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Abstract. Given a symmetric and not necessarily positive definite matrix A, a modified
Cholesky algorithm computes a Cholesky factorization P (A + E)PT = RTR, where P is a per-
mutation matrix and E is a perturbation chosen to make A + E positive definite. The aims include
producing a small-normed E and making A+E reasonably well conditioned. Modified Cholesky fac-
torizations are widely used in optimization. We propose a new modified Cholesky algorithm based
on a symmetric indefinite factorization computed using a new pivoting strategy of Ashcraft, Grimes,
and Lewis. We analyze the effectiveness of the algorithm, both in theory and practice, showing that
the algorithm is competitive with the existing algorithms of Gill, Murray, and Wright and Schnabel
and Eskow. Attractive features of the new algorithm include easy-to-interpret inequalities that ex-
plain the extent to which it satisfies its design goals, and the fact that it can be implemented in
terms of existing software.

Key words. modified Cholesky factorization, optimization, Newton’s method, symmetric in-
definite factorization
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1. Introduction. Modified Cholesky factorization is a widely used technique in
optimization; it is used for dealing with indefinite Hessians in Newton methods [11],
[21] and for computing positive definite preconditioners [6], [20]. Given a symmetric
matrix A, a modified Cholesky algorithm produces a symmetric perturbation E such
that A + E is positive definite, along with a Cholesky (or LDLT) factorization of
A+E. The objectives of a modified Cholesky algorithm can be stated as follows [21].

O1. If A is “sufficiently positive definite” then E should be zero.
O2. If A is indefinite, ‖E‖ should not be much larger than

min{ ‖∆A‖ : A + ∆A is positive definite }

for some appropriate norm.
O3. The matrix A + E should be reasonably well conditioned.
O4. The cost of the algorithm should be the same as the cost of standard Cholesky

factorization to highest order terms.
Two existing modified Cholesky algorithms are one by Gill, Murray, and Wright

[11, section 4.4.2.2], which is a refinement of an earlier algorithm of Gill and Mur-
ray [10], and an algorithm by Schnabel and Eskow [21].

The purpose of this work is to propose an alternative modified Cholesky algorithm
that has some advantages over the existing algorithms. In outline, our approach is to
compute a symmetric indefinite factorization

PAPT = LDLT ,(1.1)
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where P is a permutation matrix, L is unit lower triangular, and D is block diagonal
with diagonal blocks of dimension 1 or 2, and to provide the factorization

P (A + E)PT = L(D + F )LT ,(1.2)

where F is chosen so that D + F (and hence also A + E) is positive definite.1 This
approach is not new; it was suggested by Moré and Sorensen [19] for use with factor-
izations (1.1) computed with the Bunch–Kaufman [3] and Bunch–Parlett [4] pivoting
strategies. However, for neither of these pivoting strategies are all the conditions
(O1)–(O4) satisfied, as is recognized in [19]. The Bunch–Parlett pivoting strategy
requires O(n3) comparisons for an n×n matrix, so condition (O4) does not hold. For
the Bunch–Kaufman strategy, which requires only O(n2) comparisons, it is difficult
to satisfy conditions (O1)–(O3), as we explain in section 3.

We use a new pivoting strategy for the symmetric indefinite factorization devised
by Ashcraft, Grimes, and Lewis [2], for which conditions (O1)–(O3) are satisfied
to within factors depending only on n and for which the cost of the pivot searches
is usually negligible. We describe this so-called bounded Bunch–Kaufman (BBK)
pivoting strategy and its properties in the next section.

There are two reasons why our algorithm might be preferred to those of Gill, Mur-
ray, and Wright and of Schnabel and Eskow (henceforth denoted the GMW algorithm
and the SE algorithm, respectively). The first is a pragmatic one: we can make use of
any available implementation of the symmetric indefinite factorization with the BBK
pivoting strategy, needing to add just a small amount of post-processing code to form
the modified Cholesky factorization. In particular, we can use the efficient implemen-
tations for both dense and sparse matrices written by Ashcraft, Grimes, and Lewis [2],
which make extensive use of levels 2 and 3 BLAS for efficiency on high-performance
machines. In contrast, in coding the GMW and SE algorithms one must either begin
from scratch or make nontrivial changes to an existing Cholesky factorization code.

The second attraction of our approach is that we have a priori bounds that ex-
plain the extent to which conditions (O1)–(O3) are satisfied—essentially, if L is well
conditioned then an excellent modified Cholesky factorization is guaranteed. For the
GMW and SE algorithms it is difficult to describe under what circumstances the
algorithms can be guaranteed to perform well.

2. Pivoting strategies. We are interested in symmetric indefinite factorizations
(1.1) computed in the following way. If the symmetric matrix A ∈ R

n×n is nonzero,
we can find a permutation Π and an integer s = 1 or 2 so that

ΠAΠT =

[ s n−s

s E CT

n−s C B

]
,

with E nonsingular. Having chosen such a Π we can factorize

ΠAΠT =

[
Is 0

CE−1 In−s

] [
E 0
0 B − CE−1CT

] [
Is E−1CT

0 In−s

]
.(2.1)

1Strictly, (1.2) is not a Cholesky factorization, since we allow D + F to have 2 × 2 diagonal
blocks, but since any such blocks are positive definite it seems reasonable to use the term “modified
Cholesky factorization.”
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This process is repeated recursively on the (n− s) × (n− s) Schur complement

S = B − CE−1CT ,

yielding the factorization (1.1) on completion. This factorization costs n3/3 operations
(the same cost as Cholesky factorization of a positive definite matrix) plus the cost
of determining the permutations Π.

The Bunch–Parlett pivoting strategy [4] searches the whole submatrix S at each
stage, requiring a total of O(n3) comparisons, and it yields a matrix L whose maximum
element is bounded by 2.781. The Bunch–Kaufman pivoting strategy [3], which is used
with the symmetric indefinite factorization in both LAPACK [1] and LINPACK [7],
searches at most two columns of S at each stage, so it requires only O(n2) comparisons
in total. The Bunch–Kaufman pivoting strategy yields a backward stable factorization
[16], but ‖L‖∞ is unbounded, even relative to ‖A‖∞, which makes this pivoting
strategy unsuitable for use in a modified Cholesky algorithm, for reasons explained in
section 3.

To describe the BBK pivoting strategy [2] it suffices to describe the pivot choice
for the first stage of the factorization.

Algorithm BBK (BBK pivoting strategy). This algorithm determines the pivot

for the first stage of the symmetric indefinite factorization applied to a symmetric

matrix A ∈ R
n×n.

α := (1 +
√

17)/8 (≈ 0.64)
γ1 := maximum magnitude of any subdiagonal entry in column 1.
If γ1 = 0 there is nothing to do on this stage of the factorization.
if |a11| ≥ αγ1

use a11 as a 1 × 1 pivot (s = 1, Π = I).
else

i := 1; γi := γ1

repeat
r := row index of first (subdiagonal) entry of maximum magnitude

in column i.
γr := maximum magnitude of any off-diagonal entry in column r.
if |arr| ≥ αγr

use arr as a 1 × 1 pivot (s = 1, Π swaps rows and columns
1 and r).

else if γi = γr

use

[
aii ari
ari arr

]
as a 2 × 2 pivot (s = 2, Π swaps rows and

columns 1 and i, and 2 and r).
else

i := r, γi := γr.
end

until a pivot is chosen
end

The repeat loop in Algorithm BBK searches for an off-diagonal element ari that
is simultaneously the largest in magnitude in the rth row and the ith column, and
it uses this element to build a 2 × 2 pivot; the search terminates prematurely if a
suitable 1 × 1 pivot is found.

The following properties noted in [2] are readily verified, using the property that



1100 SHEUNG HUN CHENG AND NICHOLAS J. HIGHAM

any 2 × 2 pivot satisfies
∣∣∣∣∣

[
aii ari
ari arr

]−1
∣∣∣∣∣ ≤

1

γr(1 − α2)

[
α 1
1 α

]
.

1. Every entry of L is bounded by max{1/(1 − α), 1/α} ≈ 2.78.
2. Every 2 × 2 pivot block Dii satisfies κ2(Dii) ≤ (1 + α)/(1 − α) ≈ 4.56.
3. The growth factor for the factorization, defined in the same way as for Gaus-

sian elimination, is bounded in the same way as for the Bunch–Kaufman
pivoting strategy, namely, by (1 + α−1)n−1 ≈ (2.57)n−1.

Since the value of γi increases strictly from one pivot step to the next, the search
in Algorithm BBK takes at most n steps. The cost of the searching is intermediate
between the cost for the Bunch–Kaufman strategy and that for the Bunch–Parlett
strategy. Matrices are known for which the entire remaining submatrix must be
searched at each step, in which case the cost is the same as for the Bunch–Parlett
strategy. However, Ashcraft, Grimes, and Lewis [2] found in their numerical experi-
ments that on average less than 2.5k comparisons were required to find a pivot from a
k×k submatrix, and they give a probabilistic analysis which shows that the expected
number of comparisons is less than ek ≈ 2.718k for matrices with independently
distributed random elements. Therefore we regard the symmetric indefinite factoriza-
tion with the BBK pivoting strategy as being of similar cost to Cholesky factorization,
while recognizing that in certain rare cases the searching overhead may increase the
operation count by about 50%.

The symmetric indefinite factorization with the BBK pivoting strategy is back-
ward stable; the same rounding error analysis as for the Bunch–Kaufman pivoting
strategy is applicable [2], [16].

The modified Cholesky algorithm of the next section and the corresponding anal-
ysis are not tied exclusively to the BBK pivoting strategy. We could use instead the
“fast Bunch–Parlett” pivoting strategy from [2], which appears to be more efficient
than the BBK strategy when both are implemented in block form [2]. We mention
in passing that a block implementation of the SE algorithm has been developed by
Daydé [5]. Alternatively, we could use one of the pivoting strategies from [8], [9].

3. The modified Cholesky algorithm. We begin by defining the distance
from a symmetric matrix A ∈ R

n×n to the symmetric matrices with minimum eigen-
value λmin at least δ, where δ ≥ 0:

µ(A, δ) = min{ ‖∆A‖ : λmin(A + ∆A) ≥ δ }.(3.1)

The distances in the 2- and Frobenius norms, and perturbations that achieve them,
are easily evaluated (cf. [12, Thms. 2.1, 3.1]).

Theorem 3.1. Let the symmetric matrix A ∈ R
n×n have the spectral decompo-

sition A = QΛQT (Q orthogonal, Λ = diag(λi)). Then, for the Frobenius norm,

µF (A, δ) =

(
∑

λi<δ

(δ − λi)
2

)1/2

and there is a unique optimal perturbation in (3.1), given by

∆A = Qdiag(τi)Q
T , τi =

{
0, λi ≥ δ,
δ − λi, λi < δ.

(3.2)
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For the 2-norm,

µ2(A, δ) = max( 0, δ − λmin(A) ),

and an optimal perturbation is ∆A = µ2(A, δ)I. The Frobenius norm perturbation

(3.2) is also optimal in the 2-norm.

Our modified Cholesky algorithm has a parameter δ ≥ 0 and it attempts to
produce the perturbation (3.2).

Algorithm MC (modified Cholesky factorization). Given a symmetric matrix

A ∈ R
n×n and a parameter δ ≥ 0 this algorithm computes a permutation matrix P ,

a unit lower triangular matrix L, and a block diagonal matrix D with diagonal blocks

of dimension 1 or 2 such that

P (A + E)PT = LDLT

and A+E is symmetric positive definite (or symmetric positive semidefinite if δ = 0).
The algorithm attempts to ensure that if λmin(A) < δ then λmin(A + E) ≈ δ.

1. Compute the symmetric indefinite factorization PAPT = LD̃LT using the
BBK pivoting strategy.

2. Let D = D̃ + ∆D̃, where ∆D̃ is the minimum Frobenius norm perturbation
that achieves λmin(D̃+∆D̃) ≥ δ (thus ∆D̃ = diag(∆D̃ii), where ∆D̃ii is the

minimum Frobenius norm perturbation that achieves λmin(D̃ii +∆D̃ii) ≥ δ).
To what extent does Algorithm MC achieve the objectives (O1)–(O4) listed in

section 1? Objective (O4) is clearly satisfied, provided that the pivoting strategy
does not require a large amount of searching, since the cost of step 2 is negligible. For
objectives (O1)–(O3) to be satisfied we need the eigenvalues of A to be reasonably

well approximated by those of D̃. For the Bunch–Kaufman pivoting strategy the
elements of L are unbounded and the eigenvalues of D̃ can differ greatly from those
of A (subject to A and D̃ having the same inertia), as is easily shown by example.
This is the essential reason why the Bunch–Kaufman pivoting strategy is unsuitable
for use in a modified Cholesky algorithm.

To investigate objectives (O1)–(O3) we will make use of a theorem of Ostrowski
[18, p. 224]. Here, the eigenvalues of a symmetric n×n matrix are ordered λn ≤ · · · ≤
λ1.

Theorem 3.2 (Ostrowski). Let M ∈ R
n×n be symmetric and S ∈ R

n×n

nonsingular. Then for each k = 1:n

λk(SMST ) = θkλk(M),

where λn(SST ) ≤ θk ≤ λ1(SS
T ).

Assuming first that λmin(A) > 0 and applying the theorem with M = D̃ and
S = L, we obtain

λmin(A) ≤ λmax(LL
T )λmin(D̃).

Now E will be zero if λmin(D̃) ≥ δ, which is certainly true if

λmin(A) ≥ δ λmax(LL
T ).(3.3)

Next, we assume that λmin(A) is negative and apply Theorems 3.1 and 3.2 to
obtain

λmax(∆D̃) = δ − λmin(D̃) ≤ δ − λmin(A)

λmin(LLT )
.(3.4)
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Using Theorem 3.2 again, with (3.4), yields

‖E‖2 = λmax(E) = λmax(L∆D̃LT )

≤ λmax(LL
T )λmax(∆D̃)

≤ λmax(LL
T )

(
δ − λmin(A)

λmin(LLT )

)
(λmin(A) < 0).(3.5)

A final invocation of Theorem 3.2 gives

λmin(A + E) ≥ λmin(LLT )λmin(D̃ + ∆D̃) ≥ λmin(LLT )δ

and

‖A + E‖2 = λmax(A + E) = λmax(L(D̃ + ∆D̃)LT )

≤ λmax(LL
T )λmax(D̃ + ∆D̃)

= λmax(LL
T ) max(δ, λmax(D̃))

≤ λmax(LL
T ) max

(
δ,

λmax(A)

λmin(LLT )

)
.

Hence

κ2(A + E) ≤ κ2(LL
T ) max

(
1,

λmax(A)

λmin(LLT ) δ

)
.(3.6)

We can now assess how well objectives (O1)–(O3) are satisfied. To satisfy objec-
tive (O1) we would like E to be zero when λmin(A) ≥ δ, and to satisfy (O2) we would
like ‖E‖2 to be not much larger than δ − λmin(A) when A is not positive definite.
The sufficient condition (3.3) for E to be zero and inequality (3.5) show that these
conditions do hold modulo factors λmax,min(LLT ). Inequality (3.6) bounds κ2(A+E)
with the expected reciprocal dependence on δ, again with terms λmax,min(LLT ). The
conclusion is that the modified Cholesky algorithm is guaranteed to perform well if
λmin(LLT ) and λmax(LL

T ) are not too far from 1.
Note that, since L is unit lower triangular, eT1 (LLT )e1 = 1, which implies that

λmin(LLT ) ≤ 1 and λmax(LL
T ) ≥ 1. For the BBK pivoting strategy we have

maxi,j |lij | ≤ 2.781, so

1 ≤ λmax(LL
T ) ≤ trace(LLT ) = ‖L‖2

F ≤ n + 1

2
n(n− 1)2.7812 ≤ 4n2 − 3n.(3.7)

Furthermore,

1 ≤ λmin(LLT )−1 = ‖(LLT )−1‖2 = ‖L−1‖2
2 ≤ (3.781)2n−2,(3.8)

using a bound from [15, Thm. 8.13 and Prob. 8.5]. These upper bounds are approx-
imately attainable, but in practice are rarely approached. In particular, the upper
bound of (3.8) can be approached only in the unlikely event that most of the subdi-
agonal elements of L are negative and of near maximal magnitude. Note that each
2 × 2 pivot causes a subdiagonal element li+1,i to be zero and so further reduces the
likelihood of ‖L−1‖2 being large.

In the analysis above we have exploited the fact that the extent to which the
eigenvalues of A and D̃ agree can be bounded in terms of the condition of L. If L is
well conditioned then the singular values of A are close to the moduli of the eigenvalues
of D̃. We are currently exploring the application of this fact to the computation of
rank-revealing factorizations.
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4. Comparison with the GMW and SE algorithms. The GMW and SE
algorithms both carry out the steps of a Cholesky factorization of a symmetric ma-
trix A ∈ R

n×n, increasing the diagonal entries as necessary in order to ensure that
negative pivots are avoided. (Actually, the GMW algorithm works with an LDLT

factorization, where D is diagonal, but the difference is irrelevant to our discussion.)
Hence both algorithms produce Cholesky factors of PT (A + E)P with a diagonal E.
From Theorem 3.1 we note that the “optimal” perturbation in objective (O2) of sec-
tion 1 is, in general, full for the Frobenius norm and can be taken to be diagonal for
the 2-norm (but is generally not unique). There seems to be no particular advantage
to making a diagonal perturbation to A. Our algorithm perturbs the whole matrix,
in general.

By construction, the GMW and SE algorithms make perturbations E to A that
are bounded a priori by functions of n and ‖A‖ only. The GMW algorithm produces
a perturbation E for which

‖E‖∞ ≤
(
β

ξ
+ (n− 1)ξ

)2

+ 2(α + (n− 1)ξ2) + δ,(4.1)

where δ ≥ 0 is a tolerance,

α = max
i

|aii|, β = max
i 6=j

|aij |, ξ2 = max{α, β/
√
n2 − 1, u },

and u is the unit roundoff [11, p. 110]. For the SE algorithm the perturbation is
bounded in terms of a certain eigenvalue bound φ obtained by applying Gershgorin’s
theorem:

‖E‖∞ ≤ φ +
2τ

1 − τ
(φ + α),(4.2)

where τ is a tolerance, suggested in [21] to be chosen as τ = u1/3. The quantity φ
satisfies φ ≤ n(α + β), so (4.2) is a smaller bound than (4.1) by about a factor n.

The bounds (4.1) and (4.2) can be compared with (3.5) for Algorithm MC. The
bound (3.5) has the advantage of directly comparing the perturbation made by Algo-
rithm MC with the optimal one, as defined by (3.1) and evaluated in Theorem 3.1, and
it is potentially a much smaller bound than (4.1) and (4.2) if |λmin(A)| ≪ |λmax(A)|
and κ2(LL

T ) is not too large. On the other hand, the bound (3.5) can be much larger
than (4.1) and (4.2) if κ2(LL

T ) is large.
All three algorithms satisfy objective (O1) of not modifying a sufficiently positive

definite matrix, though for the GMW and SE algorithms no condition analogous
to (3.3) that quantifies “sufficiently” in terms of λmin(A) is available. Bounds for
κ2(A+E) that are exponential in n hold for the GMW and SE algorithms [21]. The
same is true for Algorithm MC: see (3.6)–(3.8).

To summarize, in terms of the objectives of section 1 for a modified Cholesky algo-
rithm, Algorithm MC is theoretically competitive with the GMW and SE algorithms,
with the weakness that if κ2(LL

T ) is large then the bound on ‖E‖2 is weak.
When applied to an indefinite matrix, the GMW and SE algorithms provide in-

formation that enables a direction of negative curvature of the matrix to be produced;
these directions are required in certain algorithms for unconstrained optimization in
order to move away from nonminimizing stationary points. For an indefinite matrix,
Algorithm MC provides immediate access to a direction of negative curvature from the



1104 SHEUNG HUN CHENG AND NICHOLAS J. HIGHAM

LDLT factorization computed in step 1, and because κ(L) is bounded, this direction
satisfies conditions required for convergence theory [19].

Finally, we consider the behavior of the algorithms in the presence of rounding
errors. Algorithm MC is backward stable because the underlying factorization is [2]:
barring large element growth in the symmetric indefinite factorization with the BBK
pivoting strategy, the algorithm produces LDLT factors not of P (A + E)PT , but of
P (A + E + F )PT , where ‖F‖2 ≤ cnu‖A + E‖2 with cn a constant. Although no
comments on numerical stability are given in [11] and [21], a simple argument shows
that the GMW and SE algorithms are backward stable. Apply either algorithm to
A, obtaining the Cholesky factorization P (A + E)PT = RTR. Now apply the same
algorithm to P (A+E)PT : it will not need to modify P (A+E)PT , so it will return the
same computed R factor. But since no modification was required, the algorithm must
have carried out a standard Cholesky factorization. Since Cholesky factorization is
a backward stable process, the modified Cholesky algorithm must itself be backward
stable.

5. Numerical experiments. We have experimented with Matlab implemen-
tations of Algorithm MC and the GMW and SE algorithms. The M-file for the GMW
algorithm was provided by M. Wright and sets the tolerance δ = 2u (which is the
value of Matlab’s variable eps). The M-file for the SE algorithm was provided by
E. Eskow and sets the tolerance τ = (2u)1/3. In Algorithm MC we set δ =

√
u‖A‖∞.

The aims of the experiments are as follows: to see how well the Frobenius norm of
the perturbation E produced by Algorithm MC approximates the distance µF (A, δ)
defined in (3.1), and to compare the norms of the perturbations E and the condition
numbers of A + E produced by the three algorithms. We measure the perturbations
E by the ratios

rF =
‖E‖F

µF (A, δ)
, r2 =

‖E‖2

|λmin(A)| ,

which differ only in their normalization and the choice of norm. Algorithm MC
attempts to make rF close to 1. The quantity r2 is used by Schnabel and Eskow to
compare the performance of the GMW and SE algorithms; since E is diagonal for
these algorithms, r2 compares the amount added to the diagonal with the minimum
diagonal perturbation that makes the perturbed matrix positive semidefinite.

First, we note that the experiments of Schnabel and Eskow [21] show that the SE
algorithm can produce a substantially smaller value of r2 than the GMW algorithm.
Schnabel and Eskow also identified a 4 × 4 matrix for which the GMW algorithm
significantly outperforms the SE algorithm:

A =




1890.3 −1705.6 −315.8 3000.3
1538.3 284.9 −2706.6

52.5 −501.2
4760.8


 ,(5.1)

λ(A) = {−0.38,−0.34,−0.25, 8.2 × 103}.

We give results for this matrix in Table 5.1; they show that Algorithm MC can also
significantly outperform the SE algorithm.

We ran a set of tests similar to those of Schnabel and Eskow [21]. The matrices
A are of the form A = QΛQT , where Λ = diag(λi) with the eigenvalues λi from one
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Table 5.1
Measures of E for 4 × 4 matrix (5.1).

MC GMW SE

rF 1.3 2.7 3.7 × 103

r2 1.7 2.7 2.8 × 103
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b) n=25, eig. range[−1,10000]
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d) n=25, eig. range[−1,1]
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0

1
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matrix
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2

f) n=25, eig. range[−10000,−1]

Fig. 5.1. Measures of E for 30 random indefinite matrices with n = 25. Key: GMW —, SE
· · ·, MC - - -.

of three random uniform distributions: [−1, 104], [−1, 1], and [−104,−1]. For the first
range, one eigenvalue is generated from the range [−1, 0) to ensure that A has at least
one negative eigenvalue. The matrix Q is a random orthogonal matrix from the Haar
distribution, generated using the routine qmult from the Test Matrix Toolbox [14],
which implements an algorithm of Stewart [22]. For each eigenvalue distribution we
generated 30 different matrices, each corresponding to a fresh sample of Λ and of
Q. We took n = 25, 50, 100. The ratios rF and r2 are plotted in Figures 5.1–5.3.
Figure 5.4 plots the condition numbers κ2(A+E) for n = 25; the condition numbers
for n = 50 and n = 100 show a very similar behavior. Table 5.2 reports the number
of comparisons used by the BBK pivoting strategy on these matrices for each n; the
maximum number of comparisons is less than n2 in each case.

In Figure 5.5 we report results for three nonrandom matrices from the Test Matrix
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Fig. 5.2. Measures of E for 30 random indefinite matrices with n = 50. Key: GMW —, SE
· · ·, MC - - -.

Table 5.2
Number of comparisons for BBK pivoting strategy.

n: 25 50 100

max 523 2188 8811
mean 343.9 1432.8 5998.4

Toolbox. Clement is a tridiagonal matrix with eigenvalues plus and minus the numbers
n− 1, n− 3, n− 5, . . . , (1 or 0). Dingdong is the symmetric n×n Hankel matrix with
(i, j) element 0.5/(n− i− j + 1.5), whose eigenvalues cluster around π/2 and −π/2.
Ipjfact is the Hankel matrix with (i, j) element 1/(i + j)!.

Our conclusions from the experiments are as follows.
1. None of the three algorithms is uniformly better than the others in terms of

producing a small perturbation E, whichever measure rF or r2 is used. All
three algorithms can produce values of rF and r2 significantly greater than
1, depending on the problem.

2. Algorithm MC often achieves its aim of producing rF ≈ 1. It produced rF of
order 103 for the eigenvalue distribution [−1, 104] for each n, and the values
of κ2(LL

T ) (not shown here) were approximately 100rF in each such case.
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Fig. 5.3. Measures of E for 30 random indefinite matrices with n = 100. Key: GMW —, SE
· · ·, MC - - -.

However, often rF was of order 1 when κ2(LL
T ) was of order 102 or 103, so a

large value of κ2(LL
T ) is only a necessary condition, not a sufficient one, for

poor performance of Algorithm MC; in other words, the bounds of section 3
can be weak.

3. The condition numbers κ2(A+E) vary greatly among the algorithms. Our ex-
perience is that for δ =

√
u‖A‖∞ Algorithm MC fairly consistently produces

condition numbers of order 100/
√
u; the condition number is, as predicted by

(3.6), much smaller for the random matrices with eigenvalues on the range
[−104,−1], because the algorithm attempts to perturb all the eigenvalues to
δ. The condition numbers produced by the GMW and SE algorithms vary
greatly with the type of matrix.

The fact that rF is close to 1 for the random matrices with eigenvalues in the
range [−104,−1] for Algorithm MC is easily explained. Let A be negative definite.
Then Algorithm MC computes P (A + E)PT = L(δI)LT . Hence

rF =
‖E‖F

(
∑

i(δ − λi)2)
1/2

≤ ‖E‖F
‖A‖F

=
‖A− δ · PTLLTP‖F

‖A‖F
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Fig. 5.4. Condition numbers κ2(A + E) for 30 random indefinite matrices with n = 25. Key:
GMW —, SE · · ·, MC - - -.

≤ ‖A‖F + δ‖LLT ‖F
‖A‖F

≤ 1 +
(4n2 − 3n)δ

‖A‖F
,

using (3.7), so rF can exceed 1 only by a tiny amount for Algorithm MC applied to
a negative definite matrix, irrespective of κ2(LL

T ).

6. Concluding remarks. Algorithm MC, based on the symmetric indefinite
factorization with the bounded Bunch–Kaufman pivoting strategy, merits considera-
tion as an alternative to the algorithms of Gill, Murray, and Wright and Schnabel and
Eskow. The results in section 5 suggest that the new algorithm is competitive with
the GMW and SE algorithms in terms of the objectives (O1)–(O4) listed in section 1.
Algorithm MC has the advantages that the extent to which it satisfies the objectives
is neatly, although not sharply, described by the bounds of section 3 and that it can be
implemented by augmenting existing software with just a small amount of additional
code.

Since all three modified Cholesky algorithms can “fail,” that is, they can produce
unacceptably large perturbations, it is natural to ask how failure can be detected and
what should be done about it. The GMW and SE algorithms produce their (diagonal)
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Fig. 5.5. Measures of E for three nonrandom matrices. Key: GMW —, SE · · ·, MC - - -.

perturbations explicitly, so it is trivial to evaluate their norms. For Algorithm MC,
the perturbation to A is (see (1.2)) E = PTL(D + F )LTP −A, which would require
O(n3) operations to form explicitly. However, we can estimate ‖E‖∞ using the norm
estimator from [13] (which is implemented in LAPACK). The estimator requires the
formation of products Ex for certain vectors x, and these can be computed in O(n2)
operations; the estimate produced is a lower bound that is nearly always within a
factor 3 of the true norm. For all three algorithms, then, we can inexpensively test
whether the perturbation produced is acceptably small. Unfortunately, for none of
the algorithms is there an obvious way to improve a modified Cholesky factoriza-
tion that makes too big a perturbation; whether improvement is possible, preferably
cheaply, is an open question. Of course one can always resort to computing an op-
timal perturbation by computing the eigensystem of A and using the formulae in
Theorem 3.1.

We note that we have approached the problem of modified Cholesky factorization
from a purely linear algebra perspective. An important test of a modified Cholesky
algorithm is to evaluate it in an optimization code on representative problems, as
was done by Schlick [20] for the GMW and SE algorithms. This we plan to do for
Algorithm MC in future work.

Finally, we mention that a generalization of the modified Cholesky problem mo-
tivated by constrained optimization is analyzed in detail in [17].
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