
����������
�������

Citation: Makhadmeh, S.N.; Al-Betar,

M.A.; Awadallah, M.A.; Abasi, A.K.;

Alyasseri, Z.A.A., Doush, I.A.;

Alomari, O.A.; Damaševičius, R.;
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Abstract: The Coronavirus herd immunity optimizer (CHIO) is a new human-based optimization
algorithm that imitates the herd immunity strategy to eliminate of the COVID-19 disease. In this
paper, the coronavirus herd immunity optimizer (CHIO) is modified to tackle a discrete power
scheduling problem in a smart home (PSPSH). PSPSH is a combinatorial optimization problem with
NP-hard features. It is a highly constrained discrete scheduling problem concerned with assigning
the operation time for smart home appliances based on a dynamic pricing scheme(s) and several
other constraints. The primary objective when solving PSPSH is to maintain the stability of the
power system by reducing the ratio between average and highest power demand (peak-to-average
ratio (PAR)) and reducing electricity bill (EB) with considering the comfort level of users (UC). This
paper modifies and adapts the CHIO algorithm to deal with such discrete optimization problems,
particularly PSPSH. The adaptation and modification include embedding PSPSH problem-specific
operators to CHIO operations to meet the discrete search space requirements. PSPSH is modeled
as a multi-objective problem considering all objectives, including PAR, EB, and UC. The proposed
method is examined using a dataset that contains 36 home appliances and seven consumption
scenarios. The main CHIO parameters are tuned to find their best values. These best values are
used to evaluate the proposed method by comparing its results with comparative five metaheuristic
algorithms. The proposed method shows encouraging results and almost obtains the best results in
all consumption scenarios.

Keywords: discrete coronavirus herd immunity optimizer; power scheduling problem in smart home;
multi-criteria optimisation; smart home; multi-objective optimisation problem
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1. Introduction

The traditional grids cannot fulfill the rapid growth of users’ power demand because
of their primitive equipment and distribution systems, which can lead to blackouts in
residential areas. This is because of the gap between power production and power demand,
particularly in peak periods. Therefore, an alternative approach on the basis of smart
technologies is proposed to address these issues, called the smart grid [1,2].

Smart grids are an improved generation of the traditional grids, mainly constructed
to enhance communication, control, distribution, and delivery systems. These features
improve the interaction between power supply companies and users by sending users the
power and receiving feedback. The users’ feedback allows supply companies to predict
the power consumption of upcoming periods and produce enough power. Using smart
grid technologies the power consumed at some periods, such as peak periods, is still high,
which obliges power supply companies to operate more power plants to address this issue
and maintain power systems efficiently. Accordingly, the cost of producing power and
electricity tariffs will be increased which increases the electricity bill (EB) for users [1,3].

Power supply companies propose a new approach based on dynamic electricity tariffs
to dispraise the power consumed and to reduce it at peak periods. This new approach
is proposed to motivate users to reschedule smart home appliances’ operation time to
be operated at off-peak periods. Such an approach is called a dynamic pricing scheme.
The dynamic pricing schemes generate dynamic electricity tariffs in which the tariffs are
high and low during peak and off-peak periods, respectively. The most common dynamic
pricing schemes are block rate (IBR), real-time price (RTP), time-of-use price, and critical
period price [1,4,5].

The problem of rescheduling the appliances’ operation time based on a dynamic
pricing scheme(s) is called the power scheduling problem in the smart home (PSPSH).
The main benefits that can be obtained by power supply companies and users when solving
PSPSH are maintaining the stability of the power system. This is achieved by reducing the
ratio between average and highest power demand which is called peak-to-average ratio
(PAR), and reducing EB while considering the user comfort (UC) level [1].

The PSPSH is modeled as an optimization problem to optimally achieve its objectives,
including reducing EB and PAR and improving UC level. The formulation of PSPSH is
proposed in two forms on the basis of the objective function: single objective and multi-
objective functions [2,6]. The single objective formulation is proposed to reduce only
EB by ignoring the other objectives, whereas the multi-objective formulation considers
reducing EB and increasing UC. However, the PAR’s effect was not seriously considered in
addressing PSPSH and the optimization processes, where only a few studies recognized it
in the problem formulation [7–9].

Several optimization algorithms are adapted to address PSPSH optimally which are
classified into exact, heuristic, and metaheuristic algorithms [1,10]. Metaheuristic algo-
rithms are the most popular class due to the their high performance in exploring search
spaces and searching deeply to find optimal/near-optimal solution(s). Metaheuristic al-
gorithms proved their efficiency in addressing optimization problems in different field,
such as software defect prediction [11], signal denoising [12–14], feature selection [15], pro-
duction forecasting [16], brain–computer interface [17,18], human activity recognition [19],
wind speed forecasting [20], document clustering [21–26], machine scheduling [27], heat
transfer optimization [28], cybersecurity [29], topic extraction [30–32], battery useful life
prediction [33], mobile network routing [34], biomedical image segmentation [35,36], gene
selcetion [37], and Others [38].

Recently, a large number of metaheuristic algorithms inspired by viruses’ behav-
ior in nature are proposed. These algorithms are corona virus optimization [39], coron-
avirus optimization algorithm [40], virus spread optimization [41], virus colony search [42],
and coronavirus herd immunity optimizer (CHIO) [43]. These algorithms presented a good
performance in addressing optimization problems, where CHIO is the most successful due
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to its dynamic and adjustable control parameters that allow it to investigate and explore
search spaces efficiently [44–47].

In this paper, CHIO is adapted and modified to handle PSPSH and achieve its objec-
tives efficiently. CHIO is inspired by the herd immunity strategy to tackle the spreading of
coronavirus pandemics (COVID-19). CHIO’s primary goal is to find the best protection for
society against the disease by transforming the bulk of the susceptible community that is
not infected by the virus to become immune. Due to the discrete nature of PSPSH, CHIO
is adapted and modified to address the discrete PSPSH and to achieve its objectives effi-
ciently. CHIO is used for PSPSH due to its powerful accomplishment in exploring rugged,
constrained, and complex search spaces. In addition, it has a high ability to maintain the
balance between exploitation and exploration in finding the optimal/near-optimal solu-
tion(s). Seven scenarios are used in the evaluation study to evaluate CHIO performance.
Each scenario contains up to twenty-three smart appliances to be scheduled in accordance
with a dynamic pricing scheme. The main CHIO parameters are tuned to find their best
values. The results obtained by CHIO are statistically analyzed to evaluate and describe its
performance clearly and carefully. In addition, CHIO’s results are compared with that of
five optimization algorithms, including genetic algorithm (GA), particle swarm optimiza-
tion (PSO), grey wolf optimizer (GWO), wind-driven optimization (WDO), and differential
evolution (DE).

The paper is structured as follows. Section 2 discusses PSPSH background and for-
mulations in terms of a single objective and multi-objective. Sections 3 and 4 provide a
comprehensive description of the inspiration and adaptation of CHIO for PSPSH, respec-
tively. In Section 5, the experimental results of the proposed approach are presented and
described. Section 6 concludes the paper.

2. Power Scheduling Problem in Smart Home

This section presents and discusses the most significant state-of-the-art studies that
tackled PSPSH using metaheuristic algorithms. In addition, a general formulation for
PSPSH including all its objectives is presented. Furthermore, PSPSH formulation in terms
of single objective and multi-objective are modeled.

2.1. Related Work

According to [1] a massive number of optimization algorithms were adapted to ad-
dress PSPSH including exact and metaheuristic algorithms. The metaheuristic algorithms
are the most popular because they can explore rugged search spaces and find the best
solutions. Accordingly, the most popular metaheuristic algorithms used to address PSPSH
are reviewed in this section.

The work Aslam et al. [48] implemented three popular metaheuristic algorithms,
including GA, cuckoo search, and crow search algorithm to handle PSPSH and find an
optimal way to reduce PAR and EB. The proposed algorithms were tested in two scenarios,
including 31 smart homes. Two of the most popular pricing schemes were used, including
critical period price and RTP. The results showed the high performance of used algorithms
in optimizing the values of PAR and EB.

A multi-objective approach was proposed to optimize UC and EB by Soares et al. [49].
GA was adapted for the proposed approach to achieve the optimal schedule for smart
appliances. Six smart appliances were used within 36 h to calculate the power consumed.
The results of the proposed method were presented and analyzed in different aspects.
The proposed method achieved good results in reducing EB and improving the UC level
considering the power system’s stability.

Two metaheuristic algorithms were adapted to handle PSPSH and optimize its objec-
tives by Rasheed et al. [50]. These algorithms are WDO and PSO. The authors used several
scenarios to evaluate the performance of the adapted algorithms within 24 h. WDO shows
better performance than PSO in obtaining the best schedules.
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GA for efficient scheduling in a smart home is applied in Zhao et al. [2]. The proposed
approach combined two pricing schemes, including RTP and IBR, to achieve the best power
system stability and EB. The problem was formulated as a multi-objective optimization
problem to reduce EB and improve the UC level. In the simulation results, the proposed
method significantly impacted the whole electricity system, where it obtained encouraging
performance in achieving the objectives.

Two metaheuristic algorithms, including crow search algorithm and grasshopper
optimization algorithm, were adapted to address PSPSH optimally by Ullah et al. [51].
The adapted algorithms were tested and evaluated within 24 h using several scenarios.
The results proved that the grasshopper optimization algorithm obtains high performance
as it achieved better results than crow search algorithm and other metaheuristics algorithms.

An efficient model that accumulates two residential areas within a smart grid via a
wide area network was proposed by Rahim et al. [52]. The proposed model main objectives
are to reduce PAR, EB, execution time, and user discomfort. EBs were calculated based
on two pricing schemes, including time-of-use price and IBR. The authors formulated
the objectives as a multi-objective optimization function. Three optimization algorithms,
including GA, ant colony optimization, and binary PSO, were tailored and evaluated on
13 home appliances within 24 h. The results demonstrated that GA excels ant colony
optimization and binary PSO concerning EB.

A new model is proposed in Muralitharan et al. [53] to balance the amount of power
consumed over a time horizon by applying the concept of a threshold limit and using a
multi-objective evolutionary algorithm. The primary benefit of achieving such a goal is to
minimize EB and user discomfort. The experiments were performed on ten appliances to
assess the performance of the proposed approach. The threshold limit concept is applied
during the scheduling process by switching off several appliances once the used power
amount is exceeded the threshold limit. The results demonstrated that the proposed
approach provided a good compromise between EB and UC level.

The GWO is adapted as a multi-objective optimization approach in Makhadmeh et al. [8]
to tackle PSPSH. The proposed approach seeks optimal scheduling that simultaneously
reduces EB, PAR, and user discomfort. Seven scenarios were designed to evaluate the
proposed approach’s performance. RTP and IBR schemes were considered to calculate the
EB because the IBR’s mechanism solely caused dispersing power consumption over the
time horizon that resulted from maintaining the power consumption in a certain limit for a
specific time slot. The simulation results provide a comparison between GWO and GA on
the basis of the datasets defined by the authors. GWO obtained better results than GA. GWO
achieved significant savings in EB and PAR. Moreover, GWO compared against 19 state-
of-the-art algorithms using the recommended settings related to the consumption profile
considered in these algorithms. The results demonstrated that GWO nearly surpasses other
algorithms in minimizing EB and PAR.

PSO was adapted to tackle PSPSH by Makhadmeh et al. [54]. The main target of PSO is
to provide an adequate solution to PSPSH by minimizing EB and PAR and maximizing UC
level. Unlike the previous studies, this research added new factors, namely smart batteries,
to provide more efficient scheduling to the appliances. The simulation results demonstrated
that the added smart battery is significantly improved the results in terms of EB, PAR,
and UC level. Furthermore, the performance of PSO was compared against GA and the
results showed that PSO surpasses GA in terms of trade-offs between PSPSH objectives.

Bacterial foraging optimization algorithm and strawberry algorithm were adapted
to tackle PSPSH by Khan et al. [55]. Having optimal scheduling of power for the smart
home appliances entails an optimal minimizing of EB and PAR. To make this goal possible,
bacterial foraging optimization algorithm and strawberry algorithm examined the possible
permutation solutions for PSPSH that efficiently minimize EB and PAR as much as possible.
The simulation results showed that both optimization algorithms reduced total EB and
PAR by scheduling the load from peak hours to off-peak hours. Results also showed that
bacterial foraging optimization algorithm reduced EB better than the strawberry algorithm.
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2.2. PSPSH Formulation

This section elaborates on the mathematical modelling of PSPSH. The section starts
with smart home appliances classification to model power consumption. Subsequently, EB,
PAR, and UC parameters are formulated. Finally, a multi-objective model that combined
all PSPSH objectives is presented.

2.2.1. Power Consumption

Any smart home can have shiftable appliances (SAs) and non-shiftable appliances
(NSAs). SAs can work autonomously, but users can set their time parameters ahead of
time, such as when and how long it will be operated. As an illustration, users could set
such parameters for the cloth dryer to work during a suitable time. On the other hand,
NSAs need to be operated manually, and users cannot set their time parameters. As an
illustration, users have no means to set periods to start the TV ahead of time.

This study investigates how to satisfy the objectives of PSPSH through setting SAs at
times that meet users’ requests while NSAs functions manually.

Let us say S and NS are SAs and NSAs vectors, as shown in Equations (1) and (2).

S = [s1, s2, . . . , sm], (1)

NS = [ns1, ns2, . . . , nsq], (2)

where s1 represents the first SA in S, sm is the last SA in S, ns1 is the first NSA in NS, nsq is
the last NSA in NS, and m and q are the total number of SAs and NSAs, respectively.

In each smart home, the amount of consumed power of each SA can be modeled as follows:

PS =


ps1

1 ps1
2 · · · ps1

m
ps2

1 ps2
2 · · · ps2

m
...

... · · ·
...

psn
1 psn

2 · · · psn
m

, (3)

where psj
i is the amount of power consumed by si when we have a time interval tj. tj is the

time interval within the time boundary T which as shown in Equation (4). n is the total
number of time intervals in T

T = [t1, t2, . . . , tn], (4)

As mentioned earlier, users can set the time parameters for SA. These time parameters
the allowing period for SAs to be operated (OTP) and their operation cycle (LOC). Users can
set the starting time (OTPs) and the ending time (OTPe) of OTP as shown in Equations (5)
and (6).

OTPs = [OTPs1, OTPs2, . . . , OTPsm], (5)

OTPe = [OTPe1, OTPe2, . . . , OTPem], (6)

where OTPs1 and OTPe1 symbolize the first appliance starting and ending time, respectively.
On the other hand, OTPsm and OTPem is the last appliance starting and ending time,
respectively.

For the second time parameter, LOC of SAs is presented as follows:

LOC = [l1, l2, . . . , lm], (7)

where l1 symbolize the LOC of the first SA, and lm is the LOC of the last SA. Moreover,
the vectors St and Et have starting and ending time of SAs operations, respectively, (see
Equations (8) and (9)). The time parameters presented previously are illustrated in Figure 1.

St = [st1, st2, . . . , stm], (8)

Et = [et1, et2, . . . , etm], (9)
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where st1 and et1 symbolize the starting and ending activities of s1. In addition, stm and
etm stand for the starting and ending activities of sm.

Figure 1. Time parameters illustration.

As discussed previously, users cannot set the time parameters for NSAs. As a result,
the power consumption of NSAs (PNS) is modeled without taking into account T in the
expression presented in Equation (10)

PNS = [pns1, pns2, . . . , pnsq], (10)

where pns1 symbolizes how much power is consumed by ns1, and pnsq is the power
consumption of nsq.

2.2.2. Electricity Bill (EB)

Reducing EB is one of the main reasons that trigger users to optimize power consump-
tion. Equation (11) can be used to calculate EB for SAs. It is worth mentioning that EB for
NSAs cannot be calculated because their operations time is not available.

EB =
n

∑
j=1

m

∑
i=1

psj
i × pcj, (11)

where pcj represents the electricity cost at the time interval j.
In this paper, RTP is applied as a dynamic pricing scheme. The use of both RTP and

IBR is followed because of the IBR efficiency in spreading the power consumption of SAs to
preserve the stability of the power system [2]. The IBR have two levels of costs, including
standard prices and high prices (see Equations (12) and (13)).

pcj =

{
aj if 0 ≤ psj ≤ C
bj if psj > C

, (12)

where aj is the standard price and bj is the high price. psj is how much power is consumed
by SAs during the period of time j, and C is a threshold between aj and bj.

bj = λ× aj, (13)
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where λ is the ratio between aj and bj and it is a positive number.

2.2.3. Peak-to-Average Ratio (PAR)

PAR is the percentage between the highest power consumption and the average power
consumption in T. Ideally, PAR will be reduced to balance power consumption and keep
the power system stable. PAR is calculated using the following formula:

PAR =
PSmax

PSAvg
, (14)

where

PSAvg =
∑n

j=1 psj

n
,

where PSmax represents the maximum power consumed by SA during T and PSavg sym-
bolizes the average power consumed within the same period.

2.2.4. User Comfort (UC) Level

UC level can be enhanced by shortening the waiting time when running SAs (waiting
time rate (WTR)) [2]. Another factor for enhancing the UC level is to increase the power
available to run NSAs within C (capacity power limit rate (CPR)) [8]. Both of these param-
eters are considered for scheduling to decrease the waiting time for SAs and maximize the
power available for NSAs.

The first UC parameter WTR is mathematically modeled as follows:

WTRi =
sti −OTPsi

OTPei −OTPsi − li
, ∀i ∈ S, (15)

To compute the average WTR for all SAs we can use Equation (16).

WTRavg =
∑m

i=1 (sti −OTPsi)

∑m
i=1 (OTPei −OTPsi − li)

, (16)

The second UC parameter CPR is mathematically modeled as follows:

CPRj =
∑

q
k=1 ONAj

k
q

, (17)

where ONA symbolize how many NSAs have operation power that is beyond the available
power at the time j. It is mathematically modeled as follows:

ONAj
k =

{
0 if PNSk < APj

1 if Otherwise,
, (18)

where APj represents the available power to operate NSAs at time j. Please note that APj

is computed based on how much power is consumed by SAs at any time j and C using
the formula:

APj = C− PSj, (19)

The computation of the mean of CPR for T is mathematically modeled as follows:

CPRavg =
∑n

j=1 ∑
q
k=1 ONAj

k

q× n
, (20)
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Observe that the range of values for WTRavg and CPRavg is within the interval 0 and
1. As a result, the ratio of UC can be computed using the following formula:

UCp = (1− (
WTRavg + CPRavg

2
))× 100%, (21)

2.3. Multi-Objective Function

In this study, the objective function of PSPSH is formulated as a multi-objective
function by formulating PSPSH as a multi-objective optimization problem. The primary
aim of this formulation is to optimize all PSPSH objectives, including EB, PAR, WTR,
and CPR, simultaneously. As mentioned previously, all these objectives affect users and
power supply companies at the same time, where users need to be motivated to schedule
their appliances operations by minimizing EB and UC level, which contains WTR and
CPR. There is a trade-off between optimizing EB and UC, where minimizing EB could
decrease UC and vice versa. In contrast, power supply companies achieve benefits from the
proposed formulation by optimizing PAR. PAR parameter is used to minimize the highest
power consumption for users, accordingly, enhance power generation and distribution
systems of the supply companies.

A non-Pareto scalarization approach, called the weighted sum, is used for the multi-
objective function due to ineffectiveness of Pareto optimality to deal with problems contain
more than three objectives, such as PSPSH [56–58]. The weighted sum method is used for
PSPSH due to its easy implementation, simplicity, non-complexity, and wide use by PSPSH
literature [59–63]. The formulation of PSPSH’s multi-objective function is modeled based
on Equations (11), (14), and (16) as follows:

min F(X) = w1 ×
EB

EB + A
+ w2 ×

PAR
PAR + B

+ w3 ×WTRavg + w4 × CPRavg, (22)

where A and B represent two positive numbers, and w1, w2, w3, and w4 are weight parame-
ters denoting importance of each objective function.

3. Coronavirus Herd Immunity Optimizer

Recently, a new natural-inspired human-based metaheuristic algorithm called CHIO
has been proposed by Al-Betar et al. [43]. The idea is inspired by the herd immunity
used as a mechanism to stop the Coronavirus pandemic. In herd immunity, most of the
population must be infected and recovered from Coronavirus. This partial population
will shield the remaining individuals from being infected where the immune individual
stands as a firewall to prevent the infection of susceptible individuals. Such inspiration is
formulated as an optimization algorithm and tested using various standard test functions
and engineering problems. In this section, the inspiration of CHIO is illustrated, and its
procedural optimization steps are provided.

3.1. Inspiration

In biology, the virus’s replications and spreading are essential features where the host
(infected) individual can easily transmit it to other individuals through direct communi-
cation. In December 2019, a novel respiratory Coronavirus (2019-nCov) was identified in
Wuhan, China. Therefore, the World Health Organization announced the name of the new
contagious disease to be Corona Virus Disease (COVID-19) [64]. The pandemic is very
quickly spread worldwide and affects their economic, political, social sides. The incubation
period of COVID-19 from the time individual caught the virus until the symptoms first
appeared was estimated from 2 to 14 days. Currently, no antiviral treatment is yet recom-
mended for the COVID-19 infection. The treatment depends on the immunity system of the
infected individuals. Until discovering an approved vaccine as antiviral to COVID-19 infec-
tion, some countries protect their population by directing them to follow the health care
standards such as wearing masks, committing to social distancing, lockdown, etc. Other
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countries, like the UK, preferred to implement herd immunity rules to yield a self-protected
population and thus control the COVID-19 epidemic outbreak [65].

The social distancing strategy is recommended by World Health Organization to
slow down the virus spreading. The COVID-19 can be transmitted from individual to
individual through direct contact with the predefined distance estimated around 1.8 m or
indirect contact through objects or surfaces around the persons. The transmitting media is
essentially the small droplets from the mouth or nose when the infected person sneezes,
coughs, or exhales. Social distancing is affected by the basic reproduction rate, which is
the number of people that can catch COVID-19 from an infected person.The higher the
basic reproduction rate the quicker the spreading of the virus; thus, the fatality rate will
be increased. The fatality rate determines the percentage of the infected individuals to die.
This is affected by the immunity systems of the individuals. Older people and those with
chronic diseases have a higher fatality rate. Therefore, the population’s average age is an
essential factor for recovering or not [66].

In the herd immunity principle, the virus is transmitted from one individual to others
until most of the population is infected and recovered. Therefore, the protected individuals’
immunity systems can stop the spreading of COVID-19 from being transmitted to the
susceptible individuals [67]. This is visualized in Figure 2, where the immune individuals
can downsize the virus from spreading from infected individuals to the susceptible ones.
The immune individuals shield the susceptible ones as a firewall against virus spreading.

Figure 2. Herd immunity of COVID-19.

The herd immunity threshold is estimated by 60%, which determines the percentage
of population individuals shall be immune to protect other susceptible individuals.

Normally herd immunity can be implemented as follows [65,67,68] :

• A group of infected individuals infects a group of susceptible individuals.
• The majority of the infected people recover and gain immunity against COVID-19,

and a low rate are dying.
• The immune individual will stop the virus from spreading; thus, the population is

protected.
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3.2. Optimization Steps of CHIO

In terms of optimization, CHIO is described as six steps illustrated below. The pseu-
docode is given in Algorithm 1, and the flowchart describing the flow of work is provided
in Figure 3.

Algorithm 1 CHIO pseudo-code.

1: {———- Step 1: Initialize the CHIO parameters ———-}
2: Initialize the parameters (HIP, Sr, and MaxAge).
3: {———- Step 2: Generate herd immunity population ———-}
4: xy

o = lbo + (ubo − lbo)×U(0, 1), ∀o = 1, 2, . . . , d, and ∀y = 1, 2, . . . , HIP.
5: Calculate the fitness of each search agent
6: Set ST y = 0 ∀y = 1, 2, . . . , HIP.
7: Set Ay = 0 ∀y = 1, 2, . . . , HIP.
8: {———- Step 3: Herd immunity evolution ———-}
9: while (t ≤ I) do

10: for y = 1 to HIP do
11: is_Corona(xy(t + 1) = false
12: for o = 1 to d do
13: if (r < 1

3 × BRr) then
14: xy

o (t + 1) = C(xy
o (t)) {See Equation (26)}

15: is_Corona(xy(t + 1) = true
16: else if (r < 2

3 × BRr) then
17: xy

o (t + 1) = N(xy
o (t)) {See Equation (28)}

18: else if (r < BRr) then
19: xy

o (t + 1) = R(xy
o (t)) {See Equation (30)}

20: else
21: xy

o (t + 1) = xy
o (t)

22: end if
23: end for
24: {———- Step 4: Update herd immunity population ———-}
25: if ( f (xy(t + 1)) ≤ f (xy(t))) then
26: xy(t) = xy(t + 1)
27: else
28: Ay = Ay + 1
29: end if
30: if f (xy(t + 1)) < f (x)y(t+1)

4 f (x) ∧ ST y = 0∧ is_Corona(xy(t + 1)) then
31: ST y = 1
32: Ay = 1
33: end if
34: if f (xy(t + 1)) > f (x)y(t+1)

4 f (x) ∧ ST y = 1 then
35: ST y = 2
36: Ay = 0
37: end if
38: {———- Step 5: Fatality condition ———-}
39: if ((Ay ≥ MaxAge) ∧ (ST y == 1)) then
40: xy

o = lbo + (ubo − lbo)×U(0, 1), ∀o = 1, 2, . . . , d.
41: ST y = 0
42: Ay = 0
43: end if
44: end for
45: t = t + 1
46: end while
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Figure 3. The flowchart of CHIO algorithm.

Step 1: Initialization

Initially, any problem must be modeled as an optimization problem to be addressed
by optimization algorithms. In addition, two main parts should be identified, in-
cluding the solution representation and the objective function. The solution of a
constrained optimization problem can be formulated as a vector x = (x1, x2, . . . , xd)
of d decision variables. Each decision variable has its value range xo ∈ Xo where
Xo ∈ [xmin

o , xmax
o ]. where xmin

i denotes the minimum value range and xmax
o denotes

the maximum value range. Accordingly, the objective function of the solution x can
be formulated as follows:

min f (x)
S.t.

gb(x) = wb b ∈ (1, 2, . . . , a)
hz(x) = ez z ∈ (1, 2, . . . , l)

(23)

where f (x) is the objective function to measure the fitness of solution x. gb(x) = wb
is the set of ath equality constraints while hz(x) = ez is the set of lth inequality con-
straints. CHIO has two types of parameters: algorithmic and control. The algorithmic
parameters are maximum number of iterations (I), herd immunity population size
(HIP), and C0 which is the initial infected cases. CHIO also has two control parame-
ters, including basic reproduction rate (BRr) denotes the rate of transmitting the virus
from individual to another and max age (MaxAge) which determines the status of
infected individual according to its infection age.

Step 2: Initialize herd immunity population

The herd immunity population (HIP) is a memory matrix of size d× HIP stored in
CHIO individuals. These individuals are initialized normally concerning the equality
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and inequality constraints. HIP matrix is represented in Equation (24). The objective
function values (or immunity rates) are computed for all initialized solutions using
Equation (23).

HIP =


x1

1 x1
2 · · · x1

d
x2

1 x2
2 · · · x2

d
...

... · · ·
...

xHIP
1 xHIP

2 · · · xHIP
d

.


f (x1)
f (x2)

...
f (xHIP)

. (24)

To keep tracking the status of HIP individuals, the status vector ST = (ST1, ST2, . . . , STHIP)
of size HIP is initialized by zeros as many as HIP− C0 and ones as many as C0. Please
note that zeros and ones refer to the susceptible and infected cases, respectively.

Step 3: Herd immunity evolution

In this step, A new CHIO solution is generated based on three rules, which are
discussed below.

Infected case: the decision variable o in the solution y, such as xy
o (t + 1), will be

modified based on social distancing calculated based on the difference between
the current decision variable and a decision variable taken from any infected
case with a probability r ∈ [0, 1

3 BRr), such as:

xy
o (t + 1) = C(xy

o (t)) (25)

where
C(xy

o (t)) = xy
o (t) + r× (xy

o (t)− xc
o(t)) (26)

where xc
o(t) is selected from infected case xc whereby the status vector (STc = 1).

Susceptible case: the decision variable o in the solution y will be modified based on
social distancing calculated the difference between the current decision variable
and a decision variable taken from any susceptible case with a probability of
r ∈ [ 1

3 BRr, 2
3 BRr), such as:

xy
o (t + 1) = N(xy

o (t)) (27)

where
N(xy

o (t)) = xy
o (t) + r× (xy

o (t)− xh
o (t)) (28)

where xh
o (t) is selected from any susceptible case xh based on the status vector

(STh = 0).
Immune case: the decision variable o in the solution y will be modified based on

social distancing calculated the difference between the current decision vari-
able and a decision variable from any immune case with a probability of
r ∈ [ 2

3 BRr, BRr) such as:
xy

o (t + 1) = R(xy
o (t)) (29)

where
R(xy

o (t)) = xy
o (t) + r× (xy

o (t)− xv
o (t)) (30)

where xv
o (t) is selected from the best immune case xv with regard to the status

vector (ST) such that:

f (xv) = min
y∼{Y|ST Y=2}

f (xy).
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In summary, the operations of the three rules can be formulated as follows:

xy
o (t + 1)←


xy

o (t) r ≥ BRr

C(xy
o (t)) r < 1

3 × BRr. //infected case
N(xy

o (t)) r < 2
3 × BRr. //susceptible case

R(xy
o (t)) r < BRr. //immune case

(31)

Step 4: Updating HIP

The fitness value (or immunity rate) of each generated solution f (xy(t + 1)) is com-
puted using fitness function. The generated solution xy(t + 1) replaces the current
one xy(t), when f (xy(t + 1)) < f (xy(t)). In case the replacement is done, the Age
value of such solution is increment by one (i.e., Ay = Ay + 1) if the current solution
xy(t) is infected case (ST y = 1).

In addition, CHIO updates the status vector (ST y) for generated solution xy based
on the herd immune threshold formulated in Equation (34)

ST y ←


1 if f (xy(t + 1)) < f (x)y(t+1)

4 f (x) ∧ ST y = 0∧ is_Corona(xy(t + 1))

2 if f (xy(t + 1)) > f (x)y(t+1)
4 f (x) ∧ ST y = 1

(32)

Please note that is_corona(xy(t + 1)) is a binary value set to one if xy(t + 1) inherited
a value from any infected case. The4 f (x) is the fitness mean value of the individuals

in HIP, such as ∑HIP
o=1 f (xo)

HIP .

Step 5: Check Fatality

This step decides whether the infected cases (i.e., xy(t + 1) ∧ (ST y == 1)) are dead
or immune. This is specified by the parameter MaxAge. When the infected case’s
age exceeds the MaxAge limit such that Ay ≥ MaxAge without any improvement,
the infected case will be died (or be removed from the HIP) and it is regenerated
from scratch. Furthermore, the Ay and ST y are set to zero. This is the main operator
for diversification.

Step 6: Stop condition

The evolution steps (Step 3 to Step 5) are repeated until the HIP is only contained in
either susceptible or immune cases but not infected cases. Typically, the maximum
number of iterations is used as a stopping criterion.

4. The Proposed CHIO-PSPSH

In this section, CHIO is modified and adapted to address PSPSH in terms of discrete
search space. CHIO is used for PSPSH due to its high and robust performance in addressing
large-scale search spaces like the one of PSPSH. CHIO proved its robustness when applied
to tackle different research fields, such as travelling salesman problems [69], vehicle routing
problems [44], feature selection problems [45], wheel motor design problems [70], intrusion
detection systems [46], and others [47,71,72]. CHIO has achieved its popularity since its
foundation due to its dynamic parameters that allow it to explore search spaces efficiently
and find optimal solutions. In addition, CHIO contains two adjustable control parameters
that enhance its searchability for better investigation.

The adaptation of CHIO for PSPSH contains several steps that describe its behaviour
in finding optimal/near-optimal solutions. These steps are deeply discussed below.

Step 1: Initialize CHIO-PSPSH parameters

The first step of adapting CHIO to handle PSPSH is initializing CHIO and PSPSH
parameters. The main parameters of PSPSH that must be initialized are the home
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appliances S and NS, length of operation cycle LOC, time horizon T, power required
by appliance PS and PNS, boundary of operation time periods OTPs and OTPe,
and electricity prices pc.

For the CHIO parameters are the maximum number of iterations (I), population size
(HIP), Spreading rate (BRr), Max Age (MaxAge), and number of initial infected (C0).

Step 2: Initialize CHIO-PSPSH population

PSPSH’s solutions are generated randomly in this step by the CHIO considering
the discrete nature of PSPSH. The solutions are presented in a vector of length m
containing the SA’s starting time st. Figure 4 shows an example of the solution
representation. The solution’s length is 5 (m = 5), and each bit in the solution contains
st of an SA in the range [0, 24 - l].

Figure 4. Solution representation of PSPSH.

The PSPSH population contains HIP number of solutions, as shown in Equation (33).

PSPSH population =


st1

1 st1
2 · · · st1

m
st2

1 st2
2 · · · st2

m
...

... · · ·
...

stN
1 stN

2 · · · stHIP
m

, (33)

where sty
i denote st of SA i in solution y.

Step 3: Calculate fitness function

Each solution is evaluated based on Equation (22) in this step. After the evaluation,
the best solution is assigned with the highest immunity rate (BestSol).

Step 4: Coronavirus herd immunity evolution

This step is the primary step of CHIO. The SA i in the solution y may be affected by
social distancing or remain the same based on BRr using three rules as follows:

sty
i (t + 1)←


sty

i (t) r ≥ BRr

C(sty
i (t)) r < 1

3 × BRr. //infected case
N(sty

i (t)) r < 2
3 × BRr. //susceptible case

R(sty
i (t)) r < BRr. //immune case

(34)

Step 5: Update herd immunity population

In this step, the fitness value of each PSPSH’s generated solution sty
i (t + 1) is cal-

culated and replaced the current solution sty
i (t) if achieved a fitter value, such that

f (sty(t + 1)) < f (sty(t)). The age vector Ay is also increased by one if ST y = 1.
In addition, the status vector (ST y) is updated for each solution using Equation (34).
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As mentioned previously, the CHIO is modified to deal with discrete optimization
problems. Therefore, in this step, once the PSPSH population is updated, all values in
the population will be converted from continuous to discrete values.

Step 6: Fatality cases

This step decides whether the infected solution (i.e., sty(t + 1) ∧ (ST y == 1)) is dead
or immune. This is specified by the parameter MaxAge. When the Age of the infected
solutions exceed the MaxAge limit without any improvement, the infected solutions
are removed from the population and regenerated. Furthermore, the age and ST y

are set to zero.

Step 7: Stop criterion

CHIO repeats Step 3 to Step 6 until reach the algorithm stop criterion. Figure 5
presents the flowchart of adapting CHIO for PSPSH. Table 1 shows the mapping
between the components of PSPSH and CHIO in the optimization processes.

Figure 5. The flowchart of CHIO-PSPSH.
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Table 1. Mapping between the components of PSPSH and CHIO.

PSPSH Process CHIO Process

Candidate Solution Infected, susceptible, and immune cases
Social Distancing Pick a random case and rely on the basic reproduction rate
Optimal Solution immune cases

Fitness Value Immunity rate
Fatality Rate Reach the maximum age
Population HIP

5. Experimental Results

In this section, the proposed CHIO-PSPSH method is experimentally examined to
analyze and evaluate the CHIO performance in addressing PSPSH and achieving its
objectives using seven different consumption scenarios. The main CHIO parameters are
tuned to find their best values. CHIO-PSPSH performance is statistically evaluated to track
its behaviour in obtaining the best schedules. CHIO-PSPSH’s results are compared with
that of five optimization methods, including GA, PSO, GWO, WDO, and DE, using the
same consumption scenarios.

5.1. Experimental Design

The proposed CHIO-PSPSH is tested using seven different consumption scenarios
and each scenario is evaluated separately. As mentioned previously, the dynamic pricing
scheme used in this study is a combination scheme of the RTP and IBR schemes. The RTP
scheme is adopted from Commonwealth Edison Company from 1st to 7th of June, 2016
(7 days). λ and C are used by the IBR scheme and are set to be 1.543 and 0.0333 per time
slot, respectively, (Equation (12)) [2,7,54].

The main parameters and characteristics of smart home appliances used in this study
(i.e., SAs and NSAs) are highlighted and presented in Tables 2 and 3. Up to 36 SA and 14
NSA are used by each of the seven scenarios, as shown in Table 4. In this table, the Scenario’s
column refers to the scenario number, and the Appliances’ column refers to the appliance
number in Table 2.

Table 2. Main characteristics of the appliance time parameters.

NO. Appliances LOC OTPs–OTPe NO. Appliances LOC OTPs–OTPe

1 Dishwasher 105 540–780 19 Dehumidifier 30 1–120
2 Dishwasher 105 840–1080 20 Dehumidifier 30 120–240
3 Dishwasher 105 1200–1440 21 Dehumidifier 30 240–360
4 Air Conditioner 30 1–120 22 Dehumidifier 30 360–480
5 Air Conditioner 30 120–240 23 Dehumidifier 30 480–600
6 Air Conditioner 30 240–360 24 Dehumidifier 30 600–720
7 Air Conditioner 30 360–480 25 Dehumidifier 30 720–840
8 Air Conditioner 30 480–600 26 Dehumidifier 30 840–960
9 Air Conditioner 30 600–720 27 Dehumidifier 30 960–1080
10 Air Conditioner 30 720–840 28 Dehumidifier 30 1080–1200
11 Air Conditioner 30 840–960 29 Dehumidifier 30 1200–1320
12 Air Conditioner 30 960–1080 30 Dehumidifier 30 1320–1440
13 Air Conditioner 30 1080–1200 31 Electric Water Heater 35 300–420
14 Air Conditioner 30 1200–1320 32 Electric Water Heater 35 1100–1440
15 Air Conditioner 30 1320–1440 33 Coffee Maker 10 300–450
16 Washing Machine 55 60–300 34 Coffee Maker 10 1020–1140
17 Clothes Dryer 60 300–480 35 Robotic Pool Filter 180 1–540
18 Refrigerator 1440 1–1440 36 Robotic Pool Filter 180 900–1440
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Table 3. NSAs used in the scheduling.

No. Appliances Power (kW)

1 Light [52] 0.6
2 Attic Fan [73] 0.3
3 Table Fan [73] 0.8
4 Iron [52] 1.5
5 Toaster [73] 1
6 Computer Charger [73] 1.5
7 Cleaner [2] 1.5
8 TV [73] 0.3
9 Hair Dryer [73] 1.2
10 Hand Drill [73] 0.6
11 Water Pump [73] 2.5
12 Blender [73] 0.3
13 Microwave [52] 1.18
14 Electric Vehicle [74] 1

Table 4. Main characteristics of the scenarios.

S # Appliances

S #1 1, 3, 4, 5, 6, 7, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 35
S #2 1, 2, 4, 5, 6, 7, 10, 11, 12, 18, 25, 26, 27, 28, 29, 31, 32, 33, 34, 36
S #3 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 18, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35
S #4 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36
S #5 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 18, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35
S #6 1, 2, 3, 8, 9, 10, 11, 12, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35
S #7 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36

The proposed CHIO-PSPSH is tested 30 independent times to make a fair comparison.
In each test, the algorithm ran 1000 iterations since 1000 generations are sufficient for the
convergence of the algorithm [7,75]. Table 5 shows CHIO parameters setting. Please note
that RBr and MaxAge parameters are not mentioned in the table because these parameters
will be tuned to find their best values.

Table 5. Parameters of CHIO algorithms.

Parameter Value

Population Size (HIS) 40
Max Iteration (I) 1000

5.2. CHIO Parameters Analyzation

CHIO is analyzed and evaluated using seven consumption scenarios to show its
performance in addressing PSPSH. As discussed previously, CHIO’s sensitivity is based
on two control parameters RBr and MaxAge. Therefore, the two control parameters are
studied and analyzed in this section to find their best values in achieving the proposed
CHIO-PSPSH optimal schedules.

The effect of RBr and MaxAge are studied using four values. These values are 0.005,
0.05, 0.1, and 0.5 for RBr, and 50, 100, 300, and 500 for MaxAge [43]. Each value is evaluated
using PSPSH objectives, including EB, PAR, WTR, and CPR, as shown in Table 6. The table
presents the results obtained by all possible experiments using all possible suggested values
of the control parameters, where each value of the first parameter is compared with all
values of the second parameter.
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Table 6. CHIO Parameters Analysis.

0.005 0.05 0.1 0.5

S # EB PAR WTR CPR EB PAR WTR CPR EB PAR WTR CPR EB PAR WTR CPR

50

S #1 43.4641 2.6807 0.2242 0.3227 43.8147 2.6044 0.0094 0.3127 43.7384 2.6045 0.0087 0.3129 43.5523 2.6045 0.0458 0.3164
S #2 64.1402 2.6446 0.2086 0.3462 64.6208 2.4323 0.0124 0.3453 64.4169 2.4254 0.0147 0.3455 64.2613 2.4169 0.0297 0.3460
S #3 65.9196 2.3865 0.2182 0.3934 66.4258 2.2181 0.0150 0.3803 66.3190 2.2117 0.0144 0.3805 66.3121 2.2225 0.0405 0.3832
S #4 63.2499 2.5270 0.2356 0.5101 63.3545 1.8744 0.0431 0.5066 63.3702 1.9665 0.0388 0.5096 62.8679 2.0783 0.0838 0.5135
S #5 46.5781 2.4151 0.2125 0.3929 46.7815 2.2203 0.0157 0.3806 46.7853 2.2160 0.0124 0.3801 46.6086 2.2139 0.0423 0.3843
S #6 52.4087 2.5095 0.2031 0.3570 52.6468 2.5175 0.0095 0.3490 52.4176 2.5040 0.0143 0.3500 52.2710 2.5060 0.0388 0.3521
S #7 63.3368 2.3054 0.2535 0.4800 63.0784 2.004 0.0386 0.4661 63.2179 2.0385 0.0337 0.4656 62.9447 2.0086 0.0763 0.4729

100

S #1 43.5971 2.7084 0.2041 0.3220 43.8176 2.6044 0.0076 0.3122 43.8085 2.6045 0.0089 0.3128 43.4891 2.6024 0.0379 0.3164
S #2 63.4767 2.5924 0.2266 0.3489 64.4900 2.4248 0.0136 0.3454 64.290 2.4199 0.0123 0.3456 64.5717 2.4332 0.0304 0.3460
S #3 66.4986 2.3235 0.2269 0.3931 66.6698 2.2246 0.0123 0.3791 66.4452 2.216 0.0138 0.3801 66.0401 2.2203 0.0408 0.3844
S #4 62.8937 2.4846 0.2365 0.5113 63.3123 1.9471 0.0373 0.5104 63.2181 1.9723 0.0388 0.5104 62.7356 2.0188 0.0875 0.5157
S #5 46.4773 2.4009 0.2209 0.3931 46.7609 2.2160 0.0154 0.3802 46.4528 2.2117 0.0190 0.3817 46.7672 2.2273 0.0456 0.3841
S #6 51.9756 2.5213 0.2208 0.3608 52.5642 2.5175 0.0116 0.3491 52.1948 2.4944 0.0153 0.3508 52.2699 2.5060 0.0326 0.3515
S #7 63.1163 2.3252 0.2346 0.4784 63.3557 2.0195 0.0297 0.4643 63.0719 2.0152 0.0362 0.4661 62.8943 2.0117 0.0723 0.4724

300

S #1 43.5265 2.6543 0.2239 0.3224 43.8004 2.6044 0.0074 0.3126 43.8163 2.6045 0.006 0.3123 43.6746 2.6024 0.0352 0.3156
S #2 64.3299 2.5915 0.2181 0.3473 64.4096 2.4244 0.0112 0.3454 64.2427 2.4199 0.0129 0.3456 64.4953 2.4341 0.026 0.3459
S #3 66.0201 2.3541 0.2266 0.3944 66.7045 2.2267 0.0102 0.3790 66.6802 2.2246 0.0102 0.3791 66.3345 2.2246 0.0425 0.3838
S #4 63.1029 2.4434 0.2352 0.5131 63.0111 1.9239 0.0386 0.5118 63.2983 1.9223 0.0404 0.5112 62.5525 2.0766 0.0785 0.5132
S #5 46.3968 2.3109 0.2172 0.3955 46.6641 2.2117 0.0167 0.3804 46.4139 2.2010 0.0159 0.3816 46.4839 2.216 0.0379 0.3847
S #6 52.6838 2.5650 0.1999 0.3565 52.4779 2.5117 0.0102 0.3494 52.1136 2.4887 0.0141 0.3509 52.2548 2.506 0.0295 0.3516
S #7 63.2469 2.4141 0.2121 0.4740 63.2371 2.0133 0.0296 0.4647 63.1973 2.0118 0.0325 0.4653 62.3167 2.0149 0.081 0.4751

500

S #1 43.3217 2.603 0.2088 0.3234 43.8209 2.6044 0.0066 0.3123 43.8142 2.6045 0.0059 0.3124 43.6684 2.6024 0.0251 0.315
S #2 64.04 2.6589 0.1998 0.3479 64.6379 2.4359 0.0098 0.3453 64.2235 2.4176 0.0138 0.3456 64.5138 2.4321 0.0284 0.346
S #3 65.9527 2.3322 0.216 0.3919 66.6666 2.2246 0.0107 0.3791 66.642 2.2225 0.0111 0.3795 66.2984 2.223 0.0451 0.3843
S #4 63.6569 2.5122 0.2225 0.5076 63.3165 1.9488 0.0350 0.5097 63.0808 1.9197 0.0373 0.5113 62.8417 1.9618 0.0883 0.5173
S #5 46.5366 2.3837 0.1951 0.3933 46.5411 2.2095 0.0143 0.3808 46.4481 2.2031 0.0149 0.3811 46.3428 2.2165 0.0443 0.3855
S #6 52.532 2.5412 0.1905 0.358 52.0938 2.4944 0.0126 0.3508 52.3337 2.5002 0.0103 0.35 52.4137 2.5156 0.0321 0.3517
S #7 62.9267 2.2803 0.2238 0.4807 63.2214 2.0288 0.0304 0.4647 63.0749 2.0071 0.0337 0.466 62.5727 2.0133 0.0839 0.4755
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The table proves the robust performance of CHIO when the values of its control
parameters RBr and MaxAge are 0.05 and 50, respectively. It obtained the best results six
times including best PAR two times, best WTR one time, and best CPR 3 times. Table 7
shows the values of CHIO’s control parameters that achieve the best reduction for each
PSPSH objective in each scenario. For example, the best EB for the first scenario is achieved
when RBr and MaxAge are 0.05 and 500, respectively. Accordingly, the best control param-
eters’ values that obtain the best PSPSH schedules are 0.05 and 50 for RBr and MaxAge,
respectively. Therefore, these values will be considered in the next stage of the experiment
and evaluation.

Table 7. CHIO’s control parameters for PSPSH objectives.

S # EB PAR WTR CPR

S #1 0.005/500 0.5/100, 300, 500 0.1/500 0.05/100
S #2 0.005/100 0.5/50 0.05/500 0.05/50, 500
S #3 0.005/50 0.1/50 0.05, 0.1/300 0.05/300
S #4 0.5/300 0.05/50 0.05/500 0.05/50
S #5 0.5/500 0.1/300 0.1/50 0.1/50
S #6 0.005/100 0.1/300 0.05/50 0.05/50
S #7 0.5/300 0.05/50 0.05/300 0.05/100

5.3. Illustrative Example

For CHIO-PSPSH behaviour further explanation, an illustrative example of how
CHIO components deal with PSPSH is presented in this section. As mentioned previously,
adapting CHIO to deal and address PSPSH contains six main steps, as shown in Figure 5.

In the first step (Initialize CHIO-PSPSH parameters), all PSPSH and CHIO parameters
are initialized. For PSPSH, the parameters are initialized as: T = 1440, PS and PNS = the
power required for each SA and NSA, which are taken from Tables 2 and 3, respectively, S
and NS = random number ∈ Z according to OTPs and OTPe which are initialized using
Table 2, and pc = values extracted from Equation (12). For CHIO parameters, I = 100,
HIP = 5, C0 = 1, BRr = 0.05, and MaxAge = 50.

In the second step (Initialize CHIO-PSPSH population), PSPSH’s solutions are gener-
ated. The population contains five solutions (HIS), and each solution contains five elements
(number of appliances), as shown in Equation (35).

Sol1 | 570 1218 42 198 275
Sol2 | 596 1200 81 129 283
Sol3 | 597 1317 49 122 312
Sol4 | 556 1313 61 137 273
Sol5 | 574 1309 86 171 317

 (35)

In step 3 (Calculate fitness function), the solutions are evaluated based on the objective
function presented in Equation (22). After the evaluation, the solution with the fittest value
is assigned as the best solution (highest immunity rate).

Steps four (Coronavirus herd immunity evolution) and five (Update herd immunity
population) modify the cases and update the solutions. There are three main cases in CHIO,
including normal/susceptible, infected, and immune/recovered. These cases are deter-
mined and updated iteratively for each solution according to Equation (34). As mentioned
previously in this example, the number of iterations I is set to 100. Therefore, the CHIO
will update the solutions and their status 100 times to reach its optimal solution if the
conditions in Equation (34) are achieved. The solutions and their cases for the 100 itera-
tions are presented in Table 8. As shown in the table, in the first iteration, the solution
with the fittest value is assigned as the best solution, which is 0.4117, and the normal,
infected, and recovered cases are assigned by 4, 1, and 0, respectively. In iteration 8, CHIO
found a better solution with a better fitness value, and the three cases are still the same.
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Furthermore, in iteration 14, the best solution is changed without changing the solutions
cases. The solutions cases start changing in iteration 33, where the normal and infected
solutions become 3 and 2, respectively. In iteration 39, the solutions cases are changed to
3, 1, and 1 for the normal, infected, and recovered solutions. A new solution is infected
in iteration 58, and the best solution value becomes 0.4049. Another case of a solution is
changed from infected to recovered in iteration 60, and the best solution is updated as well.
The best solution is also updated in iteration 77. In iteration number 83, a solution dies,
and a new solution is generated to update the best solution. The CHIO attempts to update
the population is continued until iteration 100.

In the last step, the stop criterion is checked.

Table 8. Mapping between the components of PSPSH and CHIO.

Iteration S1 S2 S3 S4 S5 FF Normal Infected Recovered Decision

1 570 1218 42 198 275 0.4117 4 1 0 Best solution
2 570 1218 42 198 275 0.4117 4 1 0 Do not replace best solution
5 570 1218 42 198 275 0.4117 4 1 0 Do not replace best solution
8 557 1266 12 180 195 0.4100 4 1 0 Replace best solution

14 557 1266 1 180 195 0.4055 4 1 0 Replace best solution
33 557 1266 1 180 195 0.4055 3 2 0 Do not replace best solution
39 557 1266 1 180 195 0.4055 3 1 1 Do not replace best solution
58 576 1298 6 187 241 0.4049 2 2 1 Replace best solution
60 567 1263 33 137 260 0.3897 2 1 2 Replace best solution
77 539 1213 10 168 260 0.3875 2 1 2 Replace best solution
83 541 1225 38 183 254 0.3813 3 0 2 Replace best solution
100 541 1225 38 183 254 0.3813 3 0 2 Replace best solution

5.4. Experimental Evaluation

In this section, the effect of CHIO on EB, PAR, WTR, and CPR reduction is evaluated
and compared with other five popular metaheuristics, including GA, PSO, WDO, DE,
and GWO.

5.4.1. Algorithms Effect on EB

The algorithm’s effect on EB value is presented and compared. In addition, the overall
reduction is included in this comparison to present the best algorithm in reducing EB.

The average EB for seven scenarios is reduced to (55.6472), (56.1549), (57.5272),
(57.7394), (56.8562), and (57.2460) using GA, PSO, WDO, DE, GWO, and CHIO, respectively.
EBs obtained by these algorithms for the seven scenarios are compared in Table 9. The table
shows a comparison between the algorithms in each scenario and their average EB.

Table 9. EB reduction comparison. Best values are shown in bold.

S # GA PSO WDO DE GWO CHIO

S #1 42.8801 42.9128 43.2542 43.8137 43.5041 43.8147
S #2 60.3058 62.3731 65.1472 64.9603 64.5597 64.6208
S #3 65.2185 65.1080 66.1703 67.4365 66.1138 66.4258
S #4 62.2197 62.7878 64.6019 64.2647 62.5916 63.3545
S #5 45.6463 45.7852 46.4160 47.5699 46.2879 46.7815
S #6 51.6958 51.9391 52.6767 52.7780 52.2998 52.6468
S #7 61.5644 62.1783 64.4241 63.3523 62.6367 63.0784

Average 55.6472 56.1549 57.527261 57.73940 56.85627 57.2460

Please note that the PSO outperforms all other algorithms in six scenarios, including
scenario numbers 1, 2, 3, 5, 6, 7, in reducing EB, whereas GWO performs better in reducing
EB in the fourth scenario. In addition, PSO achieves the best overall reduction, where it
obtains a better average EB than the other algorithms.
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5.4.2. Algorithms Effect on PAR

This section presents PAR reduction on the basis of the considered algorithms. The PAR
values obtained by all compared algorithms for seven scenarios are presented in Table 10.
The table presents the average PAR obtained by each algorithm to show which algorithm is
better in reducing the overall PAR values. The average PAR value obtained by the compared
algorithms are reduced to (2.3795), (2.3649), (2.5335), (2.3074), (2.3280), and (2.2672) using
GA, PSO, WDO, DE, GWO, and CHIO, respectively.

Table 10. PAR reduction comparison. Best values are shown in bold.

S # GA PSO WDO DE GWO CHIO

S #1 2.6074 2.5943 2.6668 2.6044 2.6002 2.6044
S #2 2.4305 2.4037 2.8451 2.4451 2.4451 2.4323
S #3 2.3213 2.2409 2.2650 2.2310 2.2267 2.2181
S #4 2.2516 2.3363 2.5033 2.1096 2.2277 1.8744
S #5 2.2799 2.2458 2.2310 2.2310 2.2310 2.2203
S #6 2.5055 2.5055 2.6006 2.5233 2.5233 2.5175
S #7 2.2604 2.2275 2.6226 2.0071 2.0423 2.0039

Average 2.3795 2.3649 2.5335 2.3074 2.3280 2.2672

Notably, GA obtains the best PAR value in scenario number 6, whereas PSO outper-
forms the compared algorithms in the first and second scenarios. However, CHIO achieves
the best PAR value in scenarios 3, 4, 5, and 7. In addition, CHIO performs better in reducing
the overall PAR value, where it obtains the best average PAR value compared with the
other algorithms.

5.4.3. Algorithms Effect on UC level

In this section, the effect of the compared algorithms on the basis of the two parameters
of UC (i.e., WTR and CPR) is evaluated and compared to show their performance in
improving the schedules in terms of UC enhancement.

Tables 11 and 12 present WTR and CPR values obtained by all compared algorithms
for the seven scenarios. In addition, the average WTR and CPR for the seven scenarios are
presented in the tables to investigate which algorithm can achieve a better overall reduction
in terms of WTR and CPR.

Table 11. Comparison of WTR reduction. Best values are shown in bold.

S # GA PSO WDO DE GWO CHIO

S #1 0.3901 0.3523 0.0343 0.0150 0.0302 0.0094
S #2 0.3709 0.3659 0.0149 0.0046 0.0242 0.0124
S #3 0.3719 0.3673 0.0438 0.0281 0.0378 0.015
S #4 0.3900 0.4036 0.0200 0.0293 0.0579 0.0431
S #5 0.3677 0.3596 0.0405 0.0281 0.0396 0.0157
S #6 0.3890 0.3636 0.0253 0.0136 0.0268 0.0095
S #7 0.3853 0.3881 0.0092 0.0260 0.0587 0.0386

Average 0.3807 0.3715 0.0269 0.0207 0.0393 0.0205

Table 11 presents the CHIO’s robust performance when compared with the other algo-
rithms in reducing WTR, where it obtains the best WTR value in four scenarios. In addition,
CHIO achieves the best average reduction when compared with all considered algorithms.
In terms of reducing CPR value, WDO obtains the best results, where it achieves the best
CPR values in scenario numbers 2, 3, 4, 5, and 7. In addition, it obtains the best average
CPR reduction.
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Table 12. Comparison of CPR reduction. Best values are shown in bold.

S # GA PSO WDO DE GWO CHIO

S #1 0.3248 0.3246 0.3143 0.3122 0.3148 0.3127
S #2 0.3599 0.3535 0.3429 0.3449 0.3455 0.3453
S #3 0.3957 0.3959 0.3799 0.3811 0.3815 0.3803
S #4 0.5200 0.5121 0.4946 0.5044 0.5033 0.5066
S #5 0.3969 0.3956 0.3801 0.3811 0.3822 0.3806
S #6 0.3614 0.3594 0.3489 0.3481 0.3504 0.349
S #7 0.4806 0.4797 0.4492 0.4628 0.4688 0.4661

Average 0.4056 0.4030 0.3871 0.3907 0.3924 0.3915

CHIO obtains the highest UC level in scenario numbers 1, 3, 5, and 6. As shown in
Table 13, WDO achieved the best UC level in the fourth and seventh scenarios, and DE
outperform other algorithms in the second scenario. In terms of average UC level, DE
outperforms all compared algorithms, where it improves UC level by up to (18.74%),
(18.15%), (0.13%), (1.01%), and (0.03%) when compared with GA, PSO, WDO, GWO,
and CHIO, respectively. Notable, CHIO obtains the second best average UC level, where it
outperforms all algorithms except the DE algorithm. These results prove CHIO’s robust
performance in improving UC level when compared with GA, PSO, WDO, and GWO.

Table 13. Comparison of UCp reduction. Best values are shown in bold.

S # GA PSO WDO DE GWO CHIO

S #1 64.2510 66.1500 82.5642 83.6358 82.7463 83.895
S #2 63.4564 64.0215 82.1037 82.5222 81.5124 82.115
S #3 61.6160 61.8364 78.8101 79.5370 79.0296 80.235
S #4 54.4975 54.2085 74.2622 73.3118 71.9334 72.515
S #5 61.7660 62.2313 78.9602 79.5370 78.9061 80.185
S #6 62.4762 63.8421 81.2855 81.9100 81.1313 82.075
S #7 56.6993 56.6041 77.0780 75.5528 73.6213 74.765

Average 60.6803 61.2705 79.2948 79.4295 78.4115 79.3976

5.4.4. Performance and Statistical Evaluation

The obtained results show that some algorithms obtain good results in reducing EB
but achieve the worst results in reducing WTR and CPR, as shown by GA and PSO results.
In addition, CHIO outperforms all algorithms in reducing PAR and WTR, whereas DE
achieves the best results in reducing CPR. Accordingly, finding the best overall reduction
for all PSPSH objectives by all algorithms is necessary to show the algorithm with the best
performance in obtaining the best solution in terms of all objectives.

Table 14 shows the fitness values (FF) obtained by all algorithms with reduction for
all objectives. The table proves that CHIO algorithm achieves high performance as it
finds the best PSPSH schedules and it achieves the best FF for all scenarios except the
second scenario.

Figure 6 illustrates all algorithms performance using the convergence behaviour
toward an optimal solution for the seven scenarios. The figure shows that CHIO converges
towards the optimal solution better than the other algorithms in scenarios 1, 3, 4, 5, 6,
and 7. This situation is due to CHIO’s robust performance in balancing exploitation and
exploration when finding the optimal solution. In addition, the figure shows that the
convergence rate of CHIO is lower than that of the other algorithms for the same scenarios.



Mathematics 2022, 10, 315 23 of 29

100 200 300 400 500 600 700 800 900 1000

Iteration

0.35

0.36

0.37

0.38

0.39

0.4

0.41

0.42

0.43

F
F

FF SCENARIO 1

CHIO FF

GA FF

PSO FF

DE FF

WDO FF

GWO FF

100 200 300 400 500 600 700 800 900 1000

Iteration

0.36

0.37

0.38

0.39

0.4

0.41

0.42

0.43

0.44

F
F

FF SCENARIO 2

CHIO FF

GA FF

PSO FF

DE FF

WDO FF

GWO FF

(a) (b)

100 200 300 400 500 600 700 800 900 1000

Iteration

0.36

0.37

0.38

0.39

0.4

0.41

0.42

0.43

0.44

F
F

FF SCENARIO 3

CHIO FF

GA FF

PSO FF

DE FF

WDO FF

GWO FF

100 200 300 400 500 600 700 800 900 1000

Iteration

0.39

0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

F
F

FF SCENARIO 4

CHIO FF

GA FF

PSO FF

DE FF

WDO FF

GWO FF

(c) (d)

100 200 300 400 500 600 700 800 900 1000

Iteration

0.36

0.37

0.38

0.39

0.4

0.41

0.42

0.43

0.44

F
F

FF SCENARIO 5

CHIO FF

GA FF

PSO FF

DE FF

WDO FF

GWO FF

100 200 300 400 500 600 700 800 900 1000

Iteration

0.36

0.37

0.38

0.39

0.4

0.41

0.42

0.43

0.44

F
F

FF SCENARIO 6

CHIO FF

GA FF

PSO FF

DE FF

WDO FF

GWO FF

(e) (f)

100 200 300 400 500 600 700 800 900 1000

Iteration

0.38

0.39

0.4

0.41

0.42

0.43

0.44

0.45

0.46

F
F

FF SCENARIO 7

CHIO FF

GA FF

PSO FF

DE FF

WDO FF

GWO FF

(g)

Figure 6. CB for the methods.
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Table 14. Comparison of FF reduction. Best values are shown in bold.

S # GA PSO WDO DE GWO CHIO

S #1 0.4244 0.4153 0.3504 0.3484 0.3531 0.3473
S #2 0.4274 0.4270 0.3697 0.3569 0.3593 0.3598
S #3 0.4316 0.4273 0.3641 0.3651 0.3630 0.3551
S #4 0.4647 0.4686 0.3953 0.3898 0.3952 0.3888
S #5 0.4329 0.4300 0.3646 0.3620 0.3649 0.3576
S #6 0.4346 0.4308 0.3651 0.3648 0.3658 0.3586
S #7 0.4525 0.4542 0.3813 0.3811 0.3803 0.3793

A statistical comparison between the results obtained by all algorithms is presented
in Table 15 to investigate any statistically significant difference that exists between the
results obtained by CHIO and the compared algorithms. The CHIO’s results are compared
with the other algorithms due to its encouraging results. As it achieved the best FF in six
scenarios. The Wilcoxon signed-rank test is used for this statistical comparison. The p-
value is used to estimate whether or not there is a significant difference between the
results of the algorithms. A significant difference can be obtained if the p-value is lower
than or equal to 0.05. Otherwise, the difference in the results is insignificant. Table 15
provides a statistical comparison based on the algorithms’ FF. The table indicates that CHIO
considerably decreases FF when it is compared to the other algorithms, with a meaningful
difference in all cases. Please note that the p-value is not presented for DE and GWO in the
second scenario because these algorithms obtained better FF than CHIO in this scenario.

Table 15. Comparison of p-value.

S # GA PSO WDO DE GWO

S #1 1.7343× 10−6 1.7343× 10−6 0.2802 0.7813 0.0333
S #2 1.7343× 10−6 1.7343× 10−6 0.0015 —— ——
S #3 1.7343× 10−6 1.7343× 10−6 0.0020 3.5888× 10−4 4.1955× 10−4

S #4 1.7343× 10−6 1.7343× 10−6 0.0028 0.6583 0.0050
S #5 1.7343× 10−6 1.7343× 10−6 0.0185 0.0148 0.0026
S #6 1.7343× 10−6 1.7343× 10−6 0.0104 0.0125 0.0021
S #7 1.7343× 10−6 1.7343× 10−6 0.4908 0.5304 0.3743

6. Conclusions and Future Work

In power systems, scheduling the smart home appliances to proper operation periods
concerning the dynamic pricing scheme(s) is known as PSPSH. This scheduling problem is
essential to control the power for supply companies and their users to reduce PAR and EB
and to ensure UC level. PSPSH is formulated as a constrained optimization problem with
multi-objective features. Several optimization algorithms have been used to tackle PSPSH.
Due to their impressive characteristics, metaheuristic algorithms are successful in tackling
PSPSH. Quite recently, CHIO was established as a human-based optimization algorithm
that imitates the herd immunity strategy to stop the spread of the COVID-19 disease. In
this paper, CHIO is adapted to address PSPSH (CHIO-PSPSH) and achieve its objectives
efficiently due to its ability in achieving the right balance of exploitation and exploration,
thus finding the optimal/near-optimal solution(s).

The proposed CHIO-PSPSH is examined using a dataset that contains 36 home appli-
ances and seven scenarios. The main CHIO parameters, including RBr and MaxAge are
tuned to find their best values. The results prove CHIO’s robust performance when the
values of its control parameters RBr and MaxAge are 0.05 and 50, respectively. These best
values are used in the evaluation of the proposed method by comparing its results with
the other five metaheuristic algorithms, including GA, PSO, WDO, DE, and GWO. These
methods are compared in terms of all PSPSH objectives (i.e., EB, PAR, WTR, and CPR)
to show the best method in optimizing the problem. Generally speaking, the proposed
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CHIO shows the high performance when addressing PSPSH, where it obtains the best
PAR and WTR results compared with the other methods. In addition, it achieves the best
results and convergence for the multi-objective function reduction. However, in terms
of EB and CPR, PSO and WDO achieve the best values. In addition, DE yields the best
UC improvement results. A statistical comparison between the results obtained by CHIO
against the compared methods is conducted to detect any statistically significant difference
between the obtained results. The statistical comparison proves the significant difference in
the results obtained favoring CHIO.

Possible future directions can be considered to improve the performance of the pro-
posed method and the quality of the PSPSH solutions. The future directions are summarized
as follows:

• As mentioned previously, CHIO contains two adjustable control parameters, including
BRr and MaxAge, where their values are changing from an optimization problem to
another. These parameters are tuned in Section 5.2 based on the recommended values
suggested by Al-Betar et al. [43] (BRr = 0.005, 0.05, 0.1, 0.5, MaxAge = 50, 100, 300, 500)
to find their best values for PSPSH. However, such parameters best values for PSPSH
may not one of the suggested values, for instance, BRr = 0.001 and MaxAge = 30.
Accordingly, new tuning experiments for such control parameters can be conducted to
investigate and find better best values. More experiments required a more illustrative
presentation approach. Therefore, visualizing the new conducted results in a graph
could enhance the presentation of the results.

• Due to the high constraints of the PSPSH that restrict the optimization processes of
the algorithms, new power sources, such as storage systems and renewable energy
sources, can be integrated with the smart home components to enhance the solutions
and schedules of PSPSH.

• Due to the weak performance of CHIO in optimizing EB, CPR, and UC level, the pro-
posed CHIO can be hybridized with components of other efficient methods to enhance
its performance and achieve better solutions.
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ED Differential Evolution
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HIP Herd Immunity Population
IBR Inclining Block Rates
NSA Non-Shiftable Appliance
PAR Peak-to-Average Ratio
PSO Particle-Swarm Optimization
PSPSH Power Scheduling Problem in Smart Home
RTP Real-Time Price
SA Shiftable Appliance
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WDO Wind-Driven Optimization
WTR Waiting Time Rate
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