shown for the replicated case shown in Figure 11. We now examine the sensitivity of the results

to this issumption. In Figure 12 we plot the maximum throughput versus the number of nodes ffur

different probabilities of ordering items stc'c*!-d by a remote warehouse in the new order t ransaclioin.

We see that if the probability of remotely stocked items increases to 1.0. the scale-up decrea.es bly

about 44%. Note that even at a probability of remotely stocked items of 1.0, most of tite accessi

are still local since only 43% of the transactions are New-Order transactions, an(l of these only the

ten stock tuples selected are remote; the warehouse, customer, district, and 10 item tuples seloctioo.

are all local. The TPC-C benchmark favors distributed systems by having a very sniall percentage of

remote calls.

6 Summary and Conclusion

In this paper we modelled the TPC-C benchmark for single node and multiple node distributed

database systems. One key difference of the TPC-C benchmark, from the debit-credit benchmark

of TPC-A, is that it includes significant skew (i.e., non-uniform access) within several key relations.

By contrast, the TPC-A benchmark has uniform access within each relation, and in particular. each

account in the large account relation is accessed with equal prol)ability. As a consequence, in Tl'(-A

each account tuple is accessed infrequently and it is not beneficial to ho0(1 them in a menmory buffer.

Therefore, one focus of this paper was to quantify the access skew in the TPC-C benchmark, and to

examine it's impact on the optimal system configuration, price-performance and scalabilitly.

To this end, we first quantified the tuple data access skew as specified in the benchumark. (Conisider

the stock relation as an example for quantifying the access skew. At tlihe tuple level we fo,,und that

about 84% of the accesses go to about 20% of the hottest stock toplles. There is even more skew iu

the tail of the distribution, so that about 39W, of the accesses go to about 2% of" tie (hot• Ie() t uples.

Since the l database buffer is typically organized as pages, we next examined thlie skew a;t the jiage

level. If tuples are inserted seq uvctially by key (or randomly) then hol ti pIes are sc ltered amione

20

the pages in the database. As a consequence, the skew at the page level is milder than that at the

tuple level. Specifically, about 75% of the accesses go the hottest 20% of the pages. Again. thirre is

a more skew in the tail of the distribution and and about 28% of the accesses go to about 2(X of the

pages. We then considered clustering the ho uples into the same pages in an optimal manner. This

is possible for the TPC-C benchmark because the access probabilities are static in time and known

a-priori. If this were done, the resulting skew at the page level is about the same as that at the tuple

level, in term-" of the fraction of accesses that go to any specific fraction of data.

Having quantified the access skew, we examined the buffer hit ratio versus buffer size character-

istic, assuming an LRU buffer replacement policy. We quantified this for each relation, both for the

case of sequential assignment of tuples to pages and for that with hot tuples clustered within pages.

Significant differences in the buffer hit ratio was found for these two cases. The specific hit ratios

and the difference for the two cases differs for different relations. In absolute terms it is largest for

the customer relation, but the higher frequency of access to the stock relation mnake-; tLis relation

dominant.

The results of the buffer model were fed to a throughput model to examine the overall throughput

and optimal memory and disk configuration. The access skew makes the results rather different from

that for the TPC-A benchmark where, as outlined above, buffering any of the account tuples is of

little value. For the TPC-C case, almost all the item tuples, the hotter stock tuples, and some of

the customer tuples are buffered in the estimated optimal configurations. The optimal configurations

depend on the specific costs of disks and memory, specific estimates are given in Section 5.2.

We also found that depending on the disk bandwidth to disk storage capacity ratio, packing hot

tuples into pages may result in significant benefits in terms of p)rice-performnance. We note, however,

that this observation applies only to a workload where the access probabilities do not vary with time.

and where they are known a-priori. In this sense, the TPC-C benchmark is not quite representative

of many real workloads, where often neither of these conditions apply.

Finally, we examined the scalability of the TPC-C workload in terms of how the throughput

can be expected to grow with the number of nodes in a distributed database system. Like the

TPC-A benchmark, the TPC-C benchmark is largely partitionable, and close to linear scale-up in

the number of nodes can be obtained. This assumes that the read-only item relation is replicated

across all nodes, and that no remote conmu nication is needed for concurrency control for access

to this read-only relation. Specifically, if the Item relation is replicated, there are few remote calls

in the workload. In the New-Order transaction on average 0.1 stock tuples accessed a1nd upd:,ie,d

aro from a remote warehouse. Since the New-Order transaction selects 23 tuplos those 0. 1 remmoti

calls comprise only 0.4%, of the New-Or(ler transaction workload. In the Paymnl Iramisaction 0.33

(0.15 x 2.2) customer tuples accessed are fromn and updia•ed are, from a remote warrehouse. Since the

Payment transaction selects 4.2 tuples these 0.331 remoto calls cuommiprise only 7..9, of the Pavyment

workload. The Order-Status. Delivery, and Stock-Level transactions access I IA.. 130. and 101 t uples

21

respectively. Hence, once weighted by the percentage of the workload only O.,of I lie accs-me-. are

to remote data. This low fraction of remote access should be carefully considered whent using lIe

TPC-C benchmag-k to assess the performance of a distributed or clustered database .vstem.

In a real environment, the item relations would be updated albeit infrequently, and proviýoil

would have to be made for this. If a general concurrency control protocol was used for this. e.g. i he

primary copy approach, or if the item relation is not replicated, then the scale-up as a function of Ihoe

number of nodes is significantly lower, as we have quantified. Even so, the fraction of remrote calls

is rather small. While we have focussed on examining the TPC-C benchmark, the metlhodology we

have used has more general applicabifity.

References

[1] Bernstein, P.A., and Goodman, N., "Concurrency Control in Distributed Database Systems."

Computing Surveys, Vol. 13, No. 2, pp. 185-221, June 1981.

[2] Bernstein, P.A., and Goodman, N., "A Sophisticates Introduction to Distributed Database ('on-

cufrency Control," in Proc. 8th VLDB Conf., Sept. 1982, pp.62-76.

[31 Ciciani, B., Dias, D.M., and Yu, P.S., "Analysis of Replication in Distributed Database Svstinis.'"

IEEE Trans. Knowledge and Data Engrg., Vol. 2, No. 2, June 1990, pp. 247-261.

[4] Dan, A., Yu, P.S, and Chung, J.Y., "Characterization of Database Access Skew of a Transaction

Processing Environment,", IBM Research Report RC 17436, 1991.

[5] Dias, D.M., Iyer, B.R.. Robinson, J.T. and Yu, P.S., "Integrated Concrurrency-Coherency ('on-

trols for Multisystem Data Sharing", IEEE Trans. Software Engrg., Vol. 15. No. 4. -\pril 1989.

[6] Gray, J., (Editor), The Benchmark Handbook for Database and Transaction Proc.sSingi ,ysi(-?ns.

Morgan Kaufmann, 1991, isbn 1-55860-159-7.

[7] Kohler, W., Shah, A., Raab, F., "Overview of TPC Benchmark C: The Order-Entry Benchmark."

technical report, Transaction Processing Performance Council, December 23, 1991.

[8] McNutt, B., "DASD Configuration Planning: Three Simple Checks", CMG Conference Proceed-

ings, 1988.

[9] Transaction Processing Performance Council, "TPC Benchmark C, Standard Specification. Re-

vision 1.0", Edited by Francois Raab, August 13, 1992.

Appendix A Derivation of probabilities for throughput model

In this appendix we derive the expected number of remote requests and unique sites involved for a

distributed system. These terms are used in Section 5.

22

We first dlerive the proba hilit ies assiirninim I he It ciln-I i rht iIns replica(t ted itntd I eii detrIiv I 1

probilabilitites assumtiing no1 replication.

Appendix A.1 Itern relation is replicated

\ iten t he it em relation is replicated req u sts for I tenm t iples are, al waYs loc-al. TFhe mil v remoite~

accesses p)ossibly needed are for stock t uples by the NewOrder transaction and1(for cuIStoner Ii liples bY

the Paymnent transaction. We first consider the New~rder transaction. The, New\Orde(r I railaCI t in

requests 10 stock tu1)1es, each tuple belonging to a reinoloewarehiouse withI probiabilityv 0.01 a-s specified

by the benchmnark. Assume there are N nodles]in the system. Let J)[,S] he the probability that j of

the 10 stock tuples accessedl are remote.

where Ps5 0.01 ON ,and NV is the number of nodes in the system. The term 0.01 is the probability

that ain individual stock tuple is fromt a remote warehouse, and is the probability that the remote

warehouse is located on a remote node. We make the simplifying assumption that requests to remote

wa;rehouses located On the saine node require the same overhead as a local request.

Let E(!?,] be the expected number of remote stock tuples retrieved made by the New-Order transac-

tion.

10

FEach tuple retrieved is also update, hence the expected total number of remote calls by t lie NewOrder

transaction for reading andl writing stock tuples is

RC~tr 2 x E[R,] (6)

Let [,fý be the p~robab~ility that all stock tnpics are re-ferenced locall~y.

L,,,,0 . (I - PS) " (7)

The tnumbher of remote sites involved int the transact ion is the mnit iter of uinique sites frn 'rwt v~ici

stock tutples are obtained. We derive this expect ation, (,1c if] IeI(follo)Winrg th"iet4ren

23

Theorem:

bstock = E=i0 P[SJJ (N - 1) N-i

Proof:

Assume the system has N rodes, and that a site generates j remote requests. With out loss of
generality, assume the originating site to be node 1.

Let Ii, i E (2... N) be an indicator variable for the event that node i supplies at least one tuple. A
remote request is satisfied by one of the N - 1 nodes with equal probability, hence the probability

that a node supplies at least one tuple (the probability that the indicatcr variable is 1) is

{ N-2)j

The expected number of unique sites supplying tuples is

Unconditioning on the number of remote requests, j, results in the expected number of unique sites:

Ustock = E3o P[Sj] (N) N-

We now derive the expectations for the Payment trans;;ction. The only remote accesses are for

tuples from the customer relation. The customer is from a remote warehouse with probab)ility 0.15.

The customer is selected based on customer-id 40% of the time (hence one tIple is selected). al d

based on customer-name 60% of the time (hence three tuples are selected). In addition, once thi,

tuple has been selected the update must be written back to the remote node. lhence, the expeCt(d
number of remote calls for obtaining and updating customer tuples, CC!,('t. is:

RC,,,, = 0.5 (N 1 [(0.4)(1) + (0.6)(3) + I] (8)

At most one remote site may be involved and hence the ex pected unblber (of iini()tie rene t e sit es friut
whi(h customer t ii pies are obtained, U(.,] , is:

21

!., -- 0.15 (-•\2) . 9i

Appendix A.2 Item relation not replicated

We now derive tihe expectations assuming the item relation is not replicated. ITh vxpectation.l ftir

the Payment transaction are the same as for the replicated case silnro the Payment trasa ction 1 w,s

not access the Item relation.

For the NewOrder transaction the number of remote calls for stock tuples. R(',k.- expeclfd

number of unique sites supplyin,, stock tuples, , and the probability that all stock tuples are

supplied locally are the same as when the item relation is replicated. The difference from the replicat•d

case is that the 10 item tuples retrieved may be remote since we assume the item relation is uniformly

distributed among the N nodes.

Let P[Ij] be the probability that j of the 10 item tuples accesses are remote.

P[j= (Pa) (1 - P1)IO-J (10)

where Pi - N is the probability that an item tuple is located on a remote node, an(d N is the

number of nodes in the system. Let E[RI] be the expected number of remote item tuples retrieved

made by the New-Order transaction.

10

j=O

The number of remote calls for item tuples, (.it,? , is equal to E[Rt! since the t.u|ples arei not updated.

Let Ut,,, be the expected number of unique remote sites involved for fetching the remote item niples.

This expectation is derived as in theorem 1.

10 (N f 2)31

Ui,, = E P[Ij]N- (N (12

In addition to Ustck and Uit(,,, we need the expected total nn in or of iiniqw, tie des referoeiceld the

NewOrder transaction, t . The expected niinoter of iiniqiie sits givni j slock i upie requeSts

and k item tiple requiests is equal to

25

(N - 1) 1

Hence, upon unconditioning on j and k,

tock+trin = E E t')I] [s I(- 1) - (Y ':
if=0 k=0

Appendix A.3 Proof of Perodicity of the NURand Function

In this appendix we show that the NURand(x,O,y) function is peridoc if both "x and y aret A power of

2, x < y. Although the function is not exactly peridoc when y is not a power of 2. we have ubserved

it to be close to periodic.

NURand(x, 0, y) = ((randorn(O, x) I random(O, y))%y) (1.1)

where

random(x,y) denotes a uniformly distributed integer random number in the closed intierval [x..v]

(N % M) stands for N modulo M

(N I M) stands for the bitwise logical OR of N and M

Let x=2a-1 and y=2b-1,b>a

Let z = b - x,

Let A = Ab-1 Ab-2 ... Ao be the binary representation of the number drawn from randotn(0.x).

Let B = B,.-I Bý- 2 ... Be be the binary representation of the number drawn from randoll(0,y).

Note that if X > 0, then the top z bits of A will all be zero.

Let P[Aij denote the probability that bit Ai is set to one. Then,

P[Ail = 1, i E (0, 1,..(,a -)

P[Ail = 0, i > a

P'[B i] = 1 , i 1 0 , 1 ,, . .. b -- 1))

Let C = A 13 C= - C- .. .Co. Since ,A, and IB are independent for all i, hit (', is svt if vit hor 1,

or B, or both are set. tHence,

26

'cAl] *P[B!]) + ((I - P[Ai) P[B,])+ (![AJ],(I -- PIIL]))

(C,2 E (0... (a - I)) P[CI = 1,iE (a.... .(b - I))

Thus. the the probability of accessing a specific tuple-id generated from the NU I[.lind(x.(),V funt-1101u

is (3i' V(, where i equal the number of non-zero bits in the low a bit. j is the number of zero hils

in the low a bits, and z is as defined above. Hence, the probability mass function is periodic wher,

the size of the period equals x, and the number of periods equals [LJ.

27

warehouse I warehouse W

Customers

Figure 1: TPC-C Business Enviornment.
Reproduced with permission from the TPC

F warehouse 2E ti districtW

W * 1 O
•

history100K
W * 30K +

A 3

stock

customer

'de

W * 10K

W * 30K
W*9K+

ite mn
order-line

orderIlook
W * 3 O0K+

W• 51W 30K +

Figure 2: 'rPC-C Entity/ Relationship
Diagram.

Reproduiced with permission froti the TPC:

28

0.002

0.0015

Uo

U)

>1 0.001

r4-

0

0.0005

0 iil t I

0 20000 40000 60000 80000 100000
stock tuple number

Figure 3: Stock Relation PMF

29

0.002

0.0015

(o
U

4-4

0

0.0005

0

0 2000 4000 6000 8000 10000
stock tuple number

Figure 4: Stock Relation PMF: only 10,000 tuples

.30

U)0.8

U)

U4K pages,-----

tuple skew -------
o 0.6

0

U

441

U 0.2

00..04 0.2

fraction of relat~ion

Figure 5: Stock Relation CDF

31

0.012

0.011

0.01

0.009

0.008
U
U

S10.007

0

>1 0.006

-H 0.005

o 0.004

0.003

0.002

0.001

0
0 600 1200 1800 2400 3000

customer number

Figure 6: Customer Relation PMF

32

.......I .

U 8K pages.
U 4K pages,

tuple skew--. ----
o 0.6

0

4J

0)0 .4 ---- - ------ --

>H

U 0.2

0 .. ~

0 0.2 0.4 0.6 0.8
fraction of relation

Figure 7: Customer Relation CDF

opiiz tck--- --

"I-

m'emabzed t

A-34

222

220

218

-~ 216

214

212

-Ci 210

208

206

204
OPtimized

2 0 2 non OPtimized

200

000200
300 400Iflegabyt es

Figure 9: Max,1imuml Throughput

325

300 with storage cost
04

cu
D 275

04J

o 250
U

-d 225 1
+

o 200

to
U ~
0 175

+ ,

150,non optimized -------
4 150 '"optimized
0)

125

100
0 100 200 300 400

megabytes

Figure 10: Price Performance

36

6600

6000
/ A

5400

/'

•- 4800
S/.,

Q4/

4200
43 1

S/~~..'/,

3600

0

3000
43

S 2400 /
/ , / z

S 1800
/*

12 0 0 /perfect scaleup
,- with replication -------

600 no replication

0'

0 5 10 15 20 25 30
number of nodes

Figure 11: Scaleup of TPC-C

37

7000

6500

6000

5500 ,'/

S ,/ A /

4500 "

-r ,.X/

Ac--• ~/#/

"-4 4000 /S/ 0' °

EI

3500 .
/

42 3000
10/ eo

2500

X 00

' 200/""°''" perfect, / scaleup-...

1500 •.",' . • remote : 0.01---

.... remote :=0.1 --...
1000 • •remote : 0.5 -- ...

S/ •"- • ~remote = 1.0-- ..

500

0 5 10 15 20 25 30
number of nodes

Figure 12: Sensitivity to Percent Remote

form ApprovelREPORT DOCUMENTATION PAGE OMB No 0o'04 018

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE T REPORT TYPE AND DATES COVERED

I March 1993 I Contractor Repoit
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

A MODELING STUDY OF THE TPC-C BENCHMARK

C NASI-19480
6. AUTHOR(S) .C NASI-18605

S~utt T. Leutenegger WU 505-90-52-uIl
Daniel Dias

7. PERFORMING ORGANIZATION NAME(S) AND AUDRESS(ES) 8. PERFORMING ORGANIZATION

Institute for Computer Applications in Science REPORT NUMBER

and Enginee.Aing
Mail Stop 132C, NASA Langley Research Center ICASE Report No. 93-12
Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND AOORESS(ES) 10. SPONSORING. MONITORING
National Aeronautics and Space Administration AGENCY REPORT NUMBER

Langley Research Center NASA CR-191443
Hampton, VA 23681-0001 ICASE Report No. 93-12

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Michael F. Card To appear in SIGMOD '93
Final Report

1 Za. DISTRIBUTION.'AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited

Subject Category 61

13. ABSTRACT (Maximurn 200 words)

ThE TPC-C benchmark is a new benchmark approved by the TPC council intended for comparing database
platforms running a medium complexity transaction processing workload. Some key aspects in which this new
benchmark differs from the TPC-A benchmark are in having several transaction types, some of which are more
complex than that in TPC-A. and in having data access skew. In this paper we present results from a modelling
study of the TPC-C benchmark for both single node and distributed database management systems. We simulate
the TPC-C workload to determine expected buffer miss rates assuming an LRU buffer management policy. These
miss rates are then used as inputs to a throighput model. ;.From these models we show the following: (i) We
quantify the data access skew as specified in the benchmark and show what fraction of the accesses go to what
fraction of the data. (ii) We quantify the resulting buffer hit ratios for each relation a.- a function of buffer size.
(iii) We show that close to linear scale-up (about 3%, from the ideal) can be achieved in a distributed system, assuming
replication of a read-only table. (iv) We examine the effect of packing hot tuples into pages and show that significant
price/perform ince benefit can be thus achieved. (v) Finally. by coupling the buffer simulations with the throughput
model, we ex irnine typical disk/memory configurations that maximize the overall price/performance.

14. SUBJECT TERMS 15. NUMBER OF PAGES

40
database; transaction processing; tpc-c; wodeling 16. PRICE CODE

A03
17, SECURITY CLASSIFICATION I8. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified UnclassifiedI

NSN 7540-• .2?80-5500 Standard Form 198 (Rev 2 89)

*U'.S. GOVrRNMENT PRINTING .O ic 1993 - 1Z20064/6612I

