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Abstract. The subject of assessing whether a data set is from a specific dis-
tribution is crucial in statistical inference. This topic is critically important
for uniform distributions as in generating random samples, a random sample is
taken from the standard uniform distribution and then converted to the sam-
ple as required. Two different modifications of the Anderson-Darling A2 test
are presented. The critical values for the modifications and the usual A? test
are also re-computed for different sample sizes. This is followed by a power
comparison of the various tests.
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1. Introduction

The subject of assessing whether a data set is from a specific distribution has
received a good deal of attention. This topic is critically important for uniform dis-
tributions and is different from the usual tests for randomness. There are different
parametric and nonparametric tests for randomness. A nonparametric textbook
such as Daniel [4] or Gibbons and Chakraborti [5] would provide extensive refer-
ences. Recently, Rahman and Chakrobartty [8] showed that the Anderson-Darling
A? (Anderson and Darling [1]) is the most powerful test in comparison with eight
different commonly used tests including the Cramer-von Mises test (see Soest [9],
for details) and the Watson [10] test along with different versions of Pearson’s
Chi-square tests. In the literature, the Anderson-Darling test has been studied
extensively, for exanple, Giles [6] presented a saddlepoint approximation to the
distribution function of the test.

In this paper we give two different modifications of the Anderson-Darling A2
statistic, calculate their critical values and compare them along with the Pearson’s
Chi-square test through simulation. The Chi-square test is used for comparison as
it is widely used in practice. Let us consider X7, X5, ..., X, to be a random sample
taken from the Uniform (0,1) distribution. We will first explain all the tests. In
Section 2 we will provide a power comparison study using Monte-Carlo simulation.
In Section 3 we will give a brief conclusion based on the simulation results.
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Table 1. Upper tail percentiles for Anderson-Darling A? test

0.250 0.150 0.100 0.050 0.025 0.010 0.005 0.001
1.248 1.610 1.933 2492 3.070 3.880 4.500 6.000

Table 2. Upper tail percentiles for Anderson-Darling A? test

n 0.250 0.150  0.100 0.050 0.025 0.010 0.005 0.001
10 | 1.2419 1.6277 1.9518 2.5121 3.0990 3.9083 4.5175 5.9897
20 | 1.2500 1.6290 1.9385 2.5020 3.0731 3.8995 4.5117 5.9852
30 | 1.2457 1.6210 1.9313 2.5130 3.1111 3.9673 4.5309 5.8924
40 | 1.2450 1.6173 1.9362 2.5042 3.1047 3.9397 4.5889 6.1275
50 | 1.2425 1.6163 1.9277 2.4941 3.0933 3.9200 4.5211 5.9437
60 | 1.2464 1.6225 1.9367 2.5044 3.0776 3.9234 4.4858 6.0808
70 | 1.2515 1.6245 1.9304 2.4959 3.0889 3.8673 4.5326 5.9428
80 | 1.2384 1.6148 1.9235 2.4951 3.0778 3.8458 4.4808 5.9249
90 | 1.2461 1.6177 1.9326 2.5064 3.1020 3.9239 4.5856 6.0412
100 | 1.2399 1.6235 1.9325 2.4901 3.0655 3.8319 4.4068 5.8987
mean | 1.2453 1.6211 1.9355 2.4986 3.0916 3.9033 4.5416 6.0266

1.1. Anderson-Darling A2 Test. A distribution function test is suggested by
Anderson and Darling [1]. The Anderson-Darling A? statistic is computed as
(1) A?2=-—n—15" {(2i - 1D)InZ; + (2n+1—2i)n(1 — Z;)},

n

where Z; = X,.,, are the ordered data from the smallest to the largest values.
The percentiles are given in Table 1 with the first line indicating the upper tail
probabilities and the second line representing the corresponding quantiles. The
percentiles given in Table 1 are independent of n and are from D’Agastino and
Stephens ([3], p.105).

We give a new table (Table 2) of critical values for different sample sizes (n =
10,20, ...,100) that are computed after generating 100,000 samples from the Uni-
form (0,1) distribution in each case. A search of finding a good fit model of the
quantiles with respect to the sample size was unsuccessful and hence the means of
the quantiles are provided to shorten the table for practical use. It is to be noted
that the quantile values in Table 2 do not vary much and the mean can be used
as a representative value for all sample sizes as they are also very similar to Table
1 values. The mean values in Table 2 are more reliable as they are computed us-
ing modern computational facilities. In all computations in this paper, MATLAB
software with the statistical toolbox is used.

1.2. Modified Anderson-Darling W? Test. Anderson and Darling [2] showed
the derivation of (1) from the integral

00 [Fp(z)—F(x)]?
(2) W2=n [~ %dF(x)
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Table 3. Upper tail percentiles for Anderson-Darling W?2 test

n 0.250 0.150 0.100 0.050 0.025 0.010 0.005 0.001
10 | 1.2461 1.6225 1.9345 2.4934 3.0938 3.9147 4.5458 6.0514
20 | 1.2441 1.6259 1.9389 2.4994 3.0975 3.9220 4.5297 6.0862
30 | 1.2437 1.6140 1.9253 2.4830 3.0624 3.8287 4.4970 6.1675
40 | 1.2440 1.6174 1.9344 2.4982 3.1102 3.9669 4.6137 6.1114
50 | 1.2460 1.6242 1.9370 2.5173 3.0992 3.9308 4.5625 6.1082
60 | 1.2433 1.6187 1.9345 2.5059 3.1082 3.9092 4.4924 6.1135
70 | 1.2428 1.6071 1.9225 2.4843 3.0782 3.9186 4.5534 6.0965
80 | 1.2492 1.6268 1.9440 2.5033 3.1042 3.9302 4.5600 5.9861
90 | 1.2443 1.6229 1.9359 2.4956 3.0844 3.9193 4.5049 6.0492
100 | 1.2456 1.6226 1.9298 2.4836 3.0725 3.8540 4.4286 5.9270
mean | 1.2453 1.6211 1.93556 2.4986 3.0916 3.9033 4.5416 6.0266

Table 4. Upper tail percentiles for Anderson-Darling V2 test

n 0.250 0.150 0.100 0.050 0.025 0.010 0.005 0.001
10 | 1.2247 1.6801 2.0730 2.8208 3.6425 4.8855 5.8298 8.5582
20 | 1.2708 1.7135 2.0856 2.7641 3.5148 4.5830 5.5008 7.7464
30 | 1.2886 1.7193 2.0918 2.7648 3.4833 4.4712 5.2645 7.4371
40 | 1.2830 1.7005 2.0456 2.6732 3.3682 4.3281 5.0864 6.9460
50 | 1.2826 1.6878 2.0318 2.6411 3.3000 4.1812 4.9457 6.5959
60 | 1.2859 1.6849 2.0180 2.6293 3.2759 4.1953 4.8765 6.7135
70 | 1.2846 1.6785 2.0095 2.6105 3.2385 4.1367 4.7998 6.5199
80 | 1.2831 1.6785 2.0069 2.6066 3.2277 4.1315 4.8162 6.5949
90 | 1.2758 1.6673 1.9896 2.5748 3.2020 4.1039 4.7360 6.2211
100 | 1.2793 1.6714 1.9924 2.5684 3.1857 4.0110 4.6531 6.1749
mean | 1.2758 1.6882 2.0344 2.6654 3.3439 4.3027 5.0509 6.9508

where F,,(x) is the empirical cdf (cumulative distribution function) and F(z) is the
theoretical cdf under the null hypothesis. Here we compute (2) using a numerical
integration that relies on using the sum of the areas of rectangles known as the
Riemann Integral. It is to be noted that for the Uniform (0,1) distribution, F(x)
is replaced by x. A simulation study as in Section 1.1. produced the critical values
provided in Table 3. The mean values are the same in Table 1 and Table 2.

1.3. Modified Anderson-Darling V2 Test. The integral (2) can be written as

(3) W2 = p [ el g,

—oco  z[l—z]
by replacing F'(z) = x and dF(z) = f(x)dx = dx for a Uniform (0,1) random
variable. Then (3) can be approximated by

r1—c1)? n—1 (z;—c; 2 Tn—Cn 2
(4) Vi=n ((i—cig + ZlL:1 (Ci(l—cz) (CH_I o ci) + : Cn :
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Table 5. Third degree polynomial coefficients and their standard errors for the

upper quantiles of V2

q Bo B1 B2 B3
0.250 1.184155 0.005547 -0.000091 0.0000005
(0.0142578) | (0.001069) | (0.000022) | (0.0000001)
0.150 1.657208 0.003834 -0.000084 0.0000005
(0.017609) | (0.001320) | (0.000027) | (0.0000002)
0.100 2.068866 0.001770 -0.000068 0.0000004
(0.023521) | (0.001763) | (0.000036) | (0.0000002)
0.050 2.882867 -0.006222 0.000037 0.0000001
(0.037298) | (0.002796) | (0.000058) | (0.0000003)
0.025 3.766730 -0.013665 0.000109 0.0000003
(0.037675) | (0.002824) | (0.000058) | (0.0000003)
0.010 5.229164 -0.039997 0.000520 0.0000024
(0.063034) | (0.004725) | (0.000097) | (0.0000006)
0.005 6.271817 -0.049361 0.000591 -0.0000026
(0.038187) (0.002862) (0.000059) (0.0000004)
0.001 9.547369 -0.114221 0.001529 -0.0000073
(0.235944) | (0.017685) | (0.000365) | (0.0000022)

where the x;’s are the ordered sample measurements and ¢; = (i — 3/8)/(n + 1/4),
a commonly used empirical cdf approximation. Equation (4) is a weighted mean of
the squared deviations of the observed data values and the empirical distribution
function values. A simulation study as in Section 1.1. produced the critical values
and are provided in Table 4.

In Table 4, the quantiles vary more than the results in Tables 2 and 3. Third
degree polynomials give reasonably high (at least 80% with one exception) R? values
in the least square computations. Hence, we provide the third degree polynomials
of the upper quantiles with respect to n as follows:

VZ = fBo+ Bin + fon® + Bsn®

where g stands for the quantile. The estimates of the coefficients and their standard
errors in parentheses are given in Table 5.

This section differs from 1.1 and 1.2 in that the quantiles can be approximated
more closely using the least square equations for different sample sizes.

1.4. Pearson x? test. By grouping the data into g equal groups such that each
group has an expected frequency of at least five and the number of groups is not
too large, we can calculate the x? goodness of fit statistic as

(5) X2 =30 (O[E:EI) J

where O; is the observed number of values in the i*" group and E; = n/g is the
expected frequency in the i*" group assuming that the sample is from the
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Table 6. Power Study Results

n 5% Level of Significance 1% Level of Significance
A2 W2 V2 X2 A2 W2 V2 X2
Standard Normal Samples
10 | 0.1139 0.1168 0.0289 0.0296 | 0.0235 0.0245 0.0020 0.0000
20 | 0.1363 0.1360 0.1380 0.1451 | 0.0377 0.0371 0.0373 0.0405
30 | 0.2475 0.2565 0.3268 0.3380 | 0.0736 0.0838 0.1293 0.1532
40 | 0.4366 0.4368 0.5664 0.5114 | 0.1570 0.1523 0.2990 0.2951
50 | 0.6323 0.6244 0.7553 0.6711 | 0.2935 0.2925 0.5085 0.4570
60 | 0.7869 0.7844 0.8755 0.7832 | 0.4662 0.4669 0.6795 0.6118
70 | 0.8885 0.8896 0.9390 0.8726 | 0.6438 0.6348 0.8118 0.7219
80 | 0.9473 0.9456 0.9747 0.9210 | 0.7836 0.7678 0.8992 0.8134
90 | 0.9763 0.9762 0.9903 0.9559 | 0.8681 0.8686 0.9493 0.8801
100 | 0.9903 0.9902 0.9960 0.9729 | 0.9354 0.9327 0.9778 0.9235
Standard Exponential Samples
10 | 0.3570 0.3599 0.2509 0.1689 | 0.1793 0.1772 0.0710 0.0004
20 | 0.8327 0.8354 0.8027 0.7086 | 0.6911 0.6897 0.6152 0.5228
30 | 09704 0.9718 0.9652 0.9134 | 0.9229 0.9293 0.9060 0.8175
40 [ 0.9961 0.9963 0.9959 0.9740 | 0.9858 0.9860 0.9834 0.9335
50 |1 0.9996 0.9995 0.9995 0.9927 | 0.9981 0.9878 0.9977 0.9773
60 | 1.0000 1.0000 1.0000 0.9982 | 0.9997 0.9998 0.9997 0.9944
70 | 1.0000 1.0000 1.0000 0.9995 | 1.0000 1.0000 1.0000 0.9979
80 | 1.0000 1.0000 1.0000 0.9999 | 1.0000 1.0000 1.0000 0.9996
90 | 1.0000 1.0000 1.0000 0.9999 | 1.0000 1.0000 1.0000 0.9999
100 | 1.0000 1.0000 1.0000 1.0000 | 1.0000 1.0000 1.0000 1.0000

Uniform(0,1) distribution. The x? statistic will follow an approximate Chi-
square distribution with g — 1 degrees of freedom.

2. Power study

One hundred thousand samples are taken for sample sizes of n = 10, 20, ..., 100.
Then the proportions of rejections are computed for the 1% and 5% levels of sig-
nificance. Samples are taken from the standard normal distribution, the standard
exponential distribution, and a mixture of normal distributions. In the power com-
putations, the samples are transformed such that the range of the data is between
0 and 1 to compute all the tests mentioned above. The simulation results are given
in Table 6.

3. Conclusion

In Table 6, for the standard normal samples, among the versions of Anderson-
Darling tests the V2 test has consistently higher power compared to the other tests
for all the sample sizes except for the sample size of 10. For the Bimodal samples
a similar pattern is noticed except for samples of size 20 or less. For the standard
exponential samples, there is no clear winner.



16 M. Rahman, L.M. Pearson and H.C. Heien

Table 6 Continued: Power Study Results

Mixture of Normals 5 N(—1,(%)?) + 2 N(1,(%)?): Bimodal Samples
10 | 0.1314 0.1350 0.0177 0.0089 | 0.0253 0.0257 0.0011 0.0000
20 | 0.0819 0.0801 0.0420 0.0558 | 0.0185 0.0174 0.0063 0.0099
30 | 0.0919 0.0930 0.0894 0.1041 | 0.0215 0.0241 0.0213 0.0271
40 | 0.1239 0.1230 0.1708 0.1553 | 0.0326 0.0309 0.0527 0.0503
50 | 0.1795 0.1759 0.2770 0.2404 | 0.0502 0.0510 0.1119 0.0930
60 | 0.2561 0.2552 0.3979 0.3231 | 0.0787 0.0800 0.1843 0.1541
70 | 0.3558 0.3526 0.5194 0.4273 | 0.1262 0.1198 0.2818 0.2147
80 | 0.4566 0.4561 0.6278 0.5091 | 0.1900 0.1782 0.3789 0.2912
90 | 0.5556 0.5604 0.7253 0.5974 | 0.2501 0.2503 0.4862 0.3699
100 | 0.6550 0.6557 0.8031 0.6583 | 0.3476 0.3448 0.5978 0.4436

The x? test showed lower power for all sample sizes and for all alternative distri-
bution selections. Rahman and Chakrobartty [8] showed that for testing uniformity,
the Anderson-Darling test has higher power in comparison to diffrent versions of
the x? tests along with the Cramer-von Misses test and the Watson [10] test.

In this study, it is seen that the modified Anderson-Darling V2 test has higher
power while testing for uniformity. Both the A2 and the W?2 tests have same mean
values for the quantiles and the powers are similar. So, due to convenience, A2
might be preferred. But to achive a higher power against both symmetric and
asymmetric alternatives, V2 is recommended.

References

[1] T. W. Anderson and D. A. Darling, Asymptotic theory of certain goodness-of-fit criteria
based on stochastic processes, Ann. Math. Statistics 23 (1952), 193-212.

[2] T. W. Anderson and D. A. Darling, A test of goodness of fit, J. Amer. Statist. Assoc. 49
(1954), 765-769.

[3] R. B. D’Agostino and M. A. Stephens, Goodness-of-Fit Techniques (Eds.), Marcel Dekker,
New York, 1986.

[4] W. W. Daniel, Applied nonparametric statistics, Second Edition, Duxbury Thomson Learn-
ing, Pacific Grove, CA., 1990.

[5] J. D. Gibbons and S. Chakraborti, Nonparametric Statistical Inference, Marcel Dekker, Inc.,
New York, 2003.

(6] David E.A. Giles, A saddlepoint approximation to the distribution function of the Anderson-
Darling test statistic, Communications in Statistics — Simulation and Computation 30(4)
(2001), 899-905.

[7] P. L’Ecuyer and P. Hellekalek, Random number generators: selection criteria and testing,
Random and Quasi-Random Point sets, Lecture Notes in Statistics, no. 138, Springer (1998),
223-266.

[8] M. Rahman and S. Chakrobartty, Tests for uniformity: a comparative study, J. Korean Data
& Information Sci. Soc. 15(1) (2004), 211-218.

[9] J. van Soest, Some goodness of fit tests for the exponential distribution, Statist. Neerlandica
23 (1969), 41-51.

[10] G. S. Watson, Goodness-of-fit tests on a circle, Biometrika 48 (1961), 109-114.



