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A Modified Eigenstructure 

Assignment Technique 

for Finite Element 

Model Updating 

This article deals with an extended application of the constrained eigenstructure 
assignment method (CEAM) tofinite element model updating. The existingformulation 
is modified to accommodate larger systems hy developing a quadratic linear optimiza
tion procedure that is unconditionally stahle. Further refinements include the updating 
of the mass matrix, a hysteretic damping model, and the introduction of elemental 
correction factors. Six numerical test cases, dealing with effects of damping and 
measurement noise, mode shape incompleteness, and discretization differences, were 
conducted in the case of a 3-D frame model with 114 coordinates. The performance 
of the CEAM was evaluated systematically for hoth the purpose of error location and 
the glohal correction of the initial model. The same cases were also studied using 
another model updating approach, namely the response function method (RFM). It 
was found that the CEAM had a numher of distinct advantages, such as yielding a 
noniterative direct solution, requiring much less computing power, and providing 
acceptahle results for cases, that could not he handled using the RFM. © 1996 John 
Wiley & Sons, /nc. 

INTRODUCTION 

In spite of extensive research over the past 15 

years, the state of the art in finite element (FE) 

model updating is far from maturing and no reli

able and generally applicable procedures have 

been formulated so far. Several review articles 

(Natke, 1988; Ibrahim, 1988; Imregun and Vis
ser, 1991; Mottershead and Friswell, 1993) reveal 

a wealth of updating algorithms, but the success 

seems to be case dependent and the applicability 

bounded by the skill of the analyst in choosing 

a correct set of parameters. In any case, two 

somewhat related approaches are now emerging 

as accepted state of the art tools: the inverse 

eigensensitivity method (IESM) (Zhang and 

Lallement, 1987) and the response function 

method (RFM) (Lin and Ewins, 1990; Visser and 
lmregun, 1991). 
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A review of the case studies reported in the 

literature unveils a fundamental problem: a par

ticular solution is usually nonunique and a gener

ated solution does not necessarily represent a true 

physical meaning (Imregun, 1995). Furthermore, 

the rate of success seems to depend on the partic

ulars of the cases studied as well as on the skill 

of the analyst. Part of the problem stems from 

the iterative nature of both methods and the nu-
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merical difficulties that are encountered in such 

situations. 

A recently proposed technique, the so-called 

constrained eigenstructure assignment method 

(CEAM), has the advantage of being direct and 

hence of not requiring any iterations for the con

vergence of the updating parameters, although 

the solution stage may contain iterative scchemes 

such as nonlinear optimization (Schulz and In

man, 1994). Eigenstructure assignment was first 

introduced in the field of control theory. Moore 

(1976) formulated the necessary and sufficient 

conditions for simultaneous eigenvalue and eigen

vector assignment using state feedback for the 

case of distinct eigenvalues. Srinathkumar (1978) 

addressed the problem of pole assignment in lin

ear time-invariant multi variable systems using 

output feedback. Andry et al. (1983) applied the 

eigenstructure assignment technique for a linear 

mechanical system for parameter identification. 

Minas and Inman (1988) and Inman and Minas 

(1990) applied the constrained assignment tech

nique for the correction of damping and stiffness 

matrices of an FE model. They also used the pole 

placement method for systems with unknown 

mode shapes. Zimmerman and Widengren (1990) 

used a modified algorithm that allowed a symmet

ric eigenstructure assignment when correcting the 

damping and stiffness matrices. Their method re

quired the solution of a general algebraic Riccati 

matrix equation, the size of which depended on 

the number of assigned modes, thus requiring 

very considerable CPU power for large-order sys

tems. Finally, Schulz and Inman (1994) used the 

eigenstructure assignment technique with a num

ber of constraints that were related to the physical 

properties of the system to be updated. They con

sidered small-order systems that were symmetric, 

banded, and bounded. The constraints were built 

into a nonlinear optimization procedure that pre

served the desired properties of the updated 

model. 

The work presented here is an extension of 

Schulz and Inman's article (1994) and the follow

ing features are common to both studies. The 

correction of the FE model is based on a subset 

of modes and frequencies, as it would be in the 

case of measured data because of various practi

cal limitations. The symmetry of the system ma

trices, the connectivity information, and other 

conditions, such as positive-definite mass matrix 

and maximum allowable change in design vari

ables, are introduced in the form of constraints. 

Although the solution is bounded by the limited 

variability of the design parameters, no formal 

functional constraints exist because the limits can 

only be expressed in terms of inequalities. 

The primary purpose of the current work is to 

make the methodology applicable to large sys

tems, not only by developing a quadratic linear 

optimization procedure instead of the nonlinear 

one, but also by reducing the number of un

knowns via an error representation that involves 

one design parameter per individual FE matrix. 

Although there are further variants of this latter 

feature, such as the allocation of design parame

ters to physical quantities, they will not be ex

plored here. The main disadvantages of a nonlin

ear optimization procedure are the extensive 

CPU requirements and slow convergence. 

A further objective of the study is to compare 

the performance of the CEAM against one of the 

more established model updating techniques, 

such as the RFM. 

REVIEW OF CEAM FORMULATION 

Although the following formulation is very similar 

to that given by Schulz and Inman (1994), two 

differences can be noticed: the mass matrix is 

included in the updating process, and a hysteretic 

damping model is used instead of a viscous one. 

Consider an N degree offreedom spatial model 

with structural damping, 

MX + (K + iH)X = 0, (1) 

where M, K, and H are the mass, stiffness, and 

hysteretic damping matrices, and X is the dis

placement vector. 

Let us assume that it is possible to find an 

updated system that satisfies the equation of 

motion, 

[M + M]X + [(K + K) + i(H + H)]X = 0, (2) 

where M, K, and H denote the updated mass, 

stiffness, and hysteretic damping matrices. Two 

conditions will be imposed on the updated model. 

1. The updated matrices must remain real, 

symmetric, and preserve the initial connec

tivity information. 

2. The initial and updated models must have 

the same m modes, characterized by natural 

frequencies Wr and mode shapes cPr where 

r = 1, ... , m. At this stage it will be 



assumed these are error free and that they 

can be obtained from a modal analysis of 

the measured data. 

Using Eqs. 0), (2), and the two constraints 

above, we get 

(Mw; + K + iH)1J,. 

+ (Mw; + K + iH)1J,. = O. 
(3) 

Equation (3) can be written as 

[Mw; + K + iH I] 

[ 1Jr ] 
(M w; + K + iH)1J,. = f,.W,. = O. 

(4) 

Using a QR decomposition, the vector W,. be

comes 

(5) 

where the vectors forming the columns of the 

2N x N matrix [V,.] are the orthonormal basis 
V,. 

for the null space of the matrix f,. and e,. is an 

N x 1 vector of complex coefficients. Combining 

Eqs. (4) and (5) we get 

1J,. = Vre,.. (6) 

If all N (>m) modes are measured, 

e,. = V,-:-'1J,.. (7) 

However, if only m < N modes are available, 

er = V~1J,., (8) 

where EB denotes the pseudoinverse of V. 

Again, combining Eqs. (4) and (5), one obtains 

(Mw; + K + iH)1Jr = Vrer. (9) 

Substituting Eq. (6) into (9) gives 

Extending Eq. (0) into full matrix form yields 

MVE02 + (K + iH)VE = VE. (11) 
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Rearranging Eq. (11) we get 

(12) 

where [M H K] is N x 3N, [VE02 VE 

iVE]T is m x 3N, and VE is N x m. 

Separating (l2)into its real and imaginary 

parts, 

_ _ _ f(VElR(Ok - Oyl - 2(VEl/OROI 

[M H KJ -(VEll 

(VElR 

(VEl/(Dk - O;l + 2(VElRORH/] _ 

(VElR = [(VElR 

(YEll 

or 

[M H K]G=Q, (13) 

where the real-valued matrices [M H K], G, 

and Q are N x 3N, 3N x 2m, and N x 2 m, respec

tively. 

The uniqueness of the solution and the impor

tance of imposing constraints is discussed in some 

detail by Schulz and Inman (1994). It is reported 

that, in the general case, an optimization method 

will have to be used to solve Eq. (13), especially 

for FE model updating when constraints are 

needed to preserve the form and connectivities 

of the mass, stiffness, and damping matrices. The 

next section will deal with the derivation of such 

a solution procedure. 

FORMULATION OF A QUADRATIC 
SOLUTION PROCEDURE 

A solution to Eq. (13) is sought by finding the 

minimum of an objective function J defined as 

(14) 

subject to various constraints on matrices 

M, H, and K, II II J denoting the Frobenius 

norm of a matrix. 

There are at least two ways of minimizing J: 

the first one is to use a nonlinear technique that 
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results in an iterative scheme; the second one, 

which will be developed here, is to use a quadratic 

formulation that has the added advantage of being 

unconditionally stable. 

Let us assume that 

(15) 

where A is a 3Nz x 3Nz matrix and B is a 3Nz x 

1 vector. The partial derivatives are given by 

Let C = [M H K] and S = CG - Q. With the 

new notation Eq. (15) becomes 

J = trace(STS) = SiqSiq i = 1, ... , N 

and q = 1,. . ., 2m, 
(17) 

where the repeated index means summation over 

the index. 

U sing the definition of matrix S, 

Siq = CijGjq - Qiq i = 1, ... , N 
(18) 

q = 1, ... , 2m,} = 1, ... , 3N. 

Inserting Eq. (18) into (17), 

J = CUGiqCi,Glq - 2CijGiq Qiq 

+ QiqQiq i = 1, ... , N, (19) 

q = 1, ... , 2m;}, I = 1, ... , 3N. 

By differentiating Eq. (19) with respect to C lm 

and using Eq. (16) we get 

Aijkl = 2[)~GjqGlq and 

Bu = -2Gjq Qiq q = 1, ... , 2m, (20) 

i, k = 1, ... , N;}, 1= 1, ... , 3N, 

where [) is the Kronecker delta function. 

The size of matrix A, 3Nz x 3Nz, is prohibitive 

for any practical application to be considered. 

However, as in most updating studies, there is 

no particular need to update the individual ele

ments of the global mass, stiffness, and damping 

matrices. Common practice is to assign correc

tion factors, the so-called p values, to the individ

ual FE matrices and to compute those to obtain 

the required global changes. In other words, it is 

assumed that the errors are proportional to the 

elemental matrices 

L 

M = "'ptnM. 
L.J 1 " 
i~] 

L 

H = LP7Hi' (21) 
i~] 

L 

K = LP7Ki' 
i~] 

where L is the number of individual FEs in the 

model and p;n , pf, and PI' are the ith correction 

factors for the mass, stiffness, and damping matri

ces, respectively. 

Referring to Eq. (13), let us define 

where Gl, G2, and G3 are N x 2m matrices. 

Inserting Eq. (21) into (13) one obtains 

(~p;nMi) Gl + (~pl'Hi) G2 

+ (±pfKi) G3 = Q. 
I~] 

Equation (22) can explicitly be written as: 

(M]G])N,l 

(M]G])z,] 

(MZG])N,] 

(MzG])z,] 

(MLG])N,] 

(MLG])z,] 

(H]GZ)N.] 

(H]Gzh,] 

(22) 



, ... , 

(HL G2)N.1 

(HL G2h.1 

P'l' 

(KL G3)1.\ 
pm 

L 

(KL G3)N.1 
P7 

(KL G3h.1 

P£ 
pk 

I 

(KL G3)N.N 

(K1G3)N.1 

(K]G3h.] 

In short matrix notation, Eq. (22) becomes 

A x P = B, (23) 

where A is a 2Nm x 3L matrix, P is a vector of 

3L x 1 unknowns, and B is a 2Nm x 1 vector. 

Therefore the initial 3N2 x 3N2 problem has now 

been transformed to an overdetermined problem 

of size 2Nm x 3L where m is the number of 

measured modes and L is the number of FEs in 

the mathematical model. The 3L x 1 vector of 

correction factors can be found by applying a 

singular value decomposition to matrix A. 

NUMERICAL STUDY 

CEAM Case Studies 

It is now proposed to apply the CEAM to the 

case of a 3-D frame that is modeled using 3-D 12 

degree of freedom beam elements. This example 

was already used by Ziaei-Rad and Imregun 

(1996) to investigate the accuracy required of ex

perimental data for model updating and it is one 

of the standard cases for comparative studies. 

Four different models were created for the pur-
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poses of conducting parametric studies. Model 

FEI had 20 elements, for 10 of which the Young's 

modulus was increased by 8%. Model FE2 had 

also had 20 elements, but this time a 30% change 

was introduced into the X and Y moments of 

inertia (Fig. O. Xl and X2 were considered to 

be error-free reference models, the latter being 

double the size of the former. The aim of the 

numerical studies was to correct models FEI and 

FE2 using simulated experimental data obtained 

from models Xl and X2. The various models used 

are summarized in Table 1. 

The main objective of the case study is to ex

amine the performance of the CEAM from both 

numerical efficiency and updating quality view

points. Also, comparisons will be made against 

another model updating technique, namely the 

RFM. The mass matrix was excluded from the 

updating process for all cases but the fifth one, 

because its inclusion created numerical problems 

when there were no associated mass errors. 

6 7 8 

9 

4 

10 

3 

11 

2 

12 

6 7 8 

9 

4 

10 

3 

11 
2 

12 

FIGURE 1 (a) The frame structure, model FEI (8% 

increase in Young's modulus for the elements shown 

in bold). (b) The frame structure, model FE2 (30% 

increase in Ix and Iy for the elements shown in bold). 
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Table 1. Target and Initial FE Models of Frame Structure 

Model FE 1 (Initial) FE2 (Initial) Xl (Target) X2 (Target) 

No. elements 20 20 20 40 

Mesh size 19 nodes 19 nodes 19 nodes 39 nodes 

234 

None 
No. DOFs 114 114 114 

Errors 8% inE 30% in I, and Iy None 

E, Young's modulus; Ix and Iy, moments of inertia. 

Case 1: Assigning Real and Complete Modes. 
The first case studied is a straightforward check 

of the formulation whereby the first 10 modes of 

model Xl are assigned to model FEI without the 

presence of any damping or experimental noise. 

In this particular case, the p values indicate the 

exact location of the error (Fig. 2) and the re

sponse obtained from the updated model is identi
cal to that of the reference model Xl (Fig. 3). 

However, this is an expected result because 

1. the problem is overdetermined with 40 un

knowns (mass and stiffness p values for the 

20 FEs) and 10 complete modes, each con
taining 115 data items; 

2. the changes made are directly proportional 

to the correction factors and hence Eq. (2l) 

is exact in this particular case; and 

3. the initial and target models have identical 

meshes and hence the discretization errors 

cancel each other. 

Case 2: Effect of Damping. The same exercise 
was repeated by including 1 % hysteretic damping 

in both models, i.e., FEI and Xl. The damping 

in model Xl was forced to be nonproportional by 

considering some of the elements only. The initial 

damping in FEI was assumed to be proportional 
by allocating a damping matrix for each ele

ment. In this case the number of unknowns is 

o~~----~~~--~~ ... 
-0.01 

-0.02 

-0.03 

-0.04 

-0.05 

-0.06 

-0.07 

-0.08 

Mass Matrix 

3 x 20 = 60 and the elements of the target mode 

shape vector are complex. Using again 10 com

plete modes, the errors were identified exactly, 

including those associated with the nonpropor

tional damping (Fig. 4). As a direct consequence, 

the responses obtained from the reference and 

updated models were found to be identical. This 

result is somewhat encouraging because other up

dating approaches are known to be prone to nu

merical problems in similar cases (Imregun et 

aI., 1995a,b). 

Case 3: Effect of Measurement Noise. The un
damped and damped cases above were repeated 

for 5% random noise that was added to the simu
lated frequency response functions (FRFs) ob

tained from Xl. The target eigenproperties were 

then obtained by applying a global rational frac

tion curve-fitting algorithm to the polluted FRFs. 
The computed p values are shown in Fig. 5 and 

it is immediately seen that there is little corre

spondence between the actual errors and the pro

posed corrections. The responses obtained from 
the target (Xl), initial (FEl), and updated models 

are overlaid in Fig. 6. Although noise has an obvi

ous detrimental effect on the updating quality, the 

updated model still shows a marked improvement 

over the initial one, indicating that the model has 

been corrected in some global sense without par

ticular emphasis on the location or magnitude of 

Stiffness Matrix 

FIGURE 2 Computed p values for case 1 (CEAM). 
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FIGURE 3 Initial, target, and updated responses for 
case 1 (CEAM). Target and updated responses are iden
tical; ( ... ) initial, (---) target, (-) updated. 

the initial discrepancy. This finding is in line with 

those of many other studies that use a formulation 

similar to Eq. (21). 

Case 4: Effect of Mode Shape Incomplete

ness. One of the well-known problems in model 

updating is the size incompatibility between the 

-0.6 

-0.8 

-1 
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experimental and theoretical models. The diffi

culties arise because of poor accessibility and due 

to the lack of reliable methods for measuring the 

rotational degrees of freedom. This latter situa

tion is simulated here by removing the rotational 

coordinates from the target mode shapes. Three 

different sets of results, corresponding to 40-, 60-, 

and 80-mode assignments, are shown in Fig. 7. 

The adverse effect of coordinate reduction is ob

vious and it can, to a certain extent, be compen

sated for by using more and more modes in the 

assignment, although no updated model is able 

to match the target one exactly. 

Case 5: Effect of Localized Changes. Model FE2 

was used to investigate the effect of localized 

changes. In this case, the discrepancies between 

Xl and FE2 are not directly proportional to the 

p values and hence Eq. (21) is no longer exact in 

this particular case. In other words, the moment 

of inertia errors are not global in nature because 

not all elements of the individual stiffness matri

ces are affected the same way. As the inertia 

errors are associated with the mass matrix, this 

was also included in the updating process. Initial 

calculations produced p values that were not rep-

Mass Matrix Stiffness Matrix Damping Matrix 

0.6 

0.4 

0.2 

-1 

FIGURE 4 Computed p values for case 2 (CEAM). 

Mass Matrix Stiffness Matrix Damping Matrix 

FIGURE 5 Computed p values for case 3 (CEAM). 
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FIGURE 6 Initial, target, and updated responses for 

case 3 (CEAM): ( ... ) initial, (---) target, (-) updated. 

resentative of the inertia discrepancies between 

the two models. More alarmingly, the resulting 

response model showed very poor agreement 

with the target one. It was then decided to in

crease the number of modes to be assigned as 

this approach was observed to be a cure in the 

previous case study. Given the practical limita

tions on the availbility of higher experimental 

modes, 30 modes of the initial model, FE2, were 

assigned to the updated model. The resulting p 

values are shown in Fig. 8 while the FRFs ob

tained from the updated model are compared to 

the initially predicted and target ones in Fig. 9. 

Although the error location is quite poor, the per

formance of the updated model is acceptable at 

the response level, a feature that again suggests 

that accurate error location is not necessarily a 

prerequisite for updating. 

Mass Matrix 
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FIGURE 7 Effect of increasing the number of as

signed modes, case 4 (CEAM): ( ... ) initial, (---) target, 

(-) updated. 

Case 6: Effect of Discretization Differences. All 

cases studied so far are based on a one to one 

correspondence between the theoretical and ex

perimental models, a feature that cannot be 

achieved in practice. The fact that models FE I, 

FE2, and Xl have been discretized using the same 

mesh not only simplifies the problem of model 

updating significantly, but is also unrepresenta

tive of the real engineering problem where the 

discrepancies between the experimental and the

oretical models are not explicitly present in the 

theoretical model in the form of directly correcta

ble parameters. It was therefore decided to up

date model FEI using model X2, the mesh of 

which is double in size. Initially, it was attempted 

to assign the modal properties of model X2 to 

model FEI directly. However, after a few at

tempts it was noticed that p values were all ap-

Stiffness Matrix 

FIGURE 8 Computed p values for case 5 (CEAM). 
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FIGURE 9 Initial, target, and updated responses for 

case 5 (CEAM): ( ... ) initial, (---) measured, (-) up

dated. 
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proaching the value of -I, indicating that only 

the trivial solution could be found. The explana

tion for such behavior is relatively straightfor

ward. As shown in Fig. 10, the assignment can 

only succeed if the target and initial sets belong 

to the same eigendomain. If the two sets are not 
in the same domain, it is not possible to find a 

set of mass and stiffness correction matrices so 

that the initial and updated models span the same 

set of eigenvalues and eigenvectors for a given 

frequency range. In other words, no updated 

model can be guaranteed until the closeness of 

the two sets is improved. Such an approach will 

be adopted here in the form of a two-stage as

signment. 

After some deliberation, it was decided to as

sign the first 10 eigenvalues (but not eigenvectors) 

of model X2 to model FE I and to keep the eigen

vectors of FEI unchanged. This approach is 

Eigen Operator 

M' K' i ' 
\ 

\ No Immediate 
\ updating Operator 

• Target 
A:, <1>' 

Eigen Operator 

FIGURE 10 (a) Target and initial models belong to the same domain. (b) Target and 

initial models do not belong to the same domain. 
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equivalent to changing the global material proper

ties of the system, say density and Young's modu

lus, because such a modification will produce 

shifts in the natural frequencies only. Once an 

updated model was obtained, a further assign

ment was made by using the first 10 eigenvalues 

and eigenvectors of X2. To force model close

ness, a further 60 modes (both eigenvalues and 

eigenvectors) of model FE1 were self-assigned. 

The results of this two-stage assignment are plot

ted in Fig. 11 in the form of initial, target, and 

updated FRFs. It is interesting to note that the 

first mode is not particularly well corrected but 

the remaining part of the response shows a 

marked improvement. The problem lies, once 

again, in the closeness of the initial and target 

models. For the two given sets, it was not possible 

to find a modification that could correct the 

first mode. 

A Comparison with RFM 

It is now proposed to compare the performance 

of the RFM and CEAM by repeating the six cases 

above using the former technique. From the out

set, it must be stressed that the RFM is an itera

tive method where the convergence of the p val

ues cannot be guaranteed. On the other hand, 

the CEAM is based on the direct solution of an 

overdetermined set of linear equations and the 

optimization algorithm is unconditionally stable 

by virtue of being quadratic. Although both meth

ods will yield identical results for noise-free and 

complete modal information cases, very signifi

cant differences can be seen in other situations. 

The results are listed in Table 2. 

For the first two cases, both methods produced 

identical answers but the CEAM is seen to be 

about an order of magnitude faster, because the 

RFM needs three to four iterations for conver-
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FIGURE 11 Initial, target, and the two updated re

sponses for case 6 (two-stage CEAM): ( ... ) initial, 

(---) measured, (-) using eigenvalues, (_. _. -) using ei

genvalues and eigenvectors. 

gence. For the third case, where the measured 

FRF data are polluted by noise, the RFM fails to 

converge while the CEAM produces an updated 

model, the response from which is in good agree

ment with the target one. The fourth case, where 

incomplete mode shapes are used, is handled bet

ter by the RFM in the sense that both the discrep

ancies are identified and the agreement at the 

response level is good. However, it should be 

noted that relatively small errors still appear in 

the mass matrix. A comparison of the p values 

computed using the two methods is given in Fig. 

12. The performance of the two methods is about 

the same for the fifth case for which the changes 

are in the moments of inertia. The last case, where 

there is no one to one correspondence between 

the target and the initial models, can only be dealt 

with via the CEAM. The agreement of the target 

and updated models at the response level is ac

ceptable, except in the vicinity of the first mode. 

Table 2. Computational Effort for RFM and CEAM Updating 

CEAM 
RFM 

Case Description (s) s/Iteration No. Iterations 

I FEI vs. XI, 10 complete modes, no damping, no noise 100 284 3 

2 FE2 vs. XI, 10 complete modes, 1% damping, no noise 106 431 4 

3 FEI vs. XI, 10 complete modes, 1% damping, 5% noise 359 No cony. 

4 FEI vs. XI, 60 incomplete modes, no damping, no noise 471 170 12 

5 FE2 vs. XI, 50 complete modes, no damping, no noise 746 207 20 

6 FEI vs. X2, 70 complete modes, no damping, no noise 881 No. cony. 

All CPU seconds normalized with respect to case 1, CEAM solution. 
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FIGURE 12 RFM (bottom) and CEAM (top) p value comparison. 

CONCLUDING REMARKS 

1. The existing constrained eigenstructure as

signment method was modified so that it 

can deal with the updating of large-order 

systems. The resulting formulation is com

patible with other updating methods in the 

sense that the individual mass, stiffness, 

and damping matrices are corrected by sim

ple multipliers, the so-called p values. 

2. The inherent difficulties associated with FE 

model updating are once again illustrated 

by the case studies that are undertaken. U s

ing a correction factor formulation, the 

model can only be improved in a global 

sense without particular emphasis on the 

actual sources of discrepancy between the 

theoretical and experimental models. How

ever, these globally updated models match 

the measured response with acceptable ac

curacy. 

3. Numerical case studies seem to indicate 

that the updating of the damping matrix be

comes an easier and less ill-conditioned 

task, by virtue of using an unconditionally 

stable quadratic optimization algorithm. 

4. As in many other case studies, the closeness 

of the initial and target models is found to 

be a key issue for successful updating. This 

point is clearly illustrated by the last case 

study, although it was possible to employ 

a two-stage updating procedure to partly 

overcome this difficulty. However, in the 

general case, no updated model can be quar

anteed when the initial and updated models 

do not span the same set of eigenvalues and 

eigenvectors by virtue of belonging to the 

same eigendomain. This observation is gen

eral and underlines one of the fundamental 

problems in model updating. 

5. The eigenstructure assignment method 

yields the solution directly and hence it has 

a significant advantage over iterative meth

ods such as RFM. A comparative study be

tween the two methods reveals that the 

RFM requires substantially more CPU 

power in all cases. Also, the convergence 

of the RFM cannot be guaranteed in cases 
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where the measured FRFs are polluted by 
noise, or when the discretization differ
ences are significant. On the other hand, 
the RFM seems to be able to cope better 

with incomplete measured data. 
6. Present versions of RFM and CEAM can 

only correct the FE model in a global sense 
because the location of specific discrepanc
ies cannot be achieved by formulations 
based on elemental correction factors. In 
any case, this feature is an inherent problem 
in model updating studies, as illustrated by 

the last case study: unless the discrepancies 
are actually present in the model to be up
dated in a one to one fashion, it is difficult to 
see how they can be remedied by changing 
other, albeit related, parameters. 
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