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Abstract The foraging of an insect society is a complex
process involving large numbers of individuals collecting
food from many different sources. Differential equation
models have shown how quite simple communication
mechanisms can produce complex and functional group-
level foraging patterns. In this paper we review previous
differential equation models for pheromone trails, honey
bee dances and other methods of communication used
during foraging. We develop a general framework for
modelling social insect foraging systems that incorporates
each of the previous models. This framework identifies
the different behaviours that insects undertake while for-
aging, along with generalised rate functions that deter-
mine how the insects switch between behaviours. We de-
scribe how to tailor our framework to specific insect soci-
eties, by incorporating the details of specific behavioural
mechanisms into appropriate expressions for rates of dis-
covery of, recruitment to, and retirement from food
sources. Our framework thus provides an experimental
tool for improved understanding of the foraging behav-
iour of particular species, as well as a system for mean-
ingful comparisons of foraging behaviour across species.
We end this article by linking our framework to inclusive
fitness theory. We demonstrate how understanding of the
proximate mechanisms involved in social insect foraging
ultimately furthers understanding, not only of how insect
societies function, but also of how these mechanisms are
used to optimise colony fitness and survival.
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Introduction

Many of the impressive examples of collective foraging
seen in insect societies are self-organised, in that com-
plex global patterns emerge from purely localised cues
and signals among colony members (Bonabeau et al.
1997; Camazine et al. 2001; Seeley 1995). For example,
although individual honey bee foragers follow only a
small number of the waggle dances advertising flower
patches, the colony can nonetheless focus its foraging ef-
fort on the most profitable patches (Seeley 1995). Simi-
larly, certain ants deploy their foragers preferentially on
the shorter of two paths, despite few if any individual in-
sects directly comparing the paths (Beckers et al. 1992;
Goss et al. 1989). How these adaptive colony-level pat-
terns derive from local interactions between individuals
is generally far from obvious.

Differential equations provide a promising tool for
analysing the mechanisms underlying colony-level pat-
terns, and they have frequently been applied to foraging
by insect societies (Bartholdi et al. 1993; Beckers et al.
1990, 1993; Beekman et al. 2001; Bonabeau et al. 1997,
Deneubourg et al. 1990; Goss and Deneubourg 1989;
Goss et al. 1989; Nicolis and Deneubourg 1999; Seeley
et al. 1991). The power of these models lies in their sim-
ple mathematical formalism for describing how popula-
tions change through time. The number of ants or bees
foraging at a particular food source can be represented as
a single variable that changes its value as the insects are
recruited to and abandon the source. These recruitment
and abandonment rates can be written as functions of the
number of insects foraging at a source, waiting at the
nest, or scouting for new sources. Different recruitment
mechanisms — dances, pheromone trails, etc. — can be
represented by appropriate rate functions to model the
foraging system of a particular species.

Once specified, differential equation models can gen-
erate testable predictions about foraging systems. For ex-
ample, a model predicted, and experiments confirmed,
that honey bee colonies can switch their foraging effort
to a good food source that is presented after foraging is
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already well underway at another, inferior source
(Camazine and Sneyd 1991; Seeley et al. 1991). When a
similar experiment was performed on the ant Lasius ni-
ger, however, colonies remained trapped at the poor
feeder (Beckers et al. 1990). A differential equation
model was able to explain this inflexibility in terms of
differences in the recruitment mechanisms used by the
two species (Beckers et al. 1990). Because this result de-
pended upon the different recruitment functions em-
ployed by ants and bees, purely verbal reasoning could
not have yielded such non-intuitive experimental predic-
tions.

In this paper we show how to derive differential equa-
tion models for the various types of foraging systems
employed by social insects. We discuss critically how
these derivations have been made previously and pro-
pose our own rate functions for recruitment mechanisms
ranging from waggle dances to trail pheromones to tan-
dem running to group recruitment. We place all of these
mechanisms into a general modelling framework. This
framework does not encompass every possible foraging
system, although it does incorporate many of those cur-
rently known. Instead, we intend the framework as a
guide to those researchers interested in modelling and
understanding particular foraging systems. By providing
a common framework, we allow for comparisons among
many foraging systems, both those currently well under-
stood, such as honey bees and Lasius niger, and those
yet to be studied in detail.

While we concentrate here on the proximate under-
standing of social insect foraging, the use of our frame-
work in comparing foraging systems will ultimately fa-
cilitate understanding of the function or survival value of
group-level foraging strategies. Indeed, we conclude this
paper with an example of how better understanding of
the mechanisms underlying pheromone trail foraging by
ants actually provides insight into the problem of optimi-
sing sexual reproduction. This example illustrates how
mathematical models of proximate and ultimate causa-
tion complement each other and can be used together to
further understanding of social foraging.

A state-based framework
Behavioural states

In our framework we define five different behavioural
states. Colonies have access to n food sources (e.g.
patches of flowers or sugar feeders). Each state has an
associated variable, indexed by source where appropri-
ate, representing the number of individuals in that state.
The states (and corresponding variables) are:

1. Waiting (W) Waiting at the nest and available to start
foraging. Examples include honey bees waiting on the
dance floor to follow recruitment dances, or ants wait-
ing near the nest entrance to be led to a food source.

2. Searching (S) Searching for food sources.

3. Exploiting (E;) Exploiting food source i. Workers in
this state do not directly recruit nestmates, although
they may leave signals, such as pheromone trails, that
increase the likelihood of other foragers finding the
source.

4. Recruiting (R;) Attempting to recruit nestmates to
food source i. Recruitment in this sense involves ac-
tively leading one or more workers, or directly com-
municating to nestmates the location of a food source,
rather than leaving chemical signals in the environ-
ment.

5. Following (F;) Attempting to follow recruiters to food
source i. This encompasses not only literal following
of recruiters, but also independent search for a source
advertised by a dance or other signal.

Foraging models may include other states, such as rest-
ing at the nest or transferring food from foragers to a
storage area. We do not model these behaviours, but it
should become clear how they could be incorporated.

Flow between behavioural states

We next describe the rates at which individuals change
between states, as shown in Fig. 1. A waiting worker (W)

start searching (a)

)

Waiting
w)

start
following
(h)

Exploiting
(E)

Following
(F)

arrive (s)

stop start
recruiting recruiting
(@) (P)
Recruiting
(R)

Fig. 1 Flow diagram for behavioural state variables. Boxes repres-
ent behavioural states, while lines connecting states indicate rate of
flow of workers between states. Arrows indicate direction in which
individuals change states. For example, « is the rate at which ants
waiting at the nest become activated to search, j; is the rate at
which individuals become exploiters through indirect recruitment
(e.g. following a pheromone trail), and 4; is the rate at which ants
are recruited directly (e.g. through dances or tandem running)



can become an exploiting forager at source i (E;) through
three different routes. Firstly, she might be activated to
search (through function a), and then discover the food
source (through d;). Secondly, she might be led toward
the food source through direct contact or communication
(h;) with another worker, arriving (s;) only if the commu-
nication is successful. Finally, she might reach a food
source by following an indirect signal, such as a phero-
mone trail (through j;).

The function j; represents indirect recruitment,
where successful foragers influence their environment
in a manner that increases the chance of nestmates find-
ing the food. The classic example is leaving a phero-
mone trail from the nest to a food source, (e.g.
Holldobler and Wilson 1978; Rickli and Leuthold 1986;
Wilson 1962). Indirect recruitment also includes depos-
iting or releasing volatile pheromones near the food
source to attract searching workers, as in ants
(Holldobler et al. 1978), honey bees (Free and Williams
1970a, b) and some stingless bees (Kerr 1994). The
function f; represents direct recruitment, where success-
ful foragers either physically lead nestmates to the food
source or directly communicate, in the nest, the loca-
tion of the source. Examples include tandem running in
ants (Holldobler et al. 1974; Moglich et al. 1974), and
the waggle dance of the honey bee (Frisch 1967).
Group recruitment in ants is also best described this
way, even though it involves the laying of a pheromone
trail. This is because the trail alone is insufficient to re-
cruit nestmates, who will leave the nest only if led by
the recruiting ant. Direct recruitment also includes less
complex forms of communication, as when certain
stingless bees convey the odour of a food source to
their nestmates, who can then use this information to
find the source (Kerr 1969).

In terms of flow between states, the difference be-
tween direct and indirect recruitment is subtle but impor-
tant: workers recruited indirectly by a pheromone trail
for the first time are largely indistinguishable from those
following the same trail for a second or subsequent time.
Workers recruited directly, in contrast, have need of the
recruiter’s information only when they are first being led
to or searching for the source. Thus, models of direct re-
cruitment require a distinct state (F;) to represent this ini-
tial phase of following a leader or signal.

The population of workers in the nest, W, increases as
searchers are deactivated (b), exploiters retire from for-
aging (g;), and followers get lost and return to the nest
(v;). Conversely, the population decreases as nest work-
ers are activated to search (a), as they are led by indirect
recruitment signals to become exploiters (j;), and as they
begin to follow direct recruitment to various food sourc-
es (h;). Combined, these give the following differential
equation:

dy = stop searching + retire 4 get lost

—start searchmg join explmters — start following
*b+§lgz+2vﬁa—2]z Zh

i=1 i=1

D
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where the summations indicate the gain and loss from all
n sites. The searching population increases as nest work-
ers are activated (a) and as ants get lost while following
direct recruitment to a site (¢;) or while exploiting a site
(c;). The population decreases as searchers deactivate (b)
and as they discover sites (d;). Thus

ds

T = start searchmg + get lost — stop searching — discover

—a—l—Zu—l—Zc, b— Zd

i=1 i=1 i=

@)

The population of exploiting workers increases as work-
ers arrive through direct recruitment (s;), follow indirect
signals from the nest (j;) and discover the site (d,). It de-
creases as workers retire (g;) and get lost (c;). Exploiting
workers may spend a proportion of their time engaged in
direct recruitment. This proportion is determined by the
rates at which they begin direct recruitment (p;) and stop
recruiting to exploit again (g;). The equations for exploit-
ing and recruiting workers are thus

dE;
. =arrive + join exploiters + discover + stop recruiting

—retire — get lost — start recruiting (3)
=si+jitdi+qi—gi—ci—p; forallie{l, ..., n}
drR; A ..
S = startrecruiting — stop recruiting )

= pi—q; forall ie{l,...,n}

The population of workers following a recruitment sig-
nal to a site increases with recruitment (/;) but decreases
as workers arrive at the food source (s;) or get lost, either
to begin searching (u;) or to return to the nest (v,):

% = start following — get lost — arrive

5
= hi—vi— forallie {1, ..., n} )

Ui — S8

Equations 1, 2, 3, 4, 5 express a very general model of
social insect foraging. By determining the form of each
of the functions — a, b, h;, etc. — we can express models
for particular species. In doing so, we will considerably
simplify the equations, but by keeping each model in the
context of the general framework we can better under-
stand the functional similarities and differences among
the mechanisms.

Activation and deactivation

We begin by considering the rate at which workers start
searching for food. Each worker may start independently
or may be influenced by her nestmates.

Self-activation

Self-activation (and deactivation) occurs when workers
start (and stop) searching independently of the behaviour
of other colony members. In this case, the rate of activa-
tion is a linear function of the number of workers wait-
ing in the nest W
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a(W) =W (6)

where 1/) is the average time an individual worker waits
in the nest before searching. Similarly, the rate of deacti-
vation is a linear function of the number of searching
workers S

b(S) =78 (7)

where 1/y is the average time a worker spends searching
before returning to the nest.

Arousal

In many species, including some wasps (Jeanne 1980),
and many stingless bees (Kerr 1969), successful foragers
perform a motor display that arouses nestmates but does
not direct them to food sources. In this case the search
rate depends on the number of recruiting foragers. For
n=2 food sources, we have:

a(Ri, Ry, W) = (iR + oRo) W (3)

where u; determines the rate of recruitment, and the R;s
are the number of workers performing the calling dis-
play. The amount of arousal per individual (i.e. how ef-
fectively she arouses other workers) may depend on the
strength of the food source — i.e. if food source 1 is bet-
ter than food source 2 then u,>u,.

Independent discovery

When searchers work independently of each other, with-
out any kind of recruitment, as in desert ants of the ge-
nus Cataglyphis (Wehner et al. 1983), then the rate of
discovery depends linearly upon the number of search-
ers. In general, if the mean time until an individual finds
source i is 1/a.; then the rate of discovery for the popula-
tion as a whole is

di(S) = oS )

Since nearly every species of social insect engages in
some form of independent search or scouting, this is an
important term in foraging models. Independent discov-
ery is of most interest, however, when it occurs in con-
junction with recruitment.

How much recruitment effort does a forager make?

In Fig. 1 direct recruitment to site i is represented by the
h; function, which will usually depend on the number of
recruiters R;. The amount of time workers spend recruit-
ing depends on the functions p and ¢, the rate at which
workers switch between direct recruitment and exploita-
tion. For example, a honey bee’s foraging trip consists of
a journey to the food source, a period of unloading, pos-
sibly rest, and a bout of dancing. The dancing part of this
trip is considered the time performing direct recruitment.
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Fig. 2 Plots of tandem recruitment (Eq. 12), group recruitment
with unlimited group size (Eq. 13) and group recruitment with
limited group size (Eq. 14). The parameter and variable values for
these plots are R;=3, p;=0.1, k=3 and G=4

If a bee dances for a proportion p,/(p+9,) of each trip to
site i, then

pi(E;) = piE; (10)
gi (R;) = d;R; (1)

models the rate that the bees switch between direct re-
cruitment and exploitation. This rate may depend on
food source quality, with foragers at better sites spending
more time recruiting. Species with no direct recruitment
(e.g. those using only pheromone trails or independent
scouting) have p=g,=0.

Direct recruitment
Recruitment via leading

In many ants (Holldobler and Wilson 1990) and stingless
bees (Kerr 1969), successful foragers directly lead one to
several nestmates from the nest to the food source. The
simplest form for A; assumes that workers in the nest are
led to a site in proportion to the number of recruiters:

Ri, W>0
hi(Rh W){‘u’Ol W =0

where y; is the rate of recruitment by each recruiter to
site . This functional form — plotted in Fig. 2 — models
the tandem running behaviour of many ants, in which a
single worker at a time is led to the food source, (e.g.
Agbogba 1984 ; Holldobler et al. 1974 ; Moglich et al.
1974). Provided there is a worker waiting at the nest,
then a returning forager is able to lead a tandem run to
the food source. Equation 12 thus assumes that the rate
at which workers follow tandem runs is independent of
the number of workers available to follow (provided

12)



W>0). This assumption is based on observations of ‘tan-
dem calling’ where the leader of a tandem run first at-
tracts available nestmates by releasing a pheromone sig-
nal within the nest (Moglich 1979; Moglich et al. 1974).
Such attraction ensures that, until the supply of foragers
in the nest is depleted, it is the number of leaders that
limits the rate at which they are followed.

The assumption that recruitment rate is mostly inde-
pendent of W does not necessarily hold for group recruit-
ment, where recruiters lead more than one worker from
the nest (e.g. Holldobler 1971). The size of the group of
followers is likely to depend on the number of workers
in the nest. In this case, Beckers et al. (1990) suggest
that the functional form of 4; should be

hi (Ri, W) = wiRW (13)

where y;W is now the rate of recruitment by each recruit-
ing worker. While this form of A; does ensure that group
size is correlated with the number of workers in the nest,
it does not take into account practical limits on group
size (see Fig. 2). An alternative model that includes such
limits — and also has the mathematical advantage of be-
ing a continuous function — is

hi (Ri, W) = wiR; G (14)

K+W
where G is the mean recruited group size when the num-
ber of workers in the nest is large and K is the level of W
which gives a group size of % G (see Fig. 2). In general,
the functional form of /; should be determined experi-
mentally. In particular, the relationship between recruited
group size and the number of available workers in the
nest should be established empirically, and an appropri-
ate h; chosen to fit the data.

Competition among food sources

Equations 12, 13, 14 all assume that the proportion of
workers going to a particular site is not directly affected
by recruitment to other sites — i.e. h; is a function of R,
and W but not of R; for any site j#i. As the number of
sites is increased, so too is the rate at which workers are
recruited from the nest. In many cases, however, recruit-
ers for different sites compete for a limited number of
potential followers. For example, most unemployed hon-
ey bee foragers wait on the dance floor to follow dances
of returning foragers, and the rate of recruitment to a
particular site depends both on the number of waiting
bees (W) and the proportion of bees dancing for each of
the various sites (R,) (Seeley 1995). These elements are
incorporated in the following extension of a model of
bee foraging due to Camazine and Sneyd (1991) for two
available forage sites (n=2):

Ry

hi (R 5 Rjz, W)= }\,7”/ 15
1( ! ) Ial 1?2 1<0 ( )
b ’ R+ Ry + Ky
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Fig. 3 Plots of rate of dance recruitment determined by Egs. 15,
16, 17 with W=20, A=0.1, R,=10 and K,=20

Ky

a(Ry, Ry, W)=A——2 W
Ri+R>+ Ky

(17
where A>0 is — as in Eq. 6 — the overall rate at which
bees leave the nest, and is proportional to the number of
bees in the nest (i.e. a+h,+h,=AW). The constant K|, de-
termines how many bees search instead of following
dances.

Equations 15, 16, 17 reflect the observation that bees
on the dance floor randomly sample a single dance from
those performed, then attempt to follow that dance to the
food source (Seeley and Towne 1992). When there are
few recruiting bees, unemployed bees are more likely to
scout for food without following dances (Seeley 1995).
Fig. 3 shows that, when R, and R, are small in compari-
son to K, then a is large and most unemployed bees will
scout. As R, increases in magnitude, a decreases and the
number of waiting bees following dances increases.

Recruitment via odour cues

Bee species in which workers respond to flower odours
borne by returning foragers can also be considered direct
recruiters. For example, bumble bees aroused by a suc-
cessful forager fly preferentially to flowers which pro-
duce the odour carried by the forager (Dornhaus and
Chittka 1999). This phenomenon can be modelled with a
functional form similar to that of group recruitment —
i.e., with Eq. 13 or 14.

Indirect recruitment
The most dramatic form of indirect recruitment is mass

recruitment by trail pheromones in ants and termites.
Trails can summon searchers already searching for food,



Rate of Discovery of Site i (d)

)

1/
/.
./_./___

o 5 10

- L . L L i

0 " .
15 20 25 30 .35
Number of Ants on Trail to Site i (E)

Fig. 4 The rate of site discovery as a function of the number of
workers already foraging at (and hence depositing a trail to) a site.
The relationship is given by Eq. 18, with B;=0.1, k=1, S=100,
K.=20 and x ranging between 1 and 3. The dotted line is the linear
recruitment function given by equation 36, with B=B/(2K.)

as well as workers waiting at the nest. We consider each
type of recruit in turn.

Effect of trails on searchers

The discovery of the food source by searchers (d;) de-
pends upon the amount of pheromone deposited on
trails to site i. Most models of pheromone foraging as-
sume that the concentration of a pheromone trail varies
over the same time scale as the number of workers on
the trail — in our case, E; (Bonabeau 1997). We use a
general sigmoidal curve to model how the number of
workers discovering a site increases with the number of
workers depositing a pheromone trail to the site (Fig. 4).
This form easily allows the incorporation of non-linear
effects, and also takes into account the likelihood that a
trail’s effectiveness saturates at higher pheromone con-
centrations.

(kiEi)*

di (E;, S) = Pi——e—
l( 1y ) Bl(klEl)K_'_Kf

(18)
B, is a constant determined by the rate at which searchers
find the pheromone trail, while x, k;, and K. determine
the relationship between the number of workers on the
trail and the probability that searchers join the trail
which they have found. K. determines the number of
ants on the trail at which d, reaches its midpoint; K deter-
mines the nonlinearity of the response; k; takes into ac-
count the different amount of pheromone a forager may
add to a trail, depending on the quality of the food
source she has visited (e.g. Beckers et al. 1993; Breed
et al. 1987; Hangartner 1969). For any particular case,
these parameters should be determined experimentally
(e.g. Deneubourg et al. 1990).
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Fig. 5 The rate of joining one of two pheromone trails, or instead
searching, as a function of the number of workers already foraging
at site two. The relationship is given by Egs. 20, 21, 22, with
A=0.1, W=20, K.=20, E,=10 and k=2

Effect of trails on ants at the nest

Unlike searchers, ants joining trails at the nest entrance
may take any one of the trails currently active, because
every trail leads back to the nest. In experiments where
workers leaving the nest are forced to choose one of n
paths to a food source — by offering the workers a choice
of bridges to the source — the proportion of workers join-
ing each path i has been modelled as

(k—i—E,‘)K
foy (k+E)*

where k and k are constants and E; is the number of
workers already on route i (Deneubourg et al. 1990;
Nicolis and Deneubourg 1999). This model has been
successfully tested experimentally for Tetramorium cae-
spitum (Pasteels et al. 1987) and Myrmica sabuleti (de
Biseau et al. 1991).

In a natural setting, when workers are not forced by
the topology of their foraging arena into choosing one
trail or another, some of the workers leaving the nest will
search instead of joining a trail. When there are two food
sources,

Ji(Eyy ooy Eqy W) =L w (19)
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models the rate at which they join the two separate trails
(j, and j,) or instead search (a). These recruitment func-
tions are plotted in Fig. 5. This situation is similar to that



modelled for direct recruitment by honey bees (Egs. 15,
16, 17). Indeed, the honey bee model is identical to the
trail model, with x=1. (Compare the curves for j, etc. in
Fig. 5 with those for h,, etc. in Fig. 3) The ant model
must include the possibility of k>1, because, unlike the
bees, who sample only a single dance, ants can potential-
ly show a non-linear recruitment response. Deneubourg
et al. (1990) provide empirical evidence that k=2 for the
Argentine ant, Linepithema humile.

Note that in Eqgs. 20, 21, 22, when a large number of
ants are on the two trails, recruitment becomes so strong
that no workers will search — i.e. as E,+E,—co then
a—0. In many cases this does not accurately model real
ants, where some ants will ignore even very strong trails
and search by themselves. To model this we set

K.

a(Ey, E2, W) = kEi‘+E§+K*W+}L*W
where A. is a small proportion of workers that never fol-
low trails. This last term, which is biologically realistic
and can greatly affect the structural stability of the equa-
tions, has often been omitted from models of ant forag-
ing — see for example Bonabeau (1997).

Arousal Combined with Pheromone Trail

Equations 20, 21, 22 for pheromone trail recruitment
from the nest assume that workers leave the nest and join
trails at a constant rate. However, some ant species use a
display or physical contact to alert nest members to the
presence of a trail (e.g. Pratt 1989; Traniello 1977). This
combined arousal and trail gives the recruitment model

k]E}<

i\ (E1, Ea, Ry, Ry, W) = y————021
J1(E1, E2, Ry, Ry, W) #klEf+k2E§+K*
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(Ri+R)W (25

These equations may also apply to some stingless bees
that similarly combine pheromone trails and arousal
within the nest (Kerr 1969). For some ant species, such
as Solenopsis invicta (Wilson 1962), the trail itself
arouses the ants in the nest. This is modelled by replac-
ing the R;s in Eqs. 23, 24, 25 with Es, since arousal is
dependent on trail strength rather than the number of re-
cruiting workers.

Other indirect recruitment mechanisms

In the simplest forms of indirect recruitment, foragers
deposit pheromone marks near the food source (e.g. Kerr
1969), or release a short-range chemical signal (e.g.
Holldobler et al. 1978). These can be modelled simply
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by adapting Eq. 9 to make the discovery rate d; depen-
dent on the number of ants exploiting a source, as well
as the number of searchers:

d; (S, E;) = BiEiS (26)

where f; is a constant giving the rate at which searchers
find a food source marked by one exploiter.

This kind of recruitment is often combined with
arousal of nestmates, through motor displays, sounds, or
short-lived trails (e.g. Kerr 1969; Moglich and
Holldobler 1975; Traniello 1977). These cases can be
modelled by combining Eq. 26 with Eq. 8 describing the
rate at which ants in the nest are aroused to search.

Failure and abandonment
Retirement

The simplest sort of abandonment of a forage site is re-
tirement. Exploiting workers stop foraging independent-
ly of the actions of other workers and return to wait in
the nest. This is modelled simply as

gi (Ei) = GiE; (27)

where 1/0; is the average time until a worker decides to
retire from site i. Retirement from sites is very important
in the organisation of honey bee foraging, because forag-
ers retire from low quality sites more rapidly than from
higher quality sites (Seeley et al. 1991). Those retiring
are then available to be recruited to the better quality
sites.

Retirement is not always independent of the actions
of other colony members. It also occurs, for example,
when a food source becomes overcrowded. For a food
source with capacity K;

E;
K, —E;
describes a negative feedback loop ensuring that the pop-

ulation exploiting the feeder never exceeds K; provided
that initially E£;<K;.

8i (Ei) = o (28)

Success of direct recruitment

Social insects following recruitment signals do not al-
ways arrive at the advertised destination. For example,
honey bees usually follow about four dances before suc-
cessfully locating a forage patch (Seeley 1983; Seeley
and Visscher 1988). Success or failure of direct recruit-
ment is reflected in our model by the functions s; and y;
(see Fig. 1). Typically,

u; (F;) = 0,F; (29)
si (F;) = 0iFi (30)

where 0 and ¢ are respectively the rates of getting lost
and successfully finding source i. The proportion of suc-
cessfully recruited workers is then ¢,/(6,+¢,). Followers
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which fail to reach their destination do not necessarily
become searchers. For example, failed honey bee re-
cruits will return to the nest to read further dances. In
this case, u,=0 and

vi(F;) = 0;F; (31)

instead. Bees do not always find the site advertised by
the dance they have followed, but instead find another
site. The model can take this into account by having u
depend both on the advertised site, i, and the other site
which may be found, j:

uij (F;) = 0 F} (32)
which is the rate at which bees searching for site i find
site j.

Failure to follow pheromone trails

Experimental observations of Myrmica rubra showed
that the average distance a forager travels along a phero-
mone trail before losing it first increases and then satu-
rates as trail strength is increased (Pasteels et al. 1986,
1987). The probability that an individual worker leaves a
pheromone trail is thus negatively correlated with the
number of workers currently on the trail. Furthermore,
the probability of leaving is independent of the time
spent on the trail by the worker. The rate at which work-
ers lose a trail to food source i is thus,

(g~  GE
a(E) = g g
where ©; depends on the distance to i, and K and v,
which should be determined experimentally and may
vary among species, measure how accurately the work-
ers follow a trail. For any particular species, the values
of K and v are likely to equal those of K. and x (in
Eq. 18), since both model reaction to trail strength.

(33)

Case studies
Ant pheromone trails

In an experimental setup where ants are forced to take
one of two or more routes to a food source, Eq. 19, for
trail joining, and Eq. 27 for retirement give

(k+El‘)K

dd? = }LW:] B W —oiE; forallie {1, ..., n} (34)
d”l n

= S GE;

o kW+j:101 (35)

as recruitment equations for the number of ants foraging
at the n sites. Analysis of this model, given in detail by
Nicolis and Deneubourg (1999), leads to the prediction
that some species of ants, when already foraging at a me-
diocre food source, will be unable to switch to a better

food source that is offered later, even if scouts discover
the latter food source. This inflexibility depends on the
respective rates of recruitment (A) and retirement from
the various sites (0;). A number of experiments have
been performed to investigate how such inflexibility
might manifest itself in real ant colonies (Beckers et al.
1990; Pasteels et al. 1987).

Often, in order to analyse a set of foraging equations,
it is useful to simplify them. For example, Beekman et
al. (2001) use the discovery function

di (E, S) = BES (36)

for ants directed to a single food source by pheromone
trails. This simplification of Eq. 18 ignores the saturation
which occurs for well attended trails in the rate of join-
ing a trail. However, in nature trails seldom reach the
point of saturation, and for a range of values the simpli-
fied function — shown as the dotted line in Fig. 4 — ap-
proximates Eq. 18. A model for search and discovery
which combines the simplified function with random
discovery of food sources and a simple non-linear term
for losing the trail, is

dE oF
ds oE

In this model it is assumed that ants not on the trail are
searching, so that the number of searching plus exploit-
ing ants is constant. In the next section we will analyse
this model and compare it to experiments on the effect of
colony size in ants.

The waggle dance of the honey bee

Differential equations have also been successfully ap-
plied to the modelling of honey bee foraging (Camazine
and Sneyd 1991; Seeley 1995; Seeley et al. 1991). In this
work, a model was developed by first considering the
different behaviours that constitute nectar foraging: the
collection and unloading of nectar, and the performance
and following of recruitment dances. The rates at which
bees switched between these behaviours were estab-
lished experimentally for two feeders containing sugar
solution of differing strengths (Seeley et al. 1991). It was
then possible to make reasonably accurate qualitative
and quantitative predictions of how the distribution of
bees between two feeders changed as the quality of the
feeders was changed.

As with models of pheromone trail following, the
Camazine and Sneyd (1991) model contains a number of
simplifcations that facilitate mathematical analysis. For
example, while they use Egs. 15, 16, 17 to model dance
recruitment, they assume that Ky=0 so that all bees fol-
low dances and no bees scout. While it makes little dif-
ference to the qualitative behaviour of their model, this
assumption increases the rate at which small numbers of



bees recruit to a food source, and may cause the model to
predict faster growth in the number of bees at a good
feeder than actually occurs in experiments (compare
Figs. 2 and 5 in Seeley et al. 1991).

Another simplification made by Camazine and Sneyd
(1991) is the omission of a behavioural state equivalent
to our following to site i (F;). They instead define a sin-
gle state that includes both the time spent following
dances at the nest, and the time spent searching for an
advertised site. The combination of these states means
that the site at which a bee arrives depends on the num-
ber of bees performing dances at the end of her search.
In reality, however, this decision is made at the start of
the search, when the bee reads a specific dance. A bee
usually searches for more than 15 min before either ar-
riving at a food source or returning to the nest to read an-
other dance (Seeley 1995). In our framework this deci-
sion mechanism can be modelled by including the state
F; and the rates i, and h, defined in Eq. 15 and 16.

We take the above observations in to account when
fitting Camazine and Sneyd’s (1991) model into our gen-
eral framework. The specific model for honey bee forag-
ing in this framework is thus

dw
In the hive : o =01E +00Ey +01F1 + 0,/ — AW 475 (39)

. . dF R;
Looking forsite: — =A————W —0,F1 —01F1 (40
ooking forsite : — R TR 1Ko =0k (40)
dF, R>
—— =A—"—W—0F— 0F 41
o R TR Ko 202 — §2F (41)
Independent scouts :
ds Ky
—=A————W—(0 +02)S—7S 42
dt Ri+Ry+ Ky (o 2) ¥ (42)

dE
Exploiting site : d—tl =0 Fi+ouS—061E —(p1E1 —81Ry)

(43)
dE
d—t2 = 02 F + 0SS — 02Ey — (p2E2 — B2R?) (44)
Dancing for site : % =p1E] —8 R, (45)
dR
d—t2 = p2E2 — 82R2 (46)

In the next section we demonstrate a numerical simula-
tion of this model for parameter values estimated from
the literature.

Insight from the model

The purpose of mathematical models is to better under-
stand and predict properties of the systems they model.
While the design of a model often clarifies our thinking
about the system, it is only by determining how it be-
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haves that new insights into the model, and thus the
system, can be obtained. There are two complementary
approaches to understanding mathematical models: anal-
ysis and numerical simulation. Analysis is most often
used to elicit general features of the model while numeri-
cal simulation is applied to determine more specific fea-
tures; such as behaviour under experimentally deter-
mined parameters. Usually, both approaches should be
pursued. Simulation without analysis can lead to results
without understanding, while analysis without simulation
is often insufficient for discovering the more interesting
properties of a model.

Analysis

Analysis of differential equations is a massive research
area in its own right. One of the most accessible ac-
counts of the application of differential equations to biol-
ogy is by Edelstein-Keshet (1988). Here, we discuss only
the most basic techniques, which are sufficient to ana-
lyse our model of pheromone trail foraging in the section
Ant pheromone trails (above).

Simplifying the equations

The first step of analysis is often to simplify the equa-
tions. This involves reducing both the number of differ-
ent variables (e.g. the states E and S) and parameters
(e.g. o and ©) to a minimum while not changing the be-
haviour of the model. Simplification may also involve
ignoring parameters which have very small values rela-
tive to the other parameters. Our pheromone foraging
model — given by Eqgs. 37 and 38 — can be simplified
both by noting that the number of ants N=E+S remains
constant and by non-dimensionalisation (see Edelstein-
Keshet (1988) for details of this procedure). Non-dimen-
sionalisation involves establishing new time and quantity
scales. For Eqs. 37 and 38 the equivalent non-dimension-
al equation is

dx 5 X
— = = —cxt— 47
It f(x)=a+bx—cx T+x ()]
where

E t N K (BN — K>
x:-,t:~,a:a—,b:————(ﬁ u)andc:L

K (¢ c (6]

This formulation shows there are three fundamental pa-
rameters governing the behaviour of our ant foraging
model and illustrates how changes in our five parameters
can produce equivalent behaviour from the model. For
example, for fixed o, setting the parameters to 3=0.01,
0=0.1, K=10 and N=100 is equivalent to setting
B=0.001, =1, K=100 and N=1,000.
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Fig. 6 Plots of quadratic function a+bx—cx2 (solid line) for various
values of N and the saturating function x/(1+x) (dotted line).
Where these two plots cross is a steady state of Eq. 47 governing
the number of ants exploiting a given food source. The plots cross
once for N=300 and N=1,050 and three times for N=600. For all
plots, 0=0.0, K=100, =1 and $=0.00001

Steady states and stability

We will answer the question “given the parameters and
x(0) ants foraging initially, will the ants form a strong
pheromone trail to the feeder if given enough time?”.
The answer to this question is the steady state of a differ-
ential equation, which is reached when the variables no
longer change —i.e. when

d
& 0 or equivalently a + bx — ex’ =

dt

14+x

Figure 6 shows three qualitatively different solutions to
this equality, depending on the parameter values: the
point at which the solid and dotted lines cross is a steady
state. In general, Eq. 47 has either one, two or three posi-
tive steady states. If we set o=0, so that there are no ran-
dom finds of the food source, then the steady state solu-
tions, x., are determined by

KX
bx, — cxi =

This gives steady states at x,=0 and, in terms of our orig-
inal parameters:

1 4o
T (N—Ki (N+K)2—F>

These non-zero steady states exist when
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Fig. 7 Number and position of steady states of Eq. 47 as a func-
tion of N. Solid lines are stable steady states, while dotted lines are

unstable steady states. At N=1/46/B-K, Eq. 47 switches from

having a single steady state at O to having three (two stable and
one unstable). At N=(0+0/K)/P the zero steady state becomes un-
stable. Parameters, other than N, are identical to those given in
Fig. 6

The stability of a state is determined by considering
whether small perturbations to a system resting in a par-
ticular steady state will shrink or grow. A steady state, x.
is stable (again see Edelstein-Keshet 1988 for details) if

af

<0
dx|,_

Xk

i.e. we differentiate f, as defined in Eq. 47, and evaluate
the resulting function with x=x.. Thus, for our current
example, x.=0 is stable provided N<(o+0/K)/p.

We can now determine the stability of all the steady
states. Figure 7 shows the steady states and their stability
as a function of the colony size N. Note that Fig. 7 is es-
sentially a plot of the values at which a+bx—cx? crosses
x/(1-x) found as we smoothly increase the value of N. In
Fig. 7, B=0.001 and 0=0, so the steady state at which no
ants forage at the feeder becomes unstable when the
number of ants in the colony reaches N=1/3=1,000. Ac-
cording to our model, for colonies of more than 1,000
ants, discovery of the food source by a single ant will re-
sult in many ants foraging at the food source in the long
term. For smaller colonies the same small perturbation
will not ultimately result in an increase in foraging.

It is now possible to answer our original question re-
garding the long term dynamics of ant foraging. In par-
ticular, by drawing a diagram such as Fig. 7 we can de-
termine a unique steady state number of ants foraging at
the feeder for any given initial conditions: the population
at the feeder will move directly up or down to the stable
steady state through a trajectory which does not cross an
unstable steady state.



One interesting feature of Fig. 7 is that for some pa-

rameter values — N between /40/B —K and 6/(Kp) — the
ultimate number of ants foraging at the feeder depends
critically on the initial number of foragers. For example,
if x(0) is between the O steady state and the unstable
steady state then the population will reach equilibrium at
0, while if x(0) is above the unstable steady state the
population will reach equilibrium at the upper stable
steady state, corresponding to a large number of foragers
exploiting the food source. This prediction has been con-
firmed experimentally for Pharaoh’s ants by Beekman et
al. (2001), who showed that while colonies of 700 ants
were unable to create a trail to a food source, workers
initially placed at the food could sustain a trail to the
nest. Indeed, the foraging ability of Pharaoh’s ant colo-
nies has a relationship to colony size qualitatively simi-
lar to that shown in Fig. 7.

Numerical simulation

While differential equations have been fruitfully applied to
understanding the qualitative aspects of social insect forag-
ing, their application to quantifying changes in the behav-
ioural states of foragers has been less successful. The main
reason for this failure is the high level of accuracy required
for a model to make quantitative predictions. While
Eqgs. 37 and 38 have been shown to capture the non-linear
increase in foraging ability with colony size, they do not
include enough detail to predict exactly how many ants
will arrive at the feeder for any particular colony size. Cre-
ating a quantitative model requires careful experiments to
determine the exact functional form and parameter values
for all the mechanisms of recruitment, retirement, etc.

Camazine and Sneyd’s (1991) model of honey bee for-
aging effectively captures many of the qualitative aspects
of foraging. It shows, for example, that a law of competi-
tive exclusion operates on food sources, with the best site
ultimately attracting all of the foraging bees. Seeley et al.
(1991) also use this model to make quantitative predic-
tions about the outcome of switching the relative quality
of two feeders, and thus the amount of time spent dancing
for each by foragers from an experimental colony. The
observed rapid change in the distribution of bees between
the feeders is accurately predicted by the model.

The case study of honey bee foraging, presented in
the previous section, is closely related to Camazine and
Sneyd’s (1991) model, but adjusted to fit into our gener-
al framework. The principle differences are that our
model includes the terms S for scouting bees and F; and
F, for bees using the information given in a dance to
search for a source. Our revised model can be compared
to Camazine and Sneyd’s model and to the data through
numerical simulations. Figure 8 shows such a simulation
of our revised model — given by Eqgs. 39, 40, 41, 42, 43,
44, 45, 46 — with parameter values taken from experi-
mental data. These simulations were produced by the
differential equation solver in Matlab (Pért-Enander and
Sjoberg 1999).
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Fig. 8 Simulation of honey bee foraging. Numerical solution of
Egs. 39, 40, 41, 42, 43, 44, 45, 46. As in the Seeley et al. (1991)
experiment the simulation begins with E,(0)=15 and E,(0)=12. We
set W(0)=125-15-12=98 since 125 bees different bees visited the
feeder throughout the duration of the experiment. Initially the
south feeder is of highest quality, but at midday the quality of the
two feeders is swapped. The parameter values are taken from the
literature: 6,=0.000, 6,=0.040, p,=0.286, p,=0.122, §,=0.667 and
0,=3.333 are derived from the parameter values presented in Se-
eley et al. (1991). 6,=6,=0.067 and ¢,=¢,=0.0167 to reflect the
observation of Seeley (1995) that bouts of foraging last 15 min,
and the observation that a bee takes, on average, 60 min to find a
food source (Seeley et al. 1991). y=0.0083 to reflect the longer
search time of scouting bees (Seeley et al. 1991). We set K,=3 to
reflect Seeley’s (1995) observation that colonies with only one
dancing bee have 36% of bees scouting, while colonies with five
dancing bees have only 5% scouts. Finally, A=0.050, so that bees
spend 20 min resting between foraging bouts. To reflect the
changing of the feeder qualities at midday, each of the parameter
values for the two sites are swapped (e.g. after midday, 6,=0.040
and ¢,=0.000)

Although the results of our revised model largely mir-
ror experimental observations and the predictions of
Camazine and Sneyd’s (1991) model, there are several
important differences. In our revised model, the slow ini-
tial increase in bees visiting feeder 1 better matches ob-
servations (from Fig. 2 of Seeley et al. 1991) than
Camazine and Sneyd’s model. We can surmise that this
slower, and more accurate, increase is due to the addition
of a behavioural state S for scouting. Indeed, by setting
Ky=0 and rerunning the simulations, we can restore the
rapid increase given by the Seeley and Camazine model
(Seeley et al. 1991). The revised model fails, however, to
produce the same speed of response to changing feeder
quality as found in experiments and in Camazine and
Sneyd’s model. This failure resulted from the addition of
the terms F, and F, for following. Thus the addition of
terms for greater realism has paradoxically reduced the
accuracy of our model’s predictions. This strongly sug-
gests that the mechanism by which bees produce the re-
sponse to changing conditions is not yet understood at a
level that allows quantitative mathematical modelling.

The preceding discussion highlights an important ad-
vantage of developing a mathematical model in a frame-
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work: particular states can be included or excluded, simu-
lated and compared to the data in order to better under-
stand the actual mechanisms at work. A recent review by
Biesmeijer and de Vries (2001) correctly points out that
there are a larger number of behavioural states involved in
honey bee foraging than are captured by Eqgs. 39, 40, 41,
42,43, 44, 45, 46. Beismeijer and de Vries (2001) provide
a flow chart for the behavioural control structure of a sin-
gle forager which could easily be used to give a differen-
tial equation model of bee foraging. Indeed, Biesmeijer
and de Vries (1998) used part of this flow chart as the ba-
sis of an individual-based computer simulation which they
claim more accurately reproduces experimental results
than Camazine and Sneyd’s (1991) model. These results
still require experimental verification, and once more data
is available, the construction of appropriate differential
equation and individual-based models will further advance
our understanding of honey bee foraging. This may well
involve the addition of further behavioural states to our
framework to account for memory of foraging bees.

Optimal allocation of resources to foraging

The models that we discuss in this paper aim to under-
stand the proximate mechanisms underlying a colony’s
foraging behaviour. It is important, however, to place our
understanding of these proximate mechanisms in the
context of the selective forces ultimately shaping colony
behavior. Indeed, experiments and models of proximate
mechanisms tell us only “how” a system works and not
“why” it works. For example, while the experiments of
Beekman et al. (2001) confirmed a prediction of our case
study — that pheromone trail foraging ants require a min-
imum colony size to function efficiently — these experi-
ments cannot in themselves explain the size distribution
that has evolved in trail-laying ants. To find such an ex-
planation, we must consider our experiments and proxi-
mate models in the light of inclusive fitness theory
(Crozier and Pamilo 1996).

A recent paper by Reuter and Keller (2001) considered
how workers and queen can maximise their inclusive fit-
ness by investing in sexuals and workers. To this end they
defined a productivity function b(f,w) where f is the pro-
portion of resources invested in females, and w is the pro-
portion of those females that are workers (i.e. fw is the
overall investment in workers). They then proposed the
following inclusive fitness function for colony member X

Vilh, w) =00 ) (873 2ok +0Sem =2 ) (49

1-F
where F(1-W) and 1-F are the population biomass of
gynes (queens) and males respectively, and gy and g,y are
the relatedness of X to females and males, respectively.
The optimal strategy for member X is defined by the values
of fand w which maximise Vy (Reuter and Keller 2001).
By combining the above inclusive fitness function
with our earlier model of ant pheromone trails, we can
estimate the optimal investment in workers by colonies
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Fig. 9 Productivity as a function of investment in workers for ants
foraging via trail pheromones, given by Eq. 50. Parameter values
as in Fig. 7. Solid lines indicate total biomass and sexual biomass.
The vertical dashed line indicates the value which maximises sex-
ual biomass and is thus the evolutionarily stable strategy for single
party control

that use this foraging mechanism. To achieve this we de-
fine a productivity function based on Eq. 48, which
shows how foraging efficiency depends on x., the maxi-
mum number of ants foraging at a food source at stable
equilibrium.

)
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otherwise

Here we have assumed that intake of food is proportional
to overall productivity. This assumption is speculative
but allows us to investigate how the minimum colony
size required by pheromone trail foraging ants might af-
fect the fitness of different parties in the colony.
Maximising Vy(f,w) with respect to f and w gives the
optimal investment in workers, gynes and males for trail
foraging colonies. The solid lines in Fig. 9 show how the
colony’s production of total biomass, b(w,f) and sexual
biomass, (1-wf)b(w,f), change with investment in work-
ers. The vertical dashed line indicates the evolutionary
stable strategy (ESS), i.e. the maxima of Vy(f,w) assum-
ing that a single party (either the queen or the workers)
controls both the primary sex ratio, f, and the proportion
of females becoming workers, w. Since the maxima of
(1-wHb(w,f) and V,(f,w) coincide, we conclude that sin-
gle party control favours maximisation of sexual bio-
mass. The outcome is quite different, however, if the
queen controls f and the workers control w. In that case,
the conflict over sex ratio generated by relatedness as-
symetries between queens and workers leads to an ESS
investment in workers that is less than the value that
maximises sexual biomass (Reuter and Keller 2001). The



dashed line thus shows the maximum possible invest-
ment by the colony in workers, under the assumption of
no conflict. Any conflict will move the dashed line, and
thus the investment in workers, to the left.

Unsurprisingly, optimal investment in workers is
above the minimum level at which a colony can work ef-
ficiently. What is interesting, however, is how close to the
minimum the optimum lies. If colony conflict is taken in-
to account, the optimal investment would move nearer
still to that critical minimum level. Thus, selection does
not favour larger worker biomass per se. On the contrary,
the evolutionary stable strategy is to optimise production
of sexuals by generating a worker biomass sufficient to
allow successful pheromone trail foraging.

Conclusions

We have presented a general framework for applying dif-
ferential equations to the analysis of foraging by insect
societies. Differential equations have proven quite useful
in dissecting complex foraging systems where the behav-
iour of the whole colony is difficult to predict intuitively
from the behaviour of individual insects. Still, detailed
analyses have been carried out for very few species, and
many groups with quite complex recruitment communi-
cation, such as stingless bees and termites, remain large-
ly unstudied. We hope that our approach will facilitate
the application of differential equation modelling to a
broad range of species. Indeed, our approach is general
enough to encompass many examples of social foraging
in vertebrates, such as information centres in co-opera-
tively breeding birds (Galef and Giraldeau 2001), and re-
cruitment trails in rodents (Galef and Buckley 1996).

The study of proximate mechanisms in insect societies
has sometimes been contrasted with optimality models
that predict the foraging decisions animals should make
in order to maximise their fitness (Beckers et al. 1990). A
better description would see the two methods as comple-
mentary approaches. Indeed, mechanistic models have a
potentially large role in guiding the development of better
functional models. The study of optimal foraging has fre-
quently been criticised for failing to take into account
constraints imposed by morphology and physiology
(Janetos and Cole 1981; Ward 1992). The importance of
such constraints is now generally recognised in the study
of foraging by individuals. For example, an expanding lit-
erature on the neurobiological basis of learning and mem-
ory in birds has helped to inform the study of the fitness
consequences of their decision-making (Capaldi et al.
1999; Clayton 1998; Clayton and Soha 1999).

Analogous physiological constraints also matter in so-
cial foraging, but to them is added an entirely new level
of mechanistic complexity: the colony-level behaviours
that emerge from interactions among individual insects.
We concluded this paper with a simple example in which
such a physiological constraint, i.e. minimum colony
size, has been identified by experiment, modelled as a
proximate mechanism, and then incorporated into an in-
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clusive fitness model. Building mathematical models
which capture the working of insect societies thus gives
a foundation for more realistic optimality models. Con-
versely, optimality models give a structure within which
to interpret mechanistic studies of particular species.
Models of ultimate and of proximate factors thus build
on each other, ultimately connecting, rather than con-
tradicting, one another.
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Appendix 1

Notation

The notation for behavioural states and rates of flow between
states can be seen in the flow diagram in Fig.1. Below we give a
list of the specific parameters used in the models with their biolog-
ical meaning.

® } =rate at which workers leave the nest to search

® y=rate at which searching workers return to the nest

® ., =rate of recruitment by workers recruiting to site i

® (; =rate of independent discovery of site i

® p, = rate at which exploiting workers start recruiting to site i

® = rate at which workers recruiting to site i start exploiting

® (G = mean recruited group size when number of workers at nest
is not limiting

® K = number of ants in nest at which half maximum group size

is recruited

® K, = number of recruiters at which half departing foragers be-
gin searching

® K. =number of ants on trail to site i which will induce half de-
parting foragers to follow trail to site i

® [, = strength of pheromone deposited to site i

® = non-linearity in response to pheromone of ants following a
trail

® J3. =rate at which searchers find trail to site i

® ¢, =rate of retirement of ants exploiting site i

® 0. = rate of getting lost for ants following recruitment signal to
site i

® ¢, =rate of finding site i for ants following recruitment signal

® 9y = non-linearity in response to pheromone of ants following a
trail
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