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Abstract 

A poss ib le  publ ic-key c iphe r  is descr ibed and i t s  s e c u r i t y  a g a l n s t  

var ious c r y p t a n a l y t i c  a t t a c k s  is considered. 

1. In t roduc t ion  

I n  t h i s  paper ,  we desc r ibe  a poss ib le  public-key cipher .  I t  1s a 

modif icat ion of the  publ ic-key c ipher  t h a t  was proposed by t h e  a u t h o r  

[2] i n  Apri l  1985, was broken by Berkovl ts  [l] i n  August 1985, and was 

broken independent ly  by James, Lid?., and Nleder re i te r  131 i n  October 

1985. 

This  modified c i p h e r ,  l i k e  the  o r i g i n a l ,  i s  a block s u b s t i t u t i o n  

cipher t h a t  o p e r a t e s  on b inary  messages. With t h i s  c ipher ,  for a s u i t -  

a b l y  l a r g e  value of  n, n-blocks of binary d i g i t s  a re  i d e n t i f i e d  w i t h  

elements of the  f i n i t e  f i e l d  GF( 2"), and elements of GF( 2") a r e  enc i -  

phered by means of a permutat ion of GP(2") whose publ ic  d e s c r i p t i o n  Is 

a s  a polynomial f u n c t i o n  on GF(2n) which has  a very high degree but  

only a few terms. 

we cons ider  s e v e r a l  poss ib l e  c ryp tana ly t i c  a t t a c k s  aga ins t  the  

cipher. The most obvious a t t a c k  c o n s i s t s  of solving the polynomial 

equations of h igh  degree over  GF( 2") which r e l a t e  corresponding n-blocks 

of p l a i n t e x t  and c i p h e r t e x t .  Another poss ib le  a t t a c k  c o n s i s t s  of so lv-  

ing the  system of polynomial equat ions of high degree over GF(2") t h a t  

expresses  the pub l i c  key f o r  the  enciphering permutation i n  terms of 

s ec re t  t rapdoor  Information about t h i s  permutation. 
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For each c ryp tana ly t i c  a t t a c k  t h a t  we consider, vie give an est l -  

mate of the amount of computation required a s  a function of the c i -  

pher 's  block-length n. The est imates  f o r  a l l  but one of the attacks 

a re  based on f a i r l y  comDlete and sa t i s fy ing  analyses of the a t t a c k s  i n  

question. Unfortunatley, however, for the a t tack by solving the system 

of  equations t h a t  expresses  the publlc key i n  terms of trapdoor lnfor-  

mation, the e s t ima te  is based only on ind i r ec t  evidence obtained by an 

ana lys i s  of a s l m D l e r  r e l a t e d  system of equations. This a t t ack  w i l l  

require fu r the r  study, perhaps with the a id  of a computer a lgebra sys- 

tem. On the basis of the est imates  of the amounts of computation re- 

quired by the var ious c ryp tana ly t i c  a t t acks ,  it appears t h a t  the cipher  

provides adequate s e c u r i t y  with a block-length of n 2 150. 
This paper is organized a s  follows. I n  section 2 below, we de- 

scribe our modified cipher.  I n  sect ion 3, we prove tha t  the enclpher- 

lng and deciphering permutations used i n  the cipher are  indeed mutually 

inverse permutations. I n  sec t ions  4 - 6, we describe various methods 

of cryptanalyzing the cipher  and we estimate the amounts of Computation 

required by these methods. F ina l ly ,  In  section 7, we summarize these 

estimates and use them t o  determine a sui table  block-length f o r  t he  

cipher. 

2 .  Description Of the ClDher 

O u r  cipher i s  designed t o  encipher binary messages. Each such 

message is  encibhered one n-block a t  a time, for a specified block- 

length n, by s u b s t i t u t i n g  f o r  each plaintext  n-block I a corresponding 

ciphertext  n-block y which is  g i w n  by y = P ( x ) ,  where P Is a Certain 

kind of permutatlon of the set  of a l l  binary n-blooks. 

Because of the p a r t i c u l a r  form of the enciphering permutations 

used i n  the cipher ,  the block-length n must be an integer f o r  which 

there e x i s t  i n t e g e r s  6, Y, and /3 such tha t  n = 2 8  and 6 = 2y = 38- 
Note t h a t  an i n t e g e r  n s a t i s f i e s  t h i s  requirement I f  and only If n Is 
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a multiple of 12. I n  the following, n, 8, y, and are understood t o  

be a s  ju s t  described. 

For the operat ion of t he  cipher, the s e t  of a l l  binary n-blocks 

must be Iden t i f i ed  i n  some specif ied way with. the f i n i t e  f i e l d  GF(2"). 

Tbsn the public d e s c r i p t i o n  of the enciphering permutation P c o n s i s t s  

of a 16-tem polynomial formula f o r  P having the form 

The c o e f f i c i e n t s  Pgh in t h i s  formula are  publicly revealed elements of 

GF(2") which c o n s t i t u t e  the public key f o r  P. 

Although P is a polynomial function of very high degree, P( x) can 

nevertheless be computed q u i t e  e f f i c i e n t l y  for each x E GP(2"). 

way t o  do t h i s  is t o  use formula ( 2 . 1 )  wri t ten i n  the form 

O m  

and t o  compute the powers of x of 

by doing k successive squarings.  

t o t a l  of jus t  (11/12 In squarings,  

i n  GF(P). 

k 
the form 2 spearing i n  t h i s  formula 

Computing P(x) t h i s  way r e q u i r e s  a 

2 0  multiplications,  and 15 add i t ions  

P(x) can ba computed even more e f f i c i e n t l y  by using m a t r i X - V e C t O r  

mult lpl lcat ion to compute var ious quan t l t i e s  which a re  the values of 

l i n e a r  funct ions on GF( 2"), where GP( 2") is regarded a s  a vector  space 

over Its  amallest  sub f i e ld  GF(2). To compute P(x) t h i s  way, first 

compute the q u a n t i t i e s  uo, .. . , u3 and vl, Vz1 v3 given by 

% = & Pgh x ? ~ ~ + ' ,  f o r  h = 0, ..., 
S= 

and vh = x2Yh, t o r  h = 1, 2 ,  3. Each of these quan t i t i e s  l a  a GP(2)- 

l i n e a r  funct ion of I, and so can be computed by doing a s ingle  matrix- 

vector mul t ip l i ca t ion  involving an n x n matrix over GF(2) and an n- 

element w c t o r  over GF( 2 ) .  Then compute P( x) by using the formula 
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Computing P(x)  t h i s  way r e q u i r e s  a t o t a l  of j u s t  7 matrix-vector multi-  

p l i ca t ions  over GF( 21, together  with 4 multiplications and 3 a d d i t i o n s  

i n  GF( 2"). 

For the cons t ruc t ion  of enciphering permutations, GF(2") and Its 

subfield GF(2') are regarded as vector spaces, of dimensions 4 and 2 

respect ively,  over t h e i r  common subfield CP(2y). 

phering permutation, one f i r s t  chooses a t  random two secret  bases al, 

...* a4 and bl* ..., b4 of GF(2") over GP(2y). 

basis el ,  e2 of GF(26) over GP(2y). 

s ec re t  and can be chosen t o  be whatever is  most convenient. The  se- 

quence a l ,  ..., 84' bl, ..., b4, e l ,  e2 formed by these three bases 

aons t i t u t e s  secret trapdoor Information about an enciphering pennuta- 

t i on  P t h a t  i s  s p e c i f i e d  by t h i s  sequence. We rill c a l l  t h i s  sequence 

a trapdoor sequence f o r  the permutation P.  

To construct an enci-  

One also chooses a 

This last basis need not be kept 

This permutation Is constructed as follows. F l r s t ,  l e t  91 and S2 

be the GF(2?r)-llnear func t ions  from GF(26) Into GF(2") such t h a t  S,(ej)  

= a J  and 3 ( e  ) = aj+2, for j = 1, 2. Next, l e t  T I  and T2 be t he  GF(2 

l i n e a r  funct ions from GF(2n) i n t o  GF(2&)  such that 

Y 

2 3  

f o r  j = 1, 2 

Ti(bJ) = { e J '  0, f o r  j = 3 ,  4 

and 

Tz (bJ )  = 0, f o r  j = 1, 2 i CJ-2' for j = 3, 4. 

6 
Final ly ,  l e t  M be the permutation of CP(2') given by 

(2.2) M(X) = X2 +'. 
Then the enciphering permutation P specified by the trapdoor sequence 

a l ,  ..., a4* bl, ..., b4, e l *  e2 Is the function from GF(2") i n t o  

CP( 2") given by 

P(x) = S1MT1(I) + S2MT7( X). ( 2 . 3 )  
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Here and in the following, we denote the composition OZ two or more 

functions by the juxtaposition of their symbols. Thus, for i = 1, 2, 

SlHTi(X) = Si~MoTi(x) = SI(M(Tl(X))). 

we note that the enciphering permutation P just described does 

not determine a unique trapdoor sequence whiah specifies it. Indeed, 

It can be shown that for each enciphering permutation, there are a very 

large number of trapdoor sequences which specify it. 

For the public description of the enciphering permutation P de- 

scribed above, P must be expressed as a polynomial function. To do 

this, first the functions Si and Ti are expressed as polynomial func- 

tions. The functions Si are given by the polynomial formulas 

(2.4) Si(x) = al0x + allx 2 y  , 
where the coefficients aik are the elements of CF(2") uniquely deter- . 

mined by the system of linear equations 

aioej + aiiej zY = si(ej), for j = 1, 2.  

The functions Ti are  given by the polynomial formulas 

where the coefficients bik are the elements of GF(2") uniquely deter- 

mined by the system of linear equations 

Once the elements aik and bik have been determined, the enciphering 

permutation P Is given by the polynomial formula 

efflcients Pgh are given by 

where bl,-l = bi,3, for I = I, 2. 

(2.1), where the co- 

We note that this polynomial formula for P can be derived by sub- 

stituting the polynomial formulas (2.41, (2.51, and (2.2) for the func- 

tions .Sl, Ti, and k! into formula ( 2 . 3 )  and expanding the resulting 
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erpression f o r  P ( x )  as a polynomial i n  I, taking Into account t h a t  re- 

peated squarings are automorphlsma of GF(2"), and using the i d e n t i t y  

3" = x t o  reduce the  degree of t h i s  polynomial t o  l e s s  than 2". we 

alao note that the c a e f f i c i e n t s  alk and bik in the polynomial formulas 

(2.4) and ( 2 . 5 )  f o r  the funct ions S1 and Ti m u s t  be kept s e c r e t  because 

a trapdoor sequence f o r  P can be computed from them qui te  easily.  

To decipher a message which has been enciphered us ing  the enc i -  

phering permutation P, each ciphertext  n-block y is replaced b y  the 

corresponding p l a i n t e x t  n-block x which is given by x = P ' l ( y ) ,  where 

P - l  is the Inverse of the permutation P. To obtain a formula f o r  the 

deciphering permutatlon P'l,  one must know a trapdoor sequence al, ..., 
a4, bl, ..., b4, el, e2 f o r  p .  

t h i s  trapdoor sequence as follows. 

functions from GP(2') i n t o  GF(zn) such that Ul(ej) = bJ and U 2 ( e j )  = 

The permutatlon P'l 1s spec i f i ed  by 

Let U1 and U2 be the G F (  21()-linear 

Y f o r  j = 1, 2. Let  V1 and V2 be the CF(2 )-l lnear funct ions from bj+2 
CF(2") i n t o  GF(2') such t h a t  

V l ( a j )  = ej, for j = 1, 2 I 0 ,  for  3 = 3, 4 

and 

V 2 ( a j )  = 0, f a r  j = 1, 2 1 eS-2, for j = 3, 4. 

Final ly ,  l e t  M-' be the inverse of the permutation M of  GF(2'}, which 

means t h a t  M'' i s  given by 

M ' ~ ( , Y )  = yE, (2.7) 

where E = 2@-1(228 + 2@ - 1). Then the deciphering permutation P" 1s 

given by 

P'l(Y) = U I H - l V l ( Y )  + U2M"V2(y) ,  

Like the func t ions  % and T i ,  the functions Ui and Vi can be ex- 

pressed as  polynomial funct ions.  

polynomlal formulas 

The functions Ui are given by the 
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where the c o e f f i c i e n t s  Cik a r e  the elements of GF(2") Uniquely d e t e r -  

mined by the system of  l inear  equations 
cioej + ci le j  2"/ = v1(e j ) ,  f o r  j = 1, 2. 

T h e  functions Vi are given by the  polynomial formulas 

(2.10) 

where the o o e f f i c i e n t s  dik are  the elements of GP(2") uniquely d e t e r -  

mined by the s y s t e m  of linear equations 

T h e  coe f f l c i en t s  cik and dik in the polynomial formulas ( 2 . 9 )  and 

(2 .10 )  f o r  the func t ions  Ui and Vi can be regarded as a sec re t  private 

key f o r  the deciphering permutation P- l .  

P"(y) can be computed f o r  each Y E GF(2") by using formula (2 .8)  

together r l t h  the polynomial formulas (2 .91 ,  (2.101, and (2.7) f o r  the 

functions U i ,  Vi ,  and M-'. An e f f i c i e n t  way of doing t h i s  l a  based on 

the following formula : 

where dl ,-1 = d i , 3  and ol = n/12. 

t h i s  formula, first compute the q u a n t i t i e s  z1 and z2 given by zi = 

M - l V l ( ~ )  by using the above formula and computing the powers of y of 

the form y2 

Then comDute the q u a n t i t i e s  U i (  z i )  by using the polynomial formulas 

( 2 . 9 )  fo r  the func t iQns  Ul  and again computing powers of the zi by re- 

peated squarlng. F i n a l l y ,  compute p-'( Y) by adding U1( zl) and U2( z 2 ) .  

computing P-'( y )  t h i s  nay r equ i r e s  a t o t a l  of just  (3/2)n - 1 squarings,  

30 m u l t l p l i c a t i ~ n s ,  2 d i v i s i o n s ,  and 21  addltions i n  GF(2"). 

To compute P - l ( y )  e f f i c i e n t l y  using 

k 
appearing i n  t h i s  formula by doing k successive squarings. 

P"(y) can ke cqmputed even more e f f i c i e n t l y  by making use of  
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matrix-vector m u l t i p l i c a t i o n .  To compute P - l (  9) t h i s  way, first com- 

pute the q u a n t i t i e s  ti, ui,  and vi for I = 1, 2 ,  where these q u a n t i t i e s  
26 -1 , and v i  = V i ( Y )  are given by ti = V , ( Y ) ~ ~ ~ - ~ ,  ui = v I ( y )  228-1 

Each of these q u a n t i t i e s  I6 a GF(2)-linear function of y, and so can 

be computed by doing a s i n g l e  matrix-vector multiplication over GF(2). 

Next, compute the q u a n t i t i e s  w1 and w2 given by w1 = M'lVl(s) = 

tluI/vI. 

Ui(wi) Is a GF(2)- l inear  funct ion of wi ,  and so can be computed by 

doing a s ingle  matrlx-vector mult lpl icat lon over GF( 2 ) .  Fina l ly ,  com- 

pute P"( y )  by addlng U 1 ( w l )  and U 2 ( v r 2 ) .  

requires a t o t a l  of j u s t  8 matrix-vector multlpllcations over GF( 2)  , 
together with 7 m u l t i p l i c a t i o n s ,  2 divisions,  and 1 addi t ion I n  GF(2"). 

For the s e c u r i t y  of the cipher,  the trapdoor sequences used should 

Then compute U 1 ( w l )  and U 2 ( w 2 ) .  For each I ,  the q u a n t i t y  

Computing P"( Y) t h i s  r a y  

be such t h a t  a l l  the c o e f f i c i e n t s  pgh, aik, blk, elk, and dik In t he  

polynomial formulas (2.11, (2.41, (2 .51,  (2.91, and (2.10) f o r  t he  

functions P ,  Sl, T i ,  Ul, and Vi are  nonzero. 
Y 

I t  can be shown that, 

given any basis el, e2 of ~ ~ ( 2 s )  over GF(2 1, i f  elements a l ,  ..., a49 

bl, . . . , b4 are chosen a t  random from GF( 2"), then it is  v i r t u a l l y  

ce r t a in  t h a t  a l ,  ..., a 4  and bl,  ..., b4 will both form bases of GF(Zn) 

over GP(ZT) and t h a t  the sequence a l ,  ..., a4, bl, ..., b4, el, e2 w i l l  

form a trapdoor sequence t h a t  s a t l s f l e s  the securi ty  requirements j u s t  

stated.  

3. I n v e r t i b i l i t y  of the enciphering and deciphering permutations 

We now show t h a t  the enciphering and deciphering permutations 

given by formulas ( 2 . 3 )  and (2.8), respectively,  are indeed mutually 

Inverse permutations of GF( 2"). 

Since the i n ~ ~ t l b i l i t y  of  these functions depends on the lnve r t -  

i b i l i t y  of the funct ion M given by formula ( 2 . 2 1 ,  we f i r s t  i n d i c a t e  

why t h i s  funct ion is  a permutation of GF(2 ) and why M" is given by 

formula (2.7) .  

8 

U s i n g  the  Euclidean algorithm and the r e l a t i o n  6 = 3g, 
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it can be ca lcu la t ed  t h a t  g ~ d ( 2 ~  - 1, 2g + 1) = 1. 

numbers 6 s a t i s f y i n g  the  congruence ( 2 8  + 1 ) E  C 1 mod(2' - 1). 

any WsitLve s o l u t i o n  of  t h i s  congruence, then it follows from the 

i d e n t i t y  x2 

M( I)' = 

GF(26), and M-' is given by M"(y) = ye, where E is any pos i t i ve  solu- 

t i on  of the above congruence. I t  follows that U - l  is given by formula 

(2.7)  provided t h a t  the number E appearing i n  t h i s  formula satisfies 

the condition just given. The Euclidean algorithm oalculat ions men- 

tioned above can be used t o  f ind  a l l  the solutions of the Congruence 

above. Of these s o l u t i o n s ,  the least posit ive one is exact ly  the num- 

ber E = 2@-1(22g + 2@ - 1) appearing i n  formula (2.7). 

indeed given by formula (2.7) .  

Hence the re  ex i s t  

If E 1s 

6 
= 1, which is s a t i s f i e d  by a l l  nonzero x E GF(2'1, that 

= x f o r  a l l  x E GF(2'). Thus U is a permutation of 

Thus I4-l 1s 

P m ~ o s i t l o n .  The enclnhering function P given by formula (2.3 

is a permutation of GF(2") and the inverse of t h i s  pennutation is the 

deciphering func t ion  given by formula (2.8). 

Proof. L e t  Q denote t h e  function on CF(2n) defined by formula 

(2.8). To prove the  proposi t ion,  it suff ices  t o  show t h a t  QP(r) = x 

fo r  a l l  x EGF(P). Let al, ..., a4, bl, ..., b4, el, e2 be a t r ap -  
Y door sequence f o r  P t h a t  s p e c i f i e s  the GF(2 ) - l inear  functions Si, Ti, 

U i ,  and Vi appearing i n  formulas (2.3) and (2.8). 

the G F ( 2 Y ) - m b s ~ c e s  of GF(2") spanned by bi, b2 and by b3, b4, respect-  

i v s l y ,  and l e t  YI and Y2 be the  GF(2y)-subspaces of GF(2") spanned by 

al, a2 and by a3, a4,  respect ively.  Then GP(2") = X1 Q X2 = Y l  @ YE. 

Now suppose that I E CF(2n) I s  given, and l e t  x1 and x2 be the Unique 

elements of X1 and X2, r e spec t ive ly ,  such that x = xl + x2. 

Let X1 and $ be 

Then, for 

1 = 1, 2, 

 TI(^:) = T i ( ?  + 3 )  T i ( 3 1  + T I ( ] c ~ )  = T i ( % ) ,  

where the l as t  e q u a l i t y  holds because T1(+) = T2(X1) = 0 by the def- 

i n i t i o n  of the func t ions  Ti.  Also Ti maps Xi one-to-one onto GF(  2 ) ,  6 
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M Is a permutation of GF(2'1, and Si maps GF(2 6 1 one-to-one onto Yl, 

so SiMT1 maps Xi one-to-one onto Yi .  

have P ( x )  = yl + y2,- with y1 E Yl. 

t ha t ,  f o r  I = 1, 2, 

Thus, l e t t i n g  yi = SiHTl( q), we 
Next, t o  compute Q,P(X). w e  note  

V I P W  = V I ( Y 1  + 9 2 )  = V l ( Y 1 )  + V i ( Y 2 )  * V 1 ( Y i ) ,  

where the las t  e q u a l i t y  holds because V1(Y2) = V2(Y1) = 0 by the def- 

i n i t i o n  of the func t ions  Vi. Hence 

W (  X) = UIM-lVl( Y1) + U2M-lV2( Y 2 )  

= UIM-lVISIMTl ( Xl ) + U2M"V2S2MT~( 9 ) .  
A l s o  both VISi and M'lM a r e  the i d e n t i t y  map on GP(2'), and UiTi  is 

the I d e n t i t y  map on Xi,  SO UIM'lVISIMTI(~I) = xl. 

x €GF(2"), Q P ( x )  = x1 + 5 = X. 

and P" = Q. Q.E.D. 

Hence, f o r  a l l  

Thus P is  a permutation of G P (  2"), 

4. Crntanalysis  by so lv ing  the equation P(x) = Y 

I n  t h i s  s e c t i o n  and the next two sections, vie describe some pos- 

s i b l e  methods of c r y ~ t a n a l y z i n g  our cipher by using public information 

about the enciphering permutation. For each method t h a t  we consider ,  

we give an est imate  of  t he  amount of computation needed. 

The  f i r s t  c r y b t a n a l y t l c  a t t ack  tha t  we consider cons i s t s  of solv- 

ing a given c i b h e r t e x t  message, enciphered using a known enciphering 

permutation P I  by so lv ing  the equation P ( x )  = y f o r  each c iphe r t ex t  

n-block y t o  f i n d  t h e  corresponding plaintext n-block x. We consider 

two methods of  so lv ing  the equation P(x) = y. The first method is an 

exhaustive search procedure,  while the seoond method I s  a lgebra i c  i n  

nature. 

The exhaustive search procedure that we consider f o r  aolving the 

equation P(x) = y depends on the eas i ly  proved Iden t i ty  P(wz) = 

M(w)P(  z ) ,  which holds  for a l l  w E CP(2y) and z E GF(2"). 

t h i s  i d e n t i t y ,  i f  a n o n ~ e r o  z E GF(2") can be found such t h a t  

y/p( z )  E CP( Zy), then t h e  desired n-block I such t h a t  P(X) = 9 1s given 

I n  vier of 
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by x = E- l (y /P (  z ) ) z .  

scribed i f  and only I f  ( ~ / P ( Z ) ) ~ ~  = y / P ( z ) .  

found by an exhaustive search i n  which elements of GF(2") are t e s t e d  

one-by-one un t i l  one Is found t h a t  s a t l s f i e s  t h i s  l a s t  condition. A 

minimal subset of G F ( P )  t h a t  is cer ta in  to contain an element z of 

the desired kind contains  exac t ly  one element of each d i f f e r e n t  subset  

of GF( 2") of the form $ w t :  w E GF( 2y), I f 01, where t is a nonzero 

element of GF(2"). There  a r e  approximately 2(3/4)n such subsets  of 

GF(Zn),  so the  des i r ed  element z can be found a f t e r  a t  most 2(3 /4)n  

t r i a l s .  We w i l l  regard each t r i a l  needed t o  find t h i s  element z as a 

single operation. Then I t  f3llows that a t  most approximately 2(3 /4)n  

operations a re  required t o  solve the equation P(x)  = y by the exhaust- 

i v e  search procedure j u s t  described. 

A non7ero z E GF(2") has the property j u s t  de- 

Such an element z can be 

The second method t h a t  we consider for  solving the equation P(x1 

= 9 Is t o  regard t h i s  equat ion a s  a polynomial equation in x and t o  

solve t h i s  equat ion a lgeb ra i ca l ly .  I t  appears t h e t  the most e f f i c i e n t  

way of doing t h i s  is  t o  use the Euclidean algorithm t o  compute the  

polynomial In x which is t he  g rea t e s t  common divisor  of the polynomials 

P(x)- y and x p  - x. 

P Is a permutatlan of GF(2"), the polynomial P(x) - y has a unique root 

x = r i n  GF( 2 " ) ,  and hence has a unique l i nea r  f ac to r  x - r over 
n 

GP(2"). 

a l l  the l i n e a r  f a c t o r s  x - a ,  with a E GF(2"). 

common d iv i so r  of P ( x )  - y and x2 

x - r such t h a t  x = r Is the desired solution of the equation P ( x )  = y. 

Thus t o  solve the  equat ion P(X) = y, it i s  only necessary t o  compute 

t h i s  g r e a t e s t  common d i v i s o r .  U s i n g  the Euclidean algorithm t o  do 

t h i s ,  the r equ i r ed  number of mult ipl icat ions and divis ions i n  GP(2n) 

is  a t  most aaoroximately ( d e ~ ( P ) ) ~ / i ! .  

t ion P ( x )  = y can be soloed a lgebra i ca l ly  using the method Jus t  de- 

scribed by doing a t  most aparoxlmately 2(11/6)n-1 operations. 

To see what t h i s  accomplishs, note t h a t ,  s ince  

On the o the r  hand, the polynomial x2 - x is the product of 

Hence the g r e a t e s t  
n - x i s  exactly the l i n e a r  f a c t o r  

Thus we conclude t h a t  the  equa- 
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5. CrYDtanalysis by determinlnR a polynom.4al or r a t i o n a l  formula for P" 

Next, we cons ide r  a method of cryptanalyzing the cipher  t h a t  con- 

sists of de te rmining  a formula for the deciphering pe rmuta t im  P" by 

using pub l i c  i n fo rma t ion  about  the enciphering permutation P. We de- 

sc r ibe  two formulas  f o r  P'l t h a t  can be determined t h i s  way. 

formula expres ses  P" as a polynomial funct ion,  while the second f o r -  

mula expresses P'l as a r a t i o n a l  funct ion,  t ha t  is, a s  a q u o t i e n t  of 

two polynomial f u n c t i o n s .  we descr ibe  how each of these formulas  can be 

obtained and w e  g ive  estimates of  t h e  amounts of camputation needed t o  

The f i r s t  

do t h i s .  

F i r s t  , 
ta ined.  I t  

func t ion  of 

P - 9  Y )  

we  describe haw a polynomial formula f o r  P" can be ob- 

can be shown t h a t  P - l  can be expressed a s  a polynomial 

t h e  form 

where the c o e f f i c i e n t s  "k are elements of GF(2"), the  index set  K is a 

subset of the  set  € 0 ,  .. . , 2" - 13 which can be completely s p e c i f i e d ,  

and the  number of  e lements  i n  the s e t  K s a t i s f i e s  zn/3 \ K \  5 2 n/3+2. 

This formula f o r  p'' can be regarded a s  a s y s t e m  of 2" l i n e a r  equa t ions  

which uniquely de te rmines  t h e  c o e f f i c i e n t s  wk i n  the formula. By mak- 

ing the  s u b s t i t u t i o n  y = P(x) i n  t h i s  formula, an equivalent  system of 

2" l i n e a r  equa t ions  can be obtained which have the form 

Note t h a t  t h i s  second system of equat ions can be formulated us ing  only  

publ ic  Informat ion  about  the  enciphering permutation p. Since t h e  

rank of t h i s  second system is the  same as the rank of the o r l g i n a l  

system, which 5s \If\, and s i n c e  \ K \  4 2", it follows t h a t  t h i s  second 

s y s t e m  can be reduced t o  a smal le r  system formed from it by choosing 

any subse t  of \ K \  Independent equations. We w i l l  assume t h a t  such a 

smaller system can be ob ta ined  without any s i g n l f i c a n t  computat ional  

e f f o r t ,  which may w e l l  be t he  case.  Then the determinat ion of  t he  
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c o e f f i c i e n t s  wk i n  t h e  polynomial formula f o r  P" reduces t o  s o l v i n g  

t h i s  smal le r  s y s t e m  of  equat ions .  This  system cons i s t s  of \K\ equa- 

t i ons  i n  )K1 unhowns, so t o  s a lve  it r equ i r e s  a t  most approximately 

IK] 3/3 opera t ions  c o n s i s t i n g  of mul t io l i ca t ions  and d i v i s i o n s  i n  

CF(2"). 

approximately ( p ) / 3  o p e r a t i o n s  t o  solve f o r  the c o e f f i c i e n t s  wk, and 

thus t o  determine a polynomial formula f o r  P-'. 

Hence, s i n c e  Kl >, zn/3, we conclude that it  takes  a t  most 

Next, we d e s c r i b e  how a r a t i o n a l  formula for P'l can be obta ined .  

The r a t i o n a l  formula t h a t  we cons ider  has the same form as t he  r a t i o n a l  

formula f o r  P-l t h a t  is ob ta ined  by expanding formula (2.8) f o r  P"(Y) 

as  a r a t i o n a l  f u n c t i o n  of  y, making use of the polynomial formulas  

(2.9)  and (2.10) f o r  the  func t ions  U i  and Vi described i n  s e c t i o n  2 ,  

and exvress ing  t h e  func t ion  M'l by the r a t i o n a l  formula M'l(y) = y /y , 
where 5 = 2@'l( 2*8 + 2 p )  and 7 = 2P- l .  

j u s t  descr ibed  has t h e  form P - l (  y) = Q( y) /R(  y)  , where Q and R are both 

nonconstant polynomial f u n c t i o n s ,  Q ( 0 )  = 0, and R(y) f 0 f o r  a l l  non- 

zero y e CF( 2"). Furthermore,  I t  can be shown that-  Q and R a r e  gi-n 

by polynomial formulas  having the forms 

The r a t i o n a l  formula for P" 

and 

where the c o e f f i c i e n t s  w ( k )  and w R ( k )  are  elements of  GF(2"), the 

index se t s  KQ and KR are s u b s e t s  of the set [O, ..., 2" - 13 which can 

be comnletely s p e c i f i e d ,  and the  numbers of elements I n  the sets  Kg 

and KR s a t i s f y  2n'3 5 \KQ\ 5 2n'3+3 + 64 and 4 < \ K R \  6 16. Now i f  

the formula P-'(y) = Q ( y ) / R (  y) i s  rewr i t ten  a s  P-'( y)R( y) - Q( y) = 0, 

i f  t he  s u b s t i t u t i o n  y = P ( x )  is  made, and i f  the above polynomial f o r -  

mulas f o r  the f u n c t i o n s  Q and R a re  used, then the r e s u l t  is the  equa- 

t i on  

Q 
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which holds f o r  a l l  x E GF(2"). This equation can be regarded as a 

system of 2" homogeneous l i n e a r  eoustions that are  s a t i s f i e d  by the 

elements wQ(k) and W R ( k )  and that  can be formulated using only publ ic  

Information about the enciphering permutation P.  Conversely, I f  a set 

of elements w (k) and w R ( k )  of GF(2") forms a nonzero solut ion of t h i s  

system of equat ions end I f  the functions Q and B on GF(2") are  defined 

by the polynomial formulas given above, then the function R is not  

i den t i ca l ly  zero and P'l is given by the r a t iona l  formula P"(Y) = 

Q(y) /R(y )  f o r  a l l  y E GF(2") such tha t  R ( y )  f 0. Thus a r a t i o n a l  for-  

mula for P'l can be obtained by fincling a nonzero solut ion of the SYS- 

tem of l i n e a r  equat ions given above, and furthermore such so lu t ions  

ex i s t .  

Q 

Since the rank of t h i s  system of 2" equations is at most 

\IfQ\ + \KR\ - I, which i s  l e s s  than Zn, t h i s  system can be reduced t o  

a smaller system which has the same rank and consis ts  of equations 

chosen from the o r i g i n a l  system. We w i l l  assume t h a t  such a smaller 

system cons i s t ing  of \xQ\ + \ K ~ I  - 1 equations can be ob- 

tained from the o r i g i n a l  system nithout any s ignif icant  computational 

e f f o r t .  

a r a t i o n a l  formula fo r  P'l reduces to solving t h i s  smaller system of 

\IfQ\  + \%\ - 1 l i n e a r  equations In  \K \ + \K,\ unknowns, which takes  

a t  most approximately ( \ K  \ + \$\ ) 3/3 operations. 

IK,1 + I % ] >  2n/3, we conclude that  it takes a t  most approximately 

( z n ) / 3  operat ions t o  determine a r a t iona l  formula f o r  p'l of t h e  kind 

described above. 

Then the  determination of the coeff ic ients  wQ(k) and wB(k) I n  

Q 
Hence, s ince Q 

6. Cryptanalysis by f ind ing  a traDdoor seauence 

The l a s t  method of  cryatanalysis  t ha t  we consider cons i s t s  of 

using the publ ic  key f o r  a given enciphering permutation P t o  d e t e r -  

mine a trapdoor sequence f o r  it. we consider two ways of f i nd ing  such 

a sequence: first by exhaustive search, and second by solving the  



system of equa t ions  (2 .6 )  a lgeb ra i ca l ly .  We descr ibe haw each of  t hese  

approachs might be c a r r i e d  o u t  and we give e s t i n a t e s  of the amounts of 

comuutation required.  

The most e f f i c i e n t  exhaust ive search procedure f o r  f ind ing  a t r ap -  

door sequence f o r  P appears  t o  be as follows. F i r s t ,  choose the  ele- 

ments e l ,  e2 of t h e  sequence t o  be any convenient basis of GF(2S) over 

GF(2y). Next, test one-by-one bases b l ,  ..., bq of G P ( P )  over GF(Zy) 

un t i l  a basis I s  found which is  the b l*  ..., b4 pa r t  of a t rapdoor  

sequence f o r  P whose e l ,  e2 elements a re  the ones Jus t  chosen. To 

t e s t  a given  basis bl* ..., bq f o r  t h i s  property, l e t  the GF(21/)-linear 

func t ions  T1 and T2 be def ined  i n  terms of bl, ..., b4, el ,  e2 as de- 

scr ibed  i n  s e c t i o n  3 ,  end so lve  f o r  the c o e f f i c i e n t s  bik in the  poly- 

nomial formulas f o r  t h e s e  func t lons  given by equation ( 2 . 5 ) .  N e x t ,  

f i nd  a l l  the  s a l u t i o n s  for t h e  elements aik In the system of equa t ions  

( 2 . 6 ) .  Note t h a t  t hese  s o l u t i o n s  can be found by l i n e a r  a lgeb ra ,  s inae  

t h i s  system Is l i n e a r  i n  the aik. 

tem are then  t e s t e d  one-by-one to  determine whether any of them is 

such t h a t  GF(2") can be expressed a s  GF(2") = S1(GF(2')) + S2(CF(2')), 
where S1 and S2 are t h e  GF(2 ) - l i nea r  funct ions from GF(2") i n t o  

GF(2") def ined i n  terms of the  elements aik by formula (2 .3 ) .  Now the  

bas i s  b l ,  ... , b4, uhlch Is bein8 t e s t e d  f a r  t;le property of being the 

b l ,  ..., b4 p a r t  of  a t r audaor  sequence f o r  P whose e l ,  e2 elements 

a rc  the  mes  ahosen. h a s  t h i s  property i f  and only i f  there  e x i s t s  a 

s e t  e lements  aik t h a t  s a t i s f i e s  the system of equat ions (2 .5 )  

and t h a t  s a t i s f l e s  the  cand l t ion  s t a t e d  above. As soon as such a bas i s  

bl, ..., b4 and a s a t  of elements a ik  has been found, a complete 

trapdoor sequence f o r  P e m  be produced. The 01, ..., b4, e l ,  e2  p a r t  

has a l ready  been Qb ta lned ,  and the a l ,  ..., ab per t  of the  sequence is  

given by a J  = s l ( e j ) ,  f o r  1 = 1, 7 ,  and by a j  = S 2 ( e j m 2 ) ,  f o r  j = 3, 4, 

where t h e  f u n c t i o n s  Si are as described above. 

The so lu t ions ,  i f  any, of t h i s  sys- 

Y 

of 

A minimal s e t  qf beses  bl, ..., bb t h a t  i s  c e r t a i n  t o  con ta in  a 
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basis of the desired kind Includes,  f o r  each d i f f e ren t  enciphering 

permutation, exac t ly  one basis t h a t  Is the b l ,  ..., b4 part of a t rap-  

door sequence for t he  permutation whose e , ,  e, elements are the ones 

chosen. I t  can 

l y  23n-3 bases, 

f ind a trapdoor 

acr I bed above. 

A L  

be shown t h a t  such a set of bases contains approximate- 

so a t  m D s t  approximately 2 3 - 3  t r i a l s  a r e  required t o  

sequence f o r  P by the exhaustive search procedure de- 

I t  appears l i k e l y  t h a t ,  for each basis bl ,  ..., b4 

t e s t ed ,  e i t h e r  t he re  is  no solut ion a t  a l l  fo r  the elements aik, o r  

else the basis Is the bl ,  ..., b4 par t  of a trapdoor sequence f o r  P of 

the desired kind and the re  i s  only one solution f o r  the elements alk. 

I n  view of t h i s ,  re w i l l  canslder the testing of a single  basis as be- 

ing a s ingle  operat ion.  Thus we conclude that a t  most approximately 

2%-3 operations a r e  n q u i r e d  t o  find a trapdoor sequence f o r  P by the  

exhaustive search procedure described above. 

Final ly ,  we consider f inding a trapdoor sequence f o r  a given enci- 

phering permutation P by m l v l n g  algebraical ly  f o r  a s e t  of elements 

aik and blk of GF(2") s a t i s f y i n g  the system of equations ( 2 . 6 ) .  

we note the connection between solut ions of t h i s  system of equations 

and trapdoor sequences f o r  P .  

GP( Zn)  s a t i s f i e s  t h i s  system of equations and i f  CF( Zry)-l1near func- 

t i ons  Si and TI from G P ( P )  i n t o  GP(2")  are defined i n  terms of these 

elements by equat ions (2.4) and ( 2 . 5 ) .  respectively,  then P can h ex- 

pressed In terms of these funct ions by equation (2.3).  Furthermore, 

there  e x i s t s  a t r a d o o r  sequence for P which spec l f l e s  these fUnCtlon8 

If and only I f  t hese  funct ions s a t i s f y  the conditions 

F i r s t ,  

I f  a set of elements alk and blk of 

GF(2") = s1(GF(26)) Q S2(GP(26)) = ker(T1) 0 ker(TZ) 

and GP(2') = range(T1) = range(T2).  

l s f y  these condi t ions and if el ,  e2 i s  any basis of GF(26) over GF(2 1 ,  

then a trapdoor sequence f o r  p which specif ies  these functions Is g1-n 

by al, * * * 9  

and, f o r  j = 3, 4,  a j  = S 2 ( e j e 2 ) ,  and where, f o r  j = 1, 2 ,  bJ Is t h e  

I f  the functions Si and TI sat- 
Y 

b l V  * . . T  b4, e l ,  e2, where, for  3 = 1, 2 ,  a d  = S l ( e j ) ,  



80 

u n i q u  element of ker(T2) s a t i s f y i n g  T l ( b j )  = e l ,  and, f o r  j = 3, 4, 
b 

lows t h a t  the system of eauat ions (2.6) has many solutions f o r  t he  

elements aik and bik, since there  Is a d i f f e ren t  solut ion arising from 

each d i f f e r e n t  tramloor sequence for P having f i l e d  el, e2 elements, 

and there a re  perhaps o the r  so lu t ions  as well t ha t  do not a r i s e  from 

any traadoor sequence f o r  p .  we w i l l  assume that a l l  solut ions f o r  

the elements aik and blk do I n  f a c t  a r i s e  from trapdoor sequences f o r  

P. Then, t o  find a trapdoor sequence f o r  P, it su f f i ces  to  f i n d  a 

s ingle  solut ion oi the system of equations (2.6) f o r  the elements aik 

is the  unique element of ker(T1) sat isfying T 2 ( b J )  = eJ-2. It f o l -  l 

and bike 

In order t o  es t imate  the amount of computation requlred t o  solve 

t h i s  system of equations a lgeb ra i ca l ly ,  I t  is  f i r s t  necessary t o  deter- 

mine the most e i f i c i e n t  method of algebraic solution. A s  already 

noted, t h i s  system of equations is l i n e a r  In  the elements aik. 

it appears that t h e  most e f f i c i e n t  way to solve t h i e  system is t o  first 

simplify it as much as possible  by eliminating these unknowns. This 

I s  exact ly  the  method t h a t  uas used by Berkovits and by James, L i d l ,  

and Nlede r re l t e r  t o  solve the corresponding system of equations asaoa- 

i a t ed  wlth the o r i g i n a l  vers ion of our cipher. It was i n  t h i s  way t h a t  

they broke t h a t  c inher .  

Hence 

For the system of equations (2.6), there are many posslble ways 

i n  which the unlmoms air can be eliminated, and each of these ways 

must be t r i e d  i n  order  t o  find the best way of  simplifying the system. 

Unfortunately, to t r y  a l l  t hese  ways would require a forbidding amount 

of camputation, although it could probably be done f a i r l y  e a s i l y  Using 

a su i t ab le  computer algebra system. To get around these d i f f i c u l t i e s  

In  analyzing t h i s  system of equations,  we consider instead a d i f f e r e n t  

system of equat ions that presumably require8 l e s s  computation t o  solve. 

T h i s  system of equations is associated with a c l a s s  of permutations of 

GP( 2”) t h a t  are somewhat simpler than the enciphering permutations used 
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i n  our ciaher  but which have the same general structure.  These simpler 

permutations are obtained by modifying the enciphering permutation con- 

s t ruc t ion  described i n  sec t ion  2 by changing the relat ionship between 

6 and Y from 6 = 2Y t o  8 = Y. The e f f ec t  of t h i s  change 1s t o  convert 

the polynomial formulas (2 .4 )  and ( 2 . 5 )  f o r  the functions S i  and Ti 

from 2 t e rns  t o  1 term and from 4 terms to  2 terms, respectively.  

The r e s u l t i n g  permutation p i s  then given by a polynomial formula hav- 

iw J u s t  4 terms, r a t h e r  than 16 terms as in our cipher. The system 

of equations t h a t  mrresponds t o  the system of equations (2.6) and t h a t  

r e l a t e s  the polynomial c o e f f i c i e n t s  Pgh of P t o  the polynomial coe f f i -  

Now we aonsider how t h i s  system of equations can be solved. Note 

that, l i k e  the more complicated system of equations (2.61, the above 

system of equations I s  l i n e a r  i n  the unknowns a10 and a20. Hence I t  

appears t h a t  the most e f f i c i e n t  way t o  solve t h i s  system is t o  first 

simplify I t  as much as possible  by eliminating these unlmowns. Of t he  

various uays t o  do t h i s ,  the  best way appears t o  be one that leads 

f a i r l y  d i r e c t l y  t o  a s ing le  polynomial equation B(B1) = 0 of degree 

228 + 1 i n  the s i r q l e  unknown B1 = blo/bll. 

of camnutation r equ i r ed  t o  solve t h i s  equation is a t  l e a s t  the amount 

required t o  compute the g r e a t e s t  camman divisor of the polgnomials 

B(B1) and B12” - B1. 

e t i ons ,  which is approximately d 2 / 3 I n - l  operations. 

amount as our est imate  of the amount of computation required t o  f i n d  a 

trapdoor sequence by solving the system of  equations (2.6) a lgebra i -  

cally.  

I t  appears t h a t  the amount 

This r equ i r e s  approximately deg(R(Bl))2/ 2 opcr- 

We wi l l  take t h i s  

An obvious quest ion n3w a r i s e s .  Since the estimate J u s t  given is 

based s o l e l y  on t h e  p r o p e r t f e s  of the corresponding system of tXlmtlons 

f o r  the slmbler permutations described above, why not use theee simpler 

permutations as enciphering permutations? Unfortunately, t h i s  cann3t 
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be done. The reason f o r  t h i s  i s  tha t ,  for  such enciphering permuta- 

t ions.  the deciahering permutations can be expressed by a r a t i o n a l  

formula corresponding t o  t h e  r a t i o n a l  formula described i n  sec t lon  5 

f o r  the deciphering permutations used i n  our cipher, and there are at 

most 12 terms In t h i s  formula. Thus, as indicated i n  section 5 ,  t h e  

coe f f i c i en t s  i n  t h i s  formula can be determined by Qlng a t  most approx- 

imately 123/3 operat ions.  T h i s  number of operations Is f a r  too amall 

t o  provide any s e c u r i t y ,  and hence the simpler permutations described 

above cannot be used as enciphering permutations. 

7. Summary of the c ryp tana ly t i c  a t t a c k s  and conclusions 

The following t a b l e  summarizes the estimates of the amounts of 

camvutation required by the  various aryptanalyt ic  a t tacks discussed 

in sect ions 4 - 6. 

method of a t t a c k  

1. solving the equation P(x)= y: 

a. by exhaustive search 2 (  3/4)n 

2 (  11/6)n-1 b. a lgeb ra i ca l ly  

2. f inding a formula f o r  P": 

a. polynomial 

b. rational 

3. f inding a tramloor sequence: 

a. by exhaustive search 

b. a lgeb ra i ca l ly  

According b the above t a b l e ,  the mast effect ive a t t ack  

against  our c ipher  is t o  solve algebraical ly  f o r  a trapdoor sequence 

for the enciaherlng permutation. This a t t ack  Is estimated to  r e q u i r e  

at  most 2(2/3)n-1 operat ions,  so the block-length n of the cipher  must 

be chosen so t h a t  t h i s  amount of mmputatlon Is unfeasible. we rill 
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assume , somewhat arb1 t r a r i l y ,  t h a t  the maximum feaai ble amount of 

cornbutation is the number of operations performed by a computer that 

does lo9  operat ions per second f o r  a period of 10 years. 

t o  a t o t a l  of 3 x lo1? operat ions.  W e  multiply t h i s  by a sa fe ty  f a c t o r  

of  1012 t o  a r r i v e  a t  the f i g u r e  of 3 I: 1029 operations as  an unfeasible  

amount of mmDutation. Hence the block-length n must be such t h a t  

2(2’3)n-1 2 3 x l o z 9  C 298. 

length f o r  bur cipher  is n ?  150. 

T h i s  amounts 

Thus we conclude that  a su i t ab le  block- 
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