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Abstract

In this paper, we propose a finite element formulation for solving coupled mechanical/diffusion problems. In particular, we

study hydrogen diffusion in metals and its impact on their mechanical behaviour (i.e. hydrogen embrittlement). The formulation

can be used to model hydrogen diffusion through a material and its accumulation within different microstructural features of

the material (dislocations, precipitates, interfaces, etc.). Further, the effect of hydrogen on the plastic response and cohesive

strength of different interfaces can be incorporated. The formulation adopts a standard Galerkin method in the discretisation of

both the diffusion and mechanical equilibrium equations. Thus, a displacement-based finite element formulation with chemical

potential as an additional degree of freedom, rather than the concentration, is employed. Consequently, the diffusion equation

can be expressed fundamentally in terms of the gradient in chemical potential, which reduces the continuity requirements

on the shape functions to zero degree, C0, i.e. linear functions, compared to the C1 continuity condition required when

concentration is adopted. Additionally, a consistent interface element formulation can be achieved due to the continuity of

the chemical potential across the interface—concentration can be discontinuous at an interface which can lead to numerical

problems. As a result, the coding of the FE equations is more straightforward. The details of the physical problem, the finite

element formulation and constitutive models are initially discussed. Numerical results for various example problems are

then presented, in which the efficiency and accuracy of the proposed formulation are explored and a comparison with the

concentration-based formulations is presented.

Keywords Hydrogen embrittlement (HE) · Hydrogen enhanced local plasticity (HELP) · Hydrogen enhanced decohesion

(HEDE) · Chemical potential · Galerkin method · Interface/cohesive model

Nomenclature

HEDE Hydrogen enhanced decohesion

HELP Hydrogen enhanced local plasticity

HE Hydrogen embrittlement

HID Hydrogen induced decohesion

α Number of trapping sites in a trap

βL Number of interstitial sites per solvent atom
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δi Displacement jump vector across the interface (i =
1, 2, 3) (m)

δc
n Critical displacement jump normal to the interface

(m)

δf
n Displacement jump at failure normal to the interface

(m)

Ci jkl The 4th order elasticity tensor (i, j, k, l = 1, 2, 3)

(N/m2)

µ Chemical potential (J/mol)

ν Poisson’s ratio

φ Free energy density per unit area of the interface

(J/m2)

ψ Free energy density per unit volume of the bulk mate-

rial (J/m3)

ρ Density of the lattice element (kg/m3)

ρD Dislocation density (1/m2)

σ0 Yield strength (N/m2)

σc Cohesive strength (N/m2)
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σe von Mises equivalent stress (N/m2)

Σi j Average macroscopic Cauchy stress tensor (i, j =
1, 2, 3) (N/m2)

σi j Cauchy stress tensor (i, j = 1, 2, 3) (N/m2)
▽

σ i j Zaremba-Jaumann stress rate (i, j = 1, 2, 3)

(N/m2 · s)

θ Hydrogen occupancy in the lattice or a trap

D̃
(•)
i j ··· Tangent modulus of the interface (i, j, . . . = 1, 2, 3)

ε
pl
e Equivalent plastic strain

εi j Engineering strain tensor (i, j = 1, 2, 3)

M Molar mass of the lattice element (kg/mol)

C Hydrogen concentration in the lattice or any trap

(mol/m3)

d Scalar damage variable

DL Lattice diffusivity (m2/s)

D
(•)
i j ··· Tangent modulus of the bulk material (i, j, · · · =

1, 2, 3)

Di j Rate of deformation tensor (i, j = 1, 2, 3) (1/s)

E Young’s modulus (N/m2)

Ei j Average macroscopic engineering strain tensor

(i, j = 1, 2, 3)

Fi j Deformation gradient (i, j = 1, 2, 3)

G Gibbs free energy (J/mol)

hint Diffusivity across the interface (mol2/(m2 · s · J))

Ji Hydrogen flux (i = 1, 2, 3) (mol/(s · m2))

L i j Velocity gradient tensor (i, j = 1, 2, 3) (1/s)

N Number of atoms of solvent per unit volume of the

lattice or a trap (atoms/m3)

n Plasticity rate sensitivity parameter of the bulk mate-

rial

NA Avogadro’s number (= 6.0232 × 1023 atoms/mol)

R Universal gas constant (= 8.314 J/mol · K)

s Entropy per volume in the bulk material (J/
(

K · m3
)

)

T Absolute temperature (K)

Ti Traction vector (i = 1, 2, 3) (N/m2)

ui Displacement vector (i = 1, 2, 3) (m)

VM Molar volume of the solvent lattice (m3/mol)

W Binding energy of a trap (J/mol)

Wi j Spin tensor (i, j = 1, 2, 3) (1/s)

X i , xi Cartesian material and spatial coordinates (i =
1, 2, 3), respectively (m)

¯(•) Molar quantity

D Dislocation trap property

el Elastic property

F Fixed trap property

int Interfacial property

L Lattice property

m Matrix property

pl Plastic property

p Precipitate property

s Swelling/jacking property

Tr Distributed trap property

T Total property

µ Diffusion equation property

u Mechanical equilibrium equation property

1 Introduction

In the presence of hydrogen, many materials experience sig-

nificant degradation of their mechanical properties, which

is commonly known as hydrogen embrittlement (HE) [1–

3]. These detrimental effects are reported in the literature

in terms of reductions in ductility, strength and toughness.

As a result, HE may result in premature catastrophic fail-

ure at load levels much lower than in the hydrogen free

case. A number of mechanisms of embrittlement have been

proposed in the literature [2,3]. The two mechanisms that

have received the most attention are hydrogen induced (or

enhanced) decohesion (HID or HEDE) [4,5] and hydrogen

enhanced local plasticity (HELP) [6,7]. In the HEDE mech-

anism [8–10], hydrogen accumulates at an interface and

reduces the cohesive strength and hence the energy required

to fracture the material. In the HELP mechanism [11,12],

hydrogen is assumed to enhance the dislocation mobility,

change the core energy and also reduce the elastic interac-

tion between dislocations, generally termed elastic shielding,

each of which can result in material softening and localisa-

tion of plastic flow. In recent years, there has been significant

interest in developing computational models for hydrogen

embrittlement. Although there is still significant controversy

and debate in the scientific literature concerning the detailed

mechanisms responsible for embrittlement, it is generally

agreed that any model should contain the following ingredi-

ents:

– Diffusion of hydrogen through the material and hydrogen

accumulation within different microstructural features.

– The effect of hydrogen on the plastic response of the

material.

– The effect of hydrogen on the cohesive properties of any

interfaces in the material.

Most published finite element models of the embrittlement

process follow the approach originally proposed by Sofro-

nis and McMeeking [13] in which the governing equation

for diffusion is expressed in terms of the gradient in con-

centration and gradient in the mean (or hydrostatic) stress,

and the nodal degrees of freedom for the coupled mechan-

ical/diffusion problem are taken as the displacements and

concentration. As noted by Barrera et al. [14], the dependence

of the diffusion equation on the stress gradient requires the

use of finite elements with shape functions that are at least

quadratic in terms of displacement. Also, for situations where

interfaces are modelled, either between similar or dissimilar
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materials, there can be a discontinuity in concentration at an

interface. This can lead to numerical problems.

In this work, we return to fundamentals and express the

diffusion equation in terms of the gradient in chemical poten-

tial and we take the chemical potential as a degree of freedom,

rather than the concentration. A consequence of this is that the

finite element formalism no longer requires stress gradients

to be determined, allowing the use of elements with linear

shape functions and simplifying the finite element imple-

mentation (particularly when implemented in finite element

packages such as Abaqus [15]). Also, the chemical poten-

tial is a continuous function within the body, and we do not

need to confront problems arising from discontinuities in our

solution dependent variables, particularly at interfaces.

In the following section, we provide a more detailed

background to the class of physical problems considered

here and a general statement of the combined mechanical–

diffusion analysis of multi-component and/or multi-grained

boundary value problems. This is followed by a statement

of the fundamental diffusion and mechanical equations for

the bulk material and interfaces. The governing finite ele-

ment equations are developed in Sect. 3, using a Galerkin

approach based on statements of conservation of mass and

mechanical equilibrium. Implementation of the finite ele-

ment approach further requires constitutive models for the

mechanical response of the matrix and interfaces. Suitable

models are presented in Sect. 4 and these are used in Sect. 5

to analyse some simple representative problems, where we

compare the efficiency and accuracy of the approach with

that described by Barrera et al. [14].

2 Background

In this study, we investigate a class of problems in which

a material or multiple materials are subjected to mechanical

loading in the presence of hydrogen, i.e. combined chemical-

mechanical loading. In particular, we are interested in the

response of polycrystalline metallic engineering alloys. Gen-

erally, hydrogen diffuses in metals through interstitial lattice

sites (NILS). Dislocations and interfaces can provide addi-

tional paths for diffusion, but these sites tend to trap hydrogen

(as discussed further below) and diffusion along them can be

much more sluggish than through the matrix [16,17]. We

therefore ignore these minor contribution here. Hydrogen

resides in NILS and the trapping sites, i.e. dislocations, grain

boundaries, carbide/matrix interfaces, microvoids and other

defects. The NILS are considered to be the dominant sites.

However, the effect of shallow traps on diffusivity is very

significant and deep traps can play an important role acting

as a gutter for hydrogen and therefore cannot be ignored.

Under mechanical loading, the hydrostatic stress gradient

also plays an important role in determining the flux of hydro-

gen within a body. Moreover, in elastic–plastic materials, the

number of trapping sites increases as the dislocation den-

sity increases with increasing plastic deformation. Hence,

the chemical and mechanical fields are strongly coupled and

the material behaviour is controlled by the characteristic time

of the diffusion and deformation processes. Further, depend-

ing on the length scale and density of traps, they can either

be treated as a continuous distribution in the material, such

that their presence modifies the effective diffusivity in the

matrix, or as discrete features, such as grain boundaries,

carbide/matrix interfaces, precipitate, etc., wherein a direct

interaction between the trap and mobile hydrogen is con-

sidered. We consider each of these here. In the following

sub-section, we introduce a model problem that can be used

to represent different material systems such as grains and

their boundaries, precipitates in a matrix or any other situa-

tion where failure can occur at an interface.

2.1 Themodel problem

We consider a body which is comprised of two different

materials A and B that can have different mechanical and

diffusional (and thermodynamic) properties, which are sep-

arated by an interface, see Fig. 1. A common Cartesian

coordinate system for the reference and deformed config-

urations X i and xi , i = 1, 2, 3, respectively, is assumed. The

body occupies a volume Ω with boundary Γ - materials A

and B occupy ΩA and ΩB respectively, i.e. Ω = ΩA ∪ ΩB,

in the current configuration. The interface is defined by Γint.

Failure can occur along the interface as the material deforms,

leading to complete separation of the interfacial planes either

side of the interface. To allow for this, a material point along

the interface is defined by the two normal vectors n−
i and

n+
i either side of the interface, as shown in Fig. 1ii, where

n−
i = −n+

i , i.e. the initially intact material point splits into

two points with unit normals acting opposite to each other and

into the material on either side of the interface (on the upper

and lower interface surfaces Γ ±
int of Fig. 1ii, respectively).

The body is assumed to be subjected to mechanical loading

and contains hydrogen that may diffuse through the body and

across interfaces and boundaries. The total concentration of

hydrogen in the bulk, i.e. materials A and B, at a material

point is defined by the total number of H atoms in NILS

and traps per unit volume (H atoms/m3). The traps in the

bulk are assumed to be continuous and locally in equilibrium

with mobile hydrogen following Oriani’s theory [18]. Hence,

the total concentration in materials A and B, CA
T and CB

T ,

respectively, can be written as

CA
T = CA

L + CA
Tr and CB

T = CB
L + CB

Tr, (1)

where CL is the hydrogen concentration in the lattice, CTr is

the concentration associated with the traps and the superscript
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Fig. 1 The schematic of the model problem. The figures illustrate:

i a continuum body that is subjected to macroscopic deformation
(

Ei j ,Σi j

)

in the presence of hydrogen that is defined by the chemical

potential and concentration at the lattice and discrete traps (µ, CL, CTr);

and ii the microstructure is comprised of a bi-material system of

materials A and B that are separated by an interface where the

microscopic deformation is
(

εi j , σi j

)

and the hydrogen chemical poten-

tial and concentration in the lattice, distributed and discrete traps
(

µi , C i
L, C i

Tr, µint, Cint

)

, where i ∈ A, B

indicates the material. The molar concentration (mol/m3) are

defined by C̄T = CT/NA, C̄L = CL/NA and C̄Tr = CTr/NA,

where NA = 6.0232 × 1023 atoms/mol is Avogadro’s

number and a bar over the symbol indicates a molar quan-

tity. The interface is considered as a discrete trap with a

concentration—now defined as the total number of H atoms

per unit area of the interface (similarly, the molar concen-

tration in the trap is C̄int = Cint/NA). It should be noted

that the hydrogen concentration is not continuous across the

interface, i.e. the concentration in the bulk materials is differ-

ent to the concentration at an adjacent point in the interface.

Furthermore, the hydrogen concentration in the interface is

assumed to be in equilibrium with the mobile hydrogen in

the bulk adjacent to the interface. We limit our consideration

to the situation where hydrogen can cross the interface, i.e. in

the normal direction, n, but not along the interface direction,

t . This is consistent with the recent Monte Carlo simulations

of Du et al. [17]. The chemical potential µ (J/mol) is assumed

to be continuous at the interface, i.e. it has the same value in

the matrix and the interface. Diffusion across the interface is

allowed and this is assumed to be driven by a small differ-

ence in chemical potential of hydrogen in materials A and

B either side of the interface. Hence, we effectively consider

the interface to have a small thickness h, such that the chem-

ical potential µint is assumed to be given by a continuous

function

µint = µint

(

µ+, µ−)

, (2)

where µ± are the chemical potentials at the upper and lower

interface surfaces Γ ±
int in the bulk materials, respectively, see

Fig. 1ii. In practice, when we assign a chemical potential to

the interface, this is taken as the mean of the values either side

of the interface. Further, the diffusion distance for transport

across the interface is small (of the order of atomic dimen-

sions) and we assign a large kinetic constant for the diffusion

constant, so that in the simulations µ+ ≈ µ−. This is dis-

cussed further below.

Materials A and B are assumed to exhibit elastic or

elastic–plastic behaviour. Thus, under mechanical loading,

the chemical potential may change due to the change of

hydrostatic stress, allowing the hydrogen to diffuse. Also, the

density of traps can increase as dislocation density increases

during plastic flow, which results in an increase in concen-

tration associated with the traps, CTr, and a concomitant

reduction of the concentration in the lattice. Further, swelling

of the bulk material (i.e. volumetric deformation) may result

from the hydrogen in the NILS and/or traps. The inter-

face is assumed to be defined by a traction-separation law

that undergoes full separation after reaching a critical value.

The chemical potential at the interface changes under defor-

mation allowing the concentration to increase or decrease.

Moreover, the presence of hydrogen may reduce the cohe-

sive strength of the interface and induce a separation (jacking)

that may influence the deformation in the bulk adjacent to the

interface and lead to a faster separation. Our representation

of this process is guided by the recent atomistic simulations

of Katzarov and Paxton [19] and is consistent with the ther-

modynamic framework described by Mishin et al. [20].
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2.2 The governing equations

2.2.1 Hydrogen diffusion

The mass conservation of hydrogen states that the rate of

change of the total hydrogen concentration C̄T in a volume Ω

is equal to the flux J̄i through its boundaries Γ . The swelling

and elastic deformations are assumed to be small and only

plastic deformation is taken to be large which is essentially

isochoric and therefore the total rate of change of the hydro-

gen concentration is equal to its local rate of change (for

further details see “Appendix A”). Thus, it can be written as

∂

∂t

∫

Ω

C̄T dV +
∫

Γ

J̄i ni dS = 0, (3)

where dV and dS are the infinitesimal volume and surface

elements in the current configuration, respectively, and ni

is the unit outward normal on Γ . Applying the divergence

theorem, we obtain

∂C̄T

∂t
+ ∂ J̄i

∂xi

= 0, (4)

The molar hydrogen flux J̄i (mol/(m2 · s)) in the bulk is

related to the gradient of the chemical potential µ (J/mol) as

J̄i = − DL C̄L

R T

∂µ

∂xi

, (5)

where DL is the lattice diffusivity (m2/s). Hydrogen is

allowed to diffuse across the interface and not along the inter-

face, i.e. hydrogen diffusion within the interface is only in the

n-direction. The hydrogen flux across the interface is written

as

J̄int = −hint ∆µint, (6)

where J̄int (mol/(m2 ·s)) is the flux in the direction normal to

the interface, hint is the hydrogen transfer coefficient across

the interface (a kinetic constant for the interface) (mol2/(m2 ·
s · J)) and ∆µint = µ+ − µ− is the chemical potential jump

across the interface.

The boundary conditions of the diffusion equation for the

model problem are defined by

µ̂ = µ on Γµ,

ˆ̄J = J̄i ni on ΓJ ,
(7)

where µ̂ and ˆ̄J are the applied chemical potential and hydro-

gen flux on the boundaries Γµ and ΓJ , respectively, and ni is

the outward normal to Γ . The boundaries Γµ and ΓJ should

satisfy

Γµ ∪ ΓJ = Γ and Γµ ∩ ΓJ = ∅. (8)

The conditions on the interface Γint are defined as:

µint = 1

2

(

µ+ + µ−)

on Γint, (9)

where µint is the chemical potential in the interface Γint and

the hydrogen flux is given by J̄int = J̄i nint
i where nint

i is the

outward normal vector to Γint . It should be mentioned that the

interface is assumed to undergo complete separation when

it fails such that the newly created free surfaces have flux

boundary conditions specified. Hence, we introduce a scalar

damage variable d that is assumed to evolve monotonically

from 0 to 1, i.e. from an undamaged to a fully damaged state.

It follows that the no flux boundary condition is defined as

J̄int = 0 if d = 1 on Γint (10)

2.2.2 Mechanical equilibrium

The balance of linear momentum, i.e. the mechanical equi-

librium equations, in a quasi-static state and the absence of

body forces can be written as

∂σi j

∂x j

= 0 in Ω, (11)

where σi j is the Cauchy stress. The boundary conditions for

the model problem is defined by

ûi = ui on Γu,

t̂i = σi j n j on Γt ,
(12)

where ûi and t̂i are the applied displacement and traction

values acting on Γu and Γt , respectively, that should satisfy

Γu ∪ Γt = Γ and Γu ∩ Γt = ∅. (13)

The conditions on the interface Γint are defined as:

∆uint
i = u+

i − u−
i on Γint, (14)

where ∆uint
i is the displacement jump across the interface

Γint, u±
i are the displacement vectors in the upper and lower

interface surfaces Γ ±
int, respectively, and the traction acting

on the interface is given by t int
i = σi j nint

j . In the case of

complete separation, the initially intact interface becomes

two traction free surfaces that are defined by

t int
i = 0 if d = 1 on Γint. (15)
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3 Finite Element implementation

In this section, we present the implementation of the model

problem in Sect. 2. We consider the coupled diffusion–

mechanical system given by the mass and linear momentum

balance equations in Eqs. (4) and (11), respectively. These

equations are usually expressed in terms of two primary

variables that are the displacement field ui and the total

hydrogen concentration C̄T. Alternatively, we propose the

use of the chemical potential µ as the diffusion degree of

freedom instead of the total hydrogen concentration C̄T. In

most coupled diffusion–mechanical analysis, researchers use

the concentration as a degree of freedom, e.g. Sofronis and

McMeeking [13], Barrera et al. [14] and Oh and Kim [21].

Di Leo and Anand [22] have proposed a theory for coupled

diffusion and large elastic–plastic deformations using chem-

ical potential as a degree of freedom which they later used

to study fracture of ferritic steels in the presence of hydro-

gen using a continuum damage approach (Anand et al. [23]).

Further, the chemical potential has been used in similar prob-

lems such as coupled diffusion and mechanical deformation

in elastomeric gels (Chester and Anand [24]) and in Li-ion

batteries (Miehe et al. [25]). In comparison with these formu-

lations, a broader description of material systems is consider

here by including the behaviour of interfaces. We propose a

thermodynamically consistent framework based on the work

of Mishin et al. [20], see Sect. 4. The proposed formulation

has many advantages in comparison with the standard formu-

lation and a detailed comparison between these formulations

will be discussed later in this section. In the following, we

present the details of the proposed Finite Element formu-

lation of the coupled diffusion–mechanical analysis in the

presence of interfaces.

3.1 The variational formulation

The variational forms of the governing equations are required

for the development of the Finite Element equations. Con-

sider the mass balance equation in Eq. (4), and a virtual

variation of the chemical potential δµ, which is continuous

and is assumed to vanish where the chemical potential is

defined on a boundary, i.e.

δµ = 0 on Γµ. (16)

Multiplying Eq. (4) by δµ and integrating over the volume

gives the variational form of the mass balance equation

∫

Ω

δµ

(
∂C̄T

∂t
+ ∂ J̄i

∂xi

)

dV = 0. (17)

Thus, integrating by parts and applying the divergence theo-

rem yields

∫

Ω

δµ
∂C̄T

∂t
dV −

∫

ΓJ

δµ ˆ̄Ji dS −
∫

Γint

δµ J̄int dS = 0. (18)

Similarly, an admissible virtual displacement field, δui ,

is considered which vanishes on boundaries where the dis-

placement is prescribed, i.e.

δui = 0 on Γu . (19)

Now, the variational form of the equilibrium equation of

(11) takes the form

∫

Ω

δui

∂σi j

∂x j

dV = 0, (20)

and integration by parts and application of the divergence

theorem gives

∫

Ω

∂δui

∂x j

σi j dV −
∫

Γt

δui t̂i dS −
∫

Γint

δ∆uint
i t int

i dS = 0, (21)

3.2 Time integration

A fully implicit backward Euler scheme is employed here

for time integration of the diffusion equations. Thus, the total

concentration C̄T at time tp+1 is approximated by

C̄
p+1
T = C̄

p
T + ∆t ˙̄C p+1

T , (22)

where indices p + 1 and p denote variable values at instants

tp and tp+1, respectively, and ∆t = tp+1 − tp is the time

increment.

3.3 The spatial discretisation

In the discretisation of the body in Fig. 1, two regions are

considered: the bulk (materials A and B); and the interface

regions. We use continuum and cohesive elements to dis-

cretise the bulk and interface, respectively. We adopt the

standard Galerkin method where the primary variable and

their variations are discretised using the same shape func-

tions, see for example Belytschko et al. [26] and Wriggers

[27]. It should be noted that different interpolation may be

used for the continuum and cohesive elements. Therefore,

fields for the chemical potential and its variation are discre-

tised in the bulk and interface regions as
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µ (xi , t) =
Nnode∑

I=1

NI (xi ) µI (t) ,

µint (xi , t) =
N int

node∑

I=1

NI (xi ) µint
I (t) ,

(23)

and

δµ (xi , t) =
Nnode∑

I=1

NI (xi ) δµI (t) ,

δµint (xi , t) =
N int

node∑

I=1

NI (xi ) δµint
I (t) ,

(24)

respectively, where the superscript (•)int is used to distin-

guished the variables associated with the interface from those

in the bulk (no superscript is used for the bulk), NI are the

standard finite element shape functions, Nnode are the total

number of nodes in the mesh, µI and δµI are the values of the

chemical potential and its variation at node I , respectively,

and a node is considered to be in the bulk if I ∈ Ω and at the

interface if I ∈ Γint. The displacement field and its variation

are interpolated in the same manner as

ui

(

x j , t
)

=
Nnode∑

I=1

NI

(

x j

)

ui I (t) ,

uint
i

(

x j , t
)

=
N int

node∑

I=1

NI

(

x j

)

uint
i I (t) ,

(25)

and

δui

(

x j , t
)

=
Nnode∑

I=1

NI

(

x j

)

δui I (t) ,

δuint
i

(

x j , t
)

=
N int

node∑

I=1

NI

(

x j

)

δuint
i I (t) ,

(26)

where ui I and δui I are the values of the displacement fields

and its variation at node I , respectively.

3.4 The Finite Element equations

In order to derive the Finite Element equations, we need to

determine the discrete forms of the diffusion and mechanical

equilibrium equations. This can be done by substituting the

interpolations of the chemical potential, displacement and

their variations, and the time integration into the variational

forms of the diffusion and mechanical equilibrium equations.

Thus, substitution of the time derivatives of the total concen-

tration in Eq. (22) and chemical potential and its variation

in Eqs. (23) and (24), respectively, into Eq. (18) gives the

discrete form of the diffusion equation as the variation of a

functional Πµ:

δΠµ =
∑

I∈Ω

δµI

[
1

∆t

∫

Ω

NI

(

C̄
p+1
T − C̄

p
T

)

dV

]

−
∑

I∈ΓJ

δµI

∫

ΓJ

NI
ˆ̄J dS

+
∑

I∈Γint

δµint
I

[
1

∆t

∫

Γint

N int
I

(

C̄
p+1
int − C̄

p
int

)

dS

]

−
∑

I∈Γint

δµint
I

∫

Γint

NI J̄int dS, (27)

where the first sum is over the nodes of Ω , the second sum is

over the nodes on ΓJ and the third and fourth sums are over

the nodes on Γint. This variation can be written in terms of

the nodal chemical potential variation and diffusion forces

as

δΠµ =
∑

I∈Ω

δµI f
µ,in
I +

∑

I∈ΓJ

δµI f
µ,ext
I +

∑

I∈Γint

δµI f
µ,int
I ,

(28)

where the nodal chemical force in the continuum elements is

f
µ
I = f

µ,in
I + f

µ,ext
I , i.e. f

µ,in
I and f

µ,ext
I are the internal and

external forces, respectively, and in the cohesive elements is

f
µ,int
I , which are given by

f
µ,in
I = 1

∆t

∫

Ω

NI

(

C̄
p+1
T − C̄

p
T

)

dV ,

f
µ,ext
I = −

∫

ΓJ

NI
ˆ̄J dS,

f
µ,int
I = 1

∆t

∫

Γint

Aint
I

(

C̄
p+1
int − C̄

p
int

)

dS −
∫

Γint

Aint
I J̄int dS,

(29)

where Aint
I = HI N int

I and HI is a multiplier that relates

the interface chemical potential to the bulk nodal chemical

potential as in Eq. (2), i.e. µint
I = HI µI . Since the chemical

potential variation δµI can be chosen arbitrarily, the residual

of the diffusion equation at node I is then determined as

R
µ
I =

∑

I∈Ω

f
µ,in
I +

∑

I∈ΓJ

f
µ,ext
I +

∑

I∈Γint

f
µ,int
I . (30)

Similarly, substitution of the test and displacement fields

in Eqs. (25) and (26) into Eq. (21) gives the discrete form
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of the mechanical equilibrium equation as the variation of a

functional Πu:

δΠu =
∑

I∈Ω

δui I

∫

Ω

σi j B j I dV −
∑

I∈Γt

δui I

∫

Γt

NI t̂i dS

−
∑

I∈Γint

δuint
i I

∫

Γint

N int
I t int

i dS, (31)

where B j I = ∂ NI /∂x j . This variation can be written in terms

of the nodal displacement variation and mechanical forces as

δΠu =
∑

I∈Ω

δui I f
u,in
i I +

∑

I∈Γt

δui I f
u,ext
i I

+
∑

I∈Γint

δui I f
u,int
i I ,

(32)

where the nodal mechanical force in the continuum elements

is f u
i I = f

u,in
i I + f

u,ext
i I , i.e. f

u,in
i I and f

u,ext
i I are the internal

and external forces, respectively, and in the cohesive elements

is f
u,int
i I , are given by

f
u,in
i I =

∫

Ω

σi j B j I dV ,

f
u,ext
i I = −

∫

Γt

NI t̂i dS,

f
u,int
i I = −

∫

Γint

Bint
I t int

i dS,

(33)

Bint
I = MI N int

I and MI is a linear multiplier that relates the

displacement jumps to the nodal displacements, i.e. ∆uint
i =

MI ui I . Since δui I can be chosen arbitrarily, the components

of the residual of the mechanical equilibrium equation at node

I are determined as

Ru
i I =

∑

I∈Ω

f
u,in
i I +

∑

I∈Γt

f
u,ext
i I +

∑

I∈Γint

f
u,int
i I . (34)

To this end, we need to solve the coupled nonlin-

ear diffusion–mechanical discrete equations, i.e. Eqs. (30)

and (34), for the nodal chemical potential µI and displace-

ments ui I . In the next sub-section, the solution procedure is

discussed.

3.5 Solution procedure

In order to solve the nonlinear set of discrete equations repre-

sented by (30) and (34) with a Newton–Raphson algorithm,

a suitable linearisation is required. Thus, an iterative scheme

can be determined using a first-order Taylor expansion of

the residuals, i.e. the chemical and mechanical nodal resid-

uals at node I are R
µ
I and Ru

I , respectively. Assume that the

nodal chemical potential and displacement components at

node J at the start and end of an iteration r are
(

µJ , u j J

)

and
(

µJ + ∆µJ , u j J + ∆u j J

)

, respectively. Hence, the residu-

als and unknown values can be written in vector form as

RI =
[

R
µ
I Ru

i I

]T
and dJ =

[

µJ u j J

]T
, i, j = 1, 2, 3,

respectively. Therefore, the linearised form of the residuals

becomes

Rr+1
I = Rr

I + ∂RI

∂dJ

∣
∣
∣
∣

r+1

∆dJ + O
(

∆µ2
J ,∆u2

j J , · · ·
)

, (35)

where ∆dJ is the nodal increment vector of the unknown

quantities, O
(

∆µ2
J ,∆u2

j J , . . .
)

represents the higher order

terms in vector form and the superscript denotes the iteration.

Hence, by neglecting the higher order terms, the incremental

form of these equations can be written as

∆dJ = −K−1
I J Rr

I , (36)

where KI J is the tangent stiffness matrix that is given by

KI J =
[

K
µµ
I J K

µ u

j I J

K
u µ
i I J K u u

i j I J

]

, (37)

and the elements of the tangent stiffness matrix, i.e. the tan-

gent operators, are

K
µµ
I J =

∂ R
µ
I

∂µJ

, K
µ u

j I J =
∂ R

µ
I

∂u j J

, K
u µ
i I J =

∂ Ru
i I

∂µJ

, and

K u u
i j I J =

∂ Ru
i I

∂u j J

.

(38)

The details of these operators are provided in “Appendix A”.

It is worth mentioning that the residual and tangent matrix

can be split into the bulk and interface contributions. In this

study we use continuum and cohesive elements to implement

the diffusion and mechanical models in the commercial FE

code Abaqus. In particular, we use the user-defined subrou-

tines UMAT or UHARD and UMATH for the bulk and UEL

for the interface element. The implementations are provided

in “Appendix B”.

3.6 The concentration versus chemical potential
based formulations

To compare the two formulations, we recall the discrete form

of the diffusion equation in Eq. (27). In the concentration

based formulation, the total concentration in the bulk, C̄T,

and the trap concentration in the interface, C̄int, are given as
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C̄T (xi , t) =
Nnode∑

I=1

NI (xi ) C̄T
I (t) ,

C̄int (xi , t) =
N int

node∑

I=1

NI (xi ) C̄ int
I (t) ,

(39)

where C̄T
I and C̄ int

I are the values of the total concentra-

tion and trap concentration at node I , respectively. Hence,

the linearisation of the discrete diffusion equation yields a

system of equations similar to Eq. (35) where the chemical

potential increment ∆µI is replaced by the total concentra-

tion and interface concentration increments ∆C̄T
I and ∆C̄ int

I ,

respectively. As a result, the derivative ∂ J̄/∂µ in the tangent

operator K
µµ
I J is replaced by ∂ J̄/∂C̄T, see “Appendix A”.

These derivatives are determined from the definition in

Eq. (5) as

∂ J̄i

∂µ
= − DL

R T

∂C̄L

∂µ

∂µ

∂xi

, (40)

and

∂ J̄i

∂C̄T

= − DL

R T

∂µ

∂xi

. (41)

Examining the continuity requirements on the shape func-

tion, in the chemical potential based formulation, Eq. (40)

implies that the shape functions in Eq. (23) should exist and

be continuous, i.e. they satisfy C0 continuity. On the other

hand, in the concentration based formulation, the gradient of

the chemical potential contains the gradient of hydrostatic

stress ∂σh/∂xi , see Sect. 4. Hence, the strain gradient should

now exist and be continuous. Consequently, the shape func-

tions in Eq. (25) should be continuously differentiable, i.e.

satisfy C1 continuity, which means that shape functions that

are at least quadratic should be used. Therefore, the chemi-

cal potential based formulation has less restrictive continuity

requirements which allow linear approximations to be used.

This may result in a lower computational cost. The spatial

discretisation of the model problem requires that the top and

bottom faces of the cohesive elements to be attached to the

continuum elements, see Fig. 2. Hence, in the case of a con-

centration based formulation, the concentration is defined at

the nodes of these faces. Thus, the concentration will be dis-

continuous at each node bearing two different values from

the bulk and interface. This inconsistency can be overcome

using the chemical potential based formulation. The chem-

ical potential is essentially continuous across the interface

which leads to a consistent definition of its values at these

surfaces. Further, the concentration at the interface is defined

in the mid-surface of the cohesive element (the constitutive

surface) which allows the concentration to differ from that in

the bulk.

Fig. 2 The schematic of a dummy mesh of a region close to the inter-

face of the model problem. The figure illustrates the mid-surface of the

interface and the shared nodes between the bulk and the interface

4 Constitutive descriptions

In this section, we present the hydrogen transport and

mechanical constitutive models for the bulk and interface.

4.1 The Bulk model

Consider a material in which the hydrogen concentration in

the lattice is CL and that from the distributed traps is CTr.

Thus, the total hydrogen concentration is CT = CL + CTr.

The hydrogen concentration in the lattice is given by Sofronis

and McMeeking [13]

CL = βL θL NL, (42)

where βL is the number of interstitial sites per solvent atom,

θL ∈ [0, 1] is the fraction of lattice sites occupied by hydro-

gen atoms and NL = NA/VM is the number of atoms of

solvent per unit volume (atoms/m3). The molar volume of the

solvent lattice is VM = M/ρ, where ρ and M are the density

and relative atomic mass of the lattice element, respectively.

We consider nTr types of traps such that the total concen-

tration in the traps is given by

CTr =
nTr∑

i=1

Ci , (43)

where Ci is the concentration in the i th trap that is defined

by

Ci = αi θi Ni , (44)

where αi = 1 denotes the number of trapping sites, Ni

(atoms/m3) denotes the number of atomic trapping sites per

unit volume and θi ∈ [0, 1] is the fraction of trapping sites
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occupied by H atoms. We consider two types of traps—those

in which the number of trap sites are fixed (fixed traps i ≡ F)

and those that increase with increasing plastic deformation

(dislocation traps, i ≡ D). The molar concentration of the

i th trap is denoted as C̄i = Ci/NA. Hence, NF is taken to be

constant and ND is assumed to be proportional to the dislo-

cation density ρD, which is assumed to be a function of the

accumulated equivalent plastic strain ε
pl
e :

ND =
√

2

a
ρD

(

ε
pl
e

)

, (45)

where a is the lattice constant and the prefactor is 1/b, where

b is the magnitude of the a/2 <1 1 0> Burgers vector in FCC

materials, which is a reasonable approximation for the atomic

spacing along a dislocation line.

The traps are modelled using Oriani’s theory, in which the

hydrogen concentration in the lattice is assumed to be in equi-

librium with the concentration in the traps. This means that

the concentration in the traps can directly be estimated from

the concentration in the lattice. Hence, for finite populations

of H in the lattice and trap sites, the equilibrium condition

for the i th trap is given by

θi

1 − θi

= θL

1 − θL
Ki , (46)

where Ki = exp (−Wi/RT ) = const., represents equilib-

rium between the lattice and the i th type of trap site and

Wi < 0 is the binding energy for the i th trap, R is the univer-

sal gas constant and T is the absolute temperature. It should

be noted that Eq. (46) reduces to θi/ (1 − θi ) = Ki θL in

the case of small lattice concentration, i.e. θL ≪ 1, which

is generally the situation in practice (note, however that the

corresponding occupancy in the traps can approach 1, par-

ticularly for high trap binding energies [28]). The Gibbs free

energy per unit volume of the bulk material, G, can be written

as

G = ψ − σi j εi j + µ0 C̄L − T s, (47)

where ψ is the free energy density per unit volume of the

bulk material, σi j is the applied macroscopic stress, εi j is

the corresponding strain, µ0 represents the chemical poten-

tial at a suitably defined standard condition, T is the absolute

temperature and s is the entropy per volume in the bulk mate-

rial, which we assume is dominated by the configurational

entropy (i.e. entropy of mixing):

s = −R C̄max
L

(

C̄L

C̄max
L

ln
C̄L

C̄max
L

+ C̄max
L − C̄L

C̄max
L

ln
C̄max

L − C̄L

C̄max
L

)

, (48)

where C̄max
L is the hydrogen concentration corresponding to

the saturated state in the lattice. The free energy density for

elastic and elastic–plastic materials can be expressed as

ψ = 1

2

(

εi j − ε
pl
i j − εs

i j

)

Ci jkl

(

εkl − ε
pl
kl − εs

kl

)

, (49)

where ε
pl
i j is the plastic strain, εs

i j = εs δi j = 1
3

VM C̄L δi j

is the swelling strain (here we have assumed that swelling

is only associated with hydrogen in the lattice and that

trapped hydrogen does not contribute to swelling observed

macroscopically—this assumption can be readily relaxed if

necessary, i.e. see “Appendix A)” and Ci jkl is the 4th order

elasticity tensor. It is worth noting that both the swelling and

elastic deformation are assumed to be small.

The chemical potential in the bulk is determined from the

Gibbs free energy in Eq. (47) as

µ = ∂G

∂C̄L

= µ0 + R T ln
C̄L

C̄max
L − C̄L

+ µσ , (50)

where µσ = ∂ψ/∂C̄L = −σh VM and σh = σkk/3 is the

hydrostatic stress. It should be noted that at low concentra-

tions (C̄L ≪ C̄max
L ), the chemical potential becomes

µ = µ0 + R T ln
C̄L

C̄max
L

+ µσ . (51)

The mechanical response is determined by assuming

that the bulk is in mechanical equilibrium, i.e. by solving

∂G/∂εi j = 0 to give σi j . Note, when considering two differ-

ent materials, e.g. A and B of Fig. 1b, µ0 can be different for

each material. This needs to be taken into account when solv-

ing any boundary value problem – particularly when invoking

continuity of chemical potential across an interface. In the

following, for consistency of notation, we take H in one of

the materials, say A, as the reference, for which we designate

µA
0 = µ0 and write µB

0 = µ0 + WB. Oriani’s relationship,

Eq. (46), can then be used to determine the occupancy in B in

terms of that in A at interfaces where the chemical potential

is required to be continuous.

4.2 The interfacemodel

The interface is treated as a discrete trap. The description here

parallels that for the bulk described above in Sect. 4.1 and

is consistent with the thermodynamic description of Mishin

et al. [20]. We assume that the hydrogen concentration, Cint

(atoms/m2), in the interface can differ from that in the bulk

(i.e. the interface binding energy can be different from the

bulk) and is defined by
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Cint = αint θint Nint, (52)

where αint = 1 denotes the number of H trapping sites per

interface site, Nint (atoms/m2) denotes the number of atomic

trapping sites per unit area of interface and θint ∈ [0, 1] is

the fraction of trapping sites occupied by H atoms.

In this study, we limit our consideration to situations where

failure at an interface is driven by the component of the trac-

tion normal to the interface, allowing the tangential response

to be given by a stiff linear mechanical model. We can then

simply concentrate on the response under the action of a

normal traction to derive the necessary thermodynamic equa-

tions. The Gibbs free energy per unit area of the interface,

G int, can then be written as

G int = φ − Tn δn + µ0 C̄int + Wint C̄int − T sint, (53)

whereφ is a free energy density per unit area, Tn is the traction

in the normal direction, δn is the separation in the normal

direction. Wint is the excess cohesive/interface zone binding

energy compared to that in the reference matrix material (e.g.

material A of Fig. 1ii) and sint is the configurational entropy

per unit area of interface, and is given by

sint = − R C̄max
int

(

C̄int

C̄max
int

ln
C̄int

C̄max
int

+ C̄max
int − C̄int

C̄max
int

ln
C̄max

int − C̄int

C̄max
int

)

, (54)

where C̄max
int is the hydrogen concentration corresponding

to the saturated state in the cohesive zone. The constitutive

response for the cohesive interface is modelled in terms of

the relationship between the traction and the displacement

jump across the interface. The presence of hydrogen in the

cohesive zone may introduce a volumetric change that can be

expressed in terms of a jacking or swelling separation δs
n [19]

that can be defined as

δs
n = C̄int V int

M , (55)

where V int
M is the molar volume of hydrogen in the interface

zone (m3/mol) which can have a different value to VM in

the bulk. Hence, the total separation in the normal direction

δn can be decomposed into mechanical and jacking compo-

nents:

δn = δm
n + δs

n, (56)

where δm
n is the separation in the normal direction due to

mechanical loading. Note that φ in Eq. (53) is a function of

δm
n , i.e.

φ = φ
(

δm
n

)

= φ
(

δn − δs
n

)

. (57)

The chemical potential in the cohesive zone is determined

from the Gibbs free energy in Eq. (53) as

µint = ∂G int

∂C̄int

= ∂φ

∂C̄int

+ µ0 + Wint + R T ln
C̄int

C̄max
int − C̄int

, (58)

The traction-separation law (TSL) is determined from the

Gibbs free energy assuming that the interface is in mechanical

equilibrium, i.e.

∂G int

∂δm
n

= ∂φ

∂δm
n

− Tn = 0 ⇒ Tn = ∂φ

∂δm
n

. (59)

Making use of Eqs. (56), (57) and (59), Eq. (58) becomes

µint = µ0 + Wint + R T ln
C̄int

C̄max
int − C̄int

+ µT , (60)

where µT = ∂φ/∂C̄int = −Tn V int
M .

The free energy density φ can be physically based or a

phenomenological model that describes the relation between

the traction and the displacement jump across the cohesive

zone. The initial behaviour is assumed to be linear elastic

until the onset of damage. When damage is initiated, the

material stiffness decreases and the degradation is defined by

the scalar damage variable d that evolves monotonically from

0 to 1, i.e. from an undamaged to a fully damaged state, and

can take different forms, i.e. linear, exponential, trapezoidal

etc. The irreversible traction-separation law is then written

as

Tn =
{

Knδm
n if δm

n ≤ δc
n

(1 − d) Kn δm
n if δm

n ≥ δc
n

(61)

where Kn is the initial elastic or penalty stiffness and δc
n

is the critical separation in the normal direction. The linear

elastic unloading behaviour is determined by the degraded

stiffness K ′
n = (1 − d) Kn . A bilinear traction-separation

law is used in this study. Hence, the damage variable, d, for

linear softening is determined as

d =
δf

n

(

δmax
n − δc

n

)

δmax
n

(

δf
n − δc

n

) , (62)

where δmax
n is the maximum value of the displacement

attained during the loading history and δf
n is the separation

at failure.

The initial cohesive strength in the normal direction is

defined by σc0 = Kn δc0
n where δc0

n is the hydrogen free criti-

cal separation. The cohesive strength is assumed to decrease
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with increasing hydrogen concentration. Hence, we assume

that the softening takes the general form

σc = σc0 Φ
(

C̄int

)

, (63)

where Φ is a softening function. For example, a linear form

is given by Barrera and Cocks [29] as

Φ
(

C̄int

)

= 1 − ξint

(

C̄int − C̄min
int

C̄max
int − C̄min

int

)

, (64)

where ξint ∈ [0, 1] is a hydrogen softening parame-

ter, C̄min
int is the concentration at the onset of softening

and C̄max
int is the maximum concentrations associated with

softening. (The form of the softening function can be

determined by fitting of experimental results (e.g. Raykar

et al. [30] and Martínez-Pañeda et al. [31]) or using

atomistic simulations (e.g. [32] and Katzarov and Paxton

[19].) It is worth mentioning that this study is limited

to pure mode-I loading; the damage evolution is only

considered in the normal direction and the response of

the tangential direction is taken to be purely elastic as

Tt =
{

Ktδt if δm
n ≤ δc

n

(1 − d) Kt δt if δm
n ≥ δc

n

(65)

where Tt and δt are the traction and total separation in the

tangential direction.

5 Numerical examples

In this section, we validate and demonstrate the effectiveness

of the proposed formulation through studying two problems.

Firstly, we consider a 2D fully coupled elastoplastic diffu-

sion problem of a deep notched specimen in the absence

of damage. This problem is analysed using both concen-

tration and chemical potential based formulations and a

detailed comparison showing the similarities in the solu-

tions is provided. Additionally, we investigate the failure of

the notched specimen using the interface model described

in Sect. 4.2. The second problem is a micromechanical

investigation of hydrogen-enhanced decohesion (HEDE) in

a dissimilar metal weld. More specifically, we consider the

failure in the presence of hydrogen of the carbide-matrix

interfaces around fine M7 C3 precipitates generated adjacent

to the interface of an 8630 steel/IN625 nickel alloy dissimilar

weld, which has been analysed extensively by Barrera et al.

[33].

Fig. 3 The geometry of the plate with a deep V-notch. The computa-

tional domain is illustrated with the mechanical boundary conditions

5.1 Analysis of deformation, diffusion and failure in
a deeply notched specimen

A plane strain plate with deep double-edged notches is con-

sidered as shown in Fig. 3. The width, height and thickness

of the specimen are denoted by W , 2 H and B, respectively,

and the notch radius, depth and angle are denoted by r , d

and ϕ, respectively. The plate is made of a material that is

assumed to exhibit elastic–plastic behaviour. The presence of

hydrogen in the lattice and dislocation traps are considered.

An interface model is used to simulate failure such that dam-

age may accumulate at the interface leading to loss of load

carrying capacity. Further, hydrogen can be trapped at the

interface which is treated as a discrete trap. We assume a full

coupling between the mechanical and diffusion responses

and the constitutive descriptions are taken to be suitable for

a high strength steel. The purpose of this analysis is to: (1)

compare the concentration and chemical potential formula-

tions; and (2) investigate the failure of the specimen using

the chemical potential formulation. The deep double-edged

notch geometry provides a high degree of plastic constraint

and high level of hydrostatic stress across the minimum sec-

tion which allows us to compare the two formulations for

the fully coupled diffusion and elastic–plastic deformation

processes. Furthermore, notched specimens are commonly

used to study hydrogen embrittlement in steel [34–36]. The

constitutive behaviour of the bulk material is assumed to be
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Table 1 The material

parameters used for nickel
(i) The mechanical model parameters.

E [GPa] ν [−] σ0 [MPa] ρD0 [1/m2]† ρmax
D0 [1/m2] γ [1/m2]

200 0.3 100 1010 1016 2.0 × 1016

(ii) The diffusion model parameters.

NL [atoms/m3] DL [m2/s] βL [−] a [m] VM [m3/mol] WD [kJ/mol]

9.24 × 1028 8.04−8 6 2.86 × 10−10 2.0 × 10−6 −18

† The dislocation density for the annealed material

described by an isotropic von Mises plasticity model and the

flow stress is assumed to be independent of the hydrogen

content. Following Sofronis et al. [37], the hardening func-

tion is taken to be a power law, i.e. σy = σ0

(

1 + ε
pl
e /ε0

)1/n

,

where σ0 is the initial yield strength, ε
pl
e is the equivalent

plastic strain, ε0 = σ0/E , E is Young’s modulus and n is

the hardening exponent. Further, the dislocation density ρD

is assumed to be linearly related to the equivalent plastic

strain according to ρD = ρD0 + γ ε
pl
e for ε

pl
e ≤ 0.5 and

ρD = ρmax
D for ε

pl
e > 0.5, where ρD0 is the initial dislo-

cation density and γ is a material parameter [21,29]. The

cohesive model in Sect. 4.2 is used to model failure. The

hydrogen in the bulk material is assumed to reside in the

lattice and dislocation sites, i.e. C̄T = C̄L + C̄D, and it is

also trapped in the interface. The hydrogen concentration

in the dislocation traps C̄D increases with increasing plas-

tic strain, i.e. due to the increase of the number of trap sites

associated with the dislocation density Eq. (45). Further, the

hydrogen trapped in the dislocations and the discrete trap

represented by the interface are in equilibrium with the con-

centration in the lattice following Oriani’s theory, according

to Eqs. (46) and (9), respectively. Hence, the displacement

and concentration or chemical potential can be determined

by solving a coupled mechanical–diffusion problem using the

Finite Element Method based on the concentration or chem-

ical potential formulation. The concentration formulation is

adopted from Barrera et al. [14] and the chemical poten-

tial formulation described above is implemented in the FE

code Abaqus [15]. The isotropic von Mises plasticity model

is implemented using a UMAT subroutine and the diffusion

equations are implemented using the UMATHT subroutine

(the details of the implementations are provided in Appen-

dices A and B). The material parameters used in the analysis

are summarised in Table 1.

The computational domain of the deep double-edged

notched specimen shown in Fig. 3 is analysed under plane

strain conditions. (Only a quarter the specimen is analysed

due to symmetry.) The dimensions are taken as W = 10 mm,

H = 12.5 mm, B = 1 mm, r = 5 mm, D = 5 mm and

ϕ = 30◦. The 4-node bilinear and 8-node quadratic coupled

temperature-displacement plane strain elements (CPE4RT

and CPE8RT, respectively) are used in the different dis-

cretisations. In particular, the CPE4RT element is used in

the failure simulations and the CPE8RT element is used to

compare the two formulations. It should be mentioned that

quadratic elements are necessary to compute the stress gradi-

ent in the concentration formulation (a detailed discussion is

presented in Barrera et al. [14]). A 4-node two-dimensional

linear interface element was implemented in Abaqus using

the user-defined subroutine UEL. In the comparison between

the formulations, no damage is considered and the Finite Ele-

ment model comprised of the bulk elements only.

In the failure analysis, the Finite Element model is divided

into two regions, in which the bulk and interface elements are

defined. The interface elements are inserted along the prede-

fined failure path, g W ≥ x ≥ D + r and y = 0, and bulk

elements are defined elsewhere. The interface elements are

modelled with zero initial thickness (i.e. the top and bottom

face nodes coincide) and their top faces are attached to the

bulk elements. In failure simulations, the mesh has 5682 ele-

ments, of which 5469 are bulk elements and 213 are interface

elements. The total number of elements is reduced to 5469

elements in the simulation that are used to compare the for-

mulations. This number of elements is found to be necessary

to obtain converged solutions in both cases.

5.1.1 Comparison between the concentration and chemical

potential formulations

Firstly, the concentration and chemical potential based for-

mulations are compared. We assume that the hydrogen

concentration in the lattice is initially uniform throughout

the plate, i.e. the initial lattice concentration is C̄L0 =
4.3 mol/m3 which corresponds to an occupancy of θL0 =
5×10−6. All boundaries are insulated. The mechanical load-

ing is applied in the form of a prescribed displacement in

the y-direction, u y , at the upper surface (i.e. y = H ) as

shown in Fig. 3. The displacement is ramped up monotoni-

cally from 0 to 0.025 mm which corresponds to an overall

engineering strain of εyy ∈ [0 − 0.002]. Under these loading

conditions only elastic deformation is expected. The process

time tp is taken to be equal to the characteristic diffusion

time, τ = l2
c /DL where lc is the characteristic length scale,

taken to be equal to the notch radius (1 mm). Hence, transient

diffusion is considered.
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Fig. 4 Comparison between the

chemical potential and

concentration based

formulations in i and ii,

respectively. The different

distributions are: a the hydrogen

concentration at the lattice C̄L;

and b the chemical potential µ

(a)

(b)

Figure 4a, b illustrate the distribution of the hydrogen

concentration in the lattice C̄L normalised by the initial con-

centration C̄L0 and the chemical potential µ normalised by

the initial chemical potential µini = 30.26 J/mol at strain

level εyy = 0.002. The Fig. 4i, ii show that the two for-

mulations agree. In the elastic regime, the concentration of

hydrogen in the lattice is controlled by the hydrostatic stress

distribution. Thus, the maximum concentration is at the notch

root where the hydrostatic stress is a maximum. Far from the

notch, the hydrostatic stress is much lower, which leads to

a decrease in the hydrogen concentration locally to satisfy

conservation of volume of hydrogen within the specimen.

5.1.2 Failure of the double-edged notched specimen

In this section, we investigate the use of the interface model

and the chemical potential formulation to simulate failure

of the deep double-edged notched specimen. Similarly, we

assume initially uniform hydrogen concentration in the lat-

tice throughout the plate and the mechanical loading is

applied in the form of a prescribed displacement in the

y-direction at the upper surface. The initial hydrogen con-

centration in the lattice is taken to be C̄L0 = 4.3 mol/m3 and

zero flux at the boundaries is prescribed. The displacement

at the upper surface is ramped up monotonically from zero

to complete failure. The process time is taken to be tp = τ

which yields a loading rate of 0.25 mm/s. The ratio between

the interface cohesive strength and yield strength is chosen to

be σc/σ0 = 3.0 (i.e. ξint = 0) and the separation at failure is

taken to be δf
n = 0.01 mm. It should be mentioned that these

parameters are suitable to describe steel at the given concen-

tration level [21]. Further, the softening of the interface (i.e.

the reduction of cohesive strength) due to hydrogen is not

investigated in this example. The interface stiffness is taken

to be Kn = 106 MPa/mm which is found to be necessary to

prevent artificial compliance [38,39]. The interface binding
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Fig. 5 The macroscopic stress–strain behaviour in y-direction. Points

A, B, C and D are associated with the onset of the plastic deformation,

damage initiation, damaged progression and complete failure, respec-

tively

energy is Wint = −10 kJ/mol, the molar volume is V int
M =

VM = 2×10−6 m3/mol and the kinetic constant for diffusion

across the interface is hint = 8 × 10−6 mol2/(m2 · s · J).

Figure 5 shows the macroscopic stress–strain responses

in the y-direction for damaged and undamaged cases, i.e.

the relationship between εyy and σyy as indicated in Fig. 3.

The behaviour illustrates a typical elastic–plastic response

for a notched specimen in which the onset of macroscopic

yielding usually occurs at a lower stress level than the yield

strength of the material due to the stress concentration, i.e.

σyy/σ0 ≈ 0.6. Damage initiation takes place at εyy ≈ 0.012

and final failure occurs at εyy ≈ 0.0135. In what follows,

we investigate four points in the loading history, these points

are associated with: A, elastic deformation; B, damage initi-

ation; C, damage progression and D, complete failure of the

interface, see Fig. 5.

Figure 6i–iv illustrate the distribution of the hydrogen

concentration in the lattice C̄L normalised by the initial con-

centration C̄L0 at points A, B, C and D of Fig. 5, respectively.

At point A, prior to any plastic deformation, hydrogen is

concentrated at the notch root in the region of maximum

hydrostatic stress. After the onset of plastic deformation and

before damage initiation, the maximum hydrostatic stress

moves to a position below the notch root. Consequently, the

maximum concentration shifts to this location, i.e. the maxi-

mum value of C̄L is at x/W ≈ 0.65 at point B. After damage

initiation, the stress relaxes along the interface which results

in diffusion of hydrogen from the interface. At complete fail-

ure, the specimen is only loaded by the residual stresses that

are caused by the plastic deformation. Hence, the hydrogen

is redistributed according to this residual stress field.

In order to investigate the interface, we consider the inter-

face and the bulk material adjacent to the interface, i.e. along

W ≥ x ≥ D+r and y = 0. Figure 7i, ii show the distribution

of the hydrogen concentration in the lattice C̄Tr normalised

by the initial concentration C̄Tr0 and the damage variable d,

respectively, along the interface at different instants indicated

by points A, B, C and D as shown in Fig. 5. At point A, prior

to damage initiation, the damage variable is zero along the

interface. The increase of deformation causes damage initi-

ation at a distance from the notch root, i.e. x/W ≈ 0.65,

where the stress normal to the interface is maximum. Conse-

quently, the damage spreads towards the notch root and the

middle of the specimen, as indicated by the damage distribu-

tion at points B and C. At failure, the interface is completely

Fig. 6 The lattice hydrogen concentration distribution at: i the onset of the plastic deformation, ii damage initiation, iii damage progression and iv

complete failure. These instants are associated with points A, B, C and D in Fig. 5, respectively
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Fig. 7 The distribution of: i the hydrogen concentration C̄Tr; and ii the damage variable d along the interface at different instants, i.e. points A, B,

C and D in Fig. 5

damaged such that the damage parameter is 1.0 along the

entire interface. Initially, hydrogen is trapped at the interface

and its concentration is C̄Tr/C̄Tr0 which is solely determined

by the interface’s binding energy as the material is initially

stress free. Since V int
M has been taken to be zero and there

is no jacking due to the hydrogen that diffuses to the inter-

face, the concentration remains uniform along the interface

as the stress is increased. It’s magnitude gradually decreases,

however, to supply some of the hydrogen that flows into

the regions of high hydrostatic stress as the applied load

is increased. Thus the concentration at A is less than that

under zero stress. As damage develops the stress in the matrix

decreases, hydrogen diffuses away from regions where the

hydrostatic stress was high and some of this flows into the

interface, leading to an increase in C̄Tr . After more significant

damage development, the traction decreases, which causes

additional trapping of hydrogen in the interface, i.e. points C

and D. Figure 8i–iv show the distribution of the hydrostatic

stress σh normalised by the yield strength σ0, equivalent plas-

tic strain ε
pl
e , hydrogen concentration in the lattice C̄L and

hydrogen trapped in the dislocation sites C̄D normalised by

the initial concentration in the lattice C̄L0 in the bulk material

adjacent to the interface at different instants that are indicated

by points A, B, C and D as shown in Fig. 5. The distribu-

tions of hydrostatic and equivalent stress imply that prior to

the onset of plastic deformation, at point A, the equivalent

plastic strain is zero and the hydrostatic stress is maximum

at the notch root. The plastic deformation develops at the

notch root and spreads toward the centre of the specimen.

Consequently, the maximum hydrostatic stress changes loca-

tion from the notch root. As damage develops, the stresses

relax which halts the development of plastic deformation and

causes the maximum hydrostatic stress location to move to

the partially damaged ligament at the centre of the specimen.

After final failure, the hydrostatic stress is determined by the

distribution of the residual stresses. The distribution of the

hydrogen concentration in the lattice reflects the hydrostatic

stress distribution. Further, the hydrogen trapped in dislo-

cations is in equilibrium with the hydrogen in the lattice

which is demonstrated by the similarities of the distribu-

tions. The number of dislocation sites in the vicinity of the

notch increases as suggested by the plastic deformation dis-

tribution. However, a small change in the trapped hydrogen

concentration is observed.

5.2 Analysis of hydrogen enhanced decohesion
(HEDE) in a dissimilar metal weld system

In this example, we investigate hydrogen enhanced decohe-

sion (HEDE) in an AISI8630/IN625 dissimilar weld system.

(A comprehensive investigations of this system is provided

in Barrera et al. [33].) In particular, we are interested in study-

ing the decohesion process that takes place around fine M7 C3

carbide particles in a ’featureless’ zone located on the Nickel

side of the interface in the presence of hydrogen. Barrera et al.

[33] report analyses of this system using TEM imagery and

used a mesh generation scheme that converted these images

into a finite element mesh [40]. Their simulations have shown
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Fig. 8 The distribution of: i the hydrostatic stress σh; ii the equivalent plastic strain ε
pl
e ; iii the hydrogen concentration in the lattice C̄L; and iv the

hydrogen concentration in the dislocation trap C̄D at the bulk material adjacent to the interface at different instants, i.e. points A, B, C and D in Fig. 5

that during deformation microcracks are initially formed at

the carbide-matrix interface which then propagate along the

interface. Thereafter, several microcracks connect together

and form macrocracks through the localisation of plastic flow

in a region adjacent to the region where (1) hydrogen content

is high and (2) the carbide/matrix interface has debonded.

The featureless zone is located next to the fusion line on

the Nickel side of the weld and is typically about 20 µm wide.

It is rich in M7 C3 carbides that occupy a volume fraction of

about 15% and the average length of their major axis is of the

order of 40 nm. In this analysis, we adopt the representative

microstructure of the featureless zone from Barrera et al. [33]

(see Fig. 9i) in which several precipitates are distributed in the

Nickel matrix. Further, we focus on analysing a single pre-

cipitate and consider the volume element in Fig. 9ii assuming

plane strain conditions. The objective of this analysis is to

initially reproduce the results obtained by Barrera et al. [33]

and then explore some of the features of this problem. Bar-
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Fig. 9 The representative

volume of the ’featureless’

region: i cluster of M7 C3

carbides in a 623 Nickel alloy;

and ii single precipitate RVE.

The single precipitate vertices

are numbered from 1 to 10 and a

local coordinate ξ along the

interface with origin at vertex 1

is introduced

rera et al. [33] did not undertake a fully coupled mechanical

diffusion analysis. They assumed a simple steady state dis-

tribution of hydrogen, and expressed the material parameters

in terms of this distribution. The current analysis consists of

a fuller physical description of the problem, and captures the

detailed evolution of the hydrogen concentration in the mate-

rial as plastic deformation and damage develop. In particular,

we are interested in investigating: (1) hydrogen enhanced

decohesion at the interface and how this influences the hydro-

gen distribution; (2) the effect of swelling of the matrix and

precipitate on the decohesion process and (3) the effect of

hydrogen charging on deformation in the matrix. To anal-

yse this problem, as noted above, we assume a full coupling

between the mechanical and diffusion responses. The matrix

material (i.e. 625 Nickel) is assumed to be described by an

isotropic von Mises plasticity model with power law hard-

ening as in Sect. 5.1. The flow stress in the bulk material is

assumed to be independent of the hydrogen content. The rel-

evant matrix material parameters are: Young’s modulus Em,

Poisson’s ratio νm, initial yield strength σ0, hardening expo-

nent n, initial dislocation density ρD0 and dislocation density

parameter γ . The precipitate ( M7 C3-carbide) is taken to be

elastic with Young’s modulus Ep and Poisson’s ratio νp. The

bilinear interface/cohesive model described in Sect. 4.2 is

used to model the interface. The hydrogen in the bulk and

precipitate materials is assume to reside in the lattice, dislo-

cations and fixed traps, i.e. C̄T = C̄L + C̄D + C̄F. Hydrogen

is also trapped in the interface, with concentration C̄Tr. The

Nickel alloy parameters are given in Table 1 and the precip-

itate parameters are taken to be Ep = 2 Em and νp = νm.

The reference chemical potential for the matrix and the pre-

cipitate are taken to be µm
0 = 0 and µ

p
0 = µm

0 + Wp = Wp,

respectively, where Wp is the binding energy of the precip-

itate. The molar volume of the matrix and precipitate are

taken to be V
p
M = VM = 2 × 10−6 m3/mol. The effects

of the trapping energies will be discussed later. The inter-

face parameters are Wint, V int
M = 2 × 10−6 m3/mol and

hint = 8×10−6 mol2/(m2 ·s ·J). The chemical potential for-

mulation and its implementations in the FE code Abaqus [15],

described in Sect. 3 and Appendices A and B, is used.

The Finite Element model of the single precipitate prob-

lem is shown in Fig. 10i, ii. The model is divided into three

regions, namely; the matrix, precipitate and interface. Inter-

face elements are inserted along the interface and the bulk

elements are defined in the precipitate and the matrix regions.

The interface elements are modelled with zero initial thick-

ness (i.e. the top and bottom face nodes coincide) and their

top and bottom faces are attached to the bulk elements in

the matrix and precipitate regions, respectively, as shown in

Fig. 10i. Further, a uniform refined element region is cre-

ated adjacent to the interface for controlling the interface

element length. The 4-node bilinear coupled temperature–

displacement plane strain elements (CPE4R) are used in

the discretisation for plane strain conditions, respectively.
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Fig. 10 The Finite Element model of the single precipitate RVE: i the mesh of the whole geometry and the mechanical boundary conditions; and

ii mesh details along the interface

The 4-node two-dimensional linear cohesive user element in

Appendices A and B is used to discretise the interface. The

mesh has 19408 elements, of which 10662 and 8095 are bulk

elements in the matrix and precipitate, respectively, and 651

are interface elements. The number of elements is found to

be necessary to obtain converged solutions.

The hydrogen concentration in the lattice is initially

assumed to be uniform throughout the body, i.e. the initial lat-

tice concentration is C̄L0 = 4.3 mol/m3 which corresponds

to an occupancy θ0 = 5.0 × 10−6. All boundaries are insu-

lated. The mechanical loading is applied in the form of a

prescribed displacement in the y-direction, u y , at the upper

surface as shown in Fig. 10i. The displacement is ramped

up monotonically from zero to complete failure. The load-

ing time tp is taken to be equal to the characteristic time for

diffusion τ = l2
c /DL = 31.1 ns where the characteristic

length scale is taken to be equal to the precipitate spacing

lc ≈ 50 nm. In the following sections we will present the

results of the different investigations.

5.2.1 Analysis of hydrogen enhanced decohesion at the

interface

In order to study the hydrogen enhanced decohesion (HEDE)

process along the interface, the interface strength is explic-

itly reduced. Thus, the ratio between the interface strength

and yield strength is chosen to be in the range σc/σ0 ∈
[1.0 − 3.0], i.e. ξint = 0. It should be mentioned that, in

the absence of hydrogen, this ratio is typically greater than

1 which allows plastic deformation to spread in the matrix

material prior to the failure of the interface. The separation

at failure and interface stiffness are taken to be δf
n = 0.5 µm

and Kn = 106 MPa/mm, respectively. The reference chem-

ical potentials for the matrix and precipitates are taken to be

µm
0 = µ

p
0 = 0, i.e . Wp = 0.

Figure 11 shows the macroscopic stress–strain responses

in the y-direction for different values of σc/σ0, i.e. the rela-

tion between Σyy and Eyy as indicated in Fig. 10i. The

macroscopic stress–strain response shows that the mate-

rial is initially elastic and yields at a stress level that is

approximately equal to the macroscopic yield strength. After

yielding, the material shows strain hardening behaviour

which is followed by a significant drop in the stress due to

damage development at the interface. Further, reducing the

cohesive strength causes a significant decrease in the ductil-

ity. More specifically, at higher values of σc/σ0, the strain

to failure drops by 50% as the result of reducing the cohe-

sive strength by 17%. Further, the reduction in ductility is

smaller at lower values of σc/σ0, i.e. ≈ 20%. Additionally,

stress softening is observed which is attributed to damage

development along the interface.

To investigate the details of the deformation and dif-

fusion processes, the distribution of lattice occupancy C̄L

normalised by the initial concentration C̄L0 and equivalent

plastic strain ε
pl
e for the case of σc/σ0 = 2.0 at different

instants are plotted in Fig. 12a, b, respectively. In particu-

lar, the results are explored at four points A, B, C and D

in the loading history as illustrated in Fig. 11, represent-
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Fig. 11 The macroscopic stress–strain behaviour in y-direction for dif-

ferent values of the ratio σc/σ0. Points A, B, C and D are associated

with the onset of the plastic deformation, damage initiation, damage

progression and complete failure, respectively

ing: (1) the onset of the plastic deformation (A); (2) damage

initiation (B); (3) beginning of softening (C); and (4) com-

plete failure (D). At point A, prior to any plastic deformation,

hydrogen is concentrated at some of the vertices of the pre-

cipitate, i.e. 1, 5, 6, 7, 9 and 10, where the hydrostatic stress

attains its maximum values. As deformation proceeds, plas-

tic deformation develops at precipitate vertices and radiates

toward the upper and lower surfaces. Further, the maximum

hydrogen concentration remains at the vertices, where the

hydrostatic stress is greatest. The damage at the interface

initiates at the uppermost facet of the precipitate, i.e. facet

6 − 7. This facet makes the largest angle with the load-

ing direction, i.e. y-direction, which results in a maximum

normal traction distribution along this segment. After dam-

age initiation, the traction decreases along this part of the

interface which causes stress relaxation in the matrix and in

the precipitate adjacent to the interface. As a result, hydro-

gen diffuses away from the interface to regions where the

hydrostatic stress is larger. Further, the damage continues

to increase along this segment leading to a complete sepa-

ration. The newly created crack propagates along interface

segments 5 − 6 and 7 − 8. The intensive plastic deformation

at the crack tips stops further growth of the crack. Further,

hydrogen diffuses to the crack tips where now the hydrostatic

stress is greatest. Simultaneously, the traction at the lower-

most facet of the interface, i.e. facet 10 − 1, increases and

approaches the cohesive strength causing damage to initiate.

It should be mentioned that this segment makes the second

largest angle with the loading direction after the uppermost

facet. Eventually, plastic deformation spreads widely in the

element forming several bands wherein the equivalent plas-

tic strain reaches a maximum value of 50%. At this strain

level, plastic localisation is expected to take place between

adjacent precipitates leading to complete failure.

To analyse the interface, the distribution of the damage

variable d along the interface at the instants A, B, C and D

are plotted in Fig. 13. The result shows that at point A, prior

to damage initiation, the damage variable is zero along the

interface. The damage initiates at segment 6 − 7 and propa-

gate to segments 5 − 6 and 7 − 8. Further, damage initiates

along segments 1 − 2 and 10 − 1 at a later stage of defor-

mation. It should be mentioned that the hydrogen trapped in

the interface remains constant during the deformation. After

complete failure of the interface, i.e. point D, a small increase

is observed along segments 5 − 6 and 6 − 7.

The result of this simulation is consistent with the find-

ings reported in Barrera et al. [33], although the current study

provides more details of the way in which the diffusional,

deformation and interfacial failure processes are coupled,

which provides more insight into the sequence of events lead-

ing to failure.

5.2.2 The effect of the swelling in the precipitate andmatrix

To analyse the effect of the differential swelling of the

matrix and precipitate on the failure of this material, the

ratio between the precipitate and matrix reference chemi-

cal potentials, µ
p
0/µ

m
0 , is varied over the range 0.5 − 2.0. In

particular, the reference energy of the matrix is taken to be

µm
0 = −10 kJ/mol and the reference energy of the precip-

itate, µ
p
0, is then selected to give the required ratio. Hence,

the simulations cover the cases where the matrix swells more

than the precipitate and the vice versa. The ratio between the

interface and yield strength is chosen to be σc/σ0 = 2.0 and

the separation at failure and interface stiffness are kept as

δf
n = 0.5 µm and Kn = 106 MPa/mm, respectively.

Figure 14 shows the macroscopic stress–strain responses

in the y-direction for different values of µ
p
0/µ

m
0 . The result

implies that both critical stress (i.e. the stress at which damage

is initiated) and ductility depend significantly on the swelling.

More specifically, at lower values (µ
p
0/µ

m
0 ≤ 1.0), smaller

changes are observed. At larger values (µ
p
0/µ

m
0 > 1.0), the

swelling causes an increase in both the critical stress and

the ductility. To better understand this increase in the criti-

cal stress and ductility, the initial distribution of the normal

traction Tn normalised by the cohesive strength σc along the

interface is plotted in Fig. 15 for the different values of the

ratio µ
p
0/µ

m
0 . It should be mentioned that, in Fig. 15, the

local coordinate ξ is normalized by the total length of the

interface, i.e. L int = 128.3 nm. The initial distribution of the

normal traction is very small at lower values µ
p
0/µ

m
0 . Fur-

ther, the interface is under tension, i.e. Tn/σc > 0. At larger
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(a)

(b)

Fig. 12 The distribution of: a the hydrogen concentration in the lattice

C̄L; and b the equivalent plastic strain ε
pl
e . The different distributions are

at: i the onset of the plastic deformation; ii damageinitiation; iii damage

progression and iv complete failure. These instants are associated with

points A, B, C and D in Fig. 11, respectively

values of µ
p
0/µ

m
0 , the interface is initially under compression

(Tn/σc < 0) such that the magnitude of the traction increases

with the ratio µ
p
0/µ

m
0 . Hence, when the element is loaded,

the traction along the interface increases from the initially

negative values which results in an increase in both the crit-

ical stress and ductility. This behaviour can be explained by

investigating the relative volumetric expansion between the

matrix and precipitate. Thus, at the lower values of µ
p
0/µ

m
0 ,

the hydrogen concentration in the matrix is larger than the

precipitate which leads to a larger volumetric expansion in

the matrix and a positive relative volumetric expansion, see

Fig. 15. On the other hand, at the higher values µ
p
0/µ

m
0 , the

hydrogen concentration in the precipitate is larger than the

matrix which leads to a larger volumetric expansion in the

precipitate and negative relative volumetric expansion, see

Fig. 16. Hence, the interface is subjected to a tensile loading

at lower values of µ
p
0/µ

m
0 due to the positive relative volu-

metric expansion and compressive loading at higher values

due to the negative relative volumetric expansion.

5.2.3 The effect of hydrogen charging on deformation

Another aspect of the problem is to investigate the nature

of the deformation induced by hydrogen charging. The

deformation in the RVE is mainly induced by volumetric

expansion of the matrix and the precipitate. Hence, the ref-
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Fig. 13 The distribution of the damage variable d along the interface at different instants, i.e. points A, B, C and D in Fig. 11

Fig. 14 The macroscopic stress–strain behaviour in y-direction for

different values of the ratio µ
p
0/µ

m
0 . The points indicate the damage

initiation onset

erence chemical potentials of the matrix and the precipitate

µm
0 and µ

p
0, and the initial concentration of hydrogen C̄L0

controls the deformation. Therefore, we consider the refer-

ence chemical potential of the matrix to be µm
0 = 0 and the

precipitate to be µ
p
0 = −20 kJ/mol, i.e. Wp = −20 kJ/mol.

The initial concentration at the lattice in the range C̄L0 ∈
[2.15 − 4.30] mol/m3 which corresponds to an occupancy

θL0 ∈ [2.5 − 7.5] × 10−6. It should be mentioned that, the

mechanical loading is omitted in this analysis. The interface

and other matrix and precipitate material parameters are kept

as in Sect. 5.2.2.

Figure 17 shows the distribution of the equivalent plastic

strain ε
pl
e for different values of the initial lattice concen-

tration C̄L0. The result shows that the plastic deformation

initiates at the precipitate vertices where the stress is a

maximum and at a concentration of C̄L0 = 4.30 mol/m3.

Further, increasing the initial concentration increases the

plastic deformation. Thus, for the given values of µm
0 , µ

p
0,

σ0 and E , there is a hydrogen concentration level at which

plastic deformation may initiate. Moreover, the size of the

plastic zone and the extent of plastic deformation addition-

ally depends on the hardening exponent n.

6 Concluding remarks

In this paper, a finite element formulation for solving coupled

mechanical/diffusion problems is proposed. The purpose is

to investigate hydrogen diffusion in metals and its impact on

their mechanical behaviour (i.e. hydrogen embrittlement). In

particular, the hydrogen enhanced decohesion and hydrogen

enhanced local plasticity mechanisms are incorporated. The

hydrogen atoms are assumed to reside either at NILS or at

trapping sites such as dislocations and/or fixed traps (e.g. pre-

cipitates, interfaces, etc.) that are taken to be in equilibrium

following Oriani’s theory. The HELP mechanism is mod-

elled using a continuum plasticity framework, e.g. isotropic

von Mises model, in terms of a decrease in the flow stress
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Fig. 15 The initial distribution of the normal traction Tn normalised by the cohesive strength σc along the interface for different values of the ratio

µ
p
0/µ

m
0 . The local coordinate ξ is normalised by the total length of the interface L int

Fig. 16 The initial distribution of the total hydrogen concentration C̄T at different values of the ratio µ
p
0/µ

m
0 : i 0.5; ii 1.0; iii 1.5 and iv 2.0

as a result of increase of hydrogen content in the material as

reported by Sofronis and McMeeking [13] and Barrera et al.

[14]. The HEDE mechanism is modelled using a cohesive

zone modelling approach such that an interface is treated as

a discrete trap and its cohesive strength decreases with the

increase of hydrogen concentration at the interface.

The proposed formulation adopts a standard Galerkin

method in the discretisation of both the diffusion mass

conservation and mechanical equilibrium equations. In par-

ticular, a displacement based finite element formulation with

chemical potential as an additional degree of freedom is

employed. Hence, in comparison with the commonly used

concentration based formulation, we have substituted the

concentration by the chemical potential in the discretisa-

tion of the diffusion equation. It follows that the diffusion

equation can be expressed fundamentally in terms of the

gradient in chemical potential, which reduces the conti-

nuity requirements on the shape functions to zero degree

(i.e. C0). Therefore, a linear shape function can be used

to interpolate the chemical potential. In the concentration

based formulation, the continuity requirements is of the first

degree C1, i.e. at least quadratic polynomial. Thus, using the
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Fig. 17 The distribution of the equivalent plastic deformation at different initial hydrogen concentration in the lattice C̄L0: i 2.15 mol/m3; ii

3.23 mol/m3; and iii 4.30 mol/m3

chemical potential offers a lower continuity requirements in

comparison with the concentration based formulation. We

introduced a consistent interface element formulation that

can be achieved due to the continuity of the chemical poten-

tial across the interface - concentration can be discontinuous

at an interface and this can lead to numerical problems in

formulations where concentration is employed as a state

variable. Moreover, the coding of the FE equations is more

straightforward in the proposed model.

In order to investigate the efficiency and accuracy of the

proposed formulation, various example problems are studied.

Initially, we have investigated a 2D fully coupled elasto-

plastic diffusion problem of a deep notched specimen in the

absence of damage. The solutions using both concentration

and chemical potential based formulations are compared and

found to be identical. We have then studied the failure of the

specimen using the chemical potential formulation. We have

explored the effect of deformation and damage initiation and

propagation on the hydrogen of the bulk and the cohesive

zone. The results show that the concentration of hydrogen in

the lattice is controlled by the hydrostatic stress distribution

which takes its maximum value at the notch root in the elas-

tic deformation regime and at a distance from the notch root

in the elastic–plastic deformation regime. After the onset of

damage, the stress relaxes along the interface which results in

diffusion of hydrogen away from the interface and the max-

imum concentration of hydrogen in the lattice takes place at

the tip of the region of extensive damage. The second problem

is a micromechanical investigation of hydrogen enhanced

decohesion (HEDE) in a dissimilar metal weld. More specif-

ically, we consider the failure in the presence of hydrogen of

carbide-matrix interfaces around fine precipitates generated

adjacent to the interface of an 8630 steel/IN625 nickel alloy

dissimilar weld, which has been analysed extensively by Bar-

rera et al [26]. We have investigated the hydrogen induced

decohesion at the interface and have shown that the reduc-

tion in cohesive strength significantly reduces the ductility

and influences the hydrogen distribution. Further, we have

studied the effect of differential swelling of the precipitate

(arising from differences in the solubility of hydrogen in the

matrix and precipitate) on the decohesion process and have

illustrated that this differential may delay the onset of dam-

age and consequently increase the ductility. Finally, we have

shown that hydrogen charging may introduce localised plas-

tic deformation in the matrix in the absence of any applied

mechanical loading, which results in the generation of a resid-

ual state of stress in the vicinity of a particle.
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A Finite element implementations of the
coupled elastic–plastic mechanical,
diffusion and interfacemodels.

The Finite Element implementations of the continuum plas-

ticity, diffusion and interface models in Sect. 3 are discussed

in this Appendix. The purpose is to provide explicit expres-

sions for the residual force vectors and consistent tangents

for the Newton–Raphson solution procedure. Hence, we con-

sider the system of equations that are given by the residual

vectors and the solution procedure in Sects. 3.4 and 3.5,

respectively. The model problem domain is divided into bulk

and interface regions. The bulk material is assumed to exhibit

elastic–plastic behaviour and the interface behaviour is deter-

mined by the cohesive zone model in Sect. 4.2. The hydrogen

transport model for the bulk and interface are described in

Sects. 4.1 and 4.2, respectively.

A.1 The bulkmaterial

The contributions of the bulk material to the global residual

vectors in Eqs. (30) and (34) are defined as

R
µ
I = 1

∆t

∫

Ω

NI

(

C̄
p+1
T − C̄

p
T

)

dV −
∫

ΓJ

NI
ˆ̄J dS,

Ru
i I =

∫

Ω

σi j B j I dV −
∫

Γt

NI t̂i dS,

(A.1)

where node I belongs to Ω and Γ (i.e. I ∈ Ω,Γ ) and the

volume Ω and the boundary Γ define the bulk region. The lat-

tice concentration C̄L is determined as described in Sect. 4.1

and the Cauchy stress σi j is obtained using an elastic–plastic

constitutive model that will be discussed later in this section.

In the solution procedure in Sect. 3.5, the linearisation of

the residuals yields the tangent stiffness matrix in Eqs. (37)

and (38). Hence, the tangent operators for the residuals in

Eqs. (A.1) are obtained as

K
µµ
I J = 1

∆t

∫

Ω

NI Dµµ NJ dV −
∫

ΓJ

NI

∂ ˆ̄J
∂µ

NJ dS,

K
µu

j I J = 1

∆t

∫

Ω

NI Dµu B j J dV −
∫

ΓJ

NI

∂ ˆ̄J
∂u j

NJ dS,

K
uµ
i I J =

∫

Ω

B j I D
uµ
i j NJ dV −

∫

Γt

NI

∂ t̂i

∂µ
dS,

K uu
i j I J =

∫

Ω

Bk I D
uu
ik jl Bl J dV −

∫

Γt

NI

∂ t̂i

∂u j

NJ dS, (A.2)

where nodes I and J belongs to Ω and Γ , and Dµµ, D
µu

j ,

D
uµ
i j , and D

uu
ik jl are the tangent moduli that can be deter-

mined from the variation of the total hydrogen concentration

and the Cauchy stress. Therefore, the derivatives and tangent

moduli in Eqs. (A.2) will be determined in the subsequent

subsections.

A.1.1 The elastic–plastic model

The elastic–plastic constitutive relation is written in terms of

the rate of deformation tensor Di j and Zaremba–Jaumann

stress rate of Cauchy stress
▽

σ i j . The Zaremba–Jaumann

stress rate is used to meet the objectivity requirements, i.e.

material invariance for rigid body rotation, and it is given by

▽

σ i j= σ̇i j + σik Wk j − Wik σk j , (A.3)

where σ̇i j is the material time derivative of the Cauchy

stress, and Di j = sym
(

L i j

)

and Wi j = asym
(

L i j

)

are

the rate of deformation and spin tensors that are equal to

symmetric and antisymmetric parts of the velocity gradi-

ent L i j = Ḟik F−1
k j , respectively, and Fi j = ∂xi/∂ X j is

the deformation gradient. Following Sofronis et al. [37],

the total rate of deformation is taken to be the sum

of the elastic Del
i j , plastic D

pl
i j and swelling Ds

i j parts:

Di j = Del
i j + D

pl
i j + Ds

i j . (A.4)

The elastic strains are assumed to be small and given by

Del
i j = Si jkl

▽

σ kl=
1 + ν

E

▽

σ kl − ν

E

▽

σmm δi j . (A.5)

where Si jkl = C
−1
i jkl is the elastic compliance tensor. The

presence of hydrogen may cause volumetric change that is

given by the swelling rate of deformation

Ds
i j = ε̇s

1 + εs
δi j . (A.6)

and the material time derivative of εs is ε̇s = 1
3

VM
˙̄CT.

It should be mentioned that, for the sake of generality, the

swelling is taken to be associated with hydrogen in the lat-

tice and traps, i.e. the total concentration, which is different

from the definition used in Sect. 4.1. Consequently, the stress

contribution to the chemical potential in Eq. (51) becomes
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µσ = −σh VM ∂C̄T/∂C̄L. Further, the swelling deforma-

tion is assumed to be small. The plastic part of the rate of

deformation tensor is given by the von Mises flow rule as

D
pl
i j = λ̇

∂ f

∂σi j

. (A.7)

where λ is the a positive scalar function and f is the

yield function, i.e. f < 0 implies elastic unloading

and f = 0 represents the yielding, that is given by

f = σe − σy

(

ε
pl
e , C̄T

)

, (A.8)

for the case of von Mises materials, where σe =
√

3
2

si j si j is

von Mises equivalent stress, si j = σi j − 1
3

σkk δi j is the stress

deviator, σy is the flow stress and ε
pl
e =

∫
√

2
3

D
pl
i j D

pl
i j dt

is the equivalent plastic strain, i.e. D
pl
i j = 3

2
ε̇

pl
e

σe
si j . Hence,

the consistency condition of the yield function in Eq. (A.8)

gives

ḟ = ∂ f

∂σi j

σ̇i j + ∂ f

∂ε
pl
e

ε̇
pl
e + ∂ f

∂C̄T

˙̄CT, (A.9)

where the yield function f is a function of ε
pl
e and C̄T. There-

fore, using Eqs. (A.6-A.9), the plastic part of the rate of

deformation tensor becomes

D
pl
i j =

(
∂ f

∂σkl

− ∂ f

∂C̄T

∂C̄T

∂σmm

δkl

)
▽

σ kl

∂ f

∂ε
pl
e

+ ∂ f

∂C̄T

∂C̄T

∂ε
pl
e

∂ f

∂σi j

, (A.10)

and the rate tangent expression for the Zaremba–Jaumann

derivative of Cauchy stress is

C
ep
i jkl = Ci jkl −

Ci jab

(
∂ f

∂σab

+
1
3

VM

1 + 1
3

VM C̄T

∂C̄T

∂ε
pl
e

δab

)(

Cklcd

∂ f

∂σcd

−
1
3

VM K

1 + 1
3

VM C̄T

∂C̄T

∂σee

∂ f

∂σmn

Cmncd δcd δkl

)

∂ f

∂σmn

Cmnop

∂ f

∂σop

− ∂ f

∂ε
pl
e

+
1
3

VM

1 + 1
3

VM C̄T

∂C̄T

∂ε
pl
e

∂ f

∂σqr

Cqrst δst

−
1
3

VM K

1 + 1
3

VM C̄T

∂C̄T

∂σvv

Ci juw δuw δkl , (A.11)

where K is the bulk modulus, ∂ f /∂ε
pl
e = ∂σy/∂ε

pl
e = H

and ∂ f /∂C̄T = ∂σy/∂C̄T can be determined from a hard-

ening law and the associated hydrogen softening function

(see Sect. B.2.1), respectively. The different derivatives in

Eq. (A.11) determined from Eqs. (42-46) and (51) are

∂C̄T

∂ε
pl
e

= ∂C̄D

∂ε
pl
e

= ∂C̄D

∂ N̄D

∂ N̄D

∂ε
pl
e

=
(

KD C̄L

βL N̄L + KD C̄L

)
∂ N̄D

∂ε
pl
e

,

∂C̄T

∂σkk

= ∂C̄T

∂C̄L

∂C̄L

∂σkk

= ∂C̄T

∂C̄L

C̄max
L VM

3 R T
exp

(
µ − µ0 − µσ

R T

)

,

∂C̄T

∂C̄L

= 1 + ∂C̄F

∂C̄L

+ ∂C̄D

∂C̄L

= 1 + βL KF N̄L N̄F
(

βL N̄L + KF C̄L

)2
+ βL KD N̄L N̄D

(

βL N̄L + KD C̄L

)2

(A.12)

The change of Cauchy’s stress with respect to the chemical

potential is determined as

∂σi j

∂µ
= ∂σi j

∂σkk

∂σkk

∂C̄T

∂C̄T

∂µ
= ∂σkk

∂C̄T

∂C̄T

∂µ
δi j , (A.13)

where

∂C̄T

∂µ
= ∂C̄T

∂C̄L

∂C̄L

∂µ
= ∂C̄T

∂C̄L

C̄max
L

R T
exp

(
µ − µ0 − µσ

R T

)

.

(A.14)

It follows that the tangent moduli in Eq. (A.2) can be

determined as
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D
uu
i jkl = C

ep
i jkl − 1

2

(

σik δ jl + σ jk δil + σil δ jk + σ jl δik − σi j δkl

)

,

D
uµ
i j = ∂σi j

∂µ
. (A.15)

A.1.2 The diffusion model

The variation of the chemical potential is expressed as:

˙̄CT = Dµµ µ̇ + D
µu

i j Di j , (A.16)

where the diffusion moduli are defined by

Dµµ = ∂C̄T

∂µ
,

D
µu

i j =

⎡

⎢
⎢
⎢
⎢
⎣

∂C̄T

∂σaa

δkl Cklmn −

∂C̄T

∂ε
pl
e

(

∂ f

∂σcd

Ccdmn +
1
3

VM K

1 + 1
3

VM C̄T

∂C̄T

∂σbb

∂ f

∂σ cd
Ccdeg δeg δmn

)

∂ f

∂σop

Copqr

∂ f

∂σqr

− ∂ f

∂ε
pl
e

+
1
3

VM

1 + 1
3

VM C̄T

∂C̄T

∂ε
pl
e

∂ f

∂σst

Cstvw δvw

⎤

⎥
⎥
⎥
⎥
⎦

1

2

(

δim δ jn + δin δ jm

)

.

(A.17)

A.2 The interface/cohesivemodel

The contributions of the interface material to the global resid-

ual vectors in Eqs. (30) and (34) are

R
µ
I = 1

∆t

∫

Γint

N int
I

(

C̄
p+1
int − C̄

p
int

)

dS −
∫

Γint

N int
I J̄int dS,

Ru
i I =

∫

Γint

Bint
I T int

i dS, (A.18)

where node I belongs to Γint (i.e. I ∈ Γint), the surface Γint

defines the interface region and T int
i = t int

i . The total con-

centration C̄int and the traction T int
i are obtained using the

cohesive model in Sect. 4.2 and the details of the processes

will be discussed later in the subsequent subsections. Simi-

larly, the linearisation of the residuals in Eqs. (A.18) yields

K
µµ
I J = 1

∆t

∫

Γint

N int
I D̃µµ N int

J dS −
∫

Γint

N int
I

∂ J̄int

∂µ
N int

J dS,

K
µu

j I J = 1

∆t

∫

Γint

N int
I D̃

µu

j Bint
J dS −

∫

Γint

N int
I

∂ J̄int

∂u j

N int
J dS,

K
uµ
i I J =

∫

Γint

Bint
I D̃

uµ
i N int

J dS,

K uu
i j I J =

∫

Γint

Bint
I D̃uu

i j Bint
J dS, (A.19)

where D̃µµ, D̃
µu

j , D̃
uµ
i , and D̃uu

i j are the tangent moduli of

the interface that can be determined from the variation of the

total hydrogen concentration and the traction.

A.2.1 The interface concentration and traction

The chemical potential and the tractions at the interface are

defined in Eqs. (60), (61) and (65). Using these equations, a

set of equations in the incremental forms of the concentration

and tractions, at a given values of ∆δn , ∆δt and µ, can be

written as

Fµ = µint − µ0 − Wint − µT − R T ln
C̄

p+1
int

C̄max
int − C̄

p+1
int

,

Ft = ∆T int
t − (1 − d) Kt ∆δt ,

Fn = ∆T int
n − (1 − d) Kn ∆δm

n ,

(A.20)

where C̄
p+1
int is the concentration at the end of the increment,

i.e. C̄
p+1
int = C̄

p
int + ∆C̄int. The increment of the normal

separation ∆δn is decomposed into mechanical and jacking

components as

∆δn = ∆δs
n + ∆δm

n , (A.21)

where the increment of the jacking separation is ∆δs
n . In order

to solve these equations, we encapsulate the equations in a

vector F =
[

Fµ Ft Fn

]T
and define the unknown vector

123



216 Computational Mechanics (2020) 66:189–220

∆T =
[

∆C̄int ∆T int
t ∆T int

n

]T
. Using Newton–Raphson

algorithm, the following linearised form of these equations

is iteratively solved for the traction increment δ∆T until a

convergence condition is achieved

F (∆T + δ∆T) = F (∆T) + ∂F

∂∆T
︸ ︷︷ ︸

J

δ∆T + O (δ∆T · δ∆T)

(A.22)

where 0 is a zeros vector (3×1) and the Jacobian J is defined

as

J =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂ Fµ

∂∆C̄int

∂ Fµ

∂∆T int
t

∂ Fµ

∂∆T int
n

∂ Ft

∂∆C̄int

∂ Ft

∂∆T int
t

∂ Ft

∂∆T int
n

∂ Fn

∂∆C̄int

∂ Fn

∂∆T int
t

∂ Fn

∂∆T int
n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(A.23)

where the derivatives are determined from Eq. (A.20) as

∂ Fµ

∂∆C̄int

= − C̄max
int

C̄
p+1
int

R T

C̄max
int − C̄

p+1
int

,

∂ Fµ

∂∆T int
t

= 0,
∂ Fµ

∂∆T int
n

= V int
M ,

∂ Ft

∂∆C̄int

= Kt

∂d

∂∆C̄int

∆δt ,
∂ Ft

∂∆T int
t

= 1,

∂ Ft

∂∆T int
n

= 0,

∂ Fn

∂∆C̄int

= Kn

∂d

∂∆C̄int

∆δm
n + Kn (1 − d) V int

M ,
∂ Fn

∂∆T int
t

= 0,

∂ Fn

∂∆T int
n

= 1.

(A.24)

Using the definitions of the cohesive model in Eqs. (55)

and (57), the different derivatives in Eq. (A.24) are

∂d

∂∆C̄int

= −V int
M

∂d

∂∆δm
n

,
∂∆δs

n

∂∆C̄int

= V int
M ,

∂∆δs
n

∂∆δm
n

= −1. (A.25)

A.2.2 The cohesive zone Jacobian

The variation of the hydrogen concentration at the interface

is defined by

˙̄Cint = ∂C̄int

∂µint
µ̇ + ∂C̄int

∂δi

δ̇i , (A.26)

where the diffusion moduli in Eqs. (A.2) are defined by

D̃µµ = ∂∆C̄int

∂∆µint
and D̃

µu

i = ∂∆C̄int

∂∆δi

. (A.27)

The variation of the traction at the interface is defined by

Ṫ int
i =

∂T int
i

∂µint
µ̇ +

∂T int
i

∂δ j

δ̇ j , (A.28)

where the deformation moduli in Eqs. (A.2) are defined by

D̃uµ =
∂∆T int

i

∂∆µint
and D̃uu

i j =
∂∆T int

i

∂∆δ j

. (A.29)

The elements of the tangent moduli can be determined from

the variations of the incremental forms in Eqs. (A.20). The

variation of Fi is given by

δFi = dFi

d∆µint
δ∆µint + dFi

d∆δt

δ∆δt + dFi

d∆δn

δ∆δn, (A.30)

where dFi/d∆δ j denotes the total derivative of the func-

tion Fi with respect to ∆δ j in the unknown vector ∆δ =
[∆µint ∆δt ∆δn]T, the variations of the separation incre-

ments δ∆µint, δ∆δt and δ∆δn can be chosen arbitrarily

yielding dFi/d∆µint = dFi/d∆δt = dFi/d∆δn = 0.

Hence, the variations of Eqs. (A.20) give 9 set of equations.

Therefore, the variations of Fi in Eqs. (A.30) yield

dFi

d∆µint
= ∂ Fi

∂∆µint
+ ∂ Fi

∂∆C̄int

∂∆C̄int

∂∆µint
+ ∂ Fi

∂∆T int
t

∂∆T int
t

∂∆µint

+ ∂ Fi

∂∆T int
n

∂∆T int
n

∂∆µint
= 0,

dFi

d∆δt

= ∂ Fi

∂∆δt

+ ∂ Fi

∂∆C̄int

∂∆C̄int

∂∆δt

+ ∂ Fi

∂∆T int
t

∂∆T int
t

∂∆δt

+ ∂ Fi

∂∆T int
n

∂∆T int
n

∂∆δt

= 0,

dFi

d∆δn

= ∂ Fi

∂∆δn

+ ∂ Fi

∂∆C̄int

∂∆C̄int

∂∆δn

+ ∂ Fi

∂∆T int
t

∂∆T int
t

∂∆δn

+ ∂ Fi

∂∆T int
n

∂∆T int
n

∂∆δn

= 0. (A.31)

Thus, the unknown derivatives in Eqs. (A.31) can be written

in vector form as

X =
[
∂∆C̄int

∂∆µint

∂∆T int
t

∂∆µint

∂∆T int
n

∂∆µint

∂∆C̄int

∂∆δt

∂∆T int
t

∂∆δt

∂∆T int
n

∂∆δt

∂∆C̄int

∂∆δn

∂∆T int
t

∂∆δn

∂∆T int
n

∂∆δn

]T

(A.32)
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Hence, the unknown derivatives can be determined by

solving the following set of equations

Λ X = b, (A.33)

where

Λ =

⎡

⎢
⎢
⎣

A O O

O A O

O O A

⎤

⎥
⎥
⎦

, A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂ Fµ

∂∆C̄int

∂ Fµ

∂∆T int
t

∂ Fµ

∂∆T int
n

∂ Ft

∂∆C̄int

∂ Ft

∂∆T int
t

∂ Ft

∂∆T int
n

∂ Fn

∂∆C̄int

∂ Fn

∂∆T int
t

∂ Fn

∂∆T int
n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

b =
[

∂ Fµ

∂∆µint

∂ Ft

∂∆µint

∂ Fn

∂∆µint

∂ Fµ

∂∆δt

∂ Ft

∂∆δt

∂ Fn

∂∆δt

∂ Fµ

∂∆δn

∂ Ft

∂∆δn

∂ Fn

∂∆δn

]T

, (A.34)

O is a zeros matrix (3 × 3), the derivatives in A are given in

Eqs. (A.24) and b are determined from Eqs. (A.20) as

∂ Fµ

∂∆µint
= 1,

∂ Fµ

∂∆δt

= 0,
∂ Fµ

∂∆δn

= 0,

∂ Ft

∂∆µint
= 0,

∂ Ft

∂∆δt

= − (1 − d) Kt ,

∂ Ft

∂∆δn

= ∂d

∂∆δm
n

Kt ∆δt ,

∂ Fn

∂∆µint
= 0,

∂ Fn

∂∆δt

= 0,

∂ Fn

∂∆δn

= − (1 − d) Kn + ∂d

∂∆δm
n

Kn ∆δn .

(A.35)

B The Finite Element implementation of
coupledmechanical/diffusion framework
in Abaqus

In this appendix, we present the implementations of the

hydrogen transport, elastic–plastic and interface/cohesive

models in Sect. 4 and “Appendix A”.

B.1 The hydrogen diffusionModel

The hydrogen transport equations are implemented using

Finite Element Method using Abaqus [15]. We use the sim-

ilarities with the heat equation as discussed in Oh and Kim

[21] and Barrera et al. [14]. In these studies, taking advan-

tage of the similar forms of heat and diffusion equations, the

temperature T in the heat equation is replaced by the total

concentration C̄T which yields the diffusion equation. This

formulation requires the evaluation of the gradient of the

stress tensor, i.e. substitution of Eqs. (50) or (51) into Eq. (5)

yields a term that contains ∇σh. Hence, the Finite Element

interpolation functions and its first derivative should exist and

be continuous, i.e. C1. In other words, at least quadratic shape

functions are needed in order for the gradient of the stress

tensor to exist. Moreover, the determination of this gradient

is not straight forward. In this study, we propose an alterna-

tive formulation in which we consider the chemical potential

to be the degree of freedom in the diffusion equation. We

summarize the analogy of variables between the heat trans-

fer analysis and hydrogen diffusion analysis within Abaqus

in Table B.1. The user subroutine UMATHT is used to

implement the hydrogen diffusion model. In coupled thermo-

mechanics analysis, the deformation related variables, i.e. σh

and ε
pl
e , are passed to UMATHT using other user subroutines.

The details of passing these variables are explained later in

subsequent subsections. In UMATHT, the terms result from

the weak form of the heat equation and its variation should

Table B.1 Analogy of variables

between heat transfer and

diffusion analysis in Abaqus

Heat equation Mass diffusion equation

Equation: ρ cp

∂T

∂t
+ ∇Jq + rq = 0 Equation:

∂C̄T

∂t
+ ∇J̄m + r̄m = 0

Derivative of thermal energy per unit Mass Derivative of total H concentration

U̇q = cp

∂T

∂t

∂C̄T

∂t
= ∂

∂t

(

C̄L + C̄Tr

)

Degree of freedom: temperature T Degree of freedom: chemical potential µ

Heat flux: Jq Hydrogen flux: J̄m = − DL C̄L

R T
∇µ

Heat source†: rq Hydrogen source†: rm

Density: ρ Density: 1.0

† No heat or hydrogen sources are considered, i.e. rq = 0 and r̄m = 0
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Table B.2 Quantities that need to defined in the UMATHT in Abaqus

Heat equation Mass diffusion equation

∂Uq

∂T
,

∂Uq

∂∇T
,
∂Jq

∂T
,

∂Jq

∂∇T

∂C̄T

∂µ
,

∂C̄T

∂∇µ
,
∂Jm

∂µ
,

∂Jm

∂∇µ

be provided. In particular, the internal energy Uq, flux Jq and

their derivatives with respect to the temperature and temper-

ature gradient, i.e. ∂Uq/∂T , ∂Uq/∂∇T , ∂Jq/∂T , ∂Jq/∂∇T ,

have to be defined. Table B.2 shows the analogy between

these quantities for the heat and diffusion problems. The

total hydrogen concentration can be expressed in terms of the

chemical potential µ and the trap density N̄D

(

ε
pl
e

)

. Further,

the variation of the hydrogen flux with respect to the chemical

potential µ and its gradient ∇µ is required. Thus, the vari-

ation of the hydrogen concentration is given in Eqs. (A.16)

and (A.17), and the variation of the hydrogen flux is

∂ J̄ m
i

∂µ
= − DL

R T

∂C̄L

∂µ

∂µ

∂ Xi
and

∂ J̄ m
i

∂
(

∂µ/∂ X j

) = − DL C̄L

R T
δi j ,

(B.1)

It should be noted that the hydrostatic stress σh and effective

plastic strain ε
pl
e are passed into the UMATHT using other

user subroutines. In the next section, the details of this pro-

cedure is presented

B.2 The elastic–plastic Model

The elastic–plastic model in “Appendix A” can be imple-

mented in Abaqus code using two different user subroutines

that are - UHARD and UMAT. In UHARD, the stress integra-

tion and the consistent tangent modulus are determined by

Abaqus. Derivatives of the yield stress should be provided.

In UMAT, the stress integration and the consistent tangent

modulus should be provided. It should be mentioned that

UHARD is limited to the case of no swelling.

B.2.1 Implementation of the model as an Abaqus UHARD

subroutine

In UHARD, the derivatives of the hardening function that

are required to evaluate the stress and its variation should be

provided. Thus, the variation of the flow stress in Eq. (A.8)

can be written as follows

σ̇y = ∂σy

∂ε
pl
e

ε̇
pl
e + ∂σy

∂µ
µ̇. (B.2)

Consider the power law hardening function in Sect. 5 with

the form

σy = σH
0

(

1 + ε
pl
e

ε0

) 1
n

, (B.3)

where the initial yield σH
0 is taken to be a function of the

hydrogen concentraion by σH
0 = Ψ

(

C̄L

)

σ0 and Ψ is a

monotonically decreasing function of hydrogen concentra-

tion in the lattice. Therefore, the derivatives for the power

law are

∂σy

∂ε
pl
e

= σH
0

n ε0

(

1 + ε
pl
e

ε0

) 1−n
n

,

∂σy

∂µ
= ∂σH

0

∂µ

(

1 + ε
pl
e

ε0

)n

,

∂σH
0

∂µ
= σ0 Ψ ′ ∂C̄L

∂µ
.

(B.4)

The hydrostatic stress σh and effective plastic strain ε
pl
e are

passed to UMATHT as solution dependent variables at the

start of the increment. We use USDFLD subroutine, which

allows different field variables to be defined at a material

point as a function of time, to obtain the hydrostatic stress and

effective plastic strain, and store solution dependent variables

(Barrera et al. [14]). More specifically, in USDFLD, the stress

field and effective plastic strain are determined at a material

point at the start of the increment using utility subroutine

GETVRM. The hydrostatic stress is then evaluated using the

normal stress components, i.e. σh = σkk/3, and together

with effective plastic strain are stored into solution dependent

variables.

B.2.2 Implementation of the model as an Abaqus UMAT

subroutine

The implementation of the elastic–plastic model using

UMAT subroutine requires the determination of stress and

the consistent tangent modulus at the end of increment. In

particular, the rate tangent required by UMAT takes the form

C
UMAT
i jkl = C

pl
i jkl + σi j δkl , (B.5)

which is the rate tangent for the Jaumann derivative of Kirch-

hoff stress that is scaled by the Jacobian of the deformation.

Hence, the stress and the mechanical and chemical tangent

moduli C
UMAT
i jkl and D

µu

i , respectively, should be provided in

the UMAT subroutine.

B.3 The cohesive/interface zoneModel

The interface model in Sect. 4.2 and “Appendix A”, is imple-

mented into the Finite Element method using a cohesive
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Fig. B.1 The two-dimensional linear cohesive element i the physical domain and the definition of the local and global coordinates and ii the parent

domain

element approach and UEL subroutine. The surface-like

cohesive formulation is adopted in this work (e.g. see [41–

44]). In this formulation, a cohesive element consists of two

surface elements which coincide in the reference config-

uration. A 4-node two-dimensional linear element is used

in this study following the formulation by Elmukashfi and

Cocks [45]. The element upper and lower surface elements

are denoted S+ and S−, respectively, see Fig. B.1. The con-

stitutive behaviour of the cohesive element is defined in the

middle surface, S̄. The middle surface is defined by the

two points 1 and 2 which are the mid-points between nodes

1−−1+ and 2−−2+, respectively. Hence, the middle surface

is then defined by the interpolation

x̄ int
i =

2
∑

I=1

N int
I x̄ int

i I , (B.6)

where x̄ int
i I is the current coordinates vector of the middle

surface which is related to the current nodal coordinates of the

upper and lower surface elements x+
i I and x−

i I , respectively,

by

x̄ int
i I = 1

2

(

x+
i I + x−

i I

)

, (B.7)

The standard shape functions, N int
I , are defined in the local

coordinates, ξ ∈ [−1, 1], as

N int
1 = 1

2
(1 − ξ) and N int

2 = 1

2
(1 + ξ) . (B.8)

Similarly, the global displacement, ūint
i , and chemical poten-

tial, µ̄int, chemical potential jumps across the cohesive

element, are defined as

ūint
i =

2
∑

I=1

N int
I ūint

i I and µ̄int =
2

∑

I=1

N int
I µ̄int

I , (B.9)

where ūint
i I and µ̄int

I are the displacement jumps and chemical

potential of the middle surface which are respectively related

to the nodal displacement and chemical potential by

ūint
i I = MI ui I = u+

i I − u−
i I , and

µ̄int
I = HI µI = 1

2

(

µ+
I + µ−

I

)

,
(B.10)

where the multipliers MI and HI are introduced in Sect. 3.4.

It should be mentioned that HI is chosen such that the chem-

ical potential is continuous across the interface, i.e. Eq. (9) ,

and uint
i = ∆uint

i in Eq. (14).

The internal nodal forces and the consistent tangent stiff-

ness matrices across the cohesive surface are determined

from the tractions and chemical potential are detailed in the

previous sections. In particular, the finite element formula-

tion is detailed in Sect. 3, the interface model is given in

Sect. 4.2 and the determination of the nodal forces and the

stiffness matrix are illustrated in “Appendix” A.
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