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Abstract—The paper presents a modified ant colony optimiza-
tion approach for the network coding resource minimization
problem. It is featured with several attractive mechanisms spe-
cially devised for solving the network coding resource minimiza-
tion problem: 1) a multi-dimensional pheromone maintenance
mechanism is put forward to address the issue of pheromone
overlapping; 2) problem-specific heuristic information is em-
ployed to enhance the heuristic search (neighboring area search)
capability; 3) a tabu-table based path construction method is
devised to facilitate the construction of feasible (link-disjoint)
paths from the source to each receiver; 4) a local pheromone
updating rule is developed to guide ants to construct appro-
priate promising paths; 5) a solution reconstruction method is
presented, with the aim of avoiding prematurity and improving
the global search efficiency of proposed algorithm. Due to the way
it works, the ant colony optimization can well exploit the global
and local information of routing related problems during the
solution construction phase. The simulation results on benchmark
instances demonstrate that with the five extended mechanisms
integrated, our algorithm outperforms a number of existing
algorithms with respect to the best solutions obtained and the
computational time.

Index Terms—Ant Colony Optimization, Network Coding,
Combinatorial Optimization.

I. INTRODUCTION

TRADITIONAL routing works in such a way that data

information being transmitted is stored and forwarded

at intermediate nodes in communications networks. At the

network layer, data streams are processed separately as fluids

share pipes or vehicles share highways [1]. Unfortunately,

traditional routing cannot guarantee to achieve the maximum

multicast throughput, determined by the Max-Flow Min-Cut

theorem [2]. Hence, in 2000, Ahlswede et al. proposed net-

work coding [3], an emerging communication paradigm that

always enables the theoretical maximum data rate. Network

coding has revolutionized the way of information processing

and transmission in communications network. It is a great

breakthrough in the field of information theory, computer

science and telecommunications.

The network coding resource minimization (NCRM) prob-

lem is a resource optimization problem emerged in the field of
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network coding. In the original studies, in order to achieve the

theoretical maximum throughput of multicast, it was assumed

that coding operations have to be performed at all coding-

possible nodes [4]–[7]. This means all nodes which have

the potential to perform coding would perform coding by

default. However, as pointed out in [8]–[10], only a subset

of coding-possible nodes suffices to realize network coding-

based multicast (NCM) with an expected data rate. As network

coding involves complicated mathematical operations (e.g., fi-

nite field computation), performing coding (and decoding) op-

erations will consume significant computational and buffering

resources in the corresponding nodes [11]. The less the coding

operations, the less computational and buffering costs. When

considering practical deployment, it is no doubt that carriers

expect to make full of the benefits the NCM brings while

paying minimal computational and buffering costs incurred.

Therefore, it is worthwhile to study the problem of minimizing

coding operations within NCM. Nowadays, Evolutionary Al-

gorithms (EAs) are the mainstream solutions for NCRM in the

field of computational intelligence (see Subsection III-B for

details). However, the existing EAs for the NCRM problem are

not good at integrating local information of the search space

or domain-knowledge of the problem, which could seriously

deteriorate their optimization performance.

Different from EAs, ant colony optimization algorithms

(ACOs) is a class of reactive search optimization (RSO)

methods adopting the principle of “learning while optimizing”

[12], [13]. They are constructive algorithms and simulate the

behavior of the ant colony foraging for food and finding the

most efficient routes from their nest to food sources. Since its

introduction in 1992, a number of variant ACOs have been

proposed, e.g., ant colony system (ACS) [14], MAX-MIN ant

system (MMAS) [15], and Best-Worst ant system (BWAS)

[16]. Meanwhile, ACOs have been intensively investigated

and successfully applied to a vast number of optimization

problems, e.g., vehicle routing problems [17], assignment

problems [18], and scheduling problems [19]. ACOs are

capable of exploiting the local and global information of the

underlining problems during the solution construction phase.

This characteristic is especially suitable for addressing path-

finding related optimization problems, e.g., TSP and routing

problems [14], [20]–[23]. Meanwhile, the objective of the

NCRM problem is to find a sub-network consisting of a set of

link-disjoint paths. Therefore, ACOs may be a good candidate

for solving the NCRM problem. However, to the best of our

knowledge, there has not been any research conducted about

applying ACO for NCRM problem.
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In this paper, a modified ACO is developed for tackling

the NCRM problem. Based on the framework of the basic

ACO, the proposed algorithm is devised with several attractive

features specially for enhancing the optimization performance.

These include a multi-dimensional pheromone maintenance

mechanism, the use of problem-specific heuristic information,

a tabu-table based path construction method, a pheromone

local updating rule, and a solution reconstruction method.

• Multi-dimensional pheromone maintenance mecha-

nism. In the basic ACO, a single pheromone table is

maintained. However, this always leads to a seriously de-

teriorated performance when solving the NCRM problem.

Hence, we develop the above pheromone maintenance

mechanism to effectively solve the pheromone overlap-

ping problem.

• Problem-specific heuristic information. Due to the

nature of the NCRM problem, there is no clear local

heuristic information immediately available for ACO to

solve the NCRM problem. Hence, we devise a heuristic

information scheme to provide necessary guidance to an

efficient search.

• A tabu-table based path construction method. In the

NCRM problem, a set of paths is expected to be built

from the source to each receiver, which is extremely

difficult. To deal with this issue, we propose a tabu-table

based path construction method to handle this constraint

and support better collaborative performance of ants.

• A pheromone local updating rule. As constructing link-

disjoint paths are quite difficult, the above path construc-

tion method may not be able to produce feasible solutions

in some complicated circumstances. Hence, a pheromone

local updating rule is introduced as a complement to

the path construction method above. Inappropriate path

selection is punished while promising path choices are

rewarded to increase the probability of generating link-

disjoint paths.

• A solution reconstruction method. In order to avoid

the search being stuck in local optima and diversify the

solutions, we propose a solution reconstruction method

to enhance local exploitation and alleviate the premature

convergence.

The rest of the paper is organized as follows. Section

II introduces the basic ACO algorithm framework and the

graph decomposed method for the NCRM problem. Section

III describes the problem formulation and related works.

Details of the proposed algorithm is introduced in Section IV.

Simulation results are analyzed in Section V. Conclusions are

presented in Section VI.

II. BASIC CONCEPTS

In this section, we briefly review the framework of the basic

ACO and the graph decomposition method for the NCRM

problem.

A. ACO

ACO was originally created to address the Traveling Sales-

man Problem (TSP). Hence, this subsection describes the

procedure of the basic ACO for TSP as an example [14], [20].

Given a number of cities, the objective of TSP is to find

a minimal travel distance while traversing each city once.

Assume there are n cities fully connected by edge set E. The

search procedure is shown below.

1) Initialization. Randomly select m cities and place each

city with an ant. Set initial pheromone value on each

edge to a very small positive variable τ0.

2) Path construction. Ant k (k=1, 2, ..., m) (in city i)

decides the next city j to visit, according to the transition

probability given in formula (1).

p(i, j) =











[τ(i,j)]α[η(i,j)]β
∑

u∈Ψi

[τ(i,u)]α[η(i,u)]β
, j ∈ Ψi

0, otherwise

(1)

Let τ(i, j) represent the pheromone on edge(i, j) and

η(i, j) = 1/dij be the heuristic information on edge(i, j)
reflecting local information, where dij is the distance

from city i to j. Let Ψi denote an edge set that records

all edges an ant could visit. Let α, β denote weight

factors, which measure the relative importance between

the pheromone and the heuristic information.

3) Implement local search to optimize the solution found

by ant k (optional) [21]. If all ants have completed Step

2, go to Step 4. Otherwise, go to Step 2.

4) Update the pheromone level by formula (2)

τ(i, j) = (1− ρ) τ(i, j) + ρ∆τ(i, j) (2)

where the parameter ρ ∈ (0, 1) represents the evapora-

tion coefficient. The term ∆τ(i, j) is associated with the

performance of each ant.

5) If the termination condition is met, stop the procedure

and output the best solution obtained.

B. The graph decomposition method

A communication network can be modeled as a directed

graph G(V,E) where V and E denote the set of nodes and

links, respectively. Assume each link e ∈ E is with a unit

capacity. We refer to each non-receiver node with multiple

incoming links as a merging node which can perform coding

operation if necessary. However, it is difficult to determine

whether coding is needed at a merging node and how coding

is performed when needed. In order to clearly show all

possibilities when an information flow joins a merging node,

the graph decomposition method was proposed to decompose

a merging node into a set of auxiliary nodes connected with

auxiliary links [9], [10]. The following describes the graph

decomposition procedure.

Each merging node m is decomposed into two auxiliary

node sets, i.e., the incoming auxiliary node set In(m) and

the outgoing auxiliary node set Out(m). Let Im and Om

be the incoming and outgoing link sets of merging node m,

respectively. Then, In(m) has |Im| incoming auxiliary nodes

while Out(m) owns |Om| outgoing auxiliary nodes. In In(m),
each node corresponds to a unique link in Im. Likewise, each

node in Out(m) corresponds to a unique link in Om. During

the graph decomposition, each link in Im is redirected to the

corresponding incoming auxiliary node and each link in Om
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1: for t = 1 to |V | do

2: if vt is a merging node then

3: for i = 1 to nin do

4: Create a new incoming auxiliary node, denoted

by vtin(i), then add to G;

5: Redirect link ein(i) to vtin(i);
6: end for

7: for j = 1 to nout do

8: Create a new outgoing auxiliary node, denoted

by vtout(j), then add to G;

9: Redirect link eout(j) to vtout(j);
10: end for

11: for i = 1 to nin do

12: for j = 1 to nout do

13: Create a new auxiliary link from vtin(i) to

vtout(j) and then add to G;

14: end for

15: end for

16: Remove vt from G;

17: end if

18: end for

Fig. 1. Pseudo code of the graph decomposition method

is redirected to the corresponding outgoing auxiliary node. In

addition, auxiliary links are inserted between incoming and

outgoing auxiliary nodes so that any incoming auxiliary node

is connected to all outgoing auxiliary nodes. Let GD(V ′, E′)
be the decomposed graph of G(V,E). Fig. 1 shows the pseudo

code of the graph decomposition method, where vt ∈ V ,

|V | is the number of nodes in V , links ein(i) and eout(j)
denote the i-th incoming link and the j-th outgoing link of vt,
respectively, and nin and nout are the numbers of incoming

and outgoing links of vt, respectively.

Fig. 2 illustrates an example of the graph decomposition

method. The original graph with a source (i.e., node 1) and

two receivers (i.e., node 8 and node 9) are shown in Fig. 2(a),

where node 4 and node 7 are merging nodes. Fig. 2(b) shows

the decomposed graph, where eight auxiliary links are inserted.

Node 4 is decomposed into two incoming auxiliary nodes,

node 4 i 1 and node 4 i 2, and two outgoing auxiliary nodes,

node 4 o 1 and node 4 o 2. Likewise, node 7 is decomposed

into four auxiliary nodes, as shown in Fig. 2(b). The decom-

posed graph unveils all possibilities that information flows may

pass through node 4 and node 7.

Note that each outgoing auxiliary node in GD(V ′, E′) has a

single outgoing link. Therefore, if more than one information

flow joins an outgoing auxiliary node, it means the coding

operation is required at that auxiliary node. In addition, the

graph decomposition method only decomposes merging nodes

which does not affect the source, receivers and data rate of the

graph.

III. PROBLEM FORMULATION AND RELATED WORKS

A. Problem formulation

As aforementioned, a communication network is represent-

ed by a directed graph G(V,E). After the graph decomposi-

Fig. 2. An example of the graph decomposition method

tion, G(V,E) is transformed to graph GD(V ′, E′). A single-

source network coding based multicast scenario can be defined

as a 4-tuple set (GD, s, T,R), where the information needs to

be transmitted at data rate R from the source node s∈ V ′ to

a set of d receivers T = {t1, t2, ..., td}. We assume each link

has a unit capacity, so a path from s to tk has a unit capacity.

If R link-disjoint paths {p1(s, tk), ..., pR(s, tk)} from s to each

receiver tk ∈ T are set up, the data rate R is said to be achiev-

able. The R link-disjoint path set {p1(s, tk), ..., pR(s, tk)} is

denoted by Paths(s, tk), where tk ∈ T . If we successfully

obtained Paths(s, t1), ..., Paths(s, td), then we obtain a

feasible solution Solution(GD). According to the solution

Solution(GD), a NCM subgraph can be built to support

the multicast with network coding, which is denoted by

GNCM(Solution(GD)).

The following lists some notations used in the paper:

• s: the source node in GD(V ′, E′);
• T = {t1, t2, ..., td}: set of receivers, where d = |T | is the

number of receivers;

• R: data rate (an integer) at which s expects to transmit to

T;

• pi(s, tk): the i-th path from s to tk, where tk ∈ T and

i=1, ..., R;

• Wi(s, tk): the set of links of pi(s, tk), i.e., Wi(s, tk) =
{e|e ∈ pi(s, tk)};

• Paths(s, tk) = {p1(s, tk), ..., pR(s, tk)}: a path set from

s to tk, where tk ∈ T and any two paths in Paths(s, tk)
are link-disjoint;

• Solution(GD)={Paths(s, t1), ..., Paths(s, td)}: a com-

plete NCM solution;

• GNCM(Solution(GD)): a NCM subgraph that is built by

Solution(GD);
• OA(GD): the set of outgoing auxiliary nodes in

GD(V ′, E′);
• σo: a binary variable associated with each node o ∈

OA(GD). σo = 1 if at least two incoming links of

node o are occupied by GNCM(Solution(GD)); σo = 0,

otherwise;

• ϕ(GNCM(Solution(GD))): the number of coding nodes

in GNCM(Solution(GD)).

The NCRM problem is defined as to find a solution to build

a NCM subgraph GNCM(Solution(GD)) with the minimum

amount of coding operations performed and the data rate R
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satisfied, as shown below:

Minimize:

ϕ(GNCM(Solution(GD))) =
∑

∀o∈OA(GD)

σo (3)

Subject to:

R(s, tk) = R, ∀tk ∈ T (4)

Wi(s, tk) ∩Wj(s, tk) = ∅,

∀tk ∈ T, ∀i, j ∈ {1, ..., R}, i 6= j
(5)

Objective (3) defines the optimization problem as to mini-

mize the number of coding operations. Constraint (4) defines

that the achievable rate between s and each receiver is exactly

data rate R in solution Solution(GD), indicating there are

R paths between the source and each receiver. Constraint (5)

indicates that for arbitrary two paths from s to tk, pi(s, tk) and

pj(s, tk) (i 6= j), no common link exists so that each receiver

can receive information at data rate R.

An illustrative example is given in Fig. 3. Fig. 3(a) illustrates

the decomposed graph for the original multicast scenario in

Fig. 2. With data rate R=2 and two receivers, i.e., node 8 and

node 9, we use an ant colony of two ant groups (AntG1 and

AntG2) to address the NCRM problem, where each group

consists of two ants. AntG1 is responsible for finding a path

set of two link-disjoint paths from node 1 to node 8. AntG2

is for constructing a link-disjoint path set from node 1 to

node 9. Specifically, as shown in Fig. 3(b)-(c), the two ants in

AntG1 find p1(1, 8) = 1 → 2 → 8 and p2(1, 8) = 1 → 3 →
4 i 2 → 4 o 1 → 5 → 7 i 1 → 7 o 1 → 8, respectively.

Thus W1(1, 8) = {1 → 2, 2 → 8} and W2(1, 8) = {1 →
3, 3 → 4 i 2, 4 i 2 → 4 o 1, 4 o 1 → 7 i 1, 7 i 1 →
7 o 1, 7 o 1 → 8}. Due to W1(1, 8)∩W2(1, 8) = ∅, the two

paths p1(1, 8) and p2(1, 8) are link-disjoint. Likewise, then the

other ants in AntG2 find two link-disjoint paths p1(1, 9) =
1 → 2 → 4 i 1 → 4 o 1 → 5 → 7 i 1 → 7 o 2 → 9 and

p2(1, 9) = 1 → 3 → 9, respectively. Eventually, a complete

solution Solution(GD) = {Paths(1, 8), Paths(1, 9)} can

be constructed, where Paths(1, 8) = {p1(1, 8), p2(1, 8)} and

Paths(1, 9) = {p1(1, 9), p2(1, 9)}, then the associated NCM

subgraph is built as shown in Fig. 3(d). It is noted that node

4 o 1 is the only coding node in GNCM(Solution(GD)),
which means the number of the coding nodes ϕ equals to

1.

B. Related works

Due to the importance and the benefit network coding

brings, the NCRM problem has received much attention re-

cently. Fragouli et al. [24] and Langberg et al. [11] proposed

two greedy-based approaches for solving the problem. How-

ever, greedy algorithms do not perform well in escaping local

optimum, leading to a deteriorated optimization performance

when the link traversing order is not appropriate. Later on,

Kim et al. [8]–[10] proved that the NCRM problem is NP-

hard and carried out a series of research on how to efficiently

apply genetic algorithms (GAs) to tackle the problem. Sim-

ulation results demonstrate that GAs outperform the greedy

algorithms in a statistical manner. Since then, EA-based search

algorithms have become the mainstream techniques for solving

the NCRM problem in the field of computational intelligence.

We classify the existing EAs into four categories by the

individual encoding approaches adopted. EAs of the first

category are based on the binary link state (BLS) encoding. As

mentioned in Subsection II-B, for a merging node m, there are

|Im|×|Om| auxiliary links inserted between the corresponding

incoming and outgoing auxiliary nodes. In BLS encoding,

an individual consists of a number of binary variables, with

each corresponding to the state of an auxiliary link (active or

inactive). Hence, an explicit NCM subgraph can be built by

a feasible individual. The BLS-based EAs include GAs [9],

[10], [25], quantum-inspired EAs [26], [27], population based

incremental learning [28], [29] and compact GA [30]. One of

the disadvantages of BLS is that infeasible solutions account

for the majority of the search space, which to a certain extent

deteriorates the search ability and efficiency of EAs [31], [32].

EAs of the second category are based on the block transmis-

sion state (BTS) encoding. BTS is similar to BLS. In BTS, an

individual is divided into a number of blocks, each of which

corresponds to an outgoing auxiliary node. If there are at least

two 1’s in a block, the whole block is set to all-one block. In

this way, the size of the search space is greatly decreased.

Nevertheless, using BTS may lose useful information for

guiding the search towards the global optima. GA [10] is based

on BTS encoding. In addition, Ahn et al. incorporated the self-

adaptive fitness assignment rule and entropy-based relaxation

technique into EAs with BTS to improve the efficiency and

effectiveness of the algorithms [33], [34].

As mentioned above, BLS and BTS encodings both record

the explicit link states (active or inactive). But, the third

category of the EAs utilizes the relative information of the

flows [35]. To be specific, each link is associated with a

coefficient which represents how the information is combined

according to the combination of flows from the upstream

links. Hu et al. invented this encoding approach and adapt

several GAs, e.g., the ripple-spreading GA (RSGA) [36] and

the spatial receding horizon control GA (SRHCGA) [37], for

the problem in large-scale or complex networks. Meanwhile, a

chemical reaction optimization (CRO) algorithm was studied

for addressing the problem, with the operating principle in-

spired from chemical reactions [38]. Different from optimizing

routing only, their research also work out the associated

information encoding/decoding scheme, which is an important

and realistic issue when considering the practical deployment

of NC.

The fourth stream of EAs is the path-oriented encoding

method. Each individual is comprised by a union of paths

from the source to one of the receivers. Compared with BLS

and BTS, the path-oriented encoding results into a search

space where all solutions are feasible. As there is no infeasible

solution, the search space is well connected and the problem

difficulty is reduced. Xing and Qu proposed a path-oriented

encoding EA in [32].

In addition to the NCRM problem above, more and more

research efforts have been made to the multi-objective net-

work coding based multicast routing problem (MNCMRP),
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Fig. 3. An illustrative example of the problem formulation

where coding cost, link cost, and quality-of-service indicators

are often considered as multiple objectives for simultaneous

optimization. Coding cost and link cost are often considered

as two conflicting objectives in the context of MNCMRP. A

number of multi-objective evolutionary algorithms have been

proposed to gain the trade-off between the two costs [39]–

[41]. Xing et al. formulated a novel MNCMRP, where the total

cost and maximum end-to-end delay are two objectives [31].

The fast nondominated sorting genetic algorithm II (NSGA-II)

was adapted for the problem. Moreover, Karunarathnea et al.

investigated a MNCMRP with three objectives, including the

number of coding nodes, the mean number of coding node

input links and the sharing of resources by receivers [42].

IV. NCRM-ACO

In this section, we first describe the overall procedure of

the ACO algorithm for the NCRM problem (NCRM-ACO),

followed by details of the key mechanisms and significance

of parameters in subsections.

A. Overall procedure of NCRM-ACO

Fig. 4 is the overall procedure of NCRM-ACO and Fig.

5 shows the pseudo code of function PathSetConstruction.

Fig. 6 shows the overall flow chart of the algorithm. In the

proposed NCRM-ACO, first of all, with the original network

G(V,E), the graph decomposition phase is executed so as

to obtain a decomposed graph GD(V ′, E′), based on which

ACO is implemented to build feasible solutions. The proposed

algorithm maintains a single ant colony at each generation.

Within the colony, there are d ant groups AntGk, k=1, ...,

d, each of which contains R ants (R is the expected data

rate). Each ant group corresponding to one of d receiver, i.e.,

the k-th ant group is in charge of finding a feasible path

set Paths(s, tk) for receiver tk ∈ T , where Paths(s, tk)
is composed of R link-disjoint paths from the source to tk.

Each ant in AntGk finds a single path from the source

to tk so that the above mentioned R link-disjoint paths are

constructed for receiver tk. In the algorithm, d path sets are

built one after another. If path set Paths(s, tk) is constructed

successfully (see Subsection IV-D), it is used to update the

pheromone and heuristic information of the ant colony to

guide the path construction process (see Subsection IV-E).

With all path sets found, a complete solution Solutionz(GD)
consisting of all paths in these path sets is formed, where

z is the generation number. Then, a NCM subgraph could

be built by the solution and the number of coding nodes

ϕ(GNCM(Solutionz(GD))) is easily calculated. After that,

a solution reconstruction method is devised to improve the

quality of Solutionz(GD) by exploring its neighboring area

in the solution space, aiming to find an improved solution

Solutionnew
z (GD) (see Subsection IV-F). Finally, the global

(historical) best solution Solutiongb(GD) obtained is used to

update the pheromone so as to guide the search towards the

optimal solution to the problem (see Subsection IV-G). The

above process is repeated generation by generation, until the

termination condition is met.

The pheromone and heuristic coefficients are two impor-

tant coefficients, necessarily supporting effective search. In

Subsections IV-B and IV-C, two problem-specific pheromone

and heuristic maintenance mechanisms are described in detail.

The remaining steps of NCRM-ACO are introduced from

Subsections IV-D to IV-G.

B. The pheromone maintenance mechanism

In this paper, pheromone is used to provide essential guid-

ance for the ant colony to gradually search towards the optimal

solution for the NCRM problem. As mentioned in Subsection

III-A, the less coding operations are required the better. Hence,

pheromone is designed to be associated with the number of

coding nodes a solution owns. This idea is similar to the

pheromone scheme in TSP and 0-1 knapsack problems [14],

[43], where pheromone is associated with the total distance

and the total number of bins, respectively.

However, there is a significant difference between the

pheromone schemes for TSP and 0-1 knapsack problems than

that for the NCRM problem. That is, for the former, a single

pheromone table is able to provide effective guidance during

the search while for the latter such a scheme does not apply,

as explained below. Compared with TSP and 0-1 knapsack

problems, NCRM problem is much more complicated. In

TSP, each link is selected once in an arbitrary solution.

Nevertheless, in the NCRM problem, each link could be idle,

occupied once or multiple times (e.g., a link may belong

to multiple path sets simultaneously). If a single pheromone
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Input: A graph G, data rate R

1: Decompose graph G to GD; ⊲ (Subsection II-B )

2: Initialize pheromone values; ⊲ (Subsection IV-B)

3: Initialize Solutiongb(GD) = ∅;

4: while Termination conditions NOT met do

5: Initialize Solutionz(GD) = ∅;

6: Initialize heuristic information table; ⊲ (Subsection IV-C)

7: for k = 1 to d do

8: Initialize Paths(s, tk) = ∅;

9: Set Paths(s, tk) = PathSetConstruction(s, tk, R); ⊲ (Subsection IV-D)

10: while size of Paths(s, tk) < R do

11: Invoke the pheromone local updating rule (punishment) to Paths(s, tk); ⊲ (Subsection IV-E)

12: Set Paths(s, tk) = PathSetConstruction(s, tk, R); ⊲ (Subsection IV-D)

13: end while

14: Invoke the pheromone local updating rule (reward) to Paths(s, tk); ⊲ (Subsection IV-E)

15: Add Paths(s, tk) into Solutionz(GD);
16: Update the heuristic information according to Paths(s, tk); ⊲ (Subsection IV-C)

17: end for

18: Apply solution reconstruction method to Solutionz(GD) and get Solutionnew
z (GD); ⊲ (Subsection IV-F)

19: if ϕ(GNCM(Solutionnew
z (GD))) < ϕ(GNCM(Solutiongb(GD))) then

20: Invoke pheromone global updating rule by ϕ(GNCM(Solutionnew
z (GD))); ⊲ (Subsection IV-G)

21: Set Solutiongb(GD) = Solutionnew
z (GD);

22: end if

23: end while

Output: The global best solution Solutiongb(GD) and ϕ(GNCM(Solutiongb(GD)))

Fig. 4. The overall procedure of NCRM-ACO

1: function PATHSETCONSTRUCTION(source, receiver,R)

2: Initialize Paths(source, receiver) = ∅;

3: for l = 1 to R do

4: Ant l builds a path from source to receiver, denoted by pl(source, receiver); ⊲ (Subsection IV-D)

5: Add pl(source, receiver) into Paths(source, receiver);
6: end for

7: return Paths(source, receiver);
8: end function

Fig. 5. The pseudo-code of constructing the path set from the source to a receiver

table is adopted, this conflicting and misleading information

(pheromone overlapping problem) would not be able to pro-

vide useful guidance for the solution construction procedure.

This is because for an arbitrary link different ants may have

different options on whether or not to occupy it.

In order to efficiently guide the search, NCRM-ACO uses a

new pheromone maintenance mechanism employing multiple

pheromone tables. We associate each ant in the ant colony with

a pheromone table, leading to in total R∗d pheromone tables,

where R and d is the data rate and the number of receivers,

respectively. Each table maintains the pheromone of an ant

over the decomposed graph GD, where each auxiliary link

is associated with a pheromone value. Let τ0 be the initial

pheromone value over each link. For all tables, τ0 is set to

a small positive number ϕmax = (|V ′|)−1, where |V ′| is the

number of nodes in GD. Take Fig. 2(a) as an example, with

d=2 and R=2, the NCRM-ACO maintains 2×2 = 4 pheromone

tables as shown in Fig. 7. At different generations, those ants

responsible for finding the same path, e.g., p1(1, 8), share the

same pheromone table. Moreover, τ0 for all links is set to

ϕmax = (|V ′|)−1 = (15)−1. During the search procedure,

the pheromone values in those tables are gradually updated,

as introduced in Subsections IV-E and IV-G. The number of

pheromone tables is the product of the number of the data rate

R and the number of receivers d. Data rate R is subjected by

the max-flow from the source to a receiver. In the literature,

data rate R is usually small. To the best of our knowledge, the

largest R for experiments and simulations is set to 7 [34]. So,

the number of pheromone tables grows approximately linearly

with d.

C. The heuristic maintenance mechanism

In ACOs, the heuristic information is of vital importance

for guiding the construction of the global best solutions, e.g.,

the distance between two cities in TSP and the weight and

value of goods in the 0-1 knapsack problem [14], [43]. In those

problems, such information can be easily extracted and defined

to better explore the neighboring areas. However, the NCRM
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Fig. 6. The overall flow chat of NCRM-ACO

Fig. 7. An example of multiple pheromone tables maintained

problem aims to find a feasible routing subgraph consisting

of multiple path sets, each of which contains a number of

disjoint paths to the same receiver, where no clear heuristic

information is immediately available.

In this paper, an efficient heuristic maintenance mechanism

maintains how many times each link has been selected by

different ant groups in the same generation. Heuristic infor-

mation represents local information and can provide some

useful guidance when constructing the paths to form the NCM

subgraph. According to Subsection II-B, an outgoing auxiliary

node m ∈ OA(GD) will perform coding operations if the

received information comes from more than one incoming

link. How to reduce the probability of the incurrence of coding

operations is desirable. Fortunately, the number of times that

each incoming link is selected can help. This is because, at a

certain generation, each ant aims at finding a complete path

from the source to one of the receivers and for a certain

outgoing auxiliary node, if all ants pass (select) a single

incoming link, then no coding operation is necessary at the

outgoing auxiliary node. If we use the number of times that

each incoming link is selected by ants, it is possible to reduce

the coding probability during the NCM data transmission. That

is, an incoming link associated with larger number of times is

selected by ants. In this way, for an arbitrary outgoing auxiliary

node, one of its incoming links is selected multiple times while

the rest of the links are not employed by the NCM. Hence,

the coding operation is avoided at the outgoing auxiliary node.

On the other hand, if ants are allowed to randomly select

incoming links, coding operations are more likely to happen.

To realize such an idea in the proposed ACO, we use the

number of times that each incoming link is selected as the

heuristic information, to provide necessary guidance for the

ant groups to find all feasible path sets while trying best to

involve as less coding operations as possible. Specifically, for

an arbitrary outgoing auxiliary node, we count the number of

times each incoming link is selected by all ant groups at each

generation. When implementing path construction, each ant

preferably selects those incoming links with higher heuristic

information values. Hence, in a greedy manner, the role of the

heuristic information is to provide extra guidance to reduce

the number of coding operations in the solution construction
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phase.

In the proposed mechanism, the heuristic information is

maintained in one table, called Key-Value map, where Key

and Value represent the link ID and its corresponding value,

respectively. The value stands for the number of times a link

has been selected. Initially, the value of each link is set to 1.

All path sets are constructed in a one-by-one manner. The table

is updated after each of the d path sets is constructed by adding

a value of 1 to the heuristic information value of each link

in the path set. At the beginning of each new generation, the

values of all links are reset to 1 since the heuristic information

is only used to indicate the link occupation status of the

incumbent generation.

D. Tabu-table based path construction

Different from the TSP, the NCRM problem is much more

complex. It aims to construct multiple path sets, with each

consisting of a number of link-disjoint paths from the source

to a certain receiver. Due to the problem nature, it is often

possible that an ant could not reach its destination, e.g.,

receiver tk. To overcome this problem, we propose a tabu-table

based path construction method to increase the probability that

an arbitrary ant can find a feasible and demanded path.

In the proposed method, the route of each ant starts from

the source and ends up with one of the receivers. A feasible

solution to the NCRM problem is quite difficult to construct,

since one needs to find multiple path sets, where each path

set contains multiple link-disjoint paths from the source to the

same receiver. To ease the above problem, for each ant group

AntGk, we maintain a tabu table to record which links have

been employed. Those employed links will not be visited by

other ants within AntGk. Fig. 8 illustrates a simple example

of the tabu table. When ant1 in AntG1 find p1(1, 8) = 1 →
2 → 8 as shown in Fig. 8(b), the two links 1 → 2 and 2 → 8
are added in the tabu table. Then, ant2 of AntG1 would not

choose the two links any more. If there is only a single link

from node i, the ant will move to this link; otherwise, those

available links Ψi which are not being included in the tabu

table will have a chance to be selected. To select a link from

Ψi, the pseudo-random rule [14] is adopted to calculate the

probability by formula (6).

np =

{

argmax
u∈Ψi

[τ(tk, l, (i, u))]
α
[η(i, u)]

β
, if q ≤ q0

ζ , otherwise
(6)

where argument τ(tk, l, (i, u)) is amount of pheromone and

η(i, u) is the amount of heuristic information on link (i, u).
In τ , receiver tk and path number l are both associated with

the pheromone maintenance mechanism. Parameters α and

β define the relative importance of the pheromone and the

heuristic information, respectively. q is a uniformly distributed

random number in the range [0, 1] and q0(0<q0<1) is a

threshold value. ζ is a random value determined by the

probability of p(i, j) if q is greater than q0:

p(i, j) =











[τ(tk,l,(i,j))]
α[η(i,j)]β

∑

u∈Ψi

[τ(tk,l,(i,u))]
α[η(i,u)]β

, j ∈ Ψi

0, otherwise

(7)

Fig. 8. An example of the tabu table

By using formulae (6) and (7), each ant may either follow

the most favorite path already established or randomly select

a path based on the probability distribution of the pheromone

and the heuristic accumulated. It is noted that the pseudo-

random rule facilitates the diversity of the stochastic search

and hence it helps to enhance the global search ability.

E. The pheromone local updating rule

The expected data rate R, as a hard constraint, must be

satisfied during the establishment of the network coding based

multicast session. This can be achieved by constructing R link-

disjoint paths from the source to each receiver. However, even

if the tabu table scheme is employed, an infeasible path could

be resulted if an ant chooses inappropriate links. Take Fig. 9(a)

as an example. An ant in ant group AntG1 has constructed a

path p1(1, 8) = 1 → 2 → 4 i 1 → 4 o 1 → 5 → 7 i 1 →
7 o 1 → 8 from source node 1 to receiver node 8 and all

links in p1(1, 8) are recorded in the tabu table. The other

ant in AntG1 cannot construct a second path p2(1, 8) that

is link-disjoint with p1(1, 8) from node 1 to node 8 in any

circumstance, as shown in Figures 9 (b) and (c). Apparently, if

this happens, we could send a new group of ants to reconstruct

a feasible path set. In NCRM-ACO, a pheromone punishing-

and-rewarding mechanism is proposed to avoid ants following

the same paths as the old group does.

In the pheromone punishing scheme, if an ant group AntGk

fails to construct a feasible path set, e.g., Paths(s, tk), the

pheromone values on those paths which have been employed

by AntGk are decreased by a constant ∆τloc before the

reconstruction of Paths(s, tk) as follows.

τ(tk, l, (i, j)) = τ(tk, l, (i, j))−∆τloc (8)

where the value ∆τloc is a small positive number. In the

pheromone local updating rule, ∆τloc = (ϕmax)
−1.

It is noted that the pheromone values on some of the links

may decrease constantly, which can cause a stagnation search

when the difference of pheromone on links is too large. There-

fore, inspired by the idea of MAX-MIN ant system [15], in our

scheme the pheromone value on any link cannot be lower than

a threshold value (ϕmax)
−1, i.e., whenever τ(tk, l, (i, u)) −

∆τloc ≤ (ϕmax)
−1, set τ(tk, l, (i, u)) = (ϕmax)

−1, which

could effectively avoid the stagnation search.
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Fig. 9. An example of the inappropriate path selection

On the contrary, in the pheromone rewarding scheme, when

a feasible path set is constructed successfully, the associated

ant group will be rewarded by means of increasing the

pheromone values on links they employ by ∆τloc at each time

(see formula (9)).

τ(tk, l, (i, j)) = τ(tk, l, (i, j))+∆τloc (9)

In summary, the pheromone local updating rule is composed

of the punishing and rewarding schemes to guide the construc-

tion of feasible solutions.

F. Solution reconstruction method

It is widely recognized that prematurity often happens in

ACO and could cause serious performance deterioration [15],

[44]. Hence, we develop a solution reconstruction method to

improve the quality of the solution obtained, aiming at enhanc-

ing the local exploitation ability and avoiding the premature

convergence. The solution reconstruction method consists of

three steps. First of all, for a given solution Solution(GD),
we randomly select a coding node mcoding from it. Secondly,

we randomly select one of the incoming links, e.g., ecoding ,

of node mcoding . Then, we divide all path sets Paths(s, tk),
k = 1, ..., d, of Solution(GD) into two groups, i.e., unaf-

fectedPaths and affectedPaths. Assume there are h path sets

in affectedPaths, where h is a positive integer smaller than

the number of receivers d. So unaffectedPaths contains (d-

h) path sets. Paths(s, tk) is included into affectedPaths if

link ecoding ∈ Paths(s, tk); otherwise, Paths(s, tk) belongs

to unaffectedPaths. Thirdly, we reconstruct all path sets in

affectedPaths, with unaffectedPaths unchanged. After that, all

path sets in unaffectedPaths and affectedPaths are combined to

form a new solution, aiming to reduce the coding operations

involved.

The path set reconstruction is described below. First, with

link ecoding unchanged, we delete the rest of the incoming

links of node mcoding from GD resulting into a new graph

G′
D. Then, we send h ant groups to rebuild all path sets in

affectedPaths over G′
D. Note that, it is possible that graph

G′
D cannot meet the data rate requirement after the deletion

of those incoming links. So, when rebuilding a path set,

e.g., Paths(s, tk), we limit the number of times attempt-

ed. If the reconstruction cannot be completed after these

attempts, NCRM-ACO gives up the reconstruction process;

otherwise, replaces Paths(s, tk) with the newly constructed

path set Pathsnew(s, tk). After all path sets in affectedPaths

are rebuilt or after a certain number of times, we combine

affectedPaths with unaffectedPaths to form a new solution

Solutionnew(GD). If Solutionnew(GD) requires less coding

operations, Solution(GD) is replaced by Solutionnew(GD).
Otherwise, Solution(GD) remains unchanged.

For example, as shown in Fig. 4(d), there is only one coding

node, i.e., node 4 o 1. Hence, the solution reconstruction

method procedure starts with node 4 o 1. According to the

procedure, we randomly choose an incoming link e of node

4 o 1, e.g., node 4 i 1 to node 4 o 1. As link e is included

in Paths(1, 9) but not in Paths(1, 8), we have unaffected-

Paths={Paths(1, 9)} and affectedPaths={Paths(1, 8)}. After

that, apart from link e, the rest of the incoming links of

node 4 o 1, i.e., link node 4 i 2 → node 4 o 1, is deleted

from the graph, and the reconstruction of Paths(1, 8) is

triggered. Fig. 10(a) shows the new graph G
′

D after the

deletion of incoming links. Suppose the new ant group

successfully constructs two link-disjoint paths, p′1(1, 8) =
1 → 2 → 8 and p′2(1, 8) = 1 → 3 → 4 i 2 →
4 o 2 → 6 → 7 i 2 → 7 o 1 → 8. We thus have

Pathsnew(1, 8) = {p′1(1, 8), p
′
2(1, 8)}, as shown in Fig. 10(b).

Then, a new solution is formed by combining Pathsnew(1, 8)
and Paths(1, 9), with no coding operation required (see

Fig. 10(d)). Due to ϕ(GNCM(Solutionnew(GD))) <
ϕ(GNCM(Solution(GD))), we replace the old solution with

Solutionnew(GD).

G. The pheromone global updating rule

In addition to the pheromone local updating rule, NCRM-

ACO adopts a pheromone global updating rule to guide

the search towards optimal solutions. Under this rule, the

pheromone information on all links is updated by a historic

best solution Solutiongb(GD), providing some instructive

guidance to improve the quality of the solutions built. The

pheromone value is updated by using formulae (10) and (11).

τ(tk, l, (i, j)) = (1− ρ) τ(tk, l, (i, j)) + ρ∆τgb (10)

∆τgb =

{

(ϕgb)
−1, if (i, j) ∈ Solutiongb(GD)

0, otherwise
(11)

where parameter ρ ∈ (0, 1] is a constant value, called the evap-

oration rate, mimicking the evaporation of the pheromone on

all links [21], i.e., the pheromone value on each link decreases

by ρ whenever the global pheromone updating is executed. ϕgb

is the number of coding nodes in GNCM(Solutiongb(GD)).

V. PERFORMANCE EVALUATION

In this section, we first introduce the test instances, the

experimental environment and all metrics for performance

evaluation. We then report an experiment which helps us

to find a set of appropriate parameter values for NCRM-

ACO. Later, we validate the effectiveness of all proposed

mechanisms of NCRM-ACO. Finally, the proposed algorithm

is evaluated by comparing it against a number of state-of-

the-art algorithms already developed for solving the NCRM

problem.
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Fig. 10. An example of the solution reconstruction method

A. Test instances

We evaluate the performance of the proposed algorithm

on 35 benchmark instances which can be classified into four

categories, namely, Fixed, Random, Hybrid and Real-world

networks. Table I shows all instances and their parameters. To

encourage future scientific comparison on the NCRM problem,

these instances are available at http://www.cs.nott.ac.uk/∼rxq/

benchmarks.htm. All experiments are run on a computer with

Windows 8 OS, Intel(R) Core(TM) i7-3740QM CPU 2.7 GHz

and 8 GB RAM.

• Fixed networks. These four networks have been widely

used in the literature [8]–[10], [26]–[30], [32]–[38]. They

are also referred to as n-copy networks, each of which is

built by cascading n copies of Basic network (a) (see

Fig. 11(a)). Fig. 11(c) illustrates the 3-copy network,

where node 1 is the source and nodes 16, 17, 24, 25

are receivers. It can be easily inferred that the minimum

number of the coding operations to any n-copy networks

is 0.00.

• Random networks. Networks of this type are all gen-

erated by the directed acyclic graph generation method

introduced in [45]. The 18 random networks have 20 to

500 nodes. It is noted that Rnd-11 to Rnd-18 are relatively

large networks.

• Hybrid networks. Due to that all test cases have the

global minimum of 0.00, we generated 8 hybrid networks,

where the global minimum of each instance is at least 1

and is known beforehand. This is done by combining

two basic networks together, i.e., Fig. 11(a) and Fig.

11(b), where Fig. 11(a) is coding-free while Fig. 11(b)

has an explicit coding node, i.e., node 4. In this way, a

hybrid network can be built by combining a number of

Fig. 11(a) and Fig. 11(b) networks together. The global

minimum of an instance is equal to the number of Fig.

11(b) networks. Therefore, in hybrid networks, the global

minimum is already known. The hybrid networks are

called X-hybrid(Y), where X represents the number of

networks being combined and Y indicates the global

minimum value. Similar to the 3-copy, 7-copy, 15-copy

and 31-copy networks, we create 3-hybrid, 7-hybrid, 15-

hybrid, and 31-hybrid networks, respectively. The global

minimum is from 1 to 5. Fig. 11(d) illustrates 3-hybrid(1)

network which contains two Fig. 11(a) networks and one

Fig. 11(b) network. The global minimum is 1. Therefore,

hybrid networks could be used to simulate networks

where coding is necessarily performed and reflect the

optimization ability of the algorithm in solving this type

of the NCRM problem.

• Real-world networks. Five real-world topologies have

been adopted for the performance evaluation, namely,

Ebone-1, Ebone-2, Ebone-3, Exodus-1, and Exodus-2

[33], [34]. We also use them in our experiments.

Fig. 11. A example of fixed and hybrid networks
(a) Basic network 1; (b) Basic network 2; (c) 3-copy; (d) 3-hybrid(1)

B. Performance measures

To thoroughly evaluate the performance of the proposed

algorithm, the following performance measuring metrics are

employed throughout the experiments.

• Mean and Standard Deviation (SD) of the best solutions

found from 50 runs. Mean and SD are important met-

rics to demonstrate the overall performance of a search

algorithm.

• Average Computational Time (ACT) consumed by an

algorithm over 50 runs. This metric is a direct indication

of the computational time of an algorithm.

• Student’s t-test [32], [46] to compare two algorithms (A

and B) in terms of the objective function values of the

50 best solutions obtained. In this paper, two-tailed t-test
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TABLE I
EXPERIMENTAL INSTANCES AND THEIR PARAMETERS

Group Networks
Original network G Decomposed graph GD

Optimum
Nodes Links Receivers Rate Average degree Nodes Links Input links for coding

Fixed

3-copy 25 36 4 2 2.88 49 68 32 0
7-copy 57 84 8 2 2.95 117 164 80 0
15-copy 121 180 16 2 2.98 253 356 176 0
31-copy 249 372 32 2 2.99 617 740 368 0

Random

Rnd-1 20 37 5 3 3.80 54 81 43 0
Rnd-2 20 39 5 3 3.90 65 89 50 0
Rnd-3 30 60 6 3 4.00 94 146 86 0
Rnd-4 30 69 6 3 4.60 113 181 112 0
Rnd-5 40 78 9 3 3.90 124 184 106 0
Rnd-6 40 85 9 4 4.25 91 149 64 0
Rnd-7 50 101 8 3 4.04 178 246 145 0
Rnd-8 50 118 10 4 4.72 194 307 189 0
Rnd-9 60 150 11 5 5.00 239 385 235 0
Rnd-10 60 156 10 4 5.20 262 453 297 0
Rnd-11 100 175 10 2 3.50 245 389 214 0
Rnd-12 100 279 10 3 5.58 433 879 600 0
Rnd-13 150 337 16 2 4.49 483 851 514 0
Rnd-14 150 363 11 3 6.17 712 1519 1056 0
Rnd-15 200 527 18 2 5.27 823 1586 1059 0
Rnd-16 200 473 12 3 4.73 703 1272 799 0
Rnd-17 500 1086 33 2 4.34 1682 2947 1861 0
Rnd-18 500 491 24 3 5.46 2187 4413 3048 0

Hybrid

3-hybrid(1) 24 34 4 2 2.83 42 58 24 1
3-hybrid(2) 23 32 4 2 2.78 35 48 16 2
7-hybrid(2) 55 80 8 2 2.91 107 148 68 2
7-hybrid(3) 54 78 8 2 2.89 102 140 62 3

15-hybrid(3) 118 174 16 2 2.95 238 332 158 3
15-hybrid(4) 117 172 16 2 2.94 233 324 152 4
31-hybrid(4) 245 364 32 2 2.97 505 708 344 4
31-hybrid(5) 244 362 32 2 2.97 500 700 338 5

Real world

Ebone-1 18 23 5 2 2.44 31 39 16 0
Ebone-2 31 45 5 3 2.90 58 80 35 0
Ebone-3 26 45 5 4 3.46 62 99 54 0
Exodus-1 24 30 5 2 2.50 37 46 16 0
Exodus-2 33 51 5 3 2.73 71 105 54 0

with 98 degrees of freedom at a 0.05 level of significance

is used. The t-test result can show statistically if the

performance of A is better than, worse than, or equivalent

to that of B.

C. Parameter settings

The performance of the proposed ACO could be seriously

deteriorated, e.g., leading to slow convergence and prematurity,

if the values of parameters, namely, the pheromone factor

α, the heuristic factor β, the pheromone evaporation rate

ρ and the pseudo-random coefficient q0, are inappropriately

set. In order to determine an appropriate combination of

the parameter values, for each parameter, we tested 4 pos-

sible values, i.e., α ∈ {0.6, 0.7, 0.8, 0.9}, β ∈ {2, 3, 4, 5},

ρ ∈ {0.0, 0.1, 0.2, 0.3} and q0 ∈ {0.4, 0.5, 0.6, 0.7}. This

may lead to 44 = 256 combinations if we try all possible

parameter values. However, it is not necessary to try all the

combinations, since we only want to determine an appropriate

combination, rather than the best setting. We thus use the

orthogonal experimental design (OED) to find a relatively

better combination. OED is a multi-parameter experimental

design method based on orthogonal array, where a number

of representative combinations of parameter values which are

uniformly distributed within the test range are selected from

the full parameter experiment [47]. This method is highly

efficient when designing multi-parameter experiments. It can

greatly reduce the number of required experiments while

obtaining promising results. Since its introduction in 1950s,

OED has been widely applied in many areas, such as economic

management, bioengineering, environmental engineering, etc.

[48]–[50]. The following briefly introduces the procedure of

OED.

Let La(b
c) denote the orthogonal array, where a is the

number of experiments, b is the levels of parameters, and c
is the number of parameters. The orthogonal array has two

properties, i.e., (1) in each column, the number of occurrences

of different numbers is equal and (2) in any two columns,

the arrangement of numbers is complete and balanced. Any

parameter at each level is thus compared to all different

parameters with each other. Consequently, test results can be

analyzed through range and variance analysis to determine a

better value combination of parameters. More details can be

found in [47]–[51]. In our experiment, an orthogonal array

L16(4
4) is obtained from the referencing orthogonal table,

where 16 representative combinations are listed in Table II.

We carry out 50 independent runs for each parameter com-

bination and record the mean value of the best solutions. As

Fix-4 network instance is one of the most difficult instances,

we use it to run the parameter settings experiments.

Table III shows the Mean values of the 16 combinations

in Table II. It is noted that row m1 to row m4 represent

the mean value of a certain parameter with a certain value.

For instance, the mean value of parameter α=0.6 is calculated

as (6.82+5.78+0.60+1.28)/4=3.62. So, value 3.62 is recorded

in row m1, column α. Moreover, the mean value of each

parameter is illustrated in Fig. 12. When α=0.8, β=4, ρ=0.2,
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TABLE II
TABLE OF ORTHOGONAL ARRAY L16(44)

ParaCom α β ρ q0 ParaCom α β ρ q0

1 1 1 1 1 9 3 1 3 4
2 1 2 2 2 10 3 2 4 3
3 1 3 3 3 11 3 3 1 2
4 1 4 4 4 12 3 4 2 1
5 2 1 2 3 13 4 1 4 2
6 2 2 1 4 14 4 2 3 1
7 2 3 4 1 15 4 3 2 4
8 2 4 3 2 16 4 4 1 3

Note: number x in the columns α, β, ρ, q0 correspond to the x-th
value in the parameter value set

TABLE III
RESULTS OF THE ORTHOGONAL EXPERIMENTAL DESIGN

ParaCom α β ρ q0 Mean

1 0.6 2 0.0 0.4 6.82
2 0.6 3 0.1 0.5 5.78
3 0.6 4 0.2 0.6 0.60
4 0.6 5 0.3 0.7 1.28
5 0.7 2 0.1 0.6 0.56
6 0.7 3 0.0 0.7 4.40
7 0.7 4 0.3 0.4 0.62
8 0.7 5 0.2 0.5 1.16
9 0.8 2 0.2 0.7 1.04

10 0.8 3 0.3 0.6 0.00
11 0.8 4 0.0 0.5 0.64
12 0.8 5 0.1 0.4 1.18
13 0.9 2 0.3 0.5 2.86
14 0.9 3 0.2 0.4 1.62
15 0.9 4 0.1 0.7 0.44
16 0.9 5 0.0 0.6 1.84
m1 3.62 2.82 3.43 2.56 /
m2 1.69 2.95 1.99 2.61 /
m3 0.72 0.58 1.11 0.75 /
m4 1.69 1.37 1.19 1.79 /

Note: The symbol / means not applicable

and q0=0.6, NCRM-ACO achieves the smallest mean value.

Then, we compare the optimization performance of two com-

binations, i.e. {0.8, 4, 0.2, 0.6} and {0.8, 3, 0.3, 0.6} which

gains the minimum mean value in Table II. In this experiment,

performance indicators Mean and ACT are used and the results

are shown in Table IV. It is seen that each combination obtains

a mean value of 0.00, indicating both of them can achieve the

optimal solution in each single run. However, in terms of the

ACT, ACO with {0.8, 4, 0.2, 0.6} is faster. It is hence clear

that the first combination in Table IV performs the best and

is hereafter used as the parameter settings.
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Fig. 12. Relationship between average time and parameters

TABLE IV
RESULTS OF ADDITIONAL EXPERIMENTS

ParaCom α β ρ q0 Mean ACT (sec.)

1 0.8 4 0.2 0.6 0 14.84
2 0.8 3 0.3 0.6 0 18.72

D. Effectiveness of the proposed mechanisms

We evaluate the effectiveness of the proposed mechanisms

by implementing two experiments on 14 selected instances,

including the four fixed networks (3-copy, 7-copy, 15-copy,

31-copy) and ten random networks (Rnd-1, ..., Rnd-10), be-

cause these instances have been widely used for performance

evaluation.

The proposed ACO is featured with five specially devised

mechanisms, including the multi-dimensional pheromone

maintenance mechanism, the problem-specific heuristic infor-

mation, the tabu-table based path construction, the pheromone

local updating rule and the solution reconstruction method (see

Section IV for details). Among them, the first two are essential

components to drive ACO run properly. In other word, they

are fundamental mechanisms that adapt ACO for the NCRM

problem. One cannot test the effectiveness of the pheromone

maintenance and the heuristic information in a separate way.

Hence, we evaluate the two mechanisms as a whole (the first

experiment) and test the others independently (the second

experiment). The algorithms for comparison are listed below.

• Exp1: Verification of the first two mechanisms

– A1: the basic ACO [23]

– A2: A1 with the multi-dimensional pheromone main-

tenance mechanism and the problem-specific heuris-

tic information (see Subsections IV-B and IV-C);

• Exp2: Independent verification of the rest mechanisms

– A3: A2 with the tabu-table based path construction

(see Subsection IV-D);

– A4: A2 with the pheromone local updating rule (see

Subsection IV-E);

– A5: A2 with the tabu-table based path construction

and the pheromone local updating rule;

– A6: A2 with the solution reconstruction method (see

Subsection IV-F);

– A7: A1 with all proposed mechanisms (also called

NCRM-ACO).

As there is no clear heuristic information immediately

available, we set heuristic information factor β of A1 to 0.

For A2 to A7, we set β = 4, with which the algorithm could

achieve better optimization performance, as demonstrated in

Subsection V-C.

Table V shows the experimental results of seven algorithms.

First of all, it is easily observed that basic ACO cannot build

feasible solutions at all in any instance. The reason is as

follows. As known, basic ACO utilizes a single pheromone

table to guide the searching procedure of ants, which is in

favor of addressing traditional path-finding problems such as

travelling salesman problems [14], [20]. This is because, in

the above path-finding problems, a single path is expected to
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be found between a source and a receiver. A single ant is

able to finish the task. However, as for the NCRM problem,

the task of an ant colony is to build a set of link-disjoint

paths from the source to each receiver. Hence, a set of ants

search in parallel to construct a number of link-disjoint paths.

In this case, using a single pheromone table is far from enough

to provide explicit guidance to each of the ants within the

group, since the pheromone information on each link cannot

simultaneously guide ants with different path-finding purposes.

In addition, with no explicit heuristic information assisted, no

local information can be utilized. Therefore, the basic ACO

cannot even find feasible solutions in all instances. On the

other hand, with the proposed pheromone maintenance mech-

anism and the heuristic information utilized, A2 is successfully

applied to the NCRM problem.

Then, we compare A3, ..., A6 with A2 to verify if each of

the three mechanisms has a positive impact on the performance

of A2. Due to the nature of the NCRM problem, it is extremely

difficult to find a satisfied set of link-disjoint paths. Hence,

even with the pheromone maintenance mechanism and heuris-

tic information integrated, it is still possible that an ant cannot

reach its destination. In order to enhance the ability for an

arbitrary ant to find a demanded path and diversify link-disjoint

path sets, the tabu-table based path construction is developed.

It can be seen that A3 outperforms A2 in all instances in terms

of Mean value. Meanwhile, even if the tabu-table based path

construction is used, it is still possible to result into an infea-

sible path if inappropriate links are chosen. So, we need the

pheromone local updating rule as a complement to the tabu-

table based path construction. If we compare the performance

of A4 and A2, we see that the former is better. This is because,

by using the punishing and rewarding schemes, the pheromone

local updating rule is able to avoid ants following the same

paths as the previous group does, which helps to improve

the optimization performance. Meanwhile, by comparing the

performance of A5, A4 and A3, we can verify the effectiveness

of the tabu-table based path construction and the pheromone

local updating rule. Clearly, the two mechanisms perform

better than any of them individually adopted. If looking at

the results of A6 and A2, we also observe that the former

performs better than the latter. The reason is explained below.

As aforementioned, ACO may suffer from the prematurity. The

solution reconstruction mechanism can improve the quality of

solutions, so the local exploitation is enhanced and the local

optimum can be avoided.

Finally, A7 is compared with A2, ..., A6. Obviously, A7

always obtain optimum in any of the instances. Regarding

the mean and SD, it performs no worse, but usually better

than the others. This demonstrates that equipped with all

specially-devised mechanisms, the proposed algorithm has a

significantly improved optimization performance.

According to the above comparisons, we see that each of

the proposed mechanisms contributes to the improvement of

the NCRM-ACO. To further support our findings, we compare

the seven algorithms using Student’s t-test, where results are

given in Table VI. The result of A↔B is shown as ‘+’,

‘-’, or ‘∼’ when algorithm A is significantly better than,

significantly worse than, or statistically equivalent to algorithm

B, respectively. According to the results, A1 is beaten by A2

in all instances; A3 to A6 outperform A2 in most of the

instances; A5 performs better than A3 and A4; A7 is the best

algorithm among the seven. The results demonstrate not only

the effectiveness of each mechanism but also the performance

improvement via all the mechanisms.

E. Overall performance evaluation

We evaluate the overall performance of NCRM-ACO by

comparing it with the eleven state-of-the-art EAs, including

5 BLS-based (BLSGA [10], QEA1 [27], QEA2 [26], PBIL

[28] and cGA [30]), 2 BTS-based (BTSGA [10] and FA-

ENCA [34]), 3 relative-encoding-based (RGA [35], SRHCGA

[37] and CRO [38]), and 1 path-oriented (pEA [32]). The

algorithms for performance comparison are listed as follows.

• BLSGA: BLS encoding-based GA [10].

• QEA1: Quantum-inspired evolutionary algorithm (QEA)

[27].

• QEA2: Another QEA proposed by Ji and Xing [26].

• PBIL: Population-based incremental learning algorithm

[28].

• cGA: Compact genetic algorithm [30].

• BTSGA: BTS encoding-based GA [10].

• FA-ENCA: Fast and adaptive evolutionary algorithm

[34].

• RGA: GA proposed by Hu et al [35].

• SRHCGA: Spatial receding horizon control (SRHC)

genetic algorithm [37].

• CRO: Chemical reaction optimization algorithm [38].

• pEA: the path-oriented encoding EA [32].

• NCRM-ACO: the proposed algorithm.

The population size is set to 20 and the maximum number

of generations is 200 for each EA. For BLSGA, we set the

crossover probability pc = 0.8 and the mutation probability pm
= 0.006. For BTSGA, we have pc =0.8 and pm = 0.012. For the

rest of the algorithms, we adopt their best parameter settings

[26], [27], [29], [30], [32], [34], [35], [37], [38] . For the

fixed, random and real-world networks, the stopping criteria

is either an optimal solution is obtained or the maximum

number of generations is reached. For the hybrid networks, an

algorithm stops when either the best-so-far solution has not

been changed over 20 generations or the maximum number

of generations is reached. The results of Mean and SD are

collected in Table VII, where the value should read Mean(SD).

Tables VIII and IX illustrate the t-test results and the ACTs

of the 12 algorithms.

First of all, we compare the performance of algorithms

based on the same encoding approach. Among the five BLS-

based EAs, cGA gains the best overall performance. It is able

to obtain the minimum mean value in almost all instances.

As the optimum solution to each instance is already known,

cGA obtains the optimum solution in each run in 29 instances.

This is because cGA adopts a local search mechanism that

exploits the local information of the underlying problem to

locate promising areas and solutions. Regarding the BTS-

based algorithms, BTSGA is beaten by FA-ENCA in 21

instances while the former wins 4 instances. Compared with
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TABLE V
RESULTS OF MEAN(SD) (BEST RESULTS ARE IN BOLD)

Network
Exp1 Exp2

A1 A2 A3 A4 A5 A6 A7

3-copy / 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
7-copy / 1.62(1.50) 0.44(0.54) 0.48(0.62) 0.10(0.30) 0.86(0.72) 0(0)
15-copy / 7.52(1.90) 4.72(1.08) 5.16(1.16) 4.54(1.19) 6.10(1.13) 0(0)
31-copy / 21.84(5.67) 14.08(2.74) 15.18(2.52) 14.60(2.25) 18.90(2.62) 0(0)
Rnd-1 / 0.14(0.35) 0(0) 0.02(0.14) 0(0) 0(0) 0(0)
Rnd-2 / 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
Rnd-3 / 0.28(0.43) 0(0) 0.06(0.24) 0(0) 0(0) 0(0)
Rnd-4 / 0.52(0.90) 0(0) 0.08(0.27) 0(0) 0(0) 0(0)
Rnd-5 / 1.50(1.27) 1.28(0.76) 1.38(1.31) 0.34(0.65) 0.26(1.22) 0(0)
Rnd-6 / 0.06(0.24) 0(0) 0(0) 0(0) 0(0) 0(0)
Rnd-7 / 2.06(2.12) 0.76(0.48) 0.92(0.72) 0.54(0.50) 0.36(0.97) 0(0)
Rnd-8 / 2.72(2.53) 1.66(0.79) 1.92(1.34) 0.56(1.00) 0.24(0.81) 0(0)
Rnd-9 / 5.40(4.98) 1.36(1.38) 1.84(0.76) 0.46(1.19) 3.08(2.97) 0(0)
Rnd-10 / 2.92(2.04) 1.72(0.86) 2.04(1.22) 0.68(1.07) 1.54(1.82) 0(0)

Note: The symbol / stands for that the algorithm can’t find any feasible solution

TABLE VI
t-TEST RESULTS OF THE SEVEN ALGORITHMS

Network A2↔A1 A3↔A2 A4↔A2 A5↔A2 A6↔A2 A7↔A2 A5↔A3 A5↔A4 A7↔A5 A7↔A6

3-copy + ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼

7-copy + + + + + + + + + +
15-copy + + + + + + + + + +
31-copy + + + + + + ∼ + + +
Rnd-1 + + + + + + ∼ + ∼ ∼

Rnd-2 + ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼

Rnd-3 + + + + + + ∼ + ∼ ∼

Rnd-4 + + + + + + ∼ + ∼ ∼

Rnd-5 + + + + + + + + + +
Rnd-6 + + + + + + ∼ ∼ ∼ ∼

Rnd-7 + + + + + + + + + +
Rnd-8 + + + + + + + + + +
Rnd-9 + + + + + + + + + +

TABLE VII
RESULTS OF MEAN AND SD (BEST RESULTS ARE IN BOLD)

Network BLSGA QEA1 QEA2 PBIL cGA BTSGA FA-ENCA RGA SRHCGA CRO pEA NCRM-ACO

3-copy 0.52(0.84) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
7-copy 2.36(2.22) 0.30(0.65) 0.74(1.18) 0(0) 0(0) 0.38(0.41) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

15-copy 10.44(7.02) 2.82(3.31) 5.92(1.86) 1.76(2.57) 0(0) 0.08(0.22) 0.15(0.23) 0(0) 0.04(0.55) 0.10(0.41) 0(0) 0(0)
31-copy 31.66(6.48) 16.68(8.80) 20.02(0.22) 22.74(8.43) 0(0) 8.58(3.42) 20.35(3.90) 0.03(0.44) 0.01(0.14) 0.26(0.59) 0(0) 0(0)
Rnd-1 0.74(1.20) 0.12(0.31) 0.10(0.31) 0(0) 0(0) 0.28(0.44) 0(0) 0.01(0.14) 0.44(0.50) 0.20(0.40) 0(0) 0(0)
Rnd-2 0.26(0.64) 0(0) 0(0) 0(0) 0(0) 0.02(0.22) 0(0) 0(0) 0.16(0.37) 0.06(0.47) 0(0) 0(0)
Rnd-3 0.24(0.68) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0.08(0.27) 0.18(0.48) 0(0) 0(0)
Rnd-4 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
Rnd-5 1.42(0.88) 0.46(0.51) 0.38(0.41) 0(0) 0.12(0.36) 0.38(0.57) 0(0) 0.50(0.50) 0.58(0.58) 0.96(0.52) 0(0) 0(0)
Rnd-6 0.22(0.41) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0.06(0.47) 0.46(0.81) 0.48(0.59) 0(0) 0(0)
Rnd-7 1.38(0.97) 0.72(0.57) 0.62(0.48) 0.28(0.41) 0.56(0.58) 0.58(0.51) 0(0) 0.80(1.41) 0.12(0.69) 1.70(1.42) 0(0) 0(0)
Rnd-8 2.54(2.08) 0.78(0.85) 0.72(0.71) 0.32(0.31) 0.38(0.51) 0.92(0.56) 0(0) 1.40(1.56) 0.50(1.03) 2.10(1.53) 0(0) 0(0)
Rnd-9 2.76(1.25) 1.58(1.05) 1.58(0.99) 0(0) 0.12(0.41) 0.88(0.63) 0(0) 1.26(0.76) 0.72(0.72) 2.54(1.53) 0(0) 0(0)

Rnd-10 3.18(2.67) 0.48(0.68) 0.28(0.47) 0.04(0.22) 0.08(0.22) 0.96(0.59) 0(0) 1.78(1.96) 0.52(0.76) 2.82(2.33) 0(0) 0(0)
Rnd-11 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0.12(0.33) 0(0) 0(0)
Rnd-12 0.28(0.57) 0(0) 0(0) 0(0) 0(0) 0.24(0.44) 0(0) 0.52(0.50) 0.14(0.35) 0.64(0.48) 0(0) 0(0)
Rnd-13 25.32(25.30) 0.02(0.22) 0(0) 0(0) 0(0) 0.18(0.37) 0(0) 0.48(0.59) 0.16(0.73) 0.68(1.07) 0(0) 0(0)
Rnd-14 25.20(25.45) 0(0) 0(0) 0(0) 0(0) 0.14(0.37) 0(0) 0.22(0.41) 0.30(1.01) 0.78(0.97) 0(0) 0(0)
Rnd-15 0.16(0.37) 0.02(0.22) 0.20(0.52) 0(0) 0(0) 0.08(0.22) 0(0) 0.36(0.72) 0.90(1.92) 0.60(0.80) 0(0) 0(0)
Rnd-16 2.34(1.35) 1.30(0.92) 1.48(0.89) 0.40(1.57) 0(0) 1.24(0.91) 0(0) 1.90(1.37) 1.48(1.15) 2.54(1.98) 0(0) 0(0)
Rnd-17 1.72(1.42) 0.84(0.90) 1.01(0.47) 1.08(0.29) 0(0) 1.40(0.75) 0.20(0.40) 5.68(6.01) 5.38(3.85) 7.14(4.15) 0(0) 0(0)
Rnd-18 8.26(2.59) 2.04(0.90) 1.18(0.37) 1.20(0.40) 0(0) 9.50(1.24) 1.30(1.08) 10.20(2.34) 7.38(1.49) 12.45(3.35)0(0) 0(0)

3-hybrid(1) 1.16(0.37) 1(0) 1(0) 1.16(0.49) 1(0) 1.04(0.22) 1(0) 1(0) 1(0) 1(0) 1(0) 1(0)
3-hybrid(2) 2.22(0.44) 2(0) 2(0) 2(0) 2(0) 2(0) 2(0) 2(0) 2(0) 2(0) 2(0) 2(0)
7-hybrid(2) 3.66(1.39) 2.10(0.31) 3(2.13) 2.54(1.23) 2(0) 2.40(0.60) 2.10(0.30) 2(0) 3.20(1.79) 2.10(0.30) 2(0) 2(0)
7-hybrid(3) 4.98(2.48) 3.10(0.31) 3.60(1.85) 3.88(1.84) 3(0) 3.22(0.44) 3.34(2.24) 3(0) 3.50(1.09) 3.34(2.24) 3(0) 3(0)

15-hybrid(3) 10.70(5.44) 6.20(4.49) 8.44(3.80) 5.76(3.85) 3.70(0.47) 4.72(0.92) 4.64(1.38) 7.32(3.47) 5.46(4.82) 8.30(3.67) 3(0) 3(0)
15-hybrid(4) 11.12(4.88) 10.90(8.33) 8.80(4.16) 7.34(4.83) 4(0) 5.30(1.08) 5.64(2.58) 9.48(3.58) 5.72(4.50) 9.64(3.46) 4(0) 4(0)
31-hybrid(4) 37.00(9.27) 31.70(13.26)28.06(8.94)37.10(10.90) 4(0) 10.90(2.64)10.20(1.56)30.80(7.95)26.80(11.93)35.80(9.18)4(0) 4(0)
31-hybrid(5) 32.80(8.12) 30.94(14.90)28.20(3.88)29.60(11.82) 5(0) 10.90(1.29) 9.80(3.23) 33.40(7.18)25.50(12.38)36.20(8.92)5(0) 5(0)

Ebone-1 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
Ebone-2 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
Ebone-3 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
Exodus-1 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
Exodus-2 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
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TABLE VIII
t-TEST RESULTS FOR THE 12 ALGORITHMS

Network 3-copy 7-copy 15-copy 31copy Rnd-1 Rnd-2 Rnd-3

NCRM-ACO↔BLSGA + + + + + + +
NCRM-ACO↔QEA1 ∼ + + + + ∼ ∼

NCRM-ACO↔QEA2 ∼ + + + + ∼ ∼

NCRM-ACO↔PBIL ∼ ∼ + + ∼ ∼ ∼

NCRM-ACO↔cGA ∼ ∼ ∼ ∼ ∼ ∼ ∼

NCRM-ACO↔BTSGA ∼ + + + + + ∼

NCRM-ACO↔FA-ENCA ∼ ∼ + + ∼ ∼ ∼

NCRM-ACO↔RGA ∼ ∼ ∼ + + ∼ ∼

NCRM-ACO↔SRHCGA ∼ ∼ + + + + +
NCRM-ACO↔CRO ∼ ∼ + + + + +
NCRM-ACO↔pEA ∼ ∼ ∼ ∼ ∼ ∼ ∼

Rnd-4 Rnd-5 Rnd-6 Rnd-7 Rnd-8 Rnd-9 Rnd-10

NCRM-ACO↔BLSGA ∼ + + + + + +
NCRM-ACO↔QEA1 ∼ + ∼ + + + +
NCRM-ACO↔QEA2 ∼ + ∼ + + + +
NCRM-ACO↔PBIL ∼ ∼ ∼ + + ∼ +
NCRM-ACO↔cGA ∼ + ∼ + + + +

NCRM-ACO↔BTSGA ∼ + ∼ + + + +
NCRM-ACO↔FA-ENCA ∼ ∼ ∼ ∼ ∼ ∼ ∼

NCRM-ACO↔RGA ∼ + + + + + +
NCRM-ACO↔SRHCGA ∼ + + + + + +

NCRM-ACO↔CRO ∼ + + + + + +
NCRM-ACO↔pEA ∼ ∼ ∼ ∼ ∼ ∼ ∼

Rnd-11 Rnd-12 Rnd-13 Rnd-14 Rnd-15 Rnd-16 Rnd-17

NCRM-ACO↔BLSGA ∼ + + + + + +
NCRM-ACO↔QEA1 ∼ ∼ + ∼ + + +
NCRM-ACO↔QEA2 ∼ ∼ ∼ ∼ + + +
NCRM-ACO↔PBIL ∼ ∼ ∼ ∼ ∼ + +
NCRM-ACO↔cGA ∼ ∼ ∼ ∼ ∼ ∼ ∼

NCRM-ACO↔BTSGA ∼ + + + + + +
NCRM-ACO↔FA-ENCA ∼ ∼ ∼ ∼ ∼ ∼ +

NCRM-ACO↔RGA ∼ + + + + + +
NCRM-ACO↔SRHCGA ∼ + + + + + +

NCRM-ACO↔CRO + + + + + + +
NCRM-ACO↔pEA ∼ ∼ ∼ ∼ ∼ ∼ ∼

Rnd-18 3-hybrid(1) 3-hybrid(2) 7-hybrid(2) 7-hybrid(3) 15-hybrid(3) 15-hybrid(4)

NCRM-ACO↔BLSGA + + + + + + +
NCRM-ACO↔QEA1 + ∼ ∼ + + + +
NCRM-ACO↔QEA2 + ∼ ∼ + + + +
NCRM-ACO↔PBIL + + ∼ + + + +
NCRM-ACO↔cGA ∼ ∼ ∼ ∼ ∼ ∼ ∼

NCRM-ACO↔BTSGA + + ∼ + + + +
NCRM-ACO↔FA-ENCA + ∼ ∼ + + + +

NCRM-ACO↔RGA + ∼ ∼ ∼ ∼ + +
NCRM-ACO↔SRHCGA + ∼ ∼ + + + +

NCRM-ACO↔CRO + ∼ ∼ + + + +
NCRM-ACO↔pEA ∼ ∼ ∼ ∼ ∼ ∼ ∼

31-hybrid(4) 31-hybrid(5) Ebone-1 Ebone-2 Ebone-3 Exodus-1 Exodus-2

NCRM-ACO↔BLSGA + + ∼ ∼ ∼ ∼ ∼

NCRM-ACO↔QEA1 + + ∼ ∼ ∼ ∼ ∼

NCRM-ACO↔QEA2 + + ∼ ∼ ∼ ∼ ∼

NCRM-ACO↔PBIL + + ∼ ∼ ∼ ∼ ∼

NCRM-ACO↔cGA ∼ ∼ ∼ ∼ ∼ ∼ ∼

NCRM-ACO↔BTSGA + + ∼ ∼ ∼ ∼ ∼

NCRM-ACO↔FA-ENCA + + ∼ ∼ ∼ ∼ ∼

NCRM-ACO↔RGA + + ∼ ∼ ∼ ∼ ∼

NCRM-ACO↔SRHCGA + + ∼ ∼ ∼ ∼ ∼

NCRM-ACO↔CRO + + ∼ ∼ ∼ ∼ ∼

NCRM-ACO↔pEA ∼ ∼ ∼ ∼ ∼ ∼ ∼

Note: The result of comparison between algorithm A and B is shown as ‘+’, ‘-’, or ‘∼’ when the former is significantly
better than, significantly worse than, or statistically equivalent to the latter, respectively.

BTSGA, FA-ENCA has a more stable performance, especially

in small scale networks. This is due to the self-adaptive fitness

assignment rule and the entropy-based relaxation technique

introduced in FA-ENCA. Looking at those with relative-

encoding, RGA wins 11 instances and SRHCGA wins 15

out of all instances. The performance of RGA is excellent in

small scale instances and it is deteriorated with the increasing

network scale. This is because the individuals become increas-

ingly more complicated with the growth of network size and

it is more difficult to satisfy the expected data rate in larger

instances. SRHCGA is a constructive algorithm, where GA is

integrated into the solution construction procedure. Due to the

inherent shortsighted effect, SRHCGA cannot perform well in

large scale networks.

If comparing all algorithms, NCRM-ACO and pEA gain

the best performance. They both achieve best mean and SD

values in all instances, meaning that optimal solutions are

always found. As reported in [32], pEA is one of the best

optimization algorithms for the NCRM problem. NCRM-ACO

performs no worse than pEA, which indicates our proposed

algorithm achieves a decent performance. This is mainly
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TABLE IX
RESULTS OF ACT (SEC.) (BEST RESULTS ARE IN BOLD)

Network BLSGA QEA1 QEA2 PBIL cGA BTSGA FA-ENCA RGA SRHCGA CRO pEA NCRM-ACO

3-copy 0.92 0.17 0.23 0.10 0.02 0.82 0.04 0.06 2.90 0.35 0.06 0.01
7-copy 7.26 6.56 10.64 1.44 0.11 8.26 2.01 1.16 6.06 1.31 0.21 0.04

15-copy 32.31 59.73 66.52 51.23 1.52 150.80 78.70 24.94 63.94 6.72 1.17 0.62
31-copy 143.02 514.00 508.62 431.15 21.24 333.70 332.32 288.35 316.82 28.32 15.72 14.84
Rnd-1 2.22 1.03 0.97 0.21 0.23 2.12 0.06 0.57 3.10 0.66 0.13 0.03
Rnd-2 1.14 0.39 0.37 0.12 0.02 1.01 0.05 0.08 4.19 0.26 0.10 0.01
Rnd-3 3.01 0.44 0.49 0.13 0.05 4.05 0.11 0.63 7.45 1.30 0.21 0.01
Rnd-4 2.07 0.47 0.56 0.16 0.07 1.83 0.13 2.45 4.40 1.67 0.15 0.01
Rnd-5 10.56 10.64 7.67 5.18 2.38 17.71 2.28 5.19 12.32 8.87 0.58 0.54
Rnd-6 1.84 0.44 0.63 0.11 0.03 2.03 0.12 6.31 16.54 4.74 0.19 0.02
Rnd-7 14.60 17.12 21.32 10.54 3.80 31.09 2.05 5.12 26.20 2.65 1.70 0.33
Rnd-8 25.10 20.82 25.26 15.94 7.10 52.31 5.09 18.08 79.75 4.01 0.65 0.03
Rnd-9 37.31 47.36 48.91 37.33 8.86 122.20 22.55 30.88 96.37 7.02 2.46 1.18

Rnd-10 39.69 31.82 52.43 22.39 9.19 264.82 11.47 41.19 95.62 12.08 0.81 0.58
Rnd-11 9.91 2.69 2.67 0.05 0.03 6.29 0.58 23.86 105.62 6.18 0.40 0.03
Rnd-12 70.44 11.75 14.95 2.40 0.39 65.94 1.69 21.26 113.34 37.81 1.40 0.23
Rnd-13 133.72 51.78 37.85 3.57 0.55 138.62 11.06 67.10 147.81 31.93 2.53 0.28
Rnd-14 284.57 38.31 34.68 3.66 2.06 239.84 10.09 96.12 172.06 167.51 3.53 1.16
Rnd-15 610.61 193.65 250.50 16.49 2.56 468.72 31.04 229.93 384.09 181.80 8.44 1.18
Rnd-16 305.03 299.60 362.34 165.63 43.70 286.69 113.24 439.76 423.75 74.30 18.12 4.48
Rnd-17 5432.30 6224.80 6250.50 2989.70 397.20 6070.28 2859.75 3948.10 1523.86 1064.61 61.61 11.31
Rnd-18 10635.40 9529.90 9215.77 6319.60 1914.75 9553.05 9984.34 10238.23 1689.62 4032.95 83.90 51.35

3-hybrid(1) 1.88 4.20 2.65 8.57 0.06 1.38 0.22 0.15 4.79 0.77 5.23 0.05
3-hybrid(2) 1.84 3.65 2.42 7.98 0.08 1.39 0.21 0.11 4.86 0.83 5.52 0.05
7-hybrid(2) 3.74 12.76 6.76 20.99 0.27 5.39 2.58 3.10 10.11 1.53 19.07 0.30
7-hybrid(3) 4.40 11.22 6.23 20.54 0.34 4.94 2.34 3.51 9.94 1.45 17.38 0.33

15-hybrid(3) 22.02 56.46 39.80 79.12 3.46 23.62 18.14 8.52 60.89 3.18 107.60 3.76
15-hybrid(4) 23.55 42.11 40.82 81.20 2.71 24.79 18.22 9.82 62.47 3.25 131.67 4.00
31-hybrid(4) 114.58 224.09 241.59 364.92 22.07 151.65 91.79 23.94 101.67 14.68 2082.70 51.38
31-hybrid(5) 114.78 206.78 230.61 311.80 20.55 156.44 74.83 20.62 128.92 13.92 2707.60 55.33

Ebone-1 0.011 0.009 0.013 0.010 0.005 0.013 0.022 0.072 1.072 0.049 0.020 0.007
Ebone-2 0.170 0.041 0.038 0.024 0.014 0.172 0.027 0.157 1.206 0.108 0.038 0.016
Ebone-3 0.065 0.014 0.013 0.020 0.004 0.071 0.021 0.056 0.983 0.088 0.029 0.011
Exodus-1 0.036 0.016 0.011 0.013 0.009 0.031 0.057 0.022 1.581 0.023 0.054 0.045
Exodus-2 0.738 0.114 0.138 0.015 0.006 0.209 0.028 0.437 1.347 0.361 0.041 0.010

because a number of the problem-specific mechanisms have

been integrated into the framework of ACO to enhance its

overall performance. These mechanisms include the multi-

dimensional pheromone maintenance mechanism which elim-

inates the pheromone overlapping phenomenon, the heuristic

maintenance mechanism which exploits the local information

to provide extra guidance to reduce the number of coding

operations in the solution construction process, the tabu-table

based path construction and the pheromone local updating

rule for easily and properly finding feasible paths connecting

the source and each receiver, and the solution reconstruction

method which improves the exploitation ability of ACO.

With all the above mechanisms, NCRM-ACO performs well

when tackling the NCRM problem. To further support our

analysis, we compare the 12 algorithms using Student’s t-test.

Obviously, NCRM-ACO and pEA are the two best algorithms

among all algorithms for comparison.

Then, we compare the ACTs obtained by different al-

gorithms. NCRM-ACO is one of the fastest in almost all

instances. The following explains the reasons. Different from

the existing algorithms being compared, NCRM-ACO is based

on the principle “learning while optimizing”. With all the

problem-specific mechanisms integrated, NCRM-ACO makes

use of the local and global information collected during the

search so as to guide the fast construction of optimal solutions.

Hence, less computational time is consumed. For relatively

small instances, such as Rnd-3 and Rnd-8, NCRM-ACO is 20

times faster compared to pEA, the second fastest algorithm.

For large instances, e.g., Fix-4, Rnd-17 and Rnd-18, although

constructing feasible paths may waste some time, NCRM-

ACO is still able to obtain an optimal solution within a very

limited time, i.e., the fastest one among those algorithms being

compared. As compared above, NCRM-ACO and pEA both

gain the best performance with respect to the best solutions

obtained. However, if looking at the ACT indicator, one can

easily see that NCRM-ACO is much faster than pEA in almost

all instances. When considering the practical deployment of

the NCM, the computational time is of vital importance since

the algorithm needs to respond to applications as quickly as

possible. So, if we take into account Mean, SD, the t-test re-

sults and ACT, NCRM-ACO has the best overall performance

and is definitely better than pEA, our previous work.

VI. CONCLUSION

This paper proposed a modified NCRM-ACO algorithm

based on ACO to tackle the NCRM problem. Different from

the existing algorithms, NCRM-ACO constructs feasible so-

lutions with the help of the local and global information

emerged during the search. The proposed algorithm has several

attractive features which contribute to its descent performance.

Instead of using a single pheromone table, multiple pheromone

tables are maintained in the pheromone maintenance mecha-

nism so that each ant is appropriately guided to complete its

path-finding task. The problem-specific heuristic information
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exposes the status of each incoming link to ant groups. Thus,

each ant is provided with useful local information for selecting

appropriate links along the path under construction. A tabu-

table based path construction mechanism and a pheromone

local updating rule are devised to achieve a higher successful

ratio for constructing feasible path sets. Moreover, a solution

reconstruction method is able to enhance the local exploration

ability of NCRM-ACO, with the purpose of improving the

solution quality. With these problem-specific mechanisms in-

tegrated, NCRM-ACO is reported to outperform seven existing

state-of-the-art algorithms in terms of the best solutions ob-

tained and the average computational time on a set of widely

tested benchmark problems.
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