
A Modification of the Runge-Kutta
Fourth-Order Method

By E. K. Blum

1. Introduction. Consider the system of n first-order ordinary differential

equations,

(i.i) Vk =Mt,yiit),--- ,v»it)), k = i, •••,«,

with the initial values,

(1.2) yk(h) = ak.

Under suitable conditions on the /,-, a unique solution of (1.1) satisfying (1.2)

exists for some interval, í0 S t ¿g b. For example, it is sufficient that the /; be con-

tinuous and satisfy a Lipschitz condition in some neighborhood of the initial point,

(to, ai, • • • , a„). We shall assume that such conditions obtain, so that the initial

value problem (1.1), (1.2) has a unique solution.

To simplify the notation, we define ya = t and /o = 1. We now let y be the

vector, (ya, yi, ■ ■ • , yn), and / the vector-valued function, (/0, /i , • • • , /„).

The initial value problem can then be written as

(1-3) y'=f(y),

(1.4) y(k) = a.

The Runge-Kutta fourth-order method for the numerical solution of (1.3),

(1.4) yields approximate values, y¡, of y on a finite set of points, t¡ = t0 + jh,

j = 1, 2, - • • , m. It is usually summarized in formulas (1.5)—(1.9) below, which

specify the calculations to be carried out for each integration step; i.e. for each

value of j.

(1.5) fci = hfiVi),

(1.6) k2 = hf(yj + ki/2),

(1.7) h - hfivj + h/2),

(1.8) fc4 = hfiVi + h),

(1.9) yi+i = y i + (ki + 2k2 + 2k3 + fc4)/6.

A variant of this method was derived by S. Gill [1]. The two advantages of Gill's

variant are (1) in automatic computers, it requires 'in -4- B storage registers

whereas the Runge-Kutta formulas as given above, require An -f- B, where B is

some constant; (2) the computation can be arranged so that rounding errors are

reduced appreciably. In the present paper, we shall show how, by means of a fairly

simple modification of (1.5)—(1.9), both of these advantages can be made to accrue

to the classical Runge-Kutta method. All the constants in this modification are

rational, whereas Gill's variant contains some irrational constants. The modifica-

Received September 18, 1961.

176

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

A MODIFICATION OF THE RUNGE-KUTTA FOURTH-ORDER METHOD 177

tion is achieved by extracting from Gill's method its main virtue, the rather in-

genious device for reducing the rounding error, and applying it to a rearrangement

of (1.5)-(1.9).

2. The Exact Modification. In an automatic digital computer, real numbers are

replaced by what von Neumann and Goldstine [2] call "digital numbers," that is,

by real numbers rounded to a prescribed number of digits. Further, exact arith-

metic operations are replaced by "pseudo-operations" since results must be

rounded. The main advantage of the modified Runge-Kutta formulas to be pre-

sented in Section 3 is that they reduce considerably the rounding error arising

from the unavoidable use of digital numbers and pseudo-operations. The saving of

n storage registers is a secondary consideration in large computers. The same is

true of the Gill variant.

In this section we shall present a preliminary version of the proposed method.

We shall refer to it as the "exact modification" since all operations will be assumed

to be exact operations on real numbers. The form of the exact modification will

demonstrate clearly how the saving of n storage registers is effected.

Using vector notation, as in (1.3)—(1.9), we can write the exact modification in a

recursive form as follows :

f Zo = J y

(2.1) < So = y i,

[Po = hf(zo),

f zi = z0 + Fo/2,

(2.2) \qi = Po,
[Pi = hf(Zi),

Í z2 = zi + Pi/2 - qi/2,

(2.3) \ g2 = çi/6,
[Pi = hf(zi) - Pi/2,

[z3 = z2 + Pi ,

(2.4) \q3 = ?2 - Pi ,
[P3 = hf(z3) + 2Pi ,

(2.5) î/y+i = Zi = z3 + q3 + P3/6.

(Strictly speaking, each of the vectors, z,, g, , P¿, should have a second subscript,

j, to indicate that the sequence (2.1)-(2.5) is repeated for each step of the solu-

tion. This subscript has been dropped for reasons of economy, just as the subscript

which indicates the components of the vectors has been dropped.)

Theorem 1. The exact modification, (2.1)~(2.5), is equivalent to the classical

Runge-Kutta method and requires only Sn + B storage registers.

Proof. To show that (2.1)-(2.5) is equivalent to (1.5)-(1.9), we first observe

that Po = A"i. Then Zi = y¡ + /ci/2, which implies Pi = k2. Since qx = fci ,

it follows that z2 = (yj + fej/2) + k2/2 - ki/2 = y, + k2/2. Thus,

Pi = fcj - ki/2

and g2 = /ci/6. From (2.4), it now follows that z3 = (yj + A-2/2) + (k3 — ki/2) =

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

178 E. K. BLUM

y i -4- k3, and q3 = fci/6 — (fc3 — k2/2), whence P3 = fc4 + 2k3 — k2. Combining

these expressions in (2.5), we get

yi+1 = (Vj + k3) + (^ - h + |) + 1 (h + 2k3 - k2),

yj+1 = y¡ -f - (h + 2ki + 2fc3 + fc4).
o

The order of computation of the components of the vectors zi+1, qi+i, and

P<+i, i = 0, 1, 2, 3, should be as follows. First, compute the components of zi+i

and qi+i together. Each such component involves only the corresponding com-

ponent of Zi, q<, and Pi. Hence, as each component of z<+i and qi+i is computed,

it can be placed in the storage occupied by the corresponding component of z¿

and g,-, respectively. After all components of zi+x and qi+i have been computed,

the components of Pi+i can be computed, replacing the corresponding components

of Pi in storage. Thus, 3n + B storages suffice.

3. The Finite-Precision Modification. In this section we shall consider the

rounding errors which arise in actual computation when digital numbers and pseudo-

operations are used in (2.1)-(2.5). We shall adopt the notation of [2] for digital

numbers, denoting a digital number by a letter with a bar over it, and similarly

for vectors; e.g. y i is a vector having digital numbers as components. However,

we shall not introduce special symbols for pseudo-operations. Instead, we prefer to

write all formulas with exact operations and introduce special terms to denote the

rounding error caused by the pseudo-operations. Besides the usual arithmetic

operations, we require two "shifting" operations. These are best described in-

formally.
For the remainder of this section, let us assume that a digital number is repre-

sented by a sequence of s decimal digits, and that the decimal point is at the ex-

treme left. (The first digit immediately to the right of the decimal point is said

to be in position 1.) For m a non-negative integer, we define the operator, Rm ,

("shift right m places") as follows. If y is a digital number, then Rmy is the digital

number obtained by shifting the digits oî y m positions to the right, "rounding off"

the digits shifted into positions s + 1, ■ • • , s + m, and inserting zeros into posi-

tions 1, • • • , m. The usual method of rounding off is to add (if y ^ 0) or subtract

(if y < 0) the digit "5" in position s + 1, and then drop the digits beyond position

s. The operator, Lm , ("shift left m places") is defined similarly. Thus, Lmy is the

digital number obtained by shifting the digits of y to the left m places, dropping

those digits which are then to the left of the decimal point, and inserting zeros into

positions s — m + 1, • • • , s. When applied to vectors, Rm and Lm are considered

to operate on each of the component digital numbers. If y is a real number, then

we define Rmy = 10~my and Lmy = 10"V

To briefly motivate the formulas to be given below, let us consider the exact

modification, (2.1)-(2.5). If this procedure were carried out with digital numbers

and pseudo-operations, an analysis of the rounding error would show that, under

suitable conditions on the partial derivatives, dfk/dyi, the main source of error is

in the computation of the z,-. The error there arises from the fact that q¡ and P,-

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

A MODIFICATION OF THE RUNGE-KUTTA FOURTH-ORDER METHOD 179

(3.2)

(3.3)

(3.4)

are usually smaller than z¿ in magnitude, since they are of order h. This means that

either qt and P¿ must be computed with fewer significant digits than z<, or else a

shift right must be performed before q¡ and Pi can be added to Zi. In either case

an appreciable rounding error is incurred. The procedure explained below reduces

this particular error. We shall refer to it as the "finite-precision modification" of

the Runge-Kutta method to emphasize that it is designed for actual computation

with digital numbers having a "finite precision" of s places. The finite-precision

modification is derived from the exact modification by introducing the special

quantities, r,-, as in Gill's formulas. To facilitate the error analysis, we shall write

the finite-precision modification first with real numbers and exact operations,

(3.1)-(3.5), and then with digital numbers and error terms, (3.1)-(3.5).

zo = y i,

(3.1) \ Lmq0 = Lmqtj,

[LnPo^ (LJl)f(Zo),

n = Pm(|LmP0 — Lmq0),

Zi = 20 + n ,

Lmqi = 3Lmri — (\LmP<¡ — Lmqa),

L„Pl = (LJl)f(Zi),

Ti = Rm(?(LmPi — Lmqi)),

Zi = Zi + Ti,

Lmqi = —Lmri — 3Lmqi -f- ^LmPi,

Ln/Pi = (LJi)f(z2) - $LJPi ,

r3 = Rm(LmP2),

Zi = Z2 + r3,

Lmq3 = —Lmr3 + Lmq2,

LmP3 = (LJi)f(z3) + 2LmPi,

r4 = Rm(\LmP3 + Lmq3),

(3.5) y,+i = Zi = z3 + n,

Lmqi,j+i = 3 [Lmu — (\LmP3 + Lmq3)].

Remark 1. Regarding all operations in (3.1)-(3.5) as exact, we can replace

Rm by 10_m and Lm by 10"\ A straightforward calculation then shows that (3.1)-

(3.5) is equivalent to (2.1)-(2.5).

Remark 2. The quantities, r<, are redundant if all operations in (3.1)-(3.5)

are considered to be exact. They play a significant role only when digital numbers

and pseudo-operations are introduced.

Remark 3. The r, require only one additional storage register rather than n.

The order of computation should be as follows. First, compute together the com-

ponents of fi, Zi, and Lmg,-, as indicated by the inner brackets. Then the com-

ponents of LJPi can be computed. Since the computation of a component of Zi

and Lmq¡ requires only the corresponding component of r,-, and since r,- is not used

after the ¿th stage, one storage suffices for all components of all r¿.

Remark 4. It is obvious that the quantity, Lmqu , is always zero if exact opera-

tions are used. For pseudo-operations this is not the case. However, Lmqi0 can

always be taken to be zero to start the computation.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

180 E. K. BLUM

In practice, the finite-precision procedure, (3.1)-(3.5), would be carried out

with digital numbers and pseudo-operations. The operation " + " would be ex-

ecuted as pseudo-addition, and both Rm and Lm would be executed as shift opera-

tions rather than as multiplications. To analyze the rounding error, it is convenient

to rewrite (3.1)-(3.5) in a mixed form, (3.1)-(3.5), involving digital numbers,

exact operations, and error terms. It is to be understood that the digital numbers

are thereby treated as real decimal numbers having zeros in all positions beyond

position s. The effect of pseudo-operations is shown by the presence of a single

error term denoted by an expression of the form, e(u).

f
(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

_2_o = y±_

7/mÇo = Lmqa ,

LmP0 = (Lmh)f(z0) + e(LmPo),

Lmqi

f\ = Rm(\Lmqa — LmPo + e(n),

Zi = zo + ñ , _

3Lmfi — (JLmP0 — Lmq0) + e(Lmqi),

[LmPi = (Lmh)f(zi) + e(LmPi),

1-2 = Rm(ULmPi — Lnqi)) + e(r2),

Z2 = Zi + ?2, _

Lmqi = —Lmfi — 3Lmqi + ^¡LmPi + e(Lmqi),

LZFi = (Lmh)f(zi) - \LnPi + e(LmPi),

r3 = Rm(LmP2) + e(rsï,

z3 = % + f3,

Lmq3 = —Lmr3 + Lmçj,

LmP3 = (LJi)f(z3) + 2LmP2 + e(L™P3),

Lmqij

fi = Rm(\LmP3 + Lmq3) + e(n),

yj+i = z4 = z3 + fijL_ _

= 3[Lmf4 — (\LmP3 + Lmq3)} + e(Lmqi).

Remark 5. It is seen that e(z.) = 0 for i = 0, 1, • - -, 4 because the pseudo-

operation of addition gives the same result as the exact operation. This is true

because of our assumption that in all digital numbers the decimal point is in a

fixed position. If "floating-point" numbers are used, the pseudo-operation of addi-

tion can introduce a rounding error. We shall discuss this in the next section.

We are now in a position to estimate the rounding error in (3.1)-(3.5). After

some preliminaries, we shall formulate the results as Theorem 2 and its corollary.

For any quantity, u, we define t(u) = û — u; i.e. t(u) is the total rounding

error in u. We are interested in t(yj). However, it will turn out that the quantity,

y* = y i
rtm j
~ñ~ I'm ?4>)

is a better approximation to y¡ than is y¡. Thus, we shall consider e(y*)

where

instead,

R 1* * I'm r -■-

y i = Vi-7T L"" 9"¿ = y i — ö la ■

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

A MODIFICATION OF THE RUNGE-KUTTA FOURTH-ORDER METHOD 181

By remark 4, g4j = 0, so that y* = y¡. Hence,

y i = y i* - ¿(y*)-

We note that

*n Rm
e(yi) = t(y¡) - ~t(Lmqa).

It is convenient to deal with the norm of a vector, u, which we define as

|| u || «■ max | uk |,
*

where uk are the components of u. For a matrix, A, with elements, aik , we define

MU = max {£| «* \\.
i k

In particular, we shall be concerned with matrices for which aik = dfi/dyk,

where the partial derivatives are evaluated at different points for each i and k.

A matrix of this type will be denoted by the symbol, "J."

Theorem 2. For any of the quantities, u, computed in (3.1)-(3.5), let the error

term, e(u), be subject to the condition,

(i) II e(u) || g ^ Iff".

Let the bounds on the partial derivatives, dfi/dyk, be such that for any matrix, J,

(ii) \\J II * L.
Let h = 10~'", 0 < m < s. Then the total rounding error in y* incurred in one in-

tegration step is not greater than 2A710 s m in absolute value.

Proof. From (3.2) and (3^2) we obtain

e(Zl) = e(zo) + Rm(h<(LmPü) - e(Lmqo)) + e(n).

From (3.1), (3.1), if we assume that h = h, we have

e(LmP0) - Lm(h)(f(yj) -fiVj)) +e(LmP0).

Now, for each component, ft,i = 0, 1, • • ■ , »i, we have

fi(vi) - fi(y¡) = Ys^r-tiyjk),
k=o oyjk

Hi
jiWjj — jivyjj — z^

or, in matrix notation,

f(9i) -fiVi) = MVi);
This gives

t(LmPo) = Lm(h)Je(y¡) + e(LmP0),

(3.6) h R
t(zi) = t(y¿) + - Jt(yj) - Rm e(Lm q4j) + ~ e(Lm P0) + e(n).

Proceeding in this way, we obtain

(3.7) e(zi) = (l + ^J+^ J^tiVi) + e(n) - l- e(ri) + z

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

182 E. K. BLUM

where

z = y ein) + ~ e(Lm PO - h. e(Lm gO - ^ J[e(Lm g4>) - e(Lm P0)],

«(*,) = (l + hJ + hl J2 + £ A tivi) - \ e(n) + ein) + e(r.)

(3.8)

+ Rm e(Lm Pt) - ^ e(Lm gO + Ä/e(r,) - | Je(n) + AJa,

(3.9) t(yi+1) = e(Vj) - ^ e(Ln g4j) + AJt> + ^= IF + e(r4),

where

« = i(e(yy) + 2«(zi) + 2t(z2) + e(z3)),

and

W = etLnPo) + 2e(LmP1) + 2e(LmP2) + e(LJ>3) + 6e(Lmg2) - 2Rme(Lnqi).

Using (3.6)-(3.8), we obtain

(3.10)

where

-(i + ¡J+p-+liJ-).(m)-^.(L.,u

+ Y2 ein) + - e(n) + - e(n) tmi + M!,

mi = ^ (e(Lm Po) + e(Lm Px) + e(Lm Pt)) - ^ e(Lm g,),

M2 = | + g </(e(r2) - - c(ri) -(- z).

From (3.5) and the fact that g4y = 0, we obtain

(3.11) e(Lmg4.y+i) = 3Lme(r4) + e(Lmqt).

If we multiply (3.11) by Pm/3 and subtract from (3.9), we obtain

(3.12) e(y*+i) = ¿y,*) + hJv + ^ W - ^ e(Lm g4).

Applying the properties of the norm and using conditions (i) and (ii), we get

|| z || è h II J II • II ein) Il + y II e(LmPi) || + ^ || e(Lm g,) ||

+ ^ || j || . || e(LmP„ || + ^ || J || • || £(Lmg4j) || ,

á i (M, + Ä.) 10-M + i^= 10-Af + ^|= || a(Lm g4,) || L.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

A MODIFICATION OF THE RUNGE-KUTTA FOURTH-ORDER METHOD 183

Continuing in this way, we have

Wß2\\el\\z\\ + h-^lO-'M + h\\z\\L,

II mi II =gfPm10-'M,

II W || á 6(10"*)M + Rm 10"'M,

v\\ á (l + ^ + ^ + ^) || ein) II + ^ II e(LOT g4,;

+ f 10-M + || Mi II + || M2 || ,

|| e(2/*+i) || á || e(2//) || + Lh || HI + ^ || W || + ^ || e(Lm g4) || ,

|| e(y*+i) || g || e(j,/) Il + (m, + ^ + ^ + ^) || e(^) ||

+ M^§ + ^ + ^)lh(L»?4,)||,

+ (¡R"+lh)10~'M+(¥+1 **-+1) 1(rM

+ {>£ + Z^A i0-«M + (^=) 10_SM.

Now, to estimate the rounding error incurred in one integration step, say from

j to j + 1, we assume that all quantities obtained at the jth step are exact. Thus,

in (3.13) we set e(yj*) = 0, t(Lmqa) = 0, and t(y¡) = 0. Denoting the one-step

rounding error by ej(j/J+i), we have

Il «ilfî») || á (| Ä- + | a) 10-8M + fe + i| fcR. + ^) 10-M

(3.14)
+ (j + ¿ **#») 1(r^ + h-^ !0_sm.

Since /i = 10_m, we can take Rm = h and get

(3.15) || ei(yU) Il á [g UT— + 10—2"1 + g 10-s-3m + i 10-3-4'"Ja7,

which proves the theorem.

Corollary. A bound for the accumulated rounding error, under the hypotheses

of Theorem 2, is given by

(3.16) II e(y*) || é || ein,*) Il e"* + (1 - e^)(i^) 10"M,

where f(h) = A h30 + 160Ä + 100Ä2 + 27A3 + |-) .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

184 E. K. BLUM

Proof. From the definition of y* we obtain

ll«(w)ll è\\e(y*)\\+ ^{1^^)11.

From (3.11), we have

Rm II í(L„ g4y) || g | (10")M + £= 10-3M,

Using (3.13), we get

(3.17) || •(yJH) || á e*L|| 6(2/,*) || + (fi(h) + /,(fi. , /i))10"äM,

where

/i(Ä) = A (66 + 110A + 64/i2 + h3),

ftih) = ~ Ui + SRm + 42/1 + 36/i2 + 26/i3 + 0 .

Setting Rm — h, and solving the difference equation corresponding to (3.17),

we obtain (3.16).

Remark 6. Theorem 2 gives an upper bound on the one-step rounding error.

A somewhat better result can be obtained from a statistical estimate of this error,

if one is willing to make certain assumptions. If we assume (1) that the components

of the errors, e(r,) and e(LP/) are independent and have a uniform distribution

between — 10_s/2 and 10~s/2, and (2) that the bias which would be introduced in

e(Lq-i) and e(Lqi) by the coefficient, 5, is eliminated by 'rounding up' LgL and

'rounding down' Lq2, then a direct computation with (3.12) yields as the approxi-

mate standard deviation of a component of e(y*),

(3.18) 9i = I6
y(pm2 + ^C(«3/¿/^)2)Jl0

This is approximately the standard deviation of an error which is uniformly dis-

tributed between ±Pm10~s/2, so that the accuracy is the same as would be ob-

tained with s + m digits.

Remark 7. As an example, we follow Gill [1] and integrate y' = y from t = 0

to t = 1, with h — 0.1 and s = 6. The results are given in Table 1. The values in

parentheses are those obtained by Gill's method [1]. For t = 1, after ten steps,

we should have the value of e/10. If we use y — g/3 for this value, we obtain

0.27182810, which is in error by —8 X 10~8. (Note that in computing gi the result

of multiplying by 5 was rounded up, while in the computation of g2, it was rounded

down.)

Remark 8. It is of interest to compare the accumulated error of the above ex-

ample with the bounds given by (3.16) of the corollary and by statistical esti-

mates. Since e(?y0*) = 0 in the example, and t = hj = 1, (3.16) becomes

|«(yy)| á («- 1) (g,_ ^ X 10 g \.i2 __ 1} .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

A MODIFICATION OF THE RUNGE-KUTTA FOURTH-ORDER METHOD 185

Table 1

Comparison of Gill's Method with the Modified Runge-Kutta Method

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Stage

0
1
2
3

1
2
3

1
2
3

1
2
3

5 000
250

5 275

8

5 526
276

5 830

9

6 108
304

6 443

6 749
338

7 121

12

7 461
371

7 869

11

8 244
412

8 697

13

9 110
456

9 612

15

10 070
502

10 623

16

11 128
556

11 740

18

12 299
614

12 974

19

100 000
105 000
105 250
110 525

(110 517)
110 517
116 043
116 319
122 149

(122 140)
122 140
128 248
128 552
134 995

(134 986)
134 986
141 735
142 073
149 194

(149 182)
149 182
156 643
157 014
164 883

(164 872)
164 872
173 116
173 528
182 225

(182 212)
182 212
191 322
191 778
201 390

(201 375)
201 375
211 445
211 947
222 570
222 554
222 554
233 682
234 238
245 978

(245 960)
245 960
258 259
258 873
271 847

(271 828)
271 828

iq

0
100 000
16 667

- 36 083

(- 3)
3

110 518
18 422

- 39 878

(- 8)
9

122 161
20 364

- 44 066

(+
+

(

4)
3

134 980
22 494

- 48 716

14)
15

149 224
24 870

- 53 820

(- 4)
3

164 881
27 478

- 59 492

(+
+

3)
3

182 197
30 369

- 65 751

(- 9)
9

201 403
33 568

- 72 662

(- 3)
3

222 560
37 094

- 80 306

(- 9)
9

245 981
040 995

- 88 745

(- 4)
3

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

186 E. K. BLUM

Now,

g(h)
f(h) 130 + 160A + 100/r + 27h3

(eh - 1) 48(1 + A/2 + A2/6 + A3/24) '

andg(.l) = 2.92. Hence,

e(Vj*) I g 4.98 X 10"

To obtain a statistical estimate, we might assume that accumulated error is

the sum of the one-step errors and that these errors are independent. Using (3.18),

the standard deviation for one step is about 3.4 X 10_s. The standard deviation

after ten steps is \/TÖ times this, or about 1.1 X 10-'.

It is of interest to compare the above results with those obtained from the classi-

cal Runge-Kutta method, (1.5)—(1.9). These are tabulated below.

t

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

.100 000
110 517
122 140
134 986
149 183
164 873
182 213
201 377
222 556
245 963
271 831

4. Floating-point Arithmetic. Since many modern automatic computers provide

"floating-point" operations, and since the finite-precision modification must be

applied in a slightly different way when floating-point numbers are used, it seems

worthwhile to devote a short section to this subject.

Let us begin by establishing certain conventions. A "digital number in normal

floating-point form" consists of two parts, a modulus and an exponent. The modulus

is an aggregate of s decimal digits, the decimal point being placed at the extreme

left and the digit in position one being non-zero. The exponent consists of two digits

and represents the power of ten which multiplies the modulus. An algebraic sign

is associated with each modulus and exponent. Thus, the fixed-point number,

.00113, would be written as +.113-02 in normal floating form, and —11.3 would

be written as —.113 + 02. In floating-point arithmetic some of the shift operations

of formulas (3.1)-(3.5) will be carried out automatically by the positioning which

must take place in the process of addition or subtraction. The rounding error will

then be governed by the magnitude of h and the relative magnitudes of y and y'.

If hy/ < y,, then Theorem 2 will apply to the procedure (4.1)-(4.5) below, it

being understood that all errors must be considered as relative errors. If hy/ > y¡

for some j, the theorem no longer holds. Nevertheless, over an interval, there should

be a preponderance of points for which hy/ < y¡, so that (4.1)-(4.5) should

reduce the overall rounding error.

To explain the meaning of the symbols L and R in (4.1)-(4.5), we must first

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

A MODIFICATION OF THE RUNGE-KUTTA FOURTH-ORDER METHOD 187

point out that in automatic computers, the exponent of a floating-point number is

placed to the left of the modulus. Thus, a shift right m places will not affect the ex-

ponent if m < s. Now, in the computation of r<, the exponent, ß, of the quantity

in square brackets is compared with the exponent, p, of z<_i. If ß < p, then R(l> =

Pp_„ and L(ii = Z,p_„. If ß ^ p, then R(i) = R0 and Lli) = L0. With this inter-

pretation of the shift operations, the finite-precision modification for floating-

point arithmetic is as follows:

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

zo = y i,

?o - qa,

Pc - hf(z0),

'(r, = L(1,P(1)[èPo - go],

zi = zo + n ,

gi = 3ri - (èPo - go),

{ Pi = AM),

if (2)p(2)ri,
9i)l,r2 = L«Äw[*(Pi

Z2 = Zi + r2,

g2 = — n — ki + |Pi,

{ P2 = AM) - IP».

ffr3 = L(3)P(3)[P2],
z3 = z2 + r3,

g3 = —r3 + Ç2,

I P3 = AM) + 2PS,

f n = LwRw[iP, + g3],

2/J+1 = z4 = z3 + n ,

qiJ+i = 3[r4 - (iP, + g3)].

Computation and Data Reduction Center

Space Technology Laboratories, Inc.

Los Angeles 45, California

1. S. Gill, "A process for the step-by-step integration of differential equations in an auto-
matic digital computing machine," Proc. Cambridge Philos. Soc, v. 47, pt. 1, p. 96-108.

2. J. von Neumann, & H. H. Goldstinb, "Numerical inverting of high order matrices,"
Bull. Amer. Math. Soc, v. 53, n. 11, November 1947.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

