A MODERN HYBRID COMPUTER INTERFACE

by
Jeffrey Martin Wilkins

A Thesis Submitted to the Faculty of the DEPARTMENT OF ELECTRICAL ENGINEERING

In Partial Fulfillment of the Requirement for the Degree of

ACKNOWLEDGMENTS

The project described in this report is part of a continuing hybrid analog-digital computer study directed by Professor G. A. Korn. The LOCUST interface project was supported by the National Aeronautics and Space Adminzstration under NASA Grant. The writer is also grateful to Drs. W. Fahey, G. Howard, and R. Mattson for their contribution of University facilities.

TABLE OF CONTENTS
Page
IIST OF ILLUSTRATIONS va
IIST OF TABLES vail
ABS'TRACT ix
I: INTRODUCTION I
I/O Operation 2
General Description of the Interface 2
II. DETAILED CIRCUIT DESCRIPTION 5
Device Selector Operation 7
Flag Logic. 12
ADC Data Transfer. 14
MDAC Data Transfer 16
Control Register Data Transfer. 19
Data Read-in Gates 19
DEC/NECL Trunks 21
Oscilloscope Trunks 21
Preset Counters 21
Overload Light Reset Logic 28
PDP-9 Internal Signals 30
Free IOI Pulses 30
III. PATCHBAY AND IOT INSTRUCTIONS 32
Linkage Patching. 33
Patchable Flags 33
Analog to Digital Converters 33
Multiplying Digital-to-Analog Converters 33
Linkage Control Switches 38
Data Bus Read-in Gates 38
Six-Bit Control Register. 39

TABLE OF CONTENTS -- Continued

Page
Preset Counters 39
Oscilloscope Trunks. 39
Data Channel - Locust Digital Patchbay Trunks 40
Overload Signal 40
PDP-9 Generated Signals. 40
Free IOT Signals 40
Input/Output Transfer Instructions 41
Patchable PI Flags. 41
Analog-to-Digital Converters. 41
Multiplying Digital-to-Analog Converters 42
Data-bus Read-in Gates. 43
Six-Bit Control Register. 44
Preset Counters 44
Free IOT Signals 45
IV. APPLICATION 48
Amplitude Distribution Measurement Example 48
Statement of Problem. 48
Method of Solution 49
Results 50
V. CONCLUSIONS 58
REFERENCES 59
Figure Page

1. Block Diagram of the Interface 4
2a. MECL/DEC Converter. 6
h. DEC/MECL Converter 6
2. DEC Logic Layout 8
3. MECL Logic Layout and Card Placement 9
4. Counter Logic Layout 10
5. Logic Symbols 11
6. Flag Logic. 13
7. ADC Logic. 15
8. NDAC Logic. 18
9. Control Register Logic. 20
lla. Read-in Gate Trunks 22
b. DEC/MECL Trunks. 22
10. Preset Counter Timing Diagram. 23
11. Preset Counter Control Signals. 24
12. AC Bit Trunks for Preset Counter 25
13. Preset Counter Logic. 26
14. Overload Light Logic. 29
15. Interface Patching in the LOCUST digital Patchbay 34
16. Interface Patching in the Data-channel Patchbay 35

LIST OF llLuStrations -- Continued

Figure Page
19. A/D Converter Patching 36
20. MDAC Patching 37
21. Flow Chart for Anplitude-distribution Example. 51
22. Analog Patching for Amplitude Distribution Problem. 55
23. Amplitude Distribution of Square Wave 56
24. Amplitude Distribution of Sine Wave 56
25. Amplitude Distribution of Triangle Wave. 57
26. Amplitude Distribution of Gaussian Noise 57

LIST OF TABLES

Table こage
1 IOT Instructions 46
2 HISTOGRAM. 52

ABSTRACT

This paper discusses the hybrid linkage system which interfaces the LOCUST high speed iterative differential analyzer and the PDP-9 digital computer to form a hybrid computing system. The interface comprises four analog-to-digital converters and four multiplying digital to analog converters for data transfer between computers. A control register, read-in gates and patchable flags provide digital control functions in the linkage. PDP-9 loaded counters and PDP-9 timing signals also add flexibility to the interface. Patching instructions and input/output transfer instructions which control the interface are discussed. An amplitude distribution example utilizing the interface demonstrates a type of problem that may be handled with the linkage.

CHAPTER I

INTRODUCTION

The LOCUST-PDP-9 interface was designed and constructed in the University of Arizona's Computer Science Research Laboratory. The purpose of this hybrid linkage is to enable the LOCUST hagh-speed analog computer and the PDP-9 digital computer each to perform the functions they are best able to perform while maintaining an interaction that makes the combination much more powerful than either machine working alone. The hlgh-speed differential-equation solving ability of the analog computer is maintained and the accuracy, memory, and decision making ability of the digital computer are added. LOCUST (LOw COST) is a high-speed solid-state interative differential analyzer capable of operating at iteration rates as hıgh as 4000 analog computer runs per second as well as in real time (Conant, 1968). It employs flexible digital control logic as well as patchable free logic. Provision was made at the time of LOCUST's construction for the addition of control logic driven from a digital computer. A11 of the digital logic in LOCUST is MECL emitter-coupled integrated circuit logic, chosen for its low noise.

The Digital Equipment Coxporation PDP-9 programmed data processing system is a general purpose computer, incorporating diodetransistor negative logic throughout. It is a single-address, fixed-word-length (18 bits), parallel binary computer. The PDP-9 has a
1μ sec complete cycle tame. (PDP-9 User Handbook, Digital Equapment Corporation, 1968).

I/0 Operation

The basic PDP-9 I/0 facilities utilized for the LOCUST-PDP-9 interface include;

1. An $I / 0$ bus system which chain links all the device controls for all peripheral devices to the central processor unit.
2. A program interrupt control.
3. An I/0 status read provision.
4. A conditional skipmon-device-status sense line 4 provision.

The I/O bus consists of command lines and bidirectional data Iines for use in accomplishing program-controlled transfers; plus the program interrupt control, the $I / 0$ status read, and conditional skip-on-device-status provisions. Detailed information on the PDP-9 I/O system is contained in the PDP-9 User Handbook (Digital Equipment Corporation, January, 1968).

Under construction is a data-channel interface for block transfers to and from the PDP-9 memory.

General Description of the Interface
The two essential functions of the interface are: data transfer between computers and control of the analog computer by the dagital
computer. The primary data-transfer devices are four analog-todugital converters (ADCs) and four multiplyıng digital-to-analog converters (MDACs). The remaining data transfer devices are 6 data read-in gates and a 6 -bit control register. The read-in gates and the control register enable the operator to transfer discrete logic levels to and from the PDP-9 accumulator (AC) under program control. Control functions are generated both by the PDP-9 and LOCUST. At the present time, there are two patchable flags in LOCUST which are connected to the Program Interrupt (PI) and Skip Request (SKIP) Iines of the PDP-9, with provision made for four more. Programmable IOT pulses gated by a device selector are brought out in LOCUST as well as other useful PDP-9 generated signals; IO SYNG, IO RUN, POWER CLEAR, and ENABLE. Two 10-bit binary counters located in LOCUST serve as "alarm clocks" preset by the digital computer; each counter can count patchable LOCUST-generated pulses and generate timing and sampling signals. A block diagram of the interface is shown in Fig. 1. The level converters (MECL/DEC, DEC/MECL) indicated in the figure are discussed in Chapter II.

Fig. 1 Blook Diagram of tho lnterface
_ CHAPTER II

DETAILED CIRCUIT DESCRIPTION

The LOCUST/PDP-9 interface comprises essentially two sectzons. One section contains DEC logic ($0 \mathrm{v},-3 \mathrm{v}$ logic levels) and is located in three DEC Type 1943 mounting panels attached to a standard 19-inch rack cabinet, which makes up the left hand bay of the LOCUST machine. The other section contains MECL II current mode logic ($-.75 \mathrm{v},-1.5 \mathrm{v}$ logic levels) and is located on printed-circuit cards which plug into the back of the LOCUST digital patchbay (LDPB). Conversion of logic levels is made by MECL/DEC (Goltz, 1968) and DEC/MECL converters on standard DEC cards that plug into the Type 1943 mounting panels (Fig. 2). All signals passing between the DEC portion of the logic and the MECL portion of the logic do so at MECL levels via twisted pairs. A twasted pair is draven by the complementary outputs of any MECL device; each pair is terminated by an MCIO20 line recelver with a 100 ohm shunt resistor. The resulting low-impedance line assures high noise immunity. The MECL/DEC converters also serve as line recelvers, making an MC1O20 unnecessary. MECL II was chosen for use in LOCUST because of its inherent low noise stemming from its balanced-current, nonsaturating operation.

With the use of the MECL trunking scheme it is possible to drave line lengths limited only by series resistance, propagation

(a)

(b)
I. ALL RESISTORS ARE $1 / 2 \mathrm{~W} 10 \%$

Fig. 2 (a) MECL/DEC Converter
(b) DEC/IECL Converter
delay, and common-mode noise. The twisted pairs used in the LOCUST-PDP-9 interface are eight feet long.

The location of the DEC logac is shown in Fig. 3. The location of a logic card is identified by a letter(row) and a number(column). The pins are lettered. The MECL logic is located on three plug-in cards lettered A, B, and C and two counter cards lettered D and E mounted in brackets behind the LOCUST digital patchbay. The individual integrated circuits are numbered as are the pins. The MECL logic layout for cards A, B, and C and the card placement in the patchbay is shown in Fig. 4. The counter logac layout is shown in Fig. 5. The logic symbols used throughout the interface diagrams are shown in Fig. 6.

All of the DEC flip flops used in the interface use DCD gates. except for the simpler set-reset flip flops used in the flag logic. If the input level of a DCD gate is at ground at least 400 nsec prior to $a-3 \mathrm{v}$ to 0 v transition at the pulse input, the flip flop will trigger.

Device Selector Operation

Device Selectors (See Fig. 7) decode the device-address bits of each IOT instruction word and gate (IOP/IOT) pulses to effect desıred data transfers, skip tests, or other device operations. In the LOCUST / PDP-9 interface, a single device selector is used for both an $A D C$ and an MDAC. Device-selector IOT pulses are gated with subdevace bits from the PDP-9 to provide the necessary pulses.

\sim	$R 202$		K_{5}	K_{8}	K_{1}	K_{3}

Fig. 3 DEC Logic Layout

VIEW FROM GROUND PLANE

SIDE OF CARDS

VIEW FROM GROUND PLANE SIDE

Fig. 5 Counter Logic Layout

NAND GATE

INVERTER

LINE RECEIVER

FLIP FLOP WITH DCD GATES

Fig. 6 Logic Symaj

PULSE CONVERTER

OTHER SYMBOLS as MARKED

Flag Logic

There are presently four ADC flags and two patchable flags in the interface. The ADCs have a status indicator output, which is at ground if the converter is busy and at -3 V when a conversion is complete. This output is used to set and reset a DEC R200 filp flop, which serves as the "flag". This flag may also be cleared by the ADC read pulse and the PDP-9 POWER CLEAR signal. The patchable flag inputs from the LDPB are trunked to the DEC Iogic and converted to DEC levels by MECL/DEC converters. The converter outputs set anc reset their respective flag flip flops. These flags may also be cleared by a programmable IOT pulse and IO POWER CLEAR. A representative section of flag logic is shown in Fig. 7.

The ADC status indicator goes to -3 v then a conversion is complete. This signal is inverted to provide a positive going pulse at the diode input of an R 603 pulse amplifier. The output of the pulse amplifyer is a positive going 100 nsec pulse which sets the flag (flip flop) to a -3 v . A read IOT pulse is gated with IO POWER CLEAR and inverted to provide a positive going pulse to the diode input of a pulse amplifier connected to the reset input of the flag. A DCD gate on the same pulse amplifier is enabled with a ground input and pulsed with the device status indicator to reset the flag. Hereafter, the word "flag" means the output of the respective R200 filp flop.

Fig. 7 Flä logic

ADC Data Transfer

The four-channel analog-to-digital converter was designed and built by John R. Goltz. It is an ll -bit two's-complement converter wath parallel binary output. Conversion time is between 50 and 270 $\mu \mathrm{sec}$. Detailed information on the ADC is contained in ACL Memo No. 147 (Goltz, 1968). Unless otherwise noted, all signals discussed in this section refer to Fig. 8.

When an A / D conversion is completed, a flag is razsed which is connected through a gate to the PI line of the IO bus. When the PDP-9 receives a PI signal, it immediately begins looking for the source of the interrupt. The PDP-9 interrupt-service routine issues a series of IOT pulses which are gated with the flags of peripheral devices to the SKIP line. When the raised flag is tested and a skip request is granted, the PDP-9 then executes a service subroutine corresponding to that specific flag. This subroutine reads the converter by gating the converter output onto the IO bus with an IOT pulse. This same read IOT pulse is connected to the READ REQUSST Inne and is also used to clear the converter flag. The READ REQUEST tells the PDP-9 to read the data that is on the IO bus into the AC. Upon completion of the service subroutine, the PDP-9 returns to the main program. Detailed information on programming the PDP-9 input-output system is contanned in the PDP-9 User Handbook (Digital Equipment Corporation, January, 1968). There are four identical sections of ADC

FIg. 8 ADC Logic
logic, hence only one section is shown in Fig. 8. The number in parentheses in the $W 103$ device selector block is the device address octal code.

The ADC converter flag is connected through an inverter to the PI line. A negative going IOTl pulse from a device selection is gated with negative subdevice bit 0 to provide a positive 100 nsec pulse at the input of the pulse converter. The pulse converter is wired to provide a $1 \mu \mathrm{sec}$ negative pulse at the input of the R123 bus gate. The other input of this nand gate is connected to the converter flag. Hence when the flag is a -3 v and a negative test pulse appears, a ground level is placed on the Skip Request line for 1 usec. A negative going IOT2 pulse is gated with negative subdevice bit 0 to provide a positive 100 nsec pulse at the input of pulse converter W640. The negative 1 usec pulse output of the $W 640$ is inverted twice to provide a negative read pulse with the proper drive at the input of the R123 bus gates. The ADC data (negative assertion) is connected to the other inputs of the bus gates and is gated onto the IO data lines as a ground level when the read pulse appears. The read pulse is also inverted through another gate and connected to the READ REQUEST line.

MDAC Data Transfer

The 12-but two's complement MDACs were developed as a master's thesis by Don C. Eddington (Eddington, 1969). There are four double-buffered MDACs in the LOCUST/PDP-9 interface.

The interface logic for an MDAC consists of a buffer register and a device register. Double buffering permits simultaneous updatang of digital anputs to all MDACs. The buffer is first cleared and then loaded with the accumulator contents by a PDP-9 IO'T instruction. The buffer-to-device-register jam transfer can be effected either by a PDP-9 instruction or by patching a NCL "I" to a D/A TRANS input in the LOCUST digital patchbay. The use of a jam transfer to load the device register eliminates the undesired transient that would occur at the MDAC output if the device register were cleared prior to each transfer from the buffer register.

There are four identical sections of MDAC logic; for clarity, only one section is shown in Fig. 9. The buffer register, made up of R203 flip flops, is fed data from the 10 data lines through $W 500$ emitter followers. The buffer is cleared with IOT1 (gated with PDP-9 subdevice bit 1), a positive-going 100 nsec pulse at the "clear" input of the flip flops. Data from the emitter followers is connected to the level inputs of $D C D$ gates, and the strobe pulse $1 s$ provided by IOT2 also gated with sub-device bit 1 ; the strobe signal is power amplified by an R603 pulse amplifier. The R603 provides a positive-going 100 nsec pulse when the positive transition of the gated IOT pulse occurs. Thus, when the data (ground assertion) and the strobe pulse occur at the $D C D$ gates, the buffer is loaded.

Complementary outputs of the buffer-register flip flops are connected to level inputs on corresponding flip flops in the devace register. The pulse inputs of the DCD gates on the R202 flip flops

Fig. 9 lunc Loglc
are driven with a positive-going pulse from a pulse amplifier. The posituve transition at the pulse amplifier input is provided, after inversion, by either a transfer signal from the LOCUST digital patchbay (a MECL/DEC converter output) or IOT4 gated with subdevice bit 1. The MDAC analog swatches are connected to the "I" outputs of the R202 flip flops, i.e. -3 v assertion corresponds to an FET switch closure.

Control Registex Data Transfer

The six-bit double-buffered control-register logic is similar to the MDAC logic (Fig. 10). The buffer register is cleared by a gated IOTI pulse. The data is read into the buffer from W500 emitter followers using a gated IOT2 with the proper drive to provide the pulse input to $D C D$ gates. The data is jam transferred into the output register by a gated IOT4 pulse from a pulse amplifier. IO POWER CLEAR clears the output register when the computer is first started. The IO POWER CEEAR signal is issued when the IO RESET switch is depressed on the PDP-9 operating console. The output of the control register is converted to MECL levels and trunked to the LOCUST digital patchbay.

Data Read in Gates

The read-in gate inputs are MECL gate inputs in the LOCUST digytal patchbay. The signals are trunked to the DEC logic bay, converted to DEC levels and brought out in the data-channel patchbay (DCPB). There, the outputs are patched into R123 bus gates and data is strobed onto the IO bus with IOT2 from a W103 device selector. A

read request must also be made with IOT2. This is accomplished by patching in the $D C P B$. The read-in gate trunks are shown in Fig. IIa. Maintenance drawangs for the gate and device-selector logic are contained in the report on the data channel interface CSRL \&emo. 215 (University of Arızona, 1969).

DEC/MECL Trunks

The wiring for four trunks from the data channel patchbay to the LOCUST digital patchbay is shown in Fig. 11b. DEC levels are converted to MECL levels and trunked via twisted pairs.

Oscilloscope Trunks

Digital drivers using the standard MECL trunking scheme are also used to provide oscilloscope inputs from the LOCUST digital patchbay.

Preset Counters

Two ten-bit binary counters located in the rack cabinet behind the LDPB are loaded from the PDP-9 upon command. Each MECL counter is a down counter, which is first cleared and then loaded with the complement of one less than the number of pulses to be counted. The counters count LOCUST pulses and issue " S " and " S_{D} " timing pulses used mainly to operate track hold pairs (Korn and Korn, 1964). A timing diagram is shown in Fig. 12. Discussion of the counter logic refers to Figs. 13,14 and 15 . The two counters are identical except for their operating IOT instructions.

Fig. 11 (a) Read-in Gate Trunks (b) DEC/MECL Trunks

Fig. 12 Preset Counter Timing Diagram

Fig. 13 Presct Counter Control St, :1s

Fig. 14 AC Bit Trunks for Preset Counter

Fig. 15 Preset Counter Logic

Output of the data line emitter followers, AC $0-9$, is converted to MECL levels and trunked to plug-in card B in the LOcest digital patchbay. The data lines are brought to the counter cai., with ribbon cable. The clear IOT is obtained by gating IOTl frcan a device selector with a subdevice bit. The load IOT is IOT2 gated with the same subdevice bit. Both counters use the same device selector. The different counters are selected with subdevice bits. IOT pulses are converted to MECL levels and brought to the counter card in the same manner as the data lines. The input, output, and z delayed output lines are run from the counter card to card B with coaxial cable. Card B has direct connections to the digital patchbay.

The IOTl pulse converted into a 100 nsec MECL " 1 " is usec to reset (clear) the MCl013 J-K flip flops which make up the counter. A negative 100 nsec MECL " 0 " set pulse is gated with negative assertion data (a " 1 " in the $A C$ is read out as a MECL " O " to the counter) to provide "I"s at the NOR output of the respective MC1010 set gates. The \bar{Q} outputs of the counting flip flops are connected to the clock $\overline{\mathrm{C}}_{\mathrm{d}}$ input of the following flip flop. $\overline{\mathrm{C}}_{\mathrm{d}}$ is obtained by tying a \bar{J} and \bar{K} input together; MC1013 flip flops change state when a positive transition occurs at a \bar{C}_{d} input. The input to the first counting flip flop is through a MC1004 OR gate to limit pickup which arises due to the short coaxial cable connection. The counter begins counting when input pulses appear. Patching must be done in the LDPB to prevent counting until desired.

The " S " pulse is obtained by gating the \bar{Q} outputs of the four most significant bits of the counter with an MCl004 OR gate. These outputs all go to " 0 " 64 counts before all the \bar{Q} outputs are " O " S. When the counter is full (\bar{Q} outputs all " 0 ") the next pulse causes all the outputs to go to "I's. This causes a positive transition at a \bar{J} and \bar{K} input of the MC1013 flip flop used to generate " S_{D} ". This flip flop was previously set to a "1" (Q output) when the counter was cleared. The positive transition at the $\bar{J}-\bar{K}$ input causes the output to go to a "0". The \widehat{K} input remains at a "1" while the \bar{J} input goes to a "0" 32 input pulses later and back to a " 1 " 32 pulses after that. When the \bar{K} input is a "1" and a positive transition occurs at the \bar{J} input the flip flop output goes to a "l" until another positive transition occurs simultaneously at a $\bar{J}-\overline{\mathrm{K}}$ input. Before that happens, the counter would usually be reloaded and another counting run begun.

Overload Light Reset Logic

A transistor switch was designed to provide power to the LOCUST overload lights. Since the lights latch on with SCRs when an overload occurs (Conant, 1968) it is only necessary to remove power from the latching circuit for $100 \mu \mathrm{sec}$ to turn the SCRs off. The switching circuit is shown in Fig. 16. The control input (reset) to the switch is provided by either a patched negative transition in the LDPB or from the LOCUST mode-control switches.

A detector circuit is used to provide a MECL output whenever an overload occurs, i.e., when an SCR anode voltage goes to 1 v . This

MODE CONTROL INPUT

Fis. 16 Overload Light Yoric
occurs during an overload or when the transistor switch is off. The detector circuit is also shown in Fig. 16.

An overload output in the LDPB indicates with a MLCL " 1 "
level whenever an overload occurs. The anode voltage detector output is gated with the reset input, and the result is used to set an MCl013 flip flop. The flip flop is reset with the overload reset input'. The flip flop output in the LOCUST digital patchbay may be patched to one of the free flags to notify the PDP-9 of a LOCUST overload.

The MCIO24 gates are in a single IC located on a card above the LDPB. All other logic is located on a card mounted behind the overload lights above the analog patchbay. There $1 s$ only a single IC for each type of logic device used. The twisted pair connected to the MC1013 flip flop goes to the DEC logic where it connects with a twisted pair in the main trunk cable. This occurs on the output of D/ME26(S,R).

PDP-9 Internal Signals

The PDP-9 internal signals, IO RUN, ENABLE, IO SYNC, and IO POWER CLEAR, are converted to MECL levels and trunked to the LOCUST digital patchbay using the standard MECL trunking scheme.

Free IOT Pulses

The IOT pulses from a device selector are gated with subdevice bit 1 and converted to $1 \mu s e c$ pulses using $W 640$ pulse converters. They
are converted to MECL levels and trunked to the LOCUST digrtal patchbay. The wiring for this logac is not shown.

PATCHBAY AND IOT INSTRUCTIONS

This section describes the operation of the LOCUST/PDP-9 interface. The linkage terminations in the LOCUST digital patchbay and data-channel patchbay are discussed, and the associated PDP-9 input/output transfer instructions are given.

Patchbay points for the hybrid linkage are grouped in three columns in the LOCUST digital patchbay as follows:

1. $A D C$ control inputs
2. DAC buffer-to-device transfer signals
3. Patchable flags
4. Data-bus read-in gates (used mainly to transmit status logic signal)
5. Six bit control register (receive digital control signals)
6. PDP-9 preset counters (used mainly as "alarm clocks")
7. Oscilloscope trunks for digital signals
8. Control signal trunks for data-channel interface
9. Overload signal
10. PDP-9 generated signals (clocks)
11. IOT timing and logic signals from the PDP-9

Interface terminations in the LOCUST digital patchbay are shown in Fig. 17. Interface terminations in the data-channel patchbay are shown in Fig. 18.

Linkage Patching

Patchable Flags

This group contains two flip flops connected to the $1 / 0$ bus PI and Skip Request lines. A flag is UP when a MECL "I" is applied to its input in the LOCUST digital patchbay. Both flags may be tested with IOT instructions. They may be cleared by the CAF (clear all flags) command, the $I / 0$ POWER CLEAR signal, by the flag input going to a " O ", or a programmable IOT pulse. The patchable flags can be used to interrupt the PDP-9 for condztions such as amplifiier overload or a level change at a comparator output.

Analog-to-Digital Converters

The analog patchbay points for the converters are located to the left of the oscilloscope inputs. Proper patching is indicated in Fig. 19. Each ADC requires a LOCUST analog integrator/track-hold unit used for voltage-to-time conversion and two digital control signals from the digital patchbay, as shown. The analog input is patched to a TRACK input. Thus, the ADC performs its own sampling operation at the time the digital control signal goes to a "1".

Multiplying Digital-to-Analog Converters

Proper patching for a multiplying digital-to-analog converter is indicated in Fig. 20. Each MDAC requires an operational amplifier

Fig. 17 Intexface Patching in the LOCUST Digital Patchbay

FIg. 18 Interface Patching in the Data-channel Patchbay

Associatid digital patchpielo de

Fig. $19 \mathrm{~A} / \mathrm{D}$ Converter Patching

Fig. 20 MDAC Patching
without feedback. The MDAC buffer-to-device transfer inputs are located in the digital patchbay. A positive transition of at least 400 nsec applied to one of these inputs causes the transfer of the corresponding MDAC buffer register to its device register. These individual transfers can also be made under program control by the PDP-9.

Linkage Control Switches

The PI, SKIP, and ADC FLAGS toggle switches are located on the front panel containing the data-channel patchbay. The Program Interrupt switch connects all flags in LOCUST to the PDP-9 (PI) Program Interrupt line. The Skip switch connects LOCUST sense signals to the Skip Request line. The ADC FLAGS switch connects the ADC flags to the interface logic. For most interface operations all three switches would be ON. When operating LOCUST independently of the PDP-9, the PI and SKIP switches should be off to eliminate spurious signals on the interrupt and skip request lines.

Data-bus Read-in Gates

This group consists of Inputs to 6 read-in gates which transfer data into the AC upon command. These inputs output as DEC levels in the data channel patchbay, where they must be patched to the desired accumulator lines. A MECL "I'" in the LOCUST digital patchbay is read into the $A C$ as a " 1 ". To use the read-in gates patching
must be done in the LOCUST digital patchbay and in the data-channel patchbay, and the proper IOT signal must be given. The read-in gates are used for reading logic or "discrete" information such as analog computer states, and patchbay logic level into the PDP-9.

Six-bit Control Register

This double-buffered register is loaded with AC bits 0-5. A "1" in the AC is outputed as a MECL "1" in the LOCUST digital patchbay upon proper IOT command. The I/0 POWER CLEAR signal clears the control register.

The control register allows the PDP-9, among other things, to control LOCUST'S mode. By patching between the control register output and the external mode control inputs in the LDPB, the INITIAL RESET, COMPUTE, or SINGLE RUN states of LOCUST may be selected. Mode control of individual integrators and control of patchbay flip flops may also be exercised.

Preset Counters

Two ten-bit counters $\frac{3}{2}$ ocated in LOCUST are loaded by the PDP-9. Each counter has an input, an output (S), and a delayed output $\left(S_{D}\right)$ connection in the patchbay. AC bits $0-9$ are loaded into the counters upon proper command. A timing diagram is shown in Fig. 12.

Oscilloscope Trunks
These trunks input in the LDPB and output with BNC connectors near the oscilloscope in LOCUST. The trunks are non-inverting.

Data-Channe1-LOCUST Digital Patchbay Trunks
The inputs to these trunks are located in the data-channel patchbay. The ouputs, in the LOCUST digital patchbay, give a MECL " 1 " when the DEC input level is ground.

Overload Signal

The overload output remains at a " 1 " as long as any of the LOCUST amplifiers is overloaded. This output may be connected to a patchable flag to notify the PDP-9 of any overload condition.

PDP-9 Generated Signals

This group consists of four PDP-9 internal signals available on the I/O bus; I/O POWER CLEAR, I/O SYNC, I/O RUN, and ENABLE. The I/O RUN signal is present only if both I/O cables are plugged in.

Free IOT Signals

This group consists of the outputs of a special WI03 device selector. The positive going IOT1, IOT2, andIOT4 signals are available in the LOCUST digital patchbay. These pulses may be used for many purposes, such as setting or resetting flip flops, initiating single runs, or clearing counters. Another use would be the resetting of LOCUST's overload lights.

This section defines the machine instructions and mnemonics which operate the ADCs, MDACs, and other devices which make up the LOCUST-PDP-9 interface. All linkage commands are defined here. A summary of linkage instructions is presented in Table I at the end of this section.

Patchable PI Flags

Two flag inputs are located in the linkage section of the LOCUST digital patchbay. A MECL "I" patched to either input causes a program interrupt. The PDP-9 uses a chain of skip instructions to determine the cause of the interrupt. When the interrupting device has been determined a service subroutine is executed. The patchable flags are tested by skip instructions.

MNEMONIC	OCTAL CODE	OPERATION EXECUTED
LSF1	701.541	The next instruction is skipped if Free Flag 非 is set.
LSF2	701521	The next instruction is skipped if Free Flag 非2 is set.
LCFI	703444	Clear Free Flag \#1
ICF2	703544	Clear Free Flag \#2

Analog-to-Digital Converters
The ADC flags are tested with PDP-9 skip instructions. The converter data is read into the AC and the device flag cleared with an IOT2 instruction.

MNEMONIC	OCTAL CODE	OPERATION EXECUTED
LAD1S	703441	The next PDP－9 instruction is skipped if ADC 非1 flag is set．
LADIR	703452	Clear the $A C$ and load $A C \quad 0-10$ with the contents of ADC \＃1 register． Clear ADC 非 flag．
LAD2S	703541	The next PDP－9 instruction is skipped if ADC ${ }^{1 / 2}$ flag is set．
LAD2R	703552	Clear the AC and load $\mathrm{AC} 0-10$ with the contents of ADC \＃2 register． Clear ADC $\$ 2$ flag．
LAD3S	703641	The next PDP－9 instruction is skipped if ADC \＃3 flag is set．
LAD3R	703652	Clear the AC and load AC $0-10$ with the contents of ADC 非3 register．
LAD4S	703741	The next PDP－9 instruction is skipped if $A D C$ 非 4 flag is set．
LAD4R	703752	Clear the AC and load AC 0－10 with the contents of ADC $\$ 4$ register．Clear ADC \＃4 flag．
Multiplying Digital to Analog Converters		
Data on the I／O bus data lines is strobed into MDAC buffer		
registers by the following instructions．		
MNEMONIC	OCTAL CODE	OPERATION EXECUTED
LDA1C	703421	Clear MDAC \＃1 buffer register．
LDAIL	703422	Load IDAC \＃1 buffer register with AC 0－11．
LDA2C	703521	Clear MDAC \＃2 buffer register．
LDA2L	703522	Load MDAC \＃2 buffer register with AC 0－11．

M ${ }^{\text {N }}$	OCTAL CODE	OPERATION EXECUTED
LDA3C	703621	Clear MDAC \＃3 buffer regaster．
LDA3L	703622	Load MDAC \＃3 buffer register with AC 0－11．
LDA4C	703721	Cleax MDAC $⿰ ㇒ ⿻ 二 丨 冂 刂 4^{\text {buffer }}$ register．
LDA4L	703722	Load MDAC \＃4 buffer register with AC 0－11．
Data in a buffer register is jam－transferred into its device		
register by either an IOT instruction or by a MECL＂ 1 ＂patched into		
the proper D／A TRANS input in the LOCUST digital patchbay．The		
following instructions are used in buffer－to－device register		
transfers．		
MNEMONIC	OCTAL CODE	OPERATION EXECUTED
LDA1X	703424	Transfer the contents of MDAC \＃1 buffer to device register．
LDA2X	703524	Transfer the contents of MDAC \＃2 buffer to device register．
LDA3X	703624	Transfer the contents of MDAC \＃3 buffer to device register．
LDA4X	703724	Transfer the contents of MDAC \＃4 buffer to device register．

Data－bus Read－in Gates

The six read－in gate inputs in the LOCUST digital patchbay have DEC outputs in the data channel patchbay．These outputs must be connected to DEC gate inputs corresponding to the desired accumulator bits．A read request must also be patched．The data
is read into the $A C$ when the proper IOT instruction is given. A "1" patched in the LOCUST digital patchbay is transferred into the $A C$ as a " 1 ".

OCTAL CODE
702212

OPERATTON EXECUTED
LTR1
Clear the AC and load AC bits selected in data channel patchbay with logic levels patched to read-in gates.

Six-bit Control Register

Data from AC 0-5 is transferred to the control register buffer and then jam-transferred to the output register. A "1" in the AC is' a MECL "I" at the proper output in the LDPB. The output register may be cleared with I/O POWER CLEAR. The following IOT instructions are used for the control register. -

MNEMONIC	OCTAL CODE	OPERATION EXECUTED
LCRC	701641	Clear buffer register.
LCRI	701642	Load buffer with AC 0-5.
LCRX	701644	Jam-transfer buffer contents into output register.

Preset Counters

The 10-bit preset binary counters are used to count LOCUSTgenerated pulses and issue two control pulses. The counter is loaded with the complement of one less than the number of pulses to be counted. The "S" output pulse is 64 input pulse widths wide and is a negative MECL pulse, whose positive transition occurs at the
end of a counting run (See Fig. 12). The " S_{D} " pulse is the same width as the " S " pulse but its positive transition occurs 64 input pulse widths after the end of a counting run. The counters are loaded from the PDP-9 and start counting as soon as input pulses occur. For " S_{D} " to be issued the input pulses must continue to occur for at least 64 pulses after the " S " pulse has been issued. There are two preset counters in LOCUST that are loaded from the PDP-9. The following instructions are used.

INEMONIC	OCTAL CODE		OPERATION EXECUTED
LCN1C	701542		Clear counter \#1
LCN1L	701544		Load AC 0-9 into counter \#1
LCN2C	701522		Clear counter \#2
LCN2L	701524		Load AC $0-9$ into counter \#2

Free IOT Signals

Three pulses are available from the PDP-9 which are outputed
in the LDPB. The following instructions are used.
MNEMONIC OCTAL CODE OPERATION EXECUTED
LPI 701621 A 1 sec pulse is generated at event time 1.

LP2	701622	A I $\mu s e c ~ p u l s e ~ i s ~ g e n e r a t e d ~ a t ~$ event time 2.
LP4	701624	A 1 $\mu s e c$ pulse is generated at event time 3.

TABLE 1

IOT INSTRUCTIONS

MNEMONIC	OCTAL CODE	OPERATION EXECUTED
LAD1S	703441	Skip if ADC \＃1 flag is set．
LAD1R	703452	Read ADC \＃1 and clear flag．
LAD2S	703541	Skip if ADC \＃2 flag is set．
LAD2R	703552	Read ADC 非2 and clear flag．
LAD3S	703641	Skip if ADC \＃3 flag is set．
LAD3R	703652	Read ADC 险3 and clear flag．
LAD4S	703741	Skip if ADC 非4 flag is set．
LAD4R	703752	Read ADC \＃4 and clear flag．
LDA1C	703421	Clear MDAC \＃l buffer register．
LDALL	703422	Load MDAC \＃1 buffer register．
LDAIX	703424	Load MDAC \＃1 device register．
LDA2C	703521	Clear MDAC $\# 2$ buffer register．
LDA2L	703522	Load MDAC 境 buffer register．
LDA2X	703524	Load MDAC \＃2 device register．
LDA3C	703621.	Clear MDAC \＃3 buffer register．
LDA3L	703622	Load MDAC \＃3 buffer register．
LDA3X	703624	Load MDAC \＃3 device register．
LDA4C	703721	Clear NDAC \＃4 buffer register．
LDA4L	703722	Load MDAC \＃4 buffer register．
LDA4X	703724	Load MDAC \＃4 device register．

TABLE 1 continued

MNEMONIC.	OCTAL CODE	OPERATION EXECUTED
LSFI	701541	Skip if Free Flag \#l is set.
LCF1	703444	Clear Free Flag \#l.
LSF2	701521	Skip if Free Flag 非2 is set.
LCF2	703544	Clear Free Flag \#2.
LCN1C	701542	Clear counter \#1.
LCN1L	701544	Load counter \#1.
LCN2C	701522	Clear counter 非2.
LCN2L	701524	Load counter $\$^{\text {a }}$ 2.
LCRC	701641	Clear control register buffer.
LCRL	701642	Load control register buffer.
LCRX	701644	Load control register output register.
LP1*	701621	Issue IOT1.
LP2	701622	Issue IOT2.
LP4	701624	Issue IOT4.
LTR1	702212	Read LOCUST read-in gates.

APPLICATION

The LOCUST / PDP-9 interface operation was demonstrated using a program written by Emmett Pearse 0^{\prime} Grady ($\left.0^{\prime} G r a d y, ~ 1969\right)$. This section is based on his dissertation and serves only to demonstrate hardware operations, not a novel program.

Amplitude Distributzon Measurement Example
In many hybrid-computer applications we compute statistics of a random process (Korn, 1966). Averaging, correlation'studıes, and amplitude distribution analysis are typical examples. This section describes a program used to study the amplitude distribution of a voltage waveform available on the analog-computer patchbay. Our solution illustrates the use and programming of the program interrupt facility and demonstrates an interesting real-time display technique made possible by the program interrupt.

Statement of Problem

The problem can be stated as follows: given a voltage $x(t)$ on the analog-computer patchbay with amplitude in the range $|x(t)| \leq 10$ volts, compute and display the amplitude distribution of $x(t)$. The amplitude distribution curve is a histogram with equal-width class intervals which represent the voltage range -10 volts $\leq x \leq 10$ volts.

A suitably scaled amplitude distribution curve is an estimate of the probability density function of $x(t)$.

Method of Solution

This problem involves both computing and displaying the amplitude distribution curve. The curve is computed in the form of a histogram with 400_{8} equal-width class intervals; the column heights are stored in an array (400_{8} memory locations) labeled HISTO. The histogram is computed as follows:

1. An analog-computer track/hold circuit samples $x(t)$, and holds it for A / D conversion.
2. The sampled voltage is converted to digital form and read into $A C 0-10$, using the program interrupt facility. The eight most significant bits establish the class interval within which the sample falls and, when added to the address of the fixst memory location in the array HISTO, specify the address of the memory location holding the column height of that class interval.
3. The column height specified by the sample's class interval is incremented and step (1) is repeated.

The samplang process is repeated until the number of samples falling in any one interval equals 3777_{8}, the largest number that can be displayed by the MDACs. The curve is displayed with the aid of two MDACs as an X-Y oscilloscope plot. The X-MDAC output voltage sweeps through 4008 states corresponding to the class intervals; the Y-NDAC
output voltage is proportional to the number of events falling within each interval. The X and Y MDACs are updated simultaneously.

A large percentage of the time required to compute the histogram is taken up by A / D conversions during which the digital computer is idle. By taking advantage of the PDP-9 program interrupt facility, our program uses this idle time to provide a dynamic display of the histogram as it builds up. The main program is a display routine which provides a complete display of the histogram approximately every 6.5 msec . This program is interrupted whenever the A / D converter completes a conversion, approximately every $100 \mu \mathrm{sec}$ depending on $A D C$ word length. Word length should be 8-bits or longer for best display. The total number of samples required depends on the amplitude distribution under study.

Figure 21 presents a flow chart of the solution procedure Table 2 lists the PDP-9 program, and Fig. 22 illustrates analogcomputer patching.

Results

The method of solution described above was evaluated by obtaining amplitude-distribution curves for a square wave, a sine 'wave, a triangle wave, and for Gaussian noise. Figures 23 to 26 . present typical curves obtained in each case; these curves agree in form with expected results.

Fig. 21 Flow Chart for Amplitude-distribution Example

TABLE 2 HISTOGRAM

```
/THIS PROGRAM IS ISEN TO GFVERATE A
/HISTOGRAM. DATA IS OBTAINED FROM THE
/ADC IJING THE PROGRAM INTERRUPT FACI-
/LITY THE PROGRAM IS A MODIFICATION
/OF THE PROGRAM IN O'GRADY'S THESIS
/TY RUN ON LOCIST.
/
RESTR NOP /ALLOWS RESTART.
/
/INITIALIZATION ROUTINE
/
SETUP CAL /SET UP HANDLER TO
    16 /SERVICE ADC#1 THRU
    7Q3441 /PROGRAM INTERRUPT.
    A2DFLG
    DRK
    LAC (JMP TAGI) /ALLOWS RESTART TO
    DAC RESTR /JMP AROUND SETUP.
/
TAG1 LAC (4बagag /CLEAR, LOAD,AND
        701647 /TRANSFER CONTROL
        /REGISTER BIT \emptyset
        ITO PLACE A "1" IN
        /EXT. CP TO START
        /COMPUTE PERIOD.
/ 7@3452 /CLEAR ADC#1 FLAG.
        LAC (NZM HISTO) /CLEAR THE ARRAY
        Dac Clear /labeled "histo."
        LAW - 400
        IAC COUNT#
CLEAR XX
        IS7. CLEAR
        ISZ COUNT
        JMP CLEAR
/
    ION /TURN PION.
/DISPLAY ROUTINE
/
BEGIN #ZM X# /PREPARE FOR
    LAC (LAC HISTO)/DISPLAY OF BIRST
    DAC YLOC /COLUMN OF HISTOG.
YLOC XX /GET VALUE OF Y.
    7@3623 /LOAD Y (MDAC#2)
    /BUFFER REGISTER.
    ISZ YLOC /COMPUTE NEXT YLOC.
```

TABLE 2 continued

```
    LAC X /GET VALUE OF X.
    703723 /LOAD X (MDAC#3)
    /RUFFER REGISTER.
    /TRANSFER X.
    /TRANGFER Y.
    /COMPIJTE NEXT X.
    /CHECK FOR X(MAX).
    /REINITIALIZE
    /STORE NEXT X.
/START DISPLAY OF
/NEXT COLUMN OF
/HISTOGRAM.
/
/INTERRIJPT ROUTINE
/
AL DFLG DAC SAVEAC#
    703452
    XOR SIGN
    CLL
        LRS 12
        TAD (HISTO)
        DAC TEMP
        LAC* TEMP
        TAD I NCRY
        DAC* TEMP
        SAD YMAX /CHECK FOR OVERFLOW
        JMP . +7
        LAC* (0) /GET RETURN LOC.
        NAC RETIJRN#
        ILAC SAVEAC /RESTORE AC.
        ION /TURN PI BACKON.
        DRR
        JMP* RETIJRN /RETURN TOMAIN PGM
        LAC (Q
        701647
        JMP .-10
/
/CONSTANTS
/
HISTO .BLOCK 4Oด /RESERVE 40ด(OCTAL)
LOCATIONS FOR
```


TABLE 2 continued

```
TGMP ब
INCRY 1のब
YMAX 3777&&
INCRX 1a^a
XMAX 40,वृ\varnothing
SIGN . 40a@ga
    - END RESTR
```


Fig. 22 Analog Patching for Amplitude Distribution Problem

Fig. 23 Amplitude Distribution of Square Wave

Fig. 24 Amplitude Distribution of Sine Wave

Fig. 25 Amplitude Distribution of Triangle Wave

Fig. 26 Amplitude Distribution of Gaussian Noise

CONCLUSIONS

The design and test of the LOCUST/PDP-9 interface was completed with satisfying results. An application problem was run which demonstrated some of the data transfer and control capability of the interm face. Noise measurements were made and it was found that the noise level in the analog patchbay, measured at the output of an unused amplifier, was not significantly increased by the addition of the interface. The peak noise level remains less than 5 mv .

It has thus been shown that it is possible to interconnect a digital computer with a high ambient noise level to a machine that uses fast integrated circuit logic operating with small logic level swing in a low noise environment. This is encouraging and suggests new opportunities of system additions to the PDP-9. Already a floating point arithmetic unit, built with MECL II, is being designed for the PDP..9.

In the process of designing and building an interface many desirable additional features become apparent. A faster analog-todigital converter would be a welcome addition to the interface. Automatic Priority Interrupt (API) would also make the interface more powerful. A data channel interface, presently being built, will transfer data directly to and from the core memory of the PDP-9. This will greatly increase data transfer speed and save programming effort and storage. Future users will recognize needs and solutions to improve this hybrid combination.

REFERENCES

Conant, B.K. "The Design of a New Solid State Electronic Iterative Differential Analyzer Making Maximum Use of Integrated Circuits," Ph.D. Dissertation, Department of Electrical Engineering, University of Arizona, 1968.

Eddington, D.C. "The Design of a Multiplying Digital-to-Analog Converter for Wideband Hybrid Computation," M.S. Thesis, Department of Electrical Engineering, University of Arizona, 1969.

Goltz, J.R. "An Economical Analog-to-Digital Converter System for Hybrid Computation," ACL Memo No. 147, University of Arizona, May, 1968.

Korn, G.A. Random-Process Simulation and Measurements, McGraw-Hill Book Company, New York, 1966.

Korn, G.A., and T.M. Korn. Electronic Analog and Hybrid Computers, McGrav-Hill Book Company, Nev York, 1964.

Logic Handbook. Digxtal Equipment Corporation, Maynard, Massachusetts, 1968.

O'Grady, E.P. "Design, Test, and Application of a Hybrid Computer Interface," Ph.D. Dissertation, Department of Electrical Engineering, 1969.

PDP-9 Interface Manual, Digital Equipment Corporation, Maynard, Massachusetts, 1968.

PDP-9 User Handbook. Digital Equipment Corporation, Maynard, Massachusetts, 1968.

University of Arizona, Department of Electrical Engineering, CSRL Memo No. 215, 1969.

