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A MODIFIED DEFECT RELATION FOR

HOLOMORPHIC CURVES

BY PEICHU HU

1. Introduction and main results.

By a holomorphic curve, we mean a holomorphic mapping

where V is an open Riemann surface and Pn is the n-dimensional complex pro-
jective space. In 1927, R. Nevanlinna [3] created a new theory concerning the
distribution of values of a holomorphic curve / : C-»Pi. Nevanlinna's main
result is that / assumes almost all values in Px "equally often", and those
values that / fails to assume often enough have total "defect" at most 2. H.
Cartan [2] generalized this "defect relation" to holomorphic curves x: C->Pn

counting how often x takes values in hyperplanes. L. Ahlfors [1] later ex-
tended Cartan's result to holomorphic curves x: V-*Pn> which he cast in a
geometric form. H. Wu [5] reorganized Ahlfors' theory in a modern fashion.
We freely use the symboles, notations and terminologies from H. Wu [5] except
for special declaration.

The purpose of this paper is to modify the Second Main Theorem for holo-
morphic curves, and furthermore, simplify the defect relation. Let τ be a har-
monic exhaustion on V and σ—τ+V^Λp be the special coordinate function.
By a theorem of Gunning and Narasimhan [5, p. 102], there is a holomorphic
function y on V whose differential vanishes nowhere. Thus in every sufficiently
small open subset of V, the restriction of y to it is a coordinate function.
Define

I da

T°k(r)=Tk{r)+Nk(r),
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r 1 , if Q

eϊ= {n-q){k+D
I (n-kXq+1)'

Then we obtain

if k'^q^n—1,

THEOREM 1. Let x: V->Pn be a nondegenerate holomorphic curve and V
admits a harmonic exhaustion, then for k=0, •••, n—1

(1)

(2) TJ . 1 -2T!+T2 + 1 =/f+/ι(T)

and for k—l, •••, n

(3) iV,(0

THEOREM 2. Lβί x: V—>Pn be a nondegenerate holomorphic curve and V
admits a harmonic exhaustion. Let{Λq} be a finite system of q-dimensional pro-
jective subspaces of Pn in general position. Then the generalized compensating
terms mk(Aq)=mk(r, Λq) satisfy the following inequality

n + 1-Tk(r)-Qk(r)-j(n+l)(n-k)E(r).

(4)

We also have the equality

(5)

where

Remark. If x=(x0> •••, xn): V->Cn+1 is a reduced representation of x, then

(6) Nn(r)=\T n(f,W=0)dt,

where W=W(xQ, •••, xn) is the Wronskian determinant of x3 (/=0, •••, n) and

n(t, W—θ):=rsum of the orders of zeroes of W in V[f] .

Thus if V=C and ft=0, (4) is just the Cartan's Second Main Theorem [2], [4].
I learned about differential geometry and complex analysis from H. Wu and

Y.T. Siu, whom I wish to thank for sharing their insights with me.
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2. Proof of Theorem 1.

Given a holomorphic curve x: V->Pn, with a reduced representation x —
(*o, *••, Xn)' V->Cn+1. According to H. Wu [5] the quantity X\ is defined as
follows: fix a coordinate neighborhood U in V and a coordinate function z
on U,

where X\—x^—χ and

ί 5 _

Then the following results are well-known JΊ5]

(7) X*r=(^)ka+imX> [5, p. 69]

(8) Tk(r)=4z\ hg\Xk

r\*dτ\r-Nk(r) [5, p. 104]

(9)

r 0

' Z * ' - J - [5, p. 130]
s \X$\2

(10) £ + S * + T s - 1 - 2 T s + T * + 1 = i « ( Γ ) . [5, p. 132]

where (7) holds in V—V[r(r)] —{critical points of τ}. Since ro2ϊr(r) and an
integration always ignores finite point sets (the critical points of τ are all iso-
lated), by (7) and (8), we have .

(11) ^-[

Consequently, (9) and (11) imply (1).
Note that JV_i(r)=0. So upon (1) summing over k from 0 to / — I , we have:

(12) j(E(r)+H(r))Vll S^r^Nj^-N^^-Noir).
1 = 0

Upon summing over / from 1 to k, we finally have (3). (1) and (10) imply (2).
q. e. d.

3. Preliminary lemmas.

To prove Theorem 2 we need some lemmas.

LEMMA 1 [5, p. 131]. (i) // ψ^φ off a compact set and ψ<ψi off a compact
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set, then φ—μ(φ) implies φι—μ(ψι).
(ii) // φ=μ(φ), then φ+O(l)=μ{φ).

(iii) // C is a positive constant and φ—μ(φ), then

Cφ=μ(φ).

(iv) // φ—μ(φ) and φx is positive off a compact set, then

ψ—ψi=μ(φ).

(v) Suppose φ—μ(φ) and φi—μ(φ). then

Remark. We say φ=μ(φ) for two continuous functions φ and φ if and
only if

Γ ds[ exp{Kφ(t)}dt<C<p(r)+C [5, p. 131]

for some positive constants K, C and C .

LEMMA 2. For k=0, •••, n—2,

(13) (k+l)Tl(k+2)Tl +

and for k=l, •••, n—1,

(14) ( n - ^ T ^ ^ ί n y

Proof. By (2) and Lemma 1 (iii), we have

(15)

and

(16)

Upon (15) and (16) summing over k from 0 to k and & to n—1 respectively, and
using Lemma 1 (v), we get (13) and (14). q.e.d.

COROLLARY 1. // j^k, then

(17) ^

If j<k, then

(18) (n

Proof. Straightforward induction from the lemma.
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COROLLARY 2. If

where we assume that V has an infinite harmonic exhaustion and that x is non-
degenerate, then there exists a positive constant c such that

(19)

where T°(r)=max{Tg(r), •••, T°_i(r)}, and the sign " | | " in front of an inequality

means that the inequality is only valid in [0, oo)—/ with 1 d\ogt<°°.

Proof. We know that φ—μ{φ) implies

(20) \\ψ(r)<λlog(Cφ(r)+C)

for a constant λ>l ([5], (4.62)). Hence (17) and (18) imply

+Λlog(CT(r)+C) if y ^

and

+λ\og(CT(r)+C') if j£k.

Obviously, they together imply that for some positive constants cx and c%.

\T\r)<cxT%f)+c% log (CT\r)+C)

Because TΛ(r)->oo as r->oof so T°(r)-^oo as r->oo. Thus for sufficiently large r,

c2log(CT\r)+C')>^T\r).

Combining with the above inequalities, we obtain (19). q.e.d.

REMARK. If x is nondegenerate and V has an infinite harmonic exhaustion
and

1 k[r)

we also have

(21) \\Tk(r)£T(r)£cTk(r). [5, p. 140]
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LEMMA 3. // y3 are indeterminates over the ring Z and if y3—Q for j>n,
then we have the algebraic identity

(22) Dq{k, /; 3θ=- Σ1 Σ Pq(j-i, l-iXy^^y^+y^)

, l+l)yk-(Pt(n + ί, *

n—i—1 \ » / i \/n—i—1

where O.^/^min(^, q). If l—q, then

By definition,

HO ) [5' p 182]

where I ~ j 2*s defined for all integers by the binomial series

Proof. We often use the following identities:

.^(TXncί) [5 p

and

m %e
which directly imply

r 0 if i ^

(25) PJίJ-i,l-i)=\

l {q+l) \ti<l-q

and

(26) P(2(^ + l , / + l ) - P 5 ( ^ / ) = ( ^ 1

1 ) ( 7 2 ~ ^ 1 ) . [5, p. 195]

By (25), we can write
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(27) D q ( k , I y ) = D ' q ( k , I y)+D'<[(k, l y ) ,

where

Dgk,l;y)=-n Σ Σ

and

ϊ(k,l;y)=nΣ Σ

Obviously,

"Σ Σ

Change order summing, we obtain

D»{k,l\y)=P£k + l,l+l)yk-PAn + l9l+l)yn+ Σ

where

( ^ + i , z-y+i+i)-2Pβ(ι,

By definition,

-/-y-i/ \/+y/v̂ -z-y/j

which and (26) imply

at=Pq(i+l, l+l)-Pq(i, D+P&, l)-Pq(i-l, Γ
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\/+l)\ q-l )\l)\q-l-l)

By (26), we have

=

ίSιL(/-y+t+i)+(/-y+ί)J(ί-/+y-f )
/ n-ι-1

n-i-l \f i y π-ι-1
jq-l+j-i) \l-j+i)\q-l+j-i

/ i \( n-i-l \f i yn-ι-l\
\l-k+i+V\q-l+k-i) V/+lA q-l )'

Hence we finally obtain

(28) Dζ(k, l;y)=Pt{k+l, l+l)yk-Pq(n+l, lA-l)yΛ

In similar fashion, we have

(29) Dgk, I; 3 θ = - " Σ Σ (.PJίi+1, I-j+i+l)

-2Pq(i, l-j

=",-?- ,§ {L(/-y+, +i)+(/-y+, )j(ί-/+y_, )

n—/—1
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because

yt=0 if i>n,

^q—l+n—i

Thus (27), (28) and (29) imply (22). q.e.d

COROLLARY.

(30) Ct=βk

Proof. In Lemma 3 we let

_ ί y i

^ i θ if j

then ί*s(/fe, q y)~0, so we have

In Lemma 3 we take

if j£n

if y>«.

Then

ιv>\ ri 1n ί-foΛ.Λ,^ " ( " + D / » \ k(k+l}/n+l
(32) C ϊ = ί ) ( f t ί y ) = ( j (

where

I z i v f" 2 + 1 V

2 .-Γiβ-i\ί-A+ι+lΛ A-i

k—q\ * / f \/n—»—1\ Λ / » \/n—ί—1~ 2

By (31), we have

(33) /

Thus (33) and (32) imply (30). q.e.d.

»—1\ Λ / » \/n—ί—
-/ / .=*-Λ?-£+Λ A-/
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4. Proof of Theorem 2.

We have the following inequalities [5]

(34) Σm*(i4«)=-nΣ Σ Pq(j-i, q-iXE+Sj
At f* «=»

-2T,-,+T)-t+ι)+μ(.Tt), iίθ£q£k [5, p. 193]

and

(35) Σm*(i4β)=- Σ ΣV,. H ((i-i-ί-l, n-q-i-ίχE+Sj+t
AZ .7=0 ι=0

+T i + t. 1-2T,+ <+T j,+ t + 1)+ J«(T 2), if q^k. [5, p. 201]

Firstly, let us deduce (4) for the case Q^q^k. By (1) and Lemma 3, we
have

(36) 23 mk(A")=Dq(k, q T°)+ ClH+μ(T*)
A<1

By Corollary 1 of Lemma 2 and (24), the sum of the right hand side of the
above identity equals

\q-k+i+l'\ k-i

_____ k-

where

q k-i

k-q * / ί+1 \ / n - ί - l

,-?β(n—Γ—lXfe— ) = 4 ϊ l ' ( n + l ) (by (24))

and
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n—i—

Hence (30), (36) and Lemma 1 imply

(37)

Next, we deduce (4) for the case q^k. Take y3=Tl-x-] in Lemma 3.
Then (23) and (35) imply

(38) Σ w ^ V i f Λ - ' - l n-q-l) y)+Clzt\H+μ{T2)
A*

(jy^r^Tli^O). By Corollary 1 of Lemma 2 and (24), the sum of the right hand
side of the above equals

where

»-ff»w-//n-l-/\/./\
A n-k\q-k-l)\k)

( 4 ( ) f (by (24))
q—kJ\kJ n k\q+l'
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(by (24))

and

M n-k\q-k-V\k)

n-k

(
n-k\q+l

Hence (30), (38) and Lemma 1 imply

( 3 9 )

Now (4) follows from (37) and (39).
Finally, by (3), we have

( 4 9 )

which implies (5). q.e.d.

5. Discussion.

In this section, we assume that V has an infinite harmonic exhaustion and
the conditions in Theorem 2 hold. Define

a n d Θ*=l™sup

For each ^-dimensional projective subspace Λq of Pn, we define the defects of
Λq to be:

*.(*)= I i m i n f 5 ί £ ^ and Δ,(A«)=iimmf5%^
k(

Clearly 0 ^ Δ , ( ^ ) ^ δ , ( ^ 3 ) ^ l . If Hk< + oo} by Theorem 2, (20) and Corollary 2
of Lemma 2 we have

(41)
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If %*< + oo, by Theorem 2, (20) and (21) we have

(42)

Let Z(x) be the set of zero points of | jc | . Let vp{f) denote the order of
zero at p of a function f on V. Clearly, we see

( | j c | ) - l , if p<=Z(x).

Define

the stationary index of x at p, if p is a critical point of x

0 otherwise

and

Iv=vv(\X\\)-2vv{\x\)-sv.

We can prove that

/p=0, if

Define

2(0= Σ /P and 7(r)=Γ *(i

Then

7(r)=W1(r)-2tf0(r)-S0(r).

Hence (1) implies

(43) E(r)+H(r)=I(r).

If V—C or C—{0}, we can choose x such that Z(x)=0, so

If x is transcendental and Z(Jc) is a finite set, then
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