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Abstract: In the operation of a smart grid (SG), day-ahead load forecasting (DLF) is an
important task. The SG can enhance the management of its conventional and renewable
resources with a more accurate DLF model. However, DLF model development is highly
challenging due to the non-linear characteristics of load time series in SGs. In the literature,
DLF models do exist; however, these models trade off between execution time and forecast
accuracy. The newly-proposed DLF model will be able to accurately predict the load of the
next day with a fair enough execution time. Our proposed model consists of three modules;
the data preparation module, feature selection and the forecast module. The first module
makes the historical load curve compatible with the feature selection module. The second
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module removes redundant and irrelevant features from the input data. The third module,
which consists of an artificial neural network (ANN), predicts future load on the basis of
selected features. Moreover, the forecast module uses a sigmoid function for activation
and a multi-variate auto-regressive model for weight updating during the training process.
Simulations are conducted in MATLAB to validate the performance of our newly-proposed
DLF model in terms of accuracy and execution time. Results show that our proposed
modified feature selection and modified ANN (m(FS + ANN))-based model for SGs is able
to capture the non-linearity(ies) in the history load curve with 97.11% accuracy. Moreover,
this accuracy is achieved at the cost of a fair enough execution time, i.e., we have decreased
the average execution time of the existing FS + ANN-based model by 38.50%.

Keywords: day-ahead; load forecast; artificial neural network; activation function; training
process; multi-variate auto-regressive model

1. Introduction

On a customer service platform, the physical power system along with information and
communication technology that link together heterogeneous devices in an automated fashion to improve
the parameters of interest is a smart grid (SG) (refer to Figure 1 [1]). It is more likely that the SG will
integrate new communication technologies, advanced metering, distributed systems, distributed storage,
security and safety to achieve considerable robustness and reliability [2–4].

Two-way communication is one of the key enablers that turns a traditional power grid into a smart
one, based on which optimal decisions are made by the energy management unit [2]. In this regard, many
demand-side scheduling techniques are proposed [5–8]. However, there exists sufficient challenges prior
to scheduling techniques in terms of stochastic information schemes to predict the future load. Thus,
with the growing expectation of the adoption of SGs, advanced techniques and tools are required to
optimize the overall operation.

Day-ahead load forecasting (DLF) is one of the fundamental, as well as essential tasks that is needed
for proper operation of the SG. On another note, accurate load forecasting leads to enhanced management
of resources (renewable and conventional), which in turn directly affects the economies of the energy
trade. However, in terms of DLF, the SG is more difficult to realize due to lower similarities (high
randomness due to more load fluctuations) in the history load curves as compared to that of long-term
load forecasting. In the literature, many attempts have been made to develop an accurate DLF model for
SGs. For example, a bi-level DLF strategy is presented in [9]; however, this strategy is very complex in
terms of implementation, which leads to a high execution time. Similarly, another load forecasting model
based on a Gaussian process is presented in [10], which is not complex in terms of implementation;
however, this model pays the cost of accuracy to achieve relatively less execution time. The model
proposed in [11] focuses on day-ahead load forecasting in energy-intensive enterprises; however, this
model is very complex, and thus, its execution time is relatively on the higher side.
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As mentioned earlier, the day-ahead load of an SG shows more fluctuations as compared to its
long-term load. Accurate DLF model development with a fair enough execution time in these SGs is
thus a highly challenging task. Alternatively, DLF accuracy enhancement may be achieved to some
extent, however, at the cost of execution time. Therefore, we focus on the development of an accurate
enough DLF model with a fair enough execution time for SGs. Our proposal consists of three modules:
the data preparation module, the feature selection module and the forecast module. The first module
normalizes and then encodes the input historical load data. This encoded information is sent to the
feature selection module, where redundant and irrelevant features are removed from the input load data.
It is worth mentioning here that in the feature selection module, we use our modified version of the
famous mutual information technique (a detailed discussion is provided in Section 3.2). The selected
features are sent to the ANN-based forecast module, which uses a sigmoid function for activation and
a multi-variate auto-regressive model for weight updating during the training process. In simulations,
we compare our newly-proposed model with an existing one in terms of forecast accuracy and execution
time. Results justify the applicability of our proposition.

Figure 1. A smart grid (SG).

The rest of the paper is organized as follows. Section 2 contains relevant DLF contributions from the
research community. Section 3 provides a brief description of the proposed ANN-based DLF model for
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SGs. Section 4 provides the discussion of the simulation results, and Section 5 ends the research work
with conclusions and future work.

2. Related Work

Since accurate load forecasting is directly related to the economies of the energy trade, in this regard,
we discuss some previous load forecasting attempts in SGs as follows.

In [9], the authors study the characteristics of the load time series of an SG and then compare its
differences with that of a traditional power system. In addition, the authors propose a bi-level (upper and
lower) short-term load prediction strategy for SGs. The lower level is a forecaster that utilizes a neural
network and evolutionary algorithm. The upper level optimizes the performance of the lower level by
using the differential evolution algorithm. In terms of effectiveness, the proposed bi-level prediction
strategy is evaluated via real-time data of a Canadian university. This work is very effective in terms of
accuracy; however, its execution time is very high. (Note: in the simulations, we have compared [12]
with our proposed work. Results show that our proposed model takes 38.50% less time to execute than
the work in [12]. The work in [9] adds an evolutionary algorithm-based module to the work in [12].
This means that [9] will take more time to execute than [12]. That is why we have stated the very high
execution of [9].)

In [10], the authors develop a DLF model that is based on a Gaussian process. The proposed predictive
methodology captures the heteroscedasticity of load in an efficient manner. In addition, they overcome
the computational complexity of the Gaussian process by using a 1

2
regularizer. A simulation-based

study is carried out to prove the effectiveness of the proposed model. The authors have overcome the
complexity of the Gaussian distribution to some extent; however, the future predictions are still highly
questionable in terms of accuracy.

In [11], a probabilistic approach is presented to generate the energy consumption profile of household
appliances. The proposed approach takes a wide range of appliances into consideration along with
a high degree of flexibility. Moreover, this approach configures the households between working days
and holidays by utilizing the Gaussian distribution-based methodology. However, due to the absence
of a closed form solution of the Gaussian distribution, the algorithm is very complex. Moreover, the
authors assume a Gaussian distribution not only for the number of active devices in a home, but also
for their power usage. These assumption are not always true, thereby making future predictions highly
questionable in terms of accuracy.

An artificial neural network-based short-term load forecasting method is presented in [13]. The
proposed methodology is divided into four steps. Step 1 deals with the techniques of data selection.
Step 2 is for wavelet transform. Step 3 is based on ANN-based forecasting. Step 4 takes into
consideration the error-correcting functions. The effectiveness of the proposed methodology is verified
by using practical household load demands. This algorithm has better accuracy than the aforementioned
ones; however, accuracy is achieved at the cost of execution time.

A stochastic model for tackling the load fluctuations of users is presented in [14], which is robust
enough to predict load. This work exploits Markov chains to capture stochasticity associated with user’s
energy consumption in a heterogeneous environment. In other words, the authors exploit information
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associated with the daily activities of users to predict their future demand. In this scheme, the future
predictions do not depend on past values; that not only makes it robust, but also relatively less complex,
however at the cost of accuracy.

A novel technique for price spike occurrence prediction is presented in [15]. This model is comprised
of two modules; wavelet transform for feature selection and ANNs to predict the future price spikes.
Irrelevant and redundant data are discarded from the input dataset, such that the selected inputs are fed
into the probabilistic neural network-based forecaster. The authors evaluate their proposed method using
real-time data from the PJM and Queensland electricity markets. This technique is accurate; however,
wavelet transform for feature selection makes it relatively more complex.

In [12], the authors use a combination of a mutual information-based feature selection technique
and a cascaded neuro-evolutionary algorithm to predict the day-ahead price of electricity markets.
They also incorporate an iterative search procedure to fine-tune the adjustable parameters of both the
neuro-evolutionary algorithm and the feature selection technique. The combination of various techniques
makes this algorithm efficient in terms of accuracy, however at the cost of execution time.

3. Our Proposed Work

Subject to the complex day-ahead load forecast of SGs, any proposed prediction strategy should be
capable enough to mitigate the non-linear input/output relationship as efficiently as possible. We choose
an ANN-based forecaster for two reasons; (i) these can capture non-linearity in historical load data; and
(ii) the flexibility and ease in implementation with acceptable accuracy (note: both of these reasons are
justified via simulations). However, prior to ANN-based forecasting, input load time series must be
made compatible. Therefore, our proposed day-ahead load forecasting model (for SGs) consists of three
modules: the data preparation module, the feature selection module and the forecast module (refer to
Figure 2). The first module performs pre-processing to make the input data compatible with the feature
selection module and the forecast module. The second module removes irrelevant and redundant features
from the input data. The third module consists of an ANN to forecast the day-ahead load of the SG. The
details are as follows.

Figure 2. Block diagram of the proposed methodology.
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3.1. Pre-Processing Module

Suppose that the input load time series is shown by the following matrix:

P =


pd1h1 pd1h2 pd1h3 . . . pd1hm
pd2h1 pd2h2 pd2h3 . . . pd2hm
pd3h1 pd3h2 pd3h3 . . . pd3hm

...
...

... . . . ...
pdnh1 pdnh2 pdnh3 . . . pdnhm

 (1)

where hm is the m-th hour, dn is the n-th day and pdnhm is the historical power consumption value at
the m-th hour of the n-th day. As there are 24 h in a day, m = 24. The value of n depends on the
designer’s choice, i.e., a greater value of n leads to fine tuning during the training process of the forecast
module, because more lagged samples of input data are available. However, this would lead to greater
execution time.

Prior to feeding the feature selection module with input matrix P , the following step-wise operations
are performed by the data preparation module (refer to Figure 3):

1. Local maximum: Initially, a local maximum value is calculated for each column of the P matrix;
pcimax = max{pd1hi , p

d2
hi
, pd3hi , . . . , p

dn
hi
}, ∀ i ∈ {1, 2, 3, . . . , n}.

2. Local normalization: In this step, each column of the matrix P is normalized by its respective local
maxima, such that the resultant matrix is represented by Pnrm. Now, each entry of Pnrm ranges
between zero and one.

3. Local median: For each column of the Pnrm matrix, a local median value Medi is calculated
(∀ i ∈ {1, 2, 3, . . . , n}).

4. Binary encoding: Each entry of the Pnrm matrix is compared to its respective Medi value. If the
entry is less than its respective local median value, then it is encoded with a binary zero; else, it is
encoded with a binary one. In this way, a resultant matrix containing only binary values (zeroes
and ones), Pb, is obtained.

Figure 3. Data preparation module.

Note: the load/consumption pattern is different for different days, i.e., the load pattern on holidays
is different from that on working days. In order to enhance the accuracy of prediction strategy, the
training samples must be relevant. Similarly, a lesser number of training samples will decrease the
execution time of the prediction strategy. The above two reasons lead us to prefer local normalization
over global normalization.

At this stage, the Pb matrix is compatible with the feature selection module and is thus fed into it.
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3.2. Feature Selection Module

Once the data are binary encoded, not only redundant, but also irrelevant samples need to be removed
from the lagged input data samples. In removing redundant features, the execution time during the
training process is minimized. On the other hand, removal of irrelevant features leads to improvement in
forecast accuracy, because the outliers are removed.

In order to remove the irrelevant and redundant features from the binary encoded input data matrix Pb,
an entropy-based mutual information technique is used in [9,12], which defines the mutual information
between input Q and target T by the following formula,

MI(Q, T ) =
∑
i

∑
j

p(Qi, Tj)log2

(
p(Qi, Tj)

p(Qi)p(Ti)

)
∀i, j ∈ {0, 1} (2)

In Equation (2), MI(Q, T ) = 0 means that Q and T are independent; a high value of MI(Q, T ) means
that Q and T are strongly related, and a low value of MI(Q, T ) means that Q and T are loosely related.

Thus, the candidate inputs are ranked with respect to the mutual information value between input and
target values. In [9,12], the target values are chosen as the last samples for every hour of the day among
all of the training samples (for every hour, only one target value is chosen that is the value of the previous
day). The choice of the last sample seems logical, as it is the closest value to the upcoming day with
respect to time; however, it may lead to serious forecast errors due to the lack of consideration of the
average behaviour. However, consideration of only the average behaviour is also insufficient, because
the last sample has its own importance. To sum up, we come up with a solution that not only considers
the last sample, but also the average behaviour. Thus, we modify Equation (2) for three discrete random
variables as,

MI(Q, T,M) =
∑
i

∑
j

∑
k

p(Qi, Tj,Mk)log2

(
p(Qi, Tj,Mk)

p(Qi)p(Ti)p(Mk)

)
∀i, j ∈ {0, 1} (3)

In expanded form, Equation (3) is written as follows,

MI(Q, T,M) = p(Q = 0, T = 0,M = 0)× log2
(

p(Q = 0, T = 0,M = 0

p(Q = 0)p(T = 0)p(M = 0)

)
+ p(Q = 0, T = 0,M = 1)× log2

(
p(Q = 0, T = 0,M = 1

p(Q = 0)p(T = 0)p(M = 1)

)
+ p(Q = 0, T = 1,M = 0)× log2

(
p(Q = 0, T = 1,M = 0

p(Q = 0)p(T = 1)p(M = 0)

)
+ p(Q = 0, T = 1,M = 1)× log2

(
p(Q = 0, T = 1,M = 1

p(Q = 0)p(T = 1)p(M = 1)

)
+ p(Q = 1, T = 0,M = 0)× log2

(
p(Q = 1, T = 0,M = 0)

p(Q = 1)p(T = 0)p(M = 0)

)
+ p(Q = 1, T = 0,M = 1)× log2

(
p(Q = 1, T = 0,M = 1)

p(Q = 1)p(T = 0)p(M = 1)

)
+ p(Q = 1, T = 1,M = 0)× log2

(
p(Q = 1, T = 1,M = 0)

p(Q = 1)p(T = 1)p(M = 0)

)
+ p(Q = 1, T = 1,M = 1)× log2

(
p(Q = 1, T = 1,M = 1)

p(Q = 1)p(T = 1)p(M = 1)

)

(4)
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In order to determine the MI value between Q and T , the joint and independent probabilities need to be
determined. For this purpose, an auxiliary variable Av is introduced.

Av = 4T + 2M +Q ∀T,M,Q ∈ {0, 1} (5)

It is clear from Equation (5) that Av ranges between zero and seven. A0v, A1v, A2v, A3v, ..., A7v counts
the number of sample data points (out of total l data points) for which Av = 0, Av = 1, Av = 2,
Av = 3,..., Av = 7, respectively. In this way, we can now easily determine the joint and independent
probabilities as follows.

p(Q = 0, T = 0,M = 0) =
A0v

l

p(Q = 0, T = 0,M = 1) =
A2v

l

p(Q = 0, T = 1,M = 0) =
A4v

l

p(Q = 0, T = 1,M = 1) =
A6v

l
(6)

p(Q = 1, T = 0,M = 0) =
A1v

l

p(Q = 1, T = 0,M = 1) =
A3v

l

p(Q = 1, T = 1,M = 0) =
A5v

l

p(Q = 1, T = 1,M = 1) =
A7v

l

p(Q = 0) =
A0v + A2v + A4v + A6v

l

p(Q = 1) =
A1v + A3v + A5v + A7v

l

p(T = 0) =
A0v + A1v + A2v + A3v

l

p(T = 1) =
A4v + A4v + A5v + A7v

l
(7)

p(M = 0) =
A0v + A1v + A4v + A5v

l

p(M = 1) =
A2v + A3v + A6v + A7v

l

Based on Equation (4), mutual information between Q and T is calculated, and thus, redundancy and
irrelevancy are removed from the input samples. This mutual information-based technique is computed
with a reasonable execution time and acceptable accuracy.

3.3. Forecast Module

By evaluating load variations over several months, or between two consecutive days, or between
consecutive hours over a day, [16] concluded that SG’s load time series signal exhibits strong volatility
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and randomness. This result is obvious, because different users have different energy/power consumption
patterns/habits. Thus, in terms of DLF, realization of an SG is more difficult as compared to its realization
in terms of long-term load forecast. Therefore, the basic requirement of the forecast module is to
forecast the load time series of an SG by taking into consideration its non-linear characteristics. In
this regard, ANNs are widely used for two reasons; accurate forecast ability and the ability to capture
the non-linear characteristics.

Due to the aforementioned reasons, we choose an ANN-based implementation in our forecast module.
Initially, the forecast module receives selected features SF (.) and then constructs training “TS” and
validation samples “V S” from it as follows:

TS = SF (i, j), ∀i ∈ {2, 3, . . . ,m}
and ∀j ∈ {1, 2, 3, . . . , n}

(8)

V S = SF (1, j), ∀j ∈ {1, 2, 3, . . . , n} (9)

From Equations (8) and (9), it is clear that the ANN is trained by all of the historical load time series
candidates, except the last one, which is used for validation purpose. This discussion leads us towards
the explanation of the training mechanism. However, prior to the explanation, it is essential to describe
the ANN.

An ANN, inspired by the nervous system of humans, is a set of artificial neurons (ANs) to perform
the tasks of interest (note: our task of interest is the DLF of SGs). Usually, an AN performs a non-linear
mapping from RI to [0, 1] that depends on the activation function used.

fANact : RI → [0, 1] (10)

where I is the vector of the input signal to the AN (here, inputs are the selected features only). Figure 4
illustrates the structure of an AN that receives I = (I1, I2, . . . , In). In order to either deplete or strengthen
the input signal, to each Ii is associated a weight wi. The ANN computes I and uses fANact to compute
the output signal “y”. However, the strength of y is also influenced by a bias value (threshold) “b”.
Therefore, we can compute I as follows:

I =
imax∑
i=1

Ii wi (11)

The fANact receives I and b to determine y. Generally, fANact ’s are mappings that monotonically increase
(fANact (−∞ = 0) and fANact (+∞ = 1)). Among the typically used fANact ’s, we use sigmoid fANact .

fANact (I, b) =
1

1 + e−α(I−b)
(12)

We choose sigmoid fANact due for two reasons; fANact ∈ (0, 1), and the parameter α has the ability to
control the steepness of the fANact . In other words, the sigmoid fANact choice enables the AN to capture
the non-linear characteristic of load time series. Since this work aims at the DLF for SGs, and one day
consists of 24 h, the ANN consists of 24 forecasters (one AN for an hour), where each forecaster predicts
the load of one hour of the next day. In other words, 24 hourly load time series are separately modelled
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instead of one complex forecaster. The whole process is repeated every day to forecast the load of the
next day.

Figure 4. An artificial neuron.

The question that now needs to be answered is how to determine wi and b? The answer is straight
forward, i.e., via learning. In our case, prior knowledge of load-time series exists. Thereby, we use
supervised learning; adjusting wi and b values until a certain termination criterion is satisfied. The basic
objective of supervised training is to adjust wi and b such that the error signal “e(k)” between the target
value “ŷ(k)” and real output of neuron “y(k)” is minimized.

Minimize e(k) = y(k)− ŷ(k),

∀k ∈ {1, 2, 3, . . . ,m}
(13)

We use the method of least squares to determine the parameter matrices, which is given as follows,

Minimize J =
∑m

k=1 e
T (k)e(k),

∀k ∈ {1, 2, 3, . . . ,m}
(14)

Subject to the most feasible solution of Equation (14), we use the multi-variate auto-regressive model
presented in [17], because it solves the objective function in relatively less time with reasonable accuracy,
as compared to the typically used learning rules, like gradient descent, Widrow–Hoff and delta [18].
According to [17], the parameter matrices are given as follows,

n∑
i=1

W (i)R(j − i) = 0, j = {2, 3, . . . , n} (15)

n∑
i=1

W (i)R(i− j) = 0, j = {2, 3, . . . , n} (16)

where W (1) = ID (ID is the identity matrix), W (1) = ID and R is the cross co-relation given as:

R(i) =
1

n

n−1−i∑
k=i

[x(k)−m][x(k − i)−m]T (17)
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In Equation (11), m is the mean vector of the observed data,

m =
1

n

n∑
k=i

x(k) (18)

Based on these equations, [17] defines the following prediction error co-variance matrices.

Vt =
∑n

k=1Wt(k)R(−k)

V t =
∑n

k=1W t(k)R(−k)

∆t =
∑n

k=1Wt(−k)R(t− k + 1)

∆t =
∑n

k=1W t(k)R(−t+ k − 1)


(19)

The recursive equations are as follows:

Wt+1(k) = Wt(k)Wt+1(t+ 1)W t(t− k + 1)

W t+1(k) = W t(k)W t+1(t+ 1)W t(t− k + 1)

 (20)

Wt+1(t+ 1) = −∆tV
−1
t

W t+1(t+ 1) = −∆tV
−1
t

 (21)

In order to find the weights, Equations (20) and (21) are solved recursively. For further details about
the weight update mechanism, Equations (15)–(21), readers are suggested to read [17]. Figure 5 is a
pictorial representation of the steps involved in the data forecast module.

Figure 5. Data forecast module.

Once the weights in Equations (20) and (21) are recursively adjusted as per the objective function in
Equation (13), the output matrix is then binary decoded and de-normalized to get the desired load time
series. The stepwise algorithm of the proposed methodology is shown in Algorithm 1.
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Algorithm 1 Day-ahead load forecast.
1: Pre-conditions: i =number of days, and j = number of hours per day
2: P ← historical load data
3: Compute P ci

max ∀i ∈ {1, 2, 3, . . . , n}
4: Compute Pnrm
5: Compute Medi ∀i ∈ {1, 2, 3, . . . , n}
6: for all (i ∈ {1, 2, 3, . . . , n}) do
7: for all (j ∈ {1, 2, 3, . . . ,m}) do
8: if (P (i,j)

nrm ≤Medi) then
9: P i,j

b ← 0

10: else if then
11: P i,j

b ← 1

12: end if
13: end for
14: end for
15: Remove redundant and irrelevant features using Equation (4)
16: Compute TS and V S using Equations (8) and (9), respectively
17: Compute y(1) by letting W (1) = I and

W (1) = I

18: while Maximum number of iterations not reached do
19: if J(k + 1) ≤ J(k) then
20: y(k)← y(k + 1)

21: else if then
22: Train ANN as per Equations (20) and (21)
23: Compute y(k + 1) and go back to Step (18)
24: end if
25: end while
26: Perform decoding
27: Perform de-normalization

Note: our proposed prediction model predicts tomorrow’s load on the basis of historical load till
today. Thus, the prediction model never fails, i.e., for every next day, the model needs information till
the current day. However, the proposed model is unable to predict the load for more than tomorrow
provided the historical load information till today.

4. Simulation Results

We evaluate our proposed DLF model (m(MI + ANN)) by comparing it with an existing MI + ANN
model in [12]. We choose the existing MI + ANN model in [12] for comparison, because its architecture
has a close resemblance to our proposed model. In our simulations, historical load time series data from
November (2014) to January (2015) are taken from the publicly-available PJM electricity market for
two SGs in the United States of America; DAYTOWN and EKPC [19]. November to December (2014)
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data are used for training and validation purposes, and January (2015) data are used for testing purposes.
Simulation parameters are shown in Table 1, and their justification can be found in [9,12,17,18]. In this
paper, we have considered two performance metrics; % error and execution time (convergence rate).

• Error performance: This is the difference between the actual and the forecast signal/curve and is
measured in %.
• Convergence rate or execution time: This is the simulation time taken by the system to execute a

specific forecast model. Forecast models for which the execution time is small are said to converge
quickly as compared to the opposite case. In this paper, execution time is measured in seconds.

Table 1. Simulation parameters.

Parameter Value

Number of forecasters 24

Number of hidden layers 1

Number of neurons in the hidden
unit

5

Number of iterations 100

Momentum 0

Initial weights 0.1

Historical load data 26 days
Bias value 0

Figures 6a and 7a are the graphical illustrations of how well our proposed ANN-based DALF model
predicts the target values of an SG. In these figures, the proposed m(MI + ANN)-based forecast curve
more tightly follows the target curve as compared to the existing MI + ANN-based forecast curve,
which is justification of the theoretical discussion of our proposed methodology in terms of non-linear
forecast ability. Not only the sigmoid fANact (refer to equation), but also the multivariate auto-regressive
training algorithm enable the day-ahead ANN-based forecast methodology to capture non-linearity(ies)
in historical load data.

Figure 6b shows the % forecast error when tests are conducted on the DAYTOWN grid; our
m(MI + ANN) forecasts with 2.9% and the existing MI + ANN forecasts with 3.84% relative errors,
respectively. Similarly, Figure 7b shows the % forecast error when tests are conducted on the EKPC
grid; our m(MI + ANN) forecasts with 2.88% and the existing MI + ANN forecasts with 3.88% relative
errors, respectively. This improvement in terms of relative % error performance by our proposed DALF
model is due to the following two reasons: (i) the modified feature selection technique in our proposed
DALF model; and (ii) multi-variate auto-regressive training algorithm. The first reason accounts for
the removal of redundant, as well as irrelevant features from the input data in a more efficient way
as compared to the existing DALF model. By a more efficient way, we mean that as our proposal
considers the average sample in the feature selection process, as well in addition to the last sample and
the target sample. Thus, the margin of outliers that cause significant relative % error is down-sized. The
second reason deals with the selection of an efficient training algorithm, as our proposition trains the
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ANN via the multi-variate auto-regressive algorithm and the existing DALF model trains the ANN via
Levenberg–Marquardt algorithm.
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Figure 6. DAYTOWN (27 January 2015): m(MI + ANN) forecast vs. MI + ANN forecast.
(a) Actual vs. forecast; (b) error performance; (c) convergence rate analysis.

As discussed in Sections 1, 2 and 3 that there exist a trade-off between forecast accuracy and execution
time. However, Figures 6b,c and 7b,c show that our proposed DALF model not only results in relatively
less % error but also less execution time. As mentioned earlier, our devised modifications in the feature
selection process and selection of the multi variate training algorithm cause relative improvement in
terms of % error. On the other hand, m(MI + ANN) model converges with a faster rate (less execution
time) as compared to the existing MI + AN model due to three reasons; (i) exclusion of the local
optimization algorithm subject to error minimization; (ii) modified feature selection process; and (iii)
selection of multi variate auto regressive training algorithm. Quantitatively (Figures 6c and 7c), the
execution time of existing model is 6.54 s for DAYTOWN grid and 6.60 s for EKPC grid, and that of
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our proposed model is 2.48 s for DAYTOWN and 2.58 s for EKPC, respectively. In these figures, the
relative improvement in execution time is 37.92% for DAYTOWN, 39.09% for EKPC. Our proposition
selects features from the input data while considering average sample, last sample and the target sample.
This means that the chances of outliers in selected features have been significantly decreased, and the
local optimization algorithm used by the existing MI + ANN forecast model is not further needed. Our
proposed m(MI + ANN) forecast model does not account for the execution time taken by the iterative
optimization algorithm. As a result, our proposed DALF model converges with a faster rate as compared
to the existing DALF model.
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Figure 7. EKPC (27 January 2015): m(MI + ANN) forecast vs. MI + ANN forecast.
(a) Actual vs. forecast; (b) Error performance; (c) Convergence rate analysis.
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5. Conclusion and Future Work

In SGs, current research work primarily focuses on optimization techniques of power scheduling.
However, prior to scheduling, an accurate load forecasting model is needed, because accurate load
forecasting leads to enhanced management of resources, which in turn directly affects the economies
of the energy trade. Furthermore, lower similarities (high randomness) and non-linearity in history load
curves make the SG’s DLF more challenging as compared to long-term load forecasting. Thus, the
aforementioned reasons lead us to investigate the SG’s DLF models. From a literature review, we found
that many DLF models are proposed for SGs; however, these models trade off between accuracy and
execution time. Thus, we focus on the development of an accurate DLF model with reduced execution
time. In this regard, this paper has presented an ANN-based DLF model for SGs. Simulation results
show that the newly-proposed DLF model is able to capture the non-linearity(ies) in the history load
curve, such that its accuracy is approximately 97.11%, such that the average execution time is improved
by 38.50%.

As the multi-variate auto-regressive training model minimizes the forecast error to some extent,
so our future directions are focused on either the improvement of this model or its replacement with
a better model.
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