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Abstract

This article mainly explores and applies a modified form of the analytical method,

namely the homotopy analysis transform method (HATM) for solving time-fractional

Cauchy reaction–diffusion equations (TFCRDEs). Then mainly we address the error

norms L2 and L∞ for a convergence study of the proposed method. We also find

existence, uniqueness and convergence in the analysis for TFCRDEs. The projected

method is illustrated by solving some numerical examples. The obtained numerical

solutions by the HATMmethod show that it is simple to employ. An excellent

conformity obtained between the solution got by the HATMmethod and the various

well-known results available in the current literature. Also the existence and

uniqueness of the solution have been demonstrated.

Keywords: Homotopy analysis transform method; Fractional Cauchy

reaction–diffusion equation; Mittag-Leffler function; Optimal value

1 Introduction

The beginning of fractional calculus is considered as 30 September 1695 when the deriva-

tive of arbitrary order was described by Leibniz [1]. After that many renowned mathe-

maticians have studied the application of the fractional derivative and fractional differen-

tial equations (FDEs); some of them were Liouville, Grunwald, Letnikov and Riemann [2].

A lot of significant phenomena are well described by FDEs in electromagnetics, acoustics,

viscoelasticity, electro chemistry and material science [3]. Moreover, some basic results

associated to solving FDEs may be found in [4–7].

Cauchy reaction–diffusion equations (CRDEs) explain a large multiplicity of nonlinear

systems in physics, chemistry, ecology, biology and engineering [8–12]. CRDEs are broadly

used in application models for spatial effects in ecology. The different types of CRDEs in

physics have been solved [13–15] by using a variety of kinds of analytical methods. In

recent times, Yildirim [16] used a homotopy perturbation method to find the solutions of

the CRDEs. In this paper, we consider the one-dimensional TFCRDEs as follows:

∂λw(x, t)

∂tλ
=D

∂2w(x, t)

∂x2
+ r(x, t)w(x, t), 0 < λ ≤ 1, (x, t) ∈ Ω ⊂ R

2, (1.1)
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subject to the initial or boundary conditions

w(x, 0) = g(x), w(0, t) = f0(t),
∂w(0, t)

∂x
= f1(t), x, t ∈R, (1.2)

where w is the concentration, r is the reaction parameter and D > 0 is the diffusion coef-

ficient. The fractional derivative λ considered in this paper is in the sense of Caputo.

In this paper, we have applied HATM for solving linear and nonlinear TFCRDEs. The

HATMmethod provides excellent agreement between two powerful methods, one is the

most popular and useful homotopy analysis method (HAM) and the other one is the

Laplace transform method. The HAM was first proposed and applied by Liao in [17] to

solve lots of nonlinear problems. The HAM has been successfully applied by many re-

searchers for solving linear and nonlinear partial differential equations [18, 19].

But presently, concentration of diverse researchers is on finding the solution behavior of

different nonlinear equations by means of different methods jointed with Laplace trans-

form, among them the variation iteration transformmethod [20] and the homotopy analy-

sis transform method [21, 22]. The advantage of HATM over HAM is that it gives rapidly

convergent series solution only by taking a small number of terms and hence HATM is

very powerful and efficient in finding approximate solutions as well as analytical solutions

of many fractional physical models. Moreover, the analytical method of using the Laplace

transform and its inverse is shown in [23–25]. The other work related to this can be found

in [26–34]. The plan of this article is to find approximate analytical solutions of TFCRDEs

with the time derivative λ (0 < λ ≤ 1).

2 Existence and uniqueness

In this section, we establish the existence and uniqueness of a solution of differential equa-

tion (1.1). We first present a few necessary definitions.

The Mittag-Leffler function is defined by

Eλ(t) =

∞
∑

k=0

tkλ

Γ (1 + λk)
. (2.1)

The Riemann–Liouville fractional integral of order λ > 0 is defined by

Iλf (t) =
1

Γ (λ)

∫ t

0

(t – s)λ–1f (s)ds, (2.2)

the fractional derivative of the function f of order λ > 0 is defined by

Dλ
t f (t) =

1

Γ (n – λ)

dn

dtn

∫ t

0

(t – s)n–λ–1f (s)ds, (2.3)

where Γ (λ) is the Gamma function.

The Laplace transform of the Riemann–Liouville fractional integral is defined as [1]

L
[

Iλf (t)
]

(s) = s–λ
F (s). (2.4)
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The Caputo fractional derivative of the function f of order λ > 0 is defined by

Dλ
t f (t) =

1

Γ (n – λ)

∫ t

0

tn–λ–1 d
n

dtn
f (t)dt. (2.5)

The Laplace transform of the Caputo fractional derivative is defined as [1]

L
[

Dλ
t f (t)

]

(s) = sλF (s) –

n–1
∑

k=0

sλ–k–1f k(0), n – 1 < λ ≤ n,n ∈N. (2.6)

Define an operator A = D ∂2

∂x2
, with D(A) = {v ∈ H1

0 (0, 1) ∩H2(0, 1) : v′′ ∈ L2(0, 1)}. The op-
erator A is the infinitesimal generator of an analytic semigroup {T(t) : t ≥ 0} and is self-

adjoint [35]. By introducing v(t)x = w(x, t) and γ (t)x = r(x, t), Eq. (1.1) can be written as

Dλ
t v = Av + γ (t)v. (2.7)

By a mild solution v of the above problem we mean that

v(t) = v0 +
1

Γ (λ)
A

∫ t

0

v(s)

(t – s)1–λ
ds +

1

Γ (λ)

∫ t

0

γ (s)v(s)

(t – s)1–λ
ds, (2.8)

provided
∫ t

0
v(s)

(t–s)1–λ ds ∈ D. The notation D is for the domain of the operator A equipped

with the graph norm ‖v‖D = ‖v‖ + ‖Av‖. It is not difficult to check that f (t, v) = γ (t)v

satisfies the Lipschitz condition. For any v1, v2 ∈D(A), we have

∥

∥f (t, v1) – f (t, v2)
∥

∥ ≤
∣

∣γ (t)
∣

∣‖v1 – v2‖ ≤ γ ∗‖v1 – v2‖,

where γ ∗ is the supremum of γ (t). So we need γ (t) to be continuous and bounded.

The spectrum of the operator A is discrete with eigenvalues μn = –n2D, n ∈ N, and the

eigenfunctions are of the form ψn(z) = ( 2
π
)
1
2 sinnz. Moreover, {ψn : n ∈ N} is an orthonor-

mal basis for X, and

T(t)v =

∞
∑

n=1

e–n
2Dt〈v,ψn〉ψn, v ∈ X, t > 0.

The above expression implies that {T(t), t ≥ 0} is a uniformly bounded compact semigroup

and R(μ,A) = (μI –A)–1 is a compact operator for all μ ∈ ρ(A). The integral equation

v(t) =
1

Γ (λ)

∫ t

0

Av(s)

(t – s)1–λ
ds, t ≥ 0,

has an associated resolvent operator {Sλ(t), t ≥ 0} on the space X = L2(0, 1). The resolvent

operator is given by

Sλ(t) =
1

2π i

∫

γθ

eμt
(

μλ –A
)–1

dμ, t > 0,

and S(0) = I . We have the parameter θ with π
2
< θ < π and the curve γθ = {reiθ : r ≥ 0} ∪

{re–iθ :r≥0}.
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Because (μI – A)–1 is compact, from the above representation one can deduce that

{Sλ(t) : t > 0} is a compact operator.

Theorem 2.1 Let γ ∈ Lp([0,T] : R+) for p = 1
λ
. If 1

Γ λ
sups∈[0,T](

∫ s

0
γ (t)

(s–t)1–α dt) < 1, then the

abstract Cauchy problem has a unique mild solution.

The proof is similar to Theorem 2.1 of [36].

3 Fundamental scheme of HATM

The fundamental scheme of HATM is discussed through the following TFCRDEs:

Dλ
t w(x, t) =DDxxw(x, t) + r(x, t)w(x, t),

0 < λ ≤ 1, (x, t) ∈ Ω ⊂ R2.
(3.1)

By a new methodology discussed in [21], applied to Eq. (3.1), we get themth-order defor-

mation equation wm(x, t) and form ≥ 1, atMth order, we have

w(x, t) =

M
∑

m=0

wm(x, t), (3.2)

forM → ∞, we get a precise approximation of the actual equation (3.1).

In this section, we study the convergence of HATM through the following theorem.

Theorem 3.1 As long as the series solution

w(x, t) = w0(x, t) +

∞
∑

m=1

wm(x, t) (3.3)

converges, where wm(x, t) is governed by Eq. (3.1), it must be the exact solution of the

TFCRDEs in (3.1).

Proof If the series (3.3) converges, we can write

T(x, t) =

∞
∑

m=0

wm(x, t) (3.4)

and

lim
m→∞

wm(x, t) = 0. (3.5)

We can verify that

n
∑

m=1

[

wm(x, s) – ξmwm–1(x, s)
]

= lim
m→∞

wm(x, s) = 0. (3.6)

Taking the linear operator L on both sides in Eq. (3.6), we get

∞
∑

m=1

L
[

wm(x, s) – ξmwm–1(x, s)
]

=L

[ ∞
∑

m=1

wm(x, s) – ξmwm–1(x, s)

]

= 0. (3.7)
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Along this line, we obtain

∞
∑

m=1

L
[

wm(x, s) – ξmwm–1(x, s)
]

= �H(x, s)

∞
∑

m=1

Rm(�wm–1,x, s) = 0, (3.8)

since � �= 0 and H(x, s) �= 0, from Eq. (3.8) we have

∞
∑

m=1

Rm(�wm–1,x, s) = 0, (3.9)

∞
∑

m=1

Rm(�wm–1,x, s) =

∞
∑

m=1

[

sλL[wm–1](s) – (1 – ξm)

n–1
∑

k=0

sλ–k–1wk
m–1(x, 0)

– L[DDxxwm–1 + rwm–1](s)

]

= sλL

[ ∞
∑

m=1

wm–1

]

(s) –

n–1
∑

k=0

sλ–k–1wk
m–1(x, 0)

– L

[

DDxx

∞
∑

m=1

wm–1 + r

∞
∑

m=1

wm–1

]

(s)

= sλL
[

T(x, t)
]

(s) –

n–1
∑

k=0

sλ–k–1Tk(x, 0)

– L
[

DDxx

[

T(x, t)
]

+ r(x, t)
[

T(x, t)
]]

(s)

= L
[

Dλ
t T(x, t)

]

(s) – L
[

DDxxT(x, t) + r(x, t)T(x, t)
]

(s).

Now from Eq. (3.9) we have

L
[

Dλ
t T(x, t)

]

(s) – L
[

DDxxT(x, t) + r(x, t)T(x, t)
]

(s) = 0. (3.10)

By taking the inverse Laplace transform in Eq. (3.10), we get the exact solution T(x, t). �

4 Function of HATM andmathematical results

Four examples of TFCRDEs are solved to exhibit the HATM method. In the whole arti-

cle, MATHEMATICA 7 software package has been used for the figures’ computational

processes.

Example 1 For the constant value of D = 1 and r = –1, Eq. (1.1) can be recast as the

Kolmogorov–Piskunov (KP) equation [16] as follows:

∂λw(x, t)

∂tλ
=

∂2w(x, t)

∂x2
–w(x, t), 0 < λ ≤ 1, (x, t) ∈ Ω ⊂R

2, (4.1)

subject to the initial or boundary conditions

w(x, 0) = e–x + x = g(x), w(0, t) = 1 = f0(t),

∂w(0, t)

∂x
= Eλ

(

–tλ
)

– 1 = f1(t), x, t ∈R.
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By a new methodology discussed in [21], applied to Eq. (4.1) we get the mth-order de-

formation equation for wm(x, t)

wm(x, t) = (ξm + �)wm–1 – �(1 – ξm)
(

e–x + x
)

– �L–1
[

s–λL[Dxxwm–1 –wm–1](s)
]

(t). (4.2)

At last,

w(x, t) = w0(x, t) +

∞
∑

m=0

wm(x, t).

Next, the successive iterative values are

w1(x, t) =
�xtλ

Γ (λ + 1)
,

w2(x, t) =
�(1 + �)xtλ

Γ (λ + 1)
+

�
2xt2λ

Γ (2λ + 1)
,

w3(x, t) =
�(1 + �)2xtλ

Γ (λ + 1)
+
2�2(1 + �)xt2λ

Γ (2λ + 1)
+

�
3xt3λ

Γ (3λ + 1)
,

w4(x, t) =
�(1 + �)3xtλ

Γ (λ + 1)
+
3h2(1 + �)2xt2λ

Γ (2λ + 1)
+
3�3(1 + �)xt3λ

Γ (3λ + 1)
+

�
4xt4λ

Γ (4λ + 1)
+ · · · .

In a similar fashion, the remaining terms of wm(x, t) form ≥ 5 can be entirely obtained.

Therefore, the solution of Eq. (4.1) is

w(x, t) =

∞
∑

k=0

wk(x, t). (4.3)

If we select � = –1, then the solution is reduced to

w(x, t) = e–x + x

(

1 +
(–tλ)

Γ (λ + 1)
+

(–tλ)2

Γ (2λ + 1)
+

(–tλ)3

Γ (3λ + 1)
+

(–tλ)4

Γ (4λ + 1)
+ · · ·

)

= e–x + x

∞
∑

k=0

(–tλ)k

Γ (kλ + 1)

= e–x + xEλ

(

–tλ
)

. (4.4)

Again if we take the standard value of λ = 1, then the series solution is reduced to

e–x + xe–t , this is an exact solution of standard CRDEs and hence the result is absolutely

in conformity with the homotopy perturbation given by Yildirim [16] and the Adomian

decomposition method by Lesnic [13].

Figure 1 demonstrates the comparisons of the exact solution and the approximate so-

lutions with different Brownian motions. The picture of subfigures (a), (b), (c) and (d) for

Fig. 1 shows that the approximate solution obtained by the current method and the exact

solution are very much identical for the Cauchy problem with the constant term D = 1.

At the same time, in order to judge the significance and the correctness of the HATM

method the absolute error curve is drawn in Fig. 2. It is to be noted that the approximate

solution converges quickly towards the exact one.
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Figure 1 The surface graph of the exact solution u(x, t) and the seventh-order approximate solution u7(x, t) of

Eq. (4.1): (a) u(x, t) when λ = 1, (b) u7(x, t) when λ = 1, (c) u7(x, t) when λ = 0.75, (d) u7(x, t) when λ = 0.5

Figure 2 Plot of absolute error E7(w) = |w(x, t) –w7(x, t)| using HATM when λ = 1

Figure 3 indicates the performance of the approximate solution for different fractional

Brownian motions, λ = 0.7, 0.8, 0.9, and for standard motion i.e. at λ = 1.

Figure 4 reflects the � curve of Eq. (4.1). As pointed out by Liao [17], we can choose any

values of �, where � ∈ (�1,�2) and �1 ≈ –1.80, �2 ≈ –0.2. In the particular case if � = –1

the speed of convergence is most advantageous.

In order to convergence study of the proposed method we present the absolute errors

in Table 1, simultaneously the error norms L2 and L∞ are presented in Table 2.

At the mth order of approximation, also we can define the exact square residual error

for equation, where

m =

∫ 1

0

∫ 1

0

(

N

[

m
∑

i=0

wi(x, t)

])2

dxdt,
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Figure 3 Plot of u(x, t) verses x time for different values of λ at t = 1 and � = –1

Figure 4 Plot of � curve for different values of λ at x = 0.5 and t = 0.01

where

N
[

w(x, t)
]

=
dλw(x, t)

dtα
–
d2w(x, t)

dx2
+w(x, t).

In order to make things computationally easy we also introduced here the so-called aver-

aged residual error defined by

Em =
1

25

5
∑

j=1

5
∑

k=1

(

N

[

m
∑

i=0

ui

(

j

10
,
k

10

)

])2

.
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Table 1 E7 in the solution of TFCRDEs using HATM for λ = 1

(x, t) Exact solution Approximation

solution

|uexact – uMHATM|

(0.1, 0.1) 0.9953211598 0.9953211598 9.99201× 10–15

(0.1, 0.2) 0.9867104933 0.9867104933 2.95319× 10–14

(0.1, 0.3) 0.9789192401 0.9789192401 1.68754× 10–14

(0.2, 0.1) 0.9996982366 0.9996982366 2.27596× 10–14

(0.2, 0.2) 0.9824769036 0.9824769036 6.20615× 10–14

(0.2, 0.3) 0.9668943972 0.9668943972 8.32667× 10–15

(0.3, 0.1) 1.0122694460 1.0122694460 2.55351× 10–14

(0.3, 0.2) 0.9864374466 0.9864374466 4.32987× 10–14

(0.3, 0.3) 0.9630636868 0.9630636868 4.39648× 10–14

Table 2 L2 and L∞ error norms for TFCRDEs by HATM for λ = 1

x L2 error norm L∞ error norm

0.1 1.87998× 10–14 1.68754× 10–14

0.2 3.10492× 10–14 8.32667× 10–15

0.3 3.18634× 10–14 4.39648× 10–14

Table 3 Optimal value of � for λ = 1

Order of

approximation

Optimal

value of �

Value of Em

2 –0.826476 8.9631× 10–1

4 –0.939232 8.90047× 10–1

6 –0.964903 8.8997× 10–1

Table 4 Optimal value of � for λ = 0.9

Order of

approximation

Optimal

value of �

Value of Em

2 –0.79381 8.84405× 10–1

4 –0.918672 8.73643× 10–1

6 –0.950037 8.73404× 10–1

The optimal value of � can be found by solving nonlinear algebraic equation dEm
d�

= 0 [37].

The numerical results are elaborated in Tables 3 and 4.

It is clear from Tables 3 and 4 that the optimal value of � are –0.826476, –0.939232,

–0.964903 and –0.79381, –0.918672, –0.950037, respectively, in the case of different or-

ders of approximations.

Example 2 We take the following TFCRDEs [16] for D = 1 and r(x, t) = –1 – 4x2:

∂λw(x, t)

∂tλ
=

∂2w(x, t)

∂x2
–

(

1 + 4x2
)

w(x, t), 0 < λ ≤ 1, (x, t) ∈ Ω ⊂R
2, (4.5)

subject to the initial or boundary conditions

w(x, 0) = ex
2
= g(x), w(0, t) = Eλ

(

tλ
)

= f0(t),
∂w(0, t)

∂x
= 0 = f1(t), x, t ∈R.
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Now similar to Example 1, themth-order deformation equation (4.5) is

wm(x, t) = (ξm + �)wm–1 – �(1 – ξm)e
x2 – �L–1

[

s–λL
[

Dxxwm–1

–
(

4x2 + 1
)

wm–1

]

(s)
]

(t). (4.6)

At last, we get

w(x, t) = w0(x, t) +

∞
∑

m=0

wm(x, t).

By taking w0(x, t) = w(x, 0) = ex
2
and the system (4.6), we get the subsequent values as

follows:

w1(x, t) = –
�ex

2
tλ

Γ (λ + 1)
,

w2(x, t) = –
�(1 + �)ex

2
tλ

Γ (λ + 1)
+

�
2ex

2
t2λ

Γ (2λ + 1)
,

w3(x, t) = –
�(1 + �)2ex

2
tλ

Γ (λ + 1)
+
2�2(1 + �)ex

2
t2λ

Γ (2λ + 1)
–

�
3ex

2
t3λ

Γ (3λ + 1)
,

w4(x, t) = –
�(1 + �)3ex

2
tλ

Γ (λ + 1)
+
3�2(1 + �)2ex

2
t2λ

Γ (2λ + 1)
–
3�3(1 + �)ex

2
t3λ

Γ (3λ + 1)
+

�
4ex

2
t4λ

Γ (4λ + 1)
+ · · · .

The solution of Eq. (4.5) for � = –1 is given as

w(x, t) = ex
2

(

1 +
tλ

Γ (λ + 1)
+

t2λ

Γ (2λ + 1)
+

t3λ

Γ (3λ + 1)
+

t4λ

Γ (4λ + 1)
+ · · ·

)

= ex
2

∞
∑

k=0

tkλ

Γ (kλ + 1)

= ex
2
Eλ

(

tλ
)

. (4.7)

Next for the standard value of λ = 1, the above series solution reduced to e–x + xe–t , this

is an exact solution of standard CRDEs and hence the result is absolutely conformity with

that the homotopy perturbation given by Yildirim [16] and the Adomian decomposition

method by Lesnic [13].

Figure 5 shows the comparison between the exact and the approximate solution for Ex-

ample 2 obtained by HATM for different values of λ.

Again, the convergence of the above method for Eq. (4.5) is shown by drawing the abso-

lute error curve.

Figure 6 represents the absolute error between exact and obtained solution.

Figure 7 reveals the performance of the estimated solution w(x, t) for Example 2.

In Fig. 8 the � curve for Eq. (4.5) is shown. It is clear from Fig. 8 that the perfect range

of � is from –1.60 to –0.3.

Table 5 lists the absolute error E7 = |w(x, t) – w7(x, t)| obtained for different values of x

and t by using the seventh-order approximate solution. Again, to show the validity and

exactness of the proposed method the error norms L2 and L∞ are presented in Table 6.
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Figure 5 The surface graph of the exact solution u(x, t) and the seventh-order approximate solution u7(x, t) of

Eq. (4.5): (a) u(x, t) when λ = 1, (b) u7(x, t) when λ = 1, (c) u7(x, t) when λ = 0.75, (d) u7(x, t) when λ = 0.5

Figure 6 Plot of absolute error E7(w) = |w(x, t) –w7(x, t)| using HATM when λ = 1

Example 3 We consider the following TFCRDEs [14] for D = 1 and r(x, t) = –1 + cosx –

sin2 x:

∂λw(x, t)

∂tλ
=

∂2w(x, t)

∂x2
–

(

–1 + cosx – sin2 x
)

w(x, t), 0 < λ ≤ 1, (x, t) ∈ Ω ⊂ R
2, (4.8)

subject to the initial or boundary conditions

w(x, 0) =
1

10
ecosx–11 = g(x), w(0, t) =

1

10
e–10Eλ

(

t–α
)

= f0(t),

∂w(0, t)

∂x
= 0 = f1(t).

The exact solution w(x, t) = 1
10
ecosx–t–11 for λ = 1.
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Figure 7 Plot of u(x, t) verses x time for different values of λ at t = 1 and � = –1

Figure 8 Plot of � curve for different values of λ at x = 0.5 and t = 0.01

By using the aforementioned techniques, in this case the solution of the mth-order de-

formation equations is as follows:

wm(x, t) = (ξm + �)wm–1 – �(1 – ξm)e
x2 – �L–1

[

s–λL
[

Dxxwm–1

–
(

–1 + cosx – sin2 x
)

wm–1

]

(s)
]

(t). (4.9)

By takingw0(x, t) = w(x, 0) = 1
10
ecosx–10 and the system (4.6), we get the subsequent values

as follows:

w1(x, t) =
�e–11+cosxtλ

10Γ (λ + 1)
,
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Table 5 E7 in the solution of TFCRDEs by HATM for λ = 1

(x, t) Exact solution Approximation

solution

|uexact – uMHATM|

(0.1, 0.1) 1.1162780704 1.1162780704 4.62963× 10–12

(0.1, 0.2) 1.2336780599 1.2336780599 7.89258× 10–12

(0.1, 0.3) 1.3634251141 1.3634251141 6.866828× 10–12

(0.2, 0.1) 1.1502737988 1.1502737988 2.49134× 10–13

(0.2, 0.2) 1.2712491580 1.2712491580 3.77920× 10–13

(0.2, 0.3) 1.4049475905 1.4049475905 4.90874× 10–12

(0.3, 0.1) 1.0122694460 1.0122694460 7.84484× 10–13

(0.3, 0.2) 1.3364274882 1.3364274882 6.75904× 10–13

(0.3, 0.3) 1.4769807938 1.4769807938 3.81584× 10–12

Table 6 The error norm in the solution of TFCRDEs by HATM for λ = 1

x L2 error norm L∞ error norm

0.1 6.4635× 10–12 6.866828× 10–12

0.2 1.84526× 10–12 4.90874× 10–12

0.3 1.75874× 10–12 3.81584× 10–12

w2(x, t) =
�(1 + �)e–11+cosxtλ

10Γ (λ + 1)
+
�
2e–11+cosxt2λ

10Γ (2λ + 1)
,

w3(x, t) =
�(1 + �)2e–11+cosxtλ

10Γ (λ + 1)
+
�
2(1 + �)e–11+cosxt2λ

5Γ (2λ + 1)
+
�
3e–11+cosxt3λ

10Γ (3λ + 1)
.

If we select � = –1, then

w(x, t) =
1

10
ecosx–11 –

ecosx–11tλ

10Γ (λ + 1)
+

ecosx–11t2λ

10Γ (2λ + 1)
+

ecosx–11t3λ

11Γ (3λ + 1)
+ · · ·

=
1

10
ecosx–11

[

1 –
tλ

Γ (λ + 1)
+

t2λ

Γ (2λ + 1)
+

t3λ

Γ (3λ + 1)
+ · · ·

]

=
1

10
ecosx–11

∞
∑

k=0

(–t)k

Γ (kλ + 1)

=
1

10
ecosx–11Eλ

(

–tα
)

. (4.10)

For λ = 1, this series is reduced to the closed form 1
10
ecosx–t–11, which is an exact solution

of the classical CRDEs and hence the result is absolutely in conformity with the variation

iteration method given by Dehghan [14].

Figure 9 shows the assessment among the exact and estimated solution. To ensure the

exactness of the HATMmethod the absolute error curve is given in Fig. 10. Again, Fig. 11

shows the performance of the u7(x, t) for diverse term of λ.

Figure 12 shows the � curve. Here we can choose any values of �, where � ∈ (�1,�2) and

�1 ≈ –1.70, �2 ≈ –0.5.

Example 4 Here we have taken the following TFCRDEs [38]:

∂λw(x, t)

∂tλ
=

∂

∂x

(

w
∂w

∂x

)

+w –w2, 0 < λ ≤ 1,x, t ≥ 0, (4.11)
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Figure 9 The surface graph of the exact solution u(x, t) and the seventh-order approximate solution u7(x, t) of

Eq. (4.8): (a) u(x, t) when λ = 1, (b) u7(x, t) when λ = 1, (c) u7(x, t) when λ = 0.75, (d) u7(x, t) when λ = 0.5

Figure 10 Plot of absolute error E7(w) = |w(x, t) –w7(x, t)| using HATM when λ = 1

subject to the initial or boundary conditions

w(x, 0) = 1 – e
–x√
2 = g(x), w(0, t) = 1 – Eλ

(

–t
λ
2
)

= f0(t),

∂w(0, t)

∂x
=

1√
2
Eλ

(

–t
λ
2
)

= f1(t).

The exact solution w(x, t) = 1 – e
–x√
2
– t
2 for λ = 1.
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Figure 11 Plot of u(x, t) verses x time for different values of λ at t = 1 and � = –1

Figure 12 Plot of � curve for different values of λ at x = 0.5 and t = 0.01

By using the aforementioned techniques, in this case the solution of the mth-order de-

formation equations is as follows:

wm(x, t) = (ξm + �)wm–1 – �(1 – ξm)
(

1 – e
–x√
2
)

– �L–1

[

s–λL

[ ∞
∑

k=0

(

wm–1–k(wk)x
)

x

+wm–1 –

∞
∑

k=0

wm–1–k(wk)

]

(s)

]

(t). (4.12)
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Figure 13 The surface graph of the exact solution u(x, t) and the seventh-order approximate solution u7(x, t)

of Eq. (4.11): (a) u(x, t) when λ = 1, (b) u7(x, t) when λ = 1, (c) u7(x, t) when λ = 0.75, (d) u7(x, t) when λ = 0.5

Figure 14 Plot of absolute error E7(w) = |w(x, t) –w7(x, t)| using HATM when λ = 1

By taking w0(x, t) = w(x, 0) = 1 – e
–x√
2 and the system (4.6), we get the subsequent values

as follows:

w1(x, t) =
–�e

–x√
2 tλ

2Γ (λ + 1)
,

w2(x, t) =
–�(1 + �)e

–x√
2 tλ

2Γ (λ + 1)
–

�
2e

–x√
2 tλ

4Γ (2λ + 1)
,

w3(x, t) =
–�(1 + �)2e

–x√
2 tλ

2Γ (λ + 1)
–
�
2(1 + �)e

–x√
2 t2λ

2Γ (2λ + 1)
–

�
3e

–x√
2 t3λ

8Γ (3λ + 1)
.

Figure 13 shows the comparison between the exact and approximate solution obtained

by HATMmethod. The absolute error curve is presented in Fig. 14.
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