A Modern Course in Aeroelasticity

Fourth Revised and Enlarged Edition

by

EARL H. DOWELL (Editor) Duke University, Durham, NC, U.S.A.

ROBERT CLARK Duke University, Durham, NC, U.S.A.

DAVID COX NASA Langley Research Center, Hampton, VA, U.S.A.

H.C. CURTISS, JR. Princeton University, Princeton, NJ, U.S.A.

JOHN W. EDWARDS NASA Langley Research Center, Hampton, VA, U.S.A.

KENNETH C. HALL Duke University, Durham, NC, U.S.A. DAVID A. PETERS Washington University, St. Louis, MO, U.S.A.

ROBERT SCANLAN Johns Hopkins University, Baltimore, MD, U.S.A.

EMIL SIMIU National Institute for Standards and Technology, Gaithersburg, MD, U.S.A.

FERNANDO SISTO Stevens Institute of Technology, Hoboken, NJ, U.S.A.

and

THOMAS W. STRGANAC Texas A&M University, College Station, TX, U.S.A.

KLUWER ACADEMIC PUBLISHERS DORDRECHT / BOSTON / LONDON

Contents

Pr	eface		xvii
	Pref	ace to the First Edition	xvii
	Pref	face to the Second Edition	xix
	Pref	ace to the Third Edition	xx
	Pref	ace to the Fourth Edition	xxi
\mathbf{Sh}	ort E	Bibliography	xxiii
1.	INT	TRODUCTION (DOWELL)	1
2.	STA	ATIC AEROELASTICITY (DOWELL)	5
	2.1	Typical Section Model of An Airfoil	5
		Typical section model with control surface	10
		Typical section model—nonlinear effects	16
	2.2	One Dimensional Aeroelastic Model of Airfoils	18
		Beam-rod representation of large aspect ratio wing	18
		Eigenvalue and eigenfunction approach	22
		Galerkin's method	24
	2.3	Rolling of a Straight Wing	26
		Integral equation of equilibrium	26
		Derivation of equation of equilibrium	27
		Calculation of $C^{\alpha\alpha}$	28
		Sketch of function $S(y_1, \eta)$	28
		Aerodynamic forces (including spanwise induction)	30
		Aeroelastic equations of equilibrium and lumped	
		element solution method	32
		Divergence	33
		Reversal and rolling effectiveness	34

		Integral equation eigenvalue problem and the experimental determination of influence functions	37
	2.4	Two Dimensional Aeroelastic Model of Lifting Surfaces	41
		Two dimensional structures—integral representation	41
		Two dimensional aerodynamic surfaces—integral	
		representation	42
		Solution by matrix-lumped element approach	43
	2.5	Other Physical Phenomena	44
		Fluid flow through a flexible pipe	44
		(Low speed) fluid flow over a flexible wall	47
	2.6	Sweptwing Divergence	47
	Refe	erences for Chapter 2	51
3.	DY	NAMIC AEROELASTICITY (DOWELL)	53
	3.1	Hamilton's Principle	54
		Single particle	54
		Many particles	56
		Continuous body	56
		Potential energy	56
		Nonpotential forces	59
	3.2	Lagrange's Equations	60
		Example—typical section equations of motion	61
	3.3	Dynamics of the Typical Section Model of An Airfoil	64
		Sinusoidal motion	64
		Periodic motion	67
		Arbitrary motion	67
		Random motion	73
		Flutter - an introduction to dynamic aeroelastic instability	
		Quasi-steady, aerodynamic theory	85
	3.4	Aerodynamic Forces	87
		Aerodynamic theories available	91
		General approximations	95
		'Strip theory' approximation	95
		'Quasisteady' approximation	95
		Slender body or slender (low aspect ratio) wing approximation	96
	3.5	Solutions to the Aeroelastic Equations of Motion	97
		Time domain solutions	98
		Frequency domain solutions	100

Contents

	3.6	Representative Results and Computational Considerations	109
			103
		Time domain	103
		Frequency domain	103
		Flutter and gust response classification including parameter trends	105
		Flutter	105
		Gust response	121
	3.7	Generalized Equations of Motion for Complex Structures	128
		Lagrange's equations and modal methods (Rayleigh-Ritz)	128
		Kinetic energy	129
		Strain (potential elastic) energy	130
		Examples	133
		(a) Torsional vibrations of a rod	133
		(b) Bending-torsional motion of a beam-rod	134
		Natural frequencies and modes-eigenvalues and eigenvectors	s135
		Evaluation of generalized aerodynamic forces	136
		Equations of motion and solution methods	137
		Integral equations of equilibrium	139
		Natural frequencies and modes	141
		Proof of orthogonality	143
		Forced motion including aerodynamic forces	144
		Examples	147
		(a) Rigid wing undergoing translation responding to a gus	t147
		(b) Wing undergoing translation and spanwise bending	153
		(c) Random gusts-solution in the frequency domain	155
	3.8	Other Fluid-Structural Interaction Phenomena	156
		Fluid flow through a flexible pipe: "firehose" flutter	156
		(High speed) fluid flow over a flexible wall - a simple	
		prototype for plate or panel flutter	158
	Refe	erences for Chapter 3	165
4.	NO	NSTEADY AERODYNAMICS (DOWELL)	169
	4.1	Basic Fluid Dynamic Equations	169
		Conservation of mass	170
		Conservation of momentum	171
		Irrotational flow, Kelvin's theorem and Bernoulli's equation	n172
		Derivation of a single equation for velocity potential	174
		Small perturbation theory	175

		Reduction to classical acoustics	177
		Boundary conditions	178
		Symmetry and anti-symmetry	180
	4.2	Supersonic Flow	182
		Two-dimensional flow	182
		Simple harmonic motion of the airfoil	183
		Discussion of inversion	185
		Discussion of physical significance of the results	187
		Gusts	189
		Transient motion	190
		Lift, due to airfoil motion	191
		Lift, due to atmospheric gust	192
		Three dimensional flow	195
	4.3	Subsonic Flow	201
		Derivation of the integral equation by transform methods and solution by collocation	201
		An alternative determination of the Kernel Function using Green's Theorem	204
		Incompressible, three-dimensional flow	207
		Compressible, three-dimensional flow	211
		Incompressible, two-dimensional flow	215
		Simple harmonic motion of an airfoil	218
		Transient motion	224
		Evaluation of integrals	229
	4.4	Representative Numerical Results	232
	4.5	Transonic Flow	238
	Refe	erences for Chapter 4	270
5.	STA	ALL FLUTTER (SISTO)	275
	5.1	Background	275
	5.2	Analytical formulation	276
	5.3	Stability and aerodynamic work	278
	5.4	Bending stall flutter	279
	5.5	Nonlinear mechanics description	281
	5.6	Torsional stall flutter	282
	5.7	General comments	285
	5.8	Reduced order models	288
	0.0	required order models	200

	5.9	Computational stalled flow	289
	Refe	rences for Chapter 5	294
6.	Al	EROELASTICITY IN CIVIL ENGINEERING	
	(SC)	ANLAN AND SIMIU)	299
	6.1	Vortex-induced Oscillation	301
		Vortex shedding	301
		Modeling of vortex-induced oscillations	305
		Coupled two-degree-of-freedom equations: wake oscillator models	306
		Single-degree-of- freedom model of vortex-induced response	e310
	6.2	Galloping	314
		Equation of motion of galloping bodies. The Glauert-Den Hartog necessary condition for galloping instability	314
		Description of galloping motion	320
		Chaotic galloping of two elastically coupled square bars	321
		Wake galloping : physical description and analysis	321
	6.3	Torsional Divergence	327
	6.4	Flutter and Buffeting in the Presence of Aeroelastic Effects	328
		Formulation and analytical solution of the two-	020
		dimensional bridge flutter problem in smooth flow	330
		Bridge section response to excitation by turbulent wind	
		in the presence of aeroelastic effects	334
	6.5	Suspension-Span Bridges	336
		Wind tunnel testing of suspended-span bridges	336
		Torsional divergence analysis for a full bridge	338
		Locked-in vortex-induced response	340
		Flutter and buffeting of a full-span bridge	350
		Reduction of bridge susceptibility to flutter	360
	6.6	Tall Chimneys and Stacks, and Tall Buildings	361
		Tall chimneys and stacks	361
		Tall buildings	365
	Refe	rences for Chapter 6	367
7.	AE	ROELASTIC RESPONSE OF ROTORCRAFT	
	(CU)	RTISS AND PETERS)	377
	7.1	Blade Dynamics	379
		Articulated, rigid blade motion	379
		Elastic motion of hingeless blades	390

e-Body Coupling eady Aerodynamics mic inflow ency domain e-state wake modelling mary ences for Chapter 7 ASTICITY IN TURBOMACHINES (SISTO) elastic Environment in Turbomachines Compressor Performance Map e Mode Shapes and Materials of Construction teady Potential Flow in Cascades	409 433 434 440 441 444 444 453 454 455
mic inflow ency domain e-state wake modelling nary ences for Chapter 7 ASTICITY IN TURBOMACHINES (SISTO) elastic Environment in Turbomachines Compressor Performance Map e Mode Shapes and Materials of Construction	434 440 441 444 444 453 453
ency domain e-state wake modelling mary ences for Chapter 7 ASTICITY IN TURBOMACHINES (SISTO) elastic Environment in Turbomachines Compressor Performance Map e Mode Shapes and Materials of Construction	440 441 444 444 453 454
e-state wake modelling mary ences for Chapter 7 ASTICITY IN TURBOMACHINES (SISTO) elastic Environment in Turbomachines Compressor Performance Map e Mode Shapes and Materials of Construction	441 444 444 453 454
nary ences for Chapter 7 ASTICITY IN TURBOMACHINES (SISTO) elastic Environment in Turbomachines Compressor Performance Map e Mode Shapes and Materials of Construction	444 444 453 454
ences for Chapter 7 ASTICITY IN TURBOMACHINES (SISTO) elastic Environment in Turbomachines Compressor Performance Map e Mode Shapes and Materials of Construction	444 453 454
ASTICITY IN TURBOMACHINES (SISTO) elastic Environment in Turbomachines Compressor Performance Map e Mode Shapes and Materials of Construction	$\begin{array}{c} 453\\ 454 \end{array}$
elastic Environment in Turbomachines Compressor Performance Map e Mode Shapes and Materials of Construction	454
Compressor Performance Map e Mode Shapes and Materials of Construction	
e Mode Shapes and Materials of Construction	455
-	
tondy Potontial Flow in Cases dec	460
leady Fotential Flow III Cascades	462
pressible Flow	467
dically Stalled Flow in Turbomachines	471
Flutter in Turbomachines	475
ing Flutter	477
elastic Eigenvalues	479
nt Trends	481
for Chapter 8	487
DELING OF FLUID-STRUCTURE	
TION (DOWELL AND HALL)	491
Range Of Physical Models	491
classical models	491
listinction between linear and nonlinear models	494
outational fluid dynamics models computational challenge of fluid structure interaction	495
modeling	495
-Linearized Models	496
ical aerodynamic theory	496
	497
ical hydrodynamic stability theory	497
	498
lel shear flow with an inviscid dynamic perturbation ral time-linearized analysis	500
lel shear flow with an inviscid dynamic perturbation ral time-linearized analysis numerical examples	500
lel shear flow with an inviscid dynamic perturbation ral time-linearized analysis	500 503
	ical aerodynamic theory ical hydrodynamic stability theory lel shear flow with an inviscid dynamic perturbation ral time-linearized analysis numerical examples

Contents

10.

System identification methods	503
Nonlinear reduced-order models	504
Reduced-order models	504
Constructing reduced order models	505
Linear and nonlinear fluid models	506
Eigenmode computational methodology	507
Proper orthogonal decomposition modes	508
Balanced modes	509
Synergy among the modal methods	509
Input/output models	509
Structural, aerodynamic, and aeroelastic modes	511
Representative results	512
The effects of spatial discretization and a finite computational domain	512
The effects of mach number and steady angle of attack: subsonic and transonic flows	516
The effects of viscosity	521
Nonlinear aeroelastic reduced-order models	522
9.4 Concluding Remarks	524
References for Chapter 9	529
Appendix: Singular-Value Decomposition, Proper Orthogonal Decomposition, & Balanced Modes	538
EXPERIMENTAL AEROELASTICITY (DOWELL)	541
10.1 Review of Structural Dynamics Experiments	541
10.2 Wind Tunnel Experiments	543
Sub-critical flutter testing	543
Approaching the flutter boundary	544
Safety devices	544
Research tests vs. clearance tests	544
Scaling laws	544
10.3 Flight Experiments	545
Approaching the flutter boundary	545
When is flight flutter testing required?	545
Excitation	545
Examples of recent flight flutter test programs	546
10.4 The Role of Experimentation and Theory in Design	546
References for Chapter 10	548

xiii

11.		ONLINEAR AEROELASTICITY (DOWELL, VARDS AND STRGANAC)	551
		Introduction	551
	11.2	Generic Nonlinear Aeroelastic Behavior	552
		Flight Experience with Nonlinear Aeroelastic Effects	554
	11.0	Nonlinear aerodynamic effects	556
		Freeplay	556
		Geometric structural nonlinearities	557
	11.4	Physical Sources of Nonlinearities	557
	11.5	Efficient Computation of Unsteady Aerodynamic Forces: Linear and Nonlinear	558
	11.6	Correlations of Experiment/Theory and Theory/Theory	560
		Aerodynamic forces	560
	11.7	Flutter Boundaries in Transonic Flow	566
	11.8	Limit Cycle Oscillations	573
		Airfoils with stiffness nonlinearities	573
		Nonlinear internal resonance behavior	575
		Delta wings with geometrical plate nonlinearities	577
		Very high aspect ratio wings with both structural and aerodynamic nonlinearities	578
		Nonlinear structural damping	581
		Large shock motions and flow separation	581
		Abrupt wing stall	594
		Uncertainty due to nonlinearity	595
	Refe	rences for Chapter 11	598
12.	AEF	ROELASTIC CONTROL (CLARK AND COX)	611
	12.1	Introduction	611
	12.2	Linear System Theory	612
		System interconnections	612
		Controllability and observability	615
	12.3	Aeroelasticity: Aerodynamic Feedback	617
		Development of a typical section model	617
		Aerodynamic model, 2D	619
		Balanced model reduction	622
		Combined aeroelastic model	623
		Development of a delta wing model	627
		Transducer effects	630

Contents	

Aerodynamic model, 3D	633
Coupled system	634
12.4 Open-Loop Design Considerations	636
HSVs and the modal model	637
Optimization strategy	638
Optimization results	641
12.5 Control Law Design	642
Control of the typical section model	644
Control of the delta wing model	647
12.6 Parameter Varying Models	647
Linear matrix inequalities	648
LMI controller specifications	649
An LMI design for the typical section	652
12.7 Experimental Results	654
Typical section experiment	655
LPV system identification	656
Closed-loop results	658 664
Delta wing experiment	664
12.8 Closing Comments	667
References for Chapter 12	669
13. MODERN ANALYSIS FOR COMPLEX	
AND NONLINEAR UNSTEADY FLOWS IN TURBOMACHINERY (HALL)	675
13.1 Linearized Analysis of Unsteady Flows	676
13.2 Analysis of Unsteady Flows	683
13.3 Harmonic Balance Method	688
13.4 Conclusions	699
References for Chapter 13	701
Appendices	704
Appendix A: A Primer For Structural Response To Random Pressure Fluctuations	705
A.1 Introduction	705
A.2 Excitation-Response Relation For The Structure	705
A.3 Sharp Resonance or Low Damping Approximation	709
Nomenclature	710
References for Appendix A	710

 $\mathbf{x}\mathbf{v}$

Appe	endix B: Some Example Problems	711
B.1	For Chapter 2	711
B.2	For Section 3.1	724
B.3	For Section 3.3	730
B.4	For Section 3.6	735
B.5	For Section 4.1	738
Index		743