
Research Article

A Modified Harmony Search Algorithm for Solving the Dynamic
Vehicle Routing Problem with Time Windows

Shifeng Chen, Rong Chen, and Jian Gao

Department of Information Science and Technology, Dalian Maritime University, Dalian 116026, China

Correspondence should be addressed to Rong Chen; rchen@dlmu.edu.cn

Received 19 April 2017; Accepted 2 November 2017; Published 28 November 2017

Academic Editor: Emiliano Tramontana

Copyright © 2017 Shifeng Chen et al. �is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

�e Vehicle Routing Problem (VRP) is a classical combinatorial optimization problem. It is usually modelled in a static fashion;
however, in practice, new requests by customers arrive a�er the initial workday plan is in progress. In this case, routes must be
replanned dynamically. �is paper investigates the Dynamic Vehicle Routing Problem with Time Windows (DVRPTW) in which
customers’ requests either can be known at the beginning of working day or occur dynamically over time. We propose a hybrid
heuristic algorithm that combines the harmony search (HS) algorithm and the Variable NeighbourhoodDescent (VND) algorithm.
It uses the HS to provide global exploration capabilities and uses the VND for its local search capability. In order to prevent
premature convergence of the solution, we evaluate the population diversity by using entropy. Computational results on the Lackner
benchmark problems show that the proposed algorithm is competitive with the best existing algorithms from the literature.

1. Introduction

�e Vehicle Routing Problem (VRP) was 	rst introduced in
1959 [1]. Since then, it has become a central research problem
in the 	eld of operation research and is also an important
application in the areas of transportation, distribution, and
logistics. �e problem involves a depot, some customers,
and some cargo. �e cargo must be delivered from a central
depot to customers at various locations using several vehicles.
�is is a combinatorial optimization problem in which the
goal is to 	nd an optimal solution that satis	es the service
requirements, routing restrictions, and vehicle constraints.

DVRPs have been a vital research area for last 3 decades.
�anks to recent advances in information and communica-
tion technologies, vehicle �eets can now be managed in real
time. In this context, Dynamic Vehicle Routing Problems
(DVRPs) are becoming increasingly important [2–4]. A
variety of aspects is addressed by numerous approaches. Early
research on DVRP can be found in Psara�is’s work [5]. �ey
proposed a dynamic programming approach. Bertsimas and
Van Ryzin [6] considered aDVRPmodel with a single vehicle
and no capacity restrictions where requests appear randomly.
�ey characterized the problem by a generic mathematical
model that regarded waiting time as the objective function.

Regarding DVRPTW, Chen and Xu [7] proposed a dynamic
column generation algorithm for the DVRPTWs based on
their notion of decision epochs over the planning horizon,
which indicate the best times of the day to execute the
reoptimization process. de Oliveira et al. [8] addressed the
issue that arises with customers whose demands take place
in real time in the DVRPTW and a capacitated �eet. �eir
solution was obtained through a metaheuristic approach
using an ant colony system. Hong [9] also considered time
windows and the fact that some requests may be urgent.
�iswork adopted a continuous reoptimization approach and
used a large neighbourhood search algorithm. When a new
request arrives, it is immediately considered to be included
in the current solution; therefore, it runs the large neigh-
bourhood search again to obtain a new solution. de Armas
andMelián-Batista [10] tackled aDVRPTWwith several real-
world constraints. Similar to Hong’s work, they also adopted
a continuous reoptimization approach, but they calculated
solutions using a variable neighbourhood search algorithm.
In some recent surveys, Pillac et al. [11] classify routing
problems from the perspective of information quality and
evolution. �ey introduce the notion of degree of dynamism
and present a comprehensive review of applications and
solution methods for dynamic vehicle routing problems.

Hindawi
Scientific Programming
Volume 2017, Article ID 1021432, 13 pages
https://doi.org/10.1155/2017/1021432

https://doi.org/10.1155/2017/1021432

2 Scienti	c Programming

Bekta et al. [12] provide another survey in this area; they
provide a deeper and more detailed analysis. Last but not
least, Psara�is et al. [13] shedmore light into work in this area
overmore than 3 decades by developing a taxonomy ofDVRP
papers according to 11 criteria.

As we know, for large-scaled DVRPTW, it is very di�cult
to develop exact methods to solve this type of problem. �e
majority of the existing studies deal with the metaheuristics
and intelligent optimization algorithms. Harmony Search
(HS) algorithm is a metaheuristic algorithm, developed
in [14]. �is algorithm imitates the behaviors of musical
improvisation process. �e musician adjusts the resultant
tones with the rest of the band, relying on his own memory
in the music creation, and 	nally the tones reach a wonderful
harmony state. Similarly, it has been successfully employed
by many researchers to solve various complex problems such
as university course scheduling [15, 16], nurse rostering [17],
water network design [18], and the Sudoku puzzle [19]. Due
to its optimization ability, the HS algorithm has also been
employed as a search framework to solve VRPs. To solve the
GreenVRP (an extension of the classicVRP),Kawtummachai
and Shohdohji [20] presented a hybrid algorithm based on
the HS algorithm in which the HS is hybridized by a local
improvement process. �ey tested the proposed algorithm
with a real case from a retail company, and the results
indicated that the method could be applied e�ectively to
the case study. Moreover, Pichpibul and Kawtummachai [21]
presented a modi	ed HS algorithm for the capacitated VRP
and incorporated the probabilistic Clarke-Wright savings
algorithm into the harmony memory mechanism to achieve
better initial solutions. �en, the roulette wheel selection
procedure was employed with the harmony improvisation
mechanism to improve its selection strategy. �e results
showed that the modi	ed HS algorithm is competitive with
the best existing algorithms. Recently, Yassen et al. [22]
proposed a meta-HS algorithm (meta-HAS) to solve the
VRPTW. �e results of comparisons con	rmed that the
meta-HS produces results that are competitive with other
proposed methods.

As described above, the HS algorithm has been success-
fully applied to solve standard VRPs but has not been applied
to solve dynamic VRPs. Solving a dynamic VRP is usually
more complex than solving the corresponding standard VRP,
as we should solve more than one VRP when we deal with
dynamic requests. It is well-known that minimizing travel
distances of standard VRPs is NP-hard in the general case,
so solving dynamic VRPs with the same objective function
is also a hard computational task. In this paper, we propose
a Modi	ed Harmony Search (MHS) algorithm to solve the
DVRPTW. It is related to the static VRPTW, as it can be
described as a routing problem in which information about
the problem can change during the working day. It is a
discrete-time dynamic problem and can be viewed as a series
of static VRPTW problem. �erefore, the MHS algorithm
we proposed includes two parts: one is the static problem
optimization; we combine the basic HS algorithm with the
Variable NeighbourhoodDescent (VND) algorithm, with the
goal of achieving the bene	ts of both approaches to enhance
searching. �e combined HSVND algorithm distinguishes

itself in three aspects: 	rst, the encoding of harmonymemory
has been improved based on the characteristics of routing
in VRPs. Second, this augmented HS was hybridized with
an enhanced VND method to coordinate search diversi	-
cation and intensi	cation e�ectively. In this scheme, four
neighbourhood structures were proposed. �ird, in order to
prevent premature convergence of the solution, we evaluate
the population diversity by using entropy. �e other is the
dynamic customer check and insertion. Four rules were
employed within the DVRPTW that address the insertion
of dynamic requests into the DVRPTW. Furthermore, the
MHS is veri	ed for practical implementation by using a
comparison study with other recently proposed approaches.
�e results show that our algorithm performs better than the
compared algorithms; its average refusal rate was smallest
among the three compared algorithms. Moreover, travel
distances computed by our algorithmwere also best in 29 out
of 30 instances.

�e remainder of this paper is structured as follows. �e
next section provides a formal mathematical model of DVRP.
�e notations are brie�y described in Section 2. Section 3
describes the main framework and details the development
of theHSVNDalgorithm forDVRP.�e experimental setting
and results are presented in Section 4. Finally, Section 5 sum-
marizes themajor conclusions of this article and recommends
some possible directions for future research.

2. Problem Definition

�e DVRPTW can be mathematically modelled by an undi-
rected graph � = (�, �), where � = {V0, V1, . . . , V�} is the
set of vertices including the depot (V0) and the � customers(V1, . . . , V�), also called requests, orders, or demands and � ={(�, �) : �, � ∈ �, � ̸= �} is the set of edges between
each pair of vertices. Each vertex V� has several nonnegative
weights associatedwith it, namely, a request time
�, a location
coordinates (��, ��), the demand
�, service time ��, and an
earliest �� and latest ��, possible start time for the service,
which de	ne a time window [��, ��], while [�0, �0] is the service
time range. At the same time, each edge (�, �) is associated a
travel time ��� and a travel distance ���.

A total number of |�| customers are to be served by
	xed size �eet � of identical vehicles, each vehicle � has
associated with a nonnegative capacity �. Every customer
has arrival time �� and begin service time ��. Particularly, the
vehicle is only allowed to start the service no earlier than
the earliest service time ��, �� = max(��, ��). In other words,
if a vehicle arrives earlier than ��, it must wait until ��. �e
customers can be divided into two groups, static customers
(��) and dynamic customers (��), according to the time at
which the customers made their requests. Customers in ��
whose locations and demands are known at the beginning
of the planning horizon (i.e., time 0), are also called priority
customers because they must be serviced within the current
day. �e locations and demands of customers who belong to
set �� will be known only at the time of the order request.
�ese customers call in requesting on-site service over time.

�e objective is to accept as many requests as possible
while 	nding a feasible set of routes with the minimum total

Scienti	c Programming 3

travelled distance. �e goal we consider here is a hierarchical
approach, which is similar to the goal de	ned in [10]. �e
objective functions are considered in a lexicographic order as
follows.

(i) Number of refused customers.

(ii) Total travelled distance.

(iii) Total number of routes.

Note that [10] included 7 objective functions: total infea-
sibility (Sum of the hours that the customers’ time windows
are exceeded), number of postponed services, number of
extra hours (sum of hours that vehicles’ working shi�s are
exceeded), number of extra hours (sum of the hours that
the vehicles’ working shi�s are exceeded), total travelled
distance, total number of routes, and time balance (di�erence
between the longest and shortest route time made by one
vehicle regarding time). �ey regarded the time windows
as so� constraints; consequently, they needed to consider
these additional objective functions. In contrast, because we
regarded the time windows as hard constraints, the objective
functions related to time windows could be removed.

�e DVRPTW can be modelled by the following formu-
las. First, we introduce three binary decision variables ����, ��,
and ��, which are de	ned as follows:

���� = 1 if edge (�, �) is travelled by vehicle � and 0
otherwise.

�� = 1 if vehicle � is used and 0 otherwise.

�� = 1 if the dynamic customer V� is accepted.

�en the main objective can be described as in the
following formula:

min
�∑
�=1
(1 − ��) (1)

min ∑
(�,�)∈

∑
�∈�

��� ⋅ ���� (2)

min
�∑
�=1
�� (3)

s.t. ∑
�∈�
���� = ∑

�∈�
����, 1 ≤ � ≤ �, � ∈ � (4)

∑
�∈�

∑
�∈�

���� = 1, 1 ≤ � ≤ � (5)

∑
�∈�

�0�� = ∑
�∈�
��0� = 1, � ∈ � (6)

∑
�∈��

∑
�∈�

����� ≤ ��, � ∈ � (7)

�� = {{{
�0, � = 0
��−1 + �� + ��,�−1, 1 ≤ � ≤ � + 1 (8)

�� = max {��, ��} (9)

(1) & ← *(2) & ← HSVND(&, ��, 0) //solve static customers(3) � ← 0(4) while (� < �0) do(5) -
 ← CheckRequests (&, �)(6) & ← HSVND(&, -
, �)(7) � ← � + 1(8) endwhile(9) return &.
Algorithm 1: General algorithm-MHS.

/� = {�0, � = � + 1
min (/�+1 − ��,�+1 − ��, ��) , 0 ≤ � ≤ � (10)

�� ≤ �� ≤ /� ≤ �� (11)

����, ��, �� ∈ {0, 1} , (12)

where �� is the vehicles arrival time at the customer V� and ��
is the actual start time of V�, so �� = max(��, ��) as (9) stated. In
addition, for each customer �, let /� indicate the reverse arrival
time, de	ned as (10).

�e objective function (1) minimizes the number of
refused customers, (2) aims to minimize the travel distance,
and (3) minimizes the total number of routes. Eq. (4) is a
�ow conservation constraint: each customer � must have its
in-degree equal to its out-degree, which is at most one. Eq.
(5) ensures that each customer � (1 ≤ � ≤ �) must be visited
by exactly one vehicle. Eq. (6) ensures that every route starts
and ends the central depot. Eq. (7) speci	es the capacity of
each vehicle. Eq. (8)–(11) de	ne the time windows. Finally,
(12) imposes restrictions on the decision variables.

�e degree of dynamism of a problem (Dod) [23] is
de	ned to represent how many dynamic requests occur in a
problem. Let �� and �� be the number of static and dynamic
requests, respectively. �en, the Dod is described as follows:

Dod = ���� + �� × 100%, (13)

whereDod varies between 0 and 1.WhenDod is equal to 0, all
the requests are known in advance (static problem), whereas
when it is equal to 1, all the requests are dynamic.

3. Solution Approach

In this section, we present a metaheuristic algorithm to solve
the DVRPTW. First, we introduce the framework of the
heuristic algorithm to show how it can solve DVRPTWs
interactively. �en, we discuss the details of the proposed
harmony search-based algorithm, including its initialization,
the way it improvises new solutions, and its VND-based local
search method. Finally, we present some strategies used to
accommodate dynamic requests.

3.1. �e Framework of the General Algorithm. �e general
algorithm to solve a DVRPTW interactively is summarized
in Algorithm 1. First, the routes and deliveries to the static

4 Scienti	c Programming

(1) initialize all parameters: HMS, HMCR, PAR, NI, &best(2) update the location of each vehicle in & at time � use eq. (15).(3) remove the unvisited customers from & and inset into �.(4) for (� = 1; � ≤ HMS; �++) do // HM initialization(5) initialize a solution &� randomly(6) if (>(&�) < >(&best)) then(7) &best ← &�(8) end if(9) end for(10) repeat(11) improvising a new solution &∗(12) if (&∗ is infeasible) then(13) repair the solution(14) end if(15) VND(&∗)(16) if (>(&∗) is better than the worst HMmember) then(17) replace the worst HMmember with &∗. // HM update(18) end if(19) if (>(&∗) < >(&best)) then(20) &best ← &∗(21) end if(22) compute the population entropy // entropy evaluation(23) if (the population entropy increase or remain constant) then(24) remove the highest frequency of harmonies(25) re-generates new harmonies(26) end if(27) until a preset termination criterion is met. //checking termination criterion(28) return &best.
Algorithm 2: HSVND (&, �, �).

customers are solved by HSVND, which is our proposed
harmony search-based algorithm described in Section 3.2.
HSVND will return the best solution found, in which all
the static customers have been inserted into routes. Conse-
quently, the �eet can start to deliver goods for the customers
based on the routes found in this solution. �en, dynamic
customers submit requests. When a new dynamic customer
request occurs, the algorithm will immediately check the
feasibility of servicing the request Algorithm 3 (discussed in
Section 3.3). If the request is acceptable, it then invokes the
HSVND again to rearrange all the known customer requests
that have not been serviced so far. Otherwise, the request
will be rejected. �is dynamic procedure is repeated until
there are no new requests.�en, the entire solution including
service for all static and dynamic customers’ requests will be
returned by the general algorithm.

�e following subsections discuss the HSVND algorithm
and the method for inserting dynamic customer requests in
more detail.

3.2. �e Framework of HSVND. In this section, we describe
the core of the MHS that incorporates two known methods:
the harmony search (HS) algorithm and the Variable Neigh-
bourhood Descent (VND) algorithm.�is hybrid algorithm,
called HSVND, bene	ts from the strengths of both HS and
VND; theHShas high global search capabilitywhile theVND
excels at local search.

�e HS algorithm was proposed by Geem et al. [14]
based on the way musicians improvise new harmonies in

(1) Select neighbourhoods��, � = 1, . . . , �max.(2) � ← 1;(3) while � ≤ �max(4) Find the best solution &∗ in neighbourhood��(5) if >(&∗) < >(&) then(6) & ← &∗(7) � ← 1(8) else(9) � ← � + 1(10) end if(11) end While(12) return &
Algorithm 3: VND (&).

memory. HS is a population-based evolutionary algorithm in
which the solutions are represented by the harmonies and the
population is represented by harmony memory.�e HS is an
iterative process that starts with a set of initial solutions stored
in harmony memory (HM). Each iteration generates a new
solution, and then the objective function is used to evaluate
the quality of the new solution. �e HS method will replace
the worst solution with the new solution if the new solution is
of better quality than the worst solution in HM.�is process
repeats until a predetermined termination criterion is met.
�e pseudocode of the HSVND is given in Algorithm 2.

Scienti	c Programming 5

�e HSVND algorithm consists of the following six
steps: initialization, evaluation, improvising a new solution
from the HM, local searching by VND, updating the HM,
and checking the termination criteria. A�er initialization,
the hybrid algorithm improves solutions iteratively until a
termination criterion is satis	ed. �e following subsections
explain each step in the HSVND algorithm in detail.

3.2.1. Initialization. During initialization, the parameters for
HS are initialized 	rst.�ese parameters are (i) the Harmony
Memory Size (HMS), which determines the number of initial
solutions in HM; (ii) Harmony Memory Consideration Rate
(HMCR), which determines the rate at which values are
selected from HM solutions; (iii) Pitch Adjustment Rate
(PAR), which determines the rate of local improvement; and
(iv) the number of improvisations (NI), which corresponds
to the maximum number of iterations allowed for improving
the solution. Next, the initial solution population will be
generated randomly and stored in the HM. �ese solutions
are sorted in ascending order with respect to their objective
function values.

�e population is also initialized. HM is represented by
a matrix of three dimensions. �e rows contain a set of
solutions, and the columns contain the vehicles (routes) for
each solution &�. Each vehicle route ?�� can be considered as
a sequence of customers ⟨V0, V1, . . . , V�, V�+1⟩, where V0 and
V�+1 represent the depot. In classical HS, the dimensions of
each harmony in HM must be the same [14]. In our study,
a harmony represents a set containing B vehicles (routes).
�erefore, the dimension of each harmony in HM can be
di�erent, as shown in

HM =

{{{{{{{{{{{{{{{{{{{{{{{{{{{

&1&2...
&�...

&HMS

}}}}}}}}}}}}}}}}}}}}}}}}}}}

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

(?11, ?12, . . . , ?1�, . . . , . . . , ?1�1)(?21, ?22, . . . , ?2� . . . , ?2�2)...
(?�1, ?�2, . . . , ?��, . . . , . . . , ?���)...

(?HMS1, ?HMS2, . . . , ?HMS�, . . . , ?HMS�HMS
)

}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}

,

(14)

whereB� is the total number of vehicles in solution &�.
In DVRP, a decision of waiting ormoving should bemade

when a vehicle 	nishes servicing a customer. In this paper,

we introduce an Anticipatory Waiting strategy. Assume that
the actual time is �. Vehicle � has 	nished serving customer
V� and is ready to serve the next customer V�. We allow the
vehicle to wait at the V� location until �� − ��,�. Consequently,
the vehicle will be waiting at the current location, when

�� − ��,� > �. (15)

Solutions in the population are constructed by generating
vehicle routes iteratively. �e algorithm sequentially opens
routes and 	lls themwith customers until nomore customers
can be inserted while still keeping the routes feasible. More
precisely, the procedure chooses an unrouted customer and
tries to insert it into the current route to generate a feasible
route that includes the customer. �is step will be repeated
as long as customers can be inserted into the route without
violating any constraint. When this is no longer possible, the
route is closed and added to the solution & and the procedure
continues with the next vehicle route until all the customers
have been inserted into the solution.

3.2.2. Evaluating Population Entropy. �e diversity of the
harmony is set according to the population entropy, and it
is de	ned as follows:

K� (��) = > (��)∑HMS

�=1 > (��) ,

� (&) = −∑HMS

�=1 K� (��) ⋅ lnK� (��)
lnHMS

,
(16)

where HMS is the harmony memory size, >(��) is the
objective function value of �th harmony, and �(�) is normal-
ized population entropy. In each generation, a�er updating
HM, the population entropy is computed. If the population
entropy increase or remains constant, it would certainly
have taken place in premature convergence. �en, the best
harmony will retain. For the others, it counts its frequency
in the HM, removes the highest frequency of harmonies, and
then generates new harmonies.

3.2.3. Improvising a New Solution. A new solution & =(?1, ?2, . . . , ?�) is improvised based on three rules: (i) random
selection, (ii) memory consideration, and (iii) pitch adjust-
ment.�e random selection rule allows vehicle ?� to choose a
route from the whole search range randomly. In addition to
random selection, vehicle ?� can take the route from previous
routes for the same vehicle stored in HM such that ?� ∈{?1�, ?2�, . . . , ?HMS,�}. A�er a new pitch (route) is generated
from memory, it is further considered to determine whether
a pitch adjustment is required. Speci	cally, the new solution
is generated as follows: 	rst, create an empty solution &; next,
generate a random number K in the range [0, 1]. If K is less
than the HMCR, choose one route from HM and add it to &.

6 Scienti	c Programming

71

3

4

5

6

0
8

Initial route

2

(a)

Shi�

71

3

4

5

6

0
8

2

(b)

Exchange

71

3

4

5

6

0
8

2

(c)

Invert

71

3

4

5

6

0
8

2

(d)

Figure 1: Pitch-adjusted neighbourhood structures.

Otherwise, generate new route randomly and append it to &.
Speci	cally, new pitches (routes) are generated as follows.

?�
←M {{{

rand ({?1�, ?2�, . . . , ?HMS,�}) w.p. HMCR

randomly generate w.p. (1 −HMCR) .
(17)

When a new route is selected from the HM, it is adjusted
at the probability PAR by a local search, where PAR ∈[0, 1]. We produce a random number
 between 0 and 1.
If
 is smaller than the PAR, then the current route will
be modi	ed via a randomly selected neighbouring strategy.
�e improvisation process ends when the number of vehicles
in the new solution & is equal to the smallest one stored
in HM. For DVRP, di�erent neighbourhood structures have
been used to improve the routes locally. Hence, we used three
neighbourhood search methods as follows.

Shi�. �is operation selects a customer randomly and moves
it from its current position to a new random position in
the same route. For example, in Figure 1(b), customer 2 was
selected and moved a�er the 6th customer.

Exchange. �is operation selects two customers randomly
and exchanges their positions in the same route. In
Figure 1(c), the positions of customers 2 and 6 were swapped.

Invert. �is operation selects two customers randomly and
inverts a subsequence between them in the same route. In
Figure 1(d), edges (1, 2) and (6, 7) were deleted and edges (1,

6) and (2, 7) were linked; thus, the subsequence from 2 to 6
was inverted.

Note that any local change leading to an infeasible route
will be discarded; only feasible routes are accepted. Each
of neighbourhood structure is controlled by a speci	c PAR
range as follows:

?� ←M
{{{{{{{{{{{{{{{{{

Shift 0 ≤
 < 13PAR
Exchange

13PAR ≤
 < 23PAR
Invert

23PAR ≤
 < PAR

Nothing PAR ≤
 ≤ 1.
(18)

As Figure 1 shows, the new solution & may be infea-
sible because some customers may be missed or repeated.
�erefore, a�er a new solution is produced during the
improvisation process, we must check its feasibility. A repair
technique is utilized to transform an infeasible solution into
a feasible solution using the following two steps: 	rst, we
identify customers who are neither scheduled nor replicated
in the new solution. �en, we delete any repeated customers
from the old route and, 	nally, either assign the missed
customers to any route that can accept themor generate a new
route for them.

3.2.4. �e VND Method. A�er improvising a new solution,
we use the VND method to further optimize the solution.
To make the VND method available for a DVRPTW, it is
necessary to de	ne appropriate neighbourhood structures for

Scienti	c Programming 7

0

1 2

5 6 7 8

3 4

0

0

1 2

5 6 7 8

3 4

0

(a) Swap

0

1 2

5 6 7 8

3 4

0

0

1 2

5 6 7 8

3 4

0

(b) 2-opt∗

0

1 2

5 6 7 8

3 4

0

9

0

1 2

5 6 7 8

3 4

0

9

(c) String-exchange

0

1 2

5

6

7

3 4

0

0

1 2

5

6

7

3 4

0

(d) Relocation

Figure 2: Neighbourhood structures.

DVRPTW solutions. We propose four di�erent neighbour-
hood structures as follows.

Swap. Select one customer froma route and another customer
from another route and then swap them (see Figure 2(a)).

2-Opt∗. Choose two routes and exchange the last parts of both
routes a�er choosing two selection points, one from each
route (see Figure 2(b)).

String-Exchange. Select a subsequence of customers from one
route and another subsequence of customers from another
route and exchange both subsequences (where � represents
the maximum length of the subsequences) (see Figure 2(c)).

Relocation. Delete one customer from one route and insert it
into another route (see Figure 2(d)).

�e proposed VND method is shown in Algorithm 3,
starting with the 	rst structure �1. In each iteration, the
algorithm 	nds a solution &∗ in the current neighbourhood
structure with the smallest objective function value (line(4)). In the evaluation step, if >(&∗) < >(&), then solution&∗ becomes the next incumbent solution (line (6)) and the
algorithmcontinues to use�1 (line (7)); otherwise, it explores
the next neighbourhood structure (line (9)). When the last
structure,�4, has been applied and no further improvements
are possible, the VND method is terminated and returns the
	nal local optimal solution.

3.2.5. Updating the HM. �e new solution is substituted and
added to the HM if it is better than the worst harmony
solution in HM in terms of the objective function value.
Otherwise, the newly created solution is rejected. �en, the
HM is sorted again by objective function value.

3.2.6. Checking the Termination Criteria. �e procedures of
the HS continue until a termination criterion is satis	ed. We
employed three termination criteria: (1) reaching the max-
imum number of improvisations (NI), (2) no improvement
occurred a�er a certain number of improvisations (CUIN),
and (3) the best solution inHMreached a certain value (CBS).
It will stop if one of the termination criteria is satis	ed.

3.3. InsertingDynamic Requests. Required information about
a dynamic request such as its customer location and time
window is acquired when the request arrives. Moreover, at a
given time point, vehicles may either be servicing a customer,
waiting for a customer, or moving towards the next customer.
Our DVRPTW algorithm should 	rst determine whether
requests arriving at this time point can be accepted and, if
so, which vehicles and which time points can service them.
�e algorithm should reject requests for which no vehicle can
be scheduled to service them. To decide to accept or reject a
request, we shall discuss some insertion rules.

Rule 1 (time window constraints). Suppose customer Vℎ
requests service at time
ℎ, and vehicle � is visiting customer

8 Scienti	c Programming

(1) -
 ← {dynamic customers are request in time �}(2) update the location of each vehicle in & by using (15).(3) for (each dynamic customer � in-
) do
//decide whether to accept or reject customer � by using insertion Rules 1–4.(4) if it satis	es Rules 1 and 2 then(5) attempts to insert the customer � into an existing route by Rule 3.(6) if not, apply Rule 4 to split a route into two new routes(7) attempts to inserted by Rule 3 again for each two newly routes(8) else(9) reject it.(10) end if(11) if (reject) then(12) add � to reject pool(13) remove � from-
(14) end if(15) end for(16) return -

Algorithm 4: Check Requests (&, �).

V� or is on the way to visit that customer based on the planned
route r. For the new request to be inserted into the solution,
it must satisfy at least one vehicle � or schedule a new vehicle
that can arrive at Vℎ before the end of the customer’s time
window. �e rule is expressed as follows:

�� + �� + ��,ℎ ≤ �ℎ ∃� ∈ � (19)

or

ℎ + �0,ℎ ≤ �ℎ ∧
ℎ + 2 ∗ �0,ℎ + �ℎ ≤ �0. (20)

Rule 2 (capacity constraints). A customer Vℎ can be inserted
into route ? (assume it is served by vehicle �) if it does not
violate vehicle �’s capacity constraint. �e rule to check this
condition is expressed as follows:

ℎ +∑
�∈�

� ≤ �� ∃� ∈ �. (21)

Rule 3 (direct insert). A new customer Vℎ can be inserted
between customers V� and V� in route ? if it allows the vehicle
to arrive at Vℎ before the end of its time window and also
services Vℎ a�er the beginning of its time window. �e rule
is expressed as follows:

�� + �� + ��,ℎ ≤ �ℎ,
/� − ��,ℎ − �ℎ ≥ �ℎ,

�ℎ ≤ /ℎ.
(22)

Rule 4 (split insert). �is rule governs the condition when
customer Vℎ cannot be inserted at any position in route ?;
however, if route ? is split into two routes (?1 and ?2) and
the customer Vℎ can be inserted into either of these two
new routes (using Rules 3 and 4), then the customer can be
accepted. A route ? = ⟨0, . . . , V�, V�, . . . , 0⟩ can be split into?1 = ⟨0, . . . , V�, 0⟩ and ?2 = ⟨0, V�, . . . , 0⟩ if

/� − ��,0 ≥
ℎ. (23)

Algorithm 4 describes how dynamic requests can be
inserted in a route.

4. Experimental Results

�is section shows the computational results obtained from
intensive experiments using the proposed HSVND. We
implemented the HSVND using the C# programming lan-
guage compiled for the .NET Framework 4.5 and executed all
the experiments on a PC with an Intel� Pentium� CPU G645
processor clocked at 2.90GHzwith 2GBof RAMrunning the
Windows 7 operating system.

�e experiments were performed on the Lackner bench-
mark, which originated from the standard Solomon bench-
mark. In this benchmark, 100 customers are distributed in
a Euclidean plane over 100 × 100 square areas, where travel
times between customers equal the corresponding distances.
�e benchmark is divided into six groups, named R1, R2, C1,
C2, RC1, and RC2, respectively. Each group contains 8 to 12
instances, so there are 56 instances in total. To accommodate
the dynamic portion of the test, each instance is associated
with one of 	ve di�erent degrees of dynamism, 10%, 30%,
50%, 70%, and 90%, respectively. In the following experi-
ments, we label each instance using the notation “Group-
Index-Dod,” where Group is the group name that instance
belongs to, Index is its index within the group (using two
Arabic numerals), and Dod is its dynamic degree value. For
example, the label “R1-05-70” denotes the 	�h instance in
group R1, and that instance contains 70 dynamic customers.

4.1. Parameter Settings. �is subsection investigates the
HSVND parameters HMS, HMCR, and PAR, as well as
the convergence speed. We randomly selected 15 instances
for these experiments. �ey are “C1-01-50,” “C1-05-90,”
“C2-01-30,” “C2-07-10,” “R1-03-30,” “R1-09-70,” “R1-03-10,”
“R2-03-50,” “R2-06-10,” “R2-09-70,” “RC1-04-50,” “RC1-06-
90,” “RC2-02-70,” “RC2-03-90,” and “RC2-08-30.” For each
instance, 10 independent runs were carried out. Because we

Scienti	c Programming 9

Table 1: �e mean results of the HSVND with di�erent HMS values.

Instance 15 20 25 30 35 40

C1-01-50 706.23 706.23 706.23 706.23 706.23 706.23

C1-05-90 286.13 285.06 285.06 285.06 285.06 286.13

C2-01-30 535.42 535.42 535.42 535.42 535.42 535.42

C2-07-10 568.77 568.77 568.77 568.77 568.77 568.77

R1-03-30 980.92 980.85 980.33 977.67 985.17 980.57

R1-03-10 1189.33 1190.39 1188.02 1194.07 1190.53 1192.57

R1-09-70 444.40 444.85 442.59 443.04 443.85 444.10

R2-03-50 632.12 623.88 629.89 619.93 620.56 625.42

R2-06-10 904.03 890.96 909.91 878.53 910.96 917.38

R2-09-70 479.90 479.28 478.23 473.05 473.93 474.35

RC1-04-50 758.43 757.28 757.12 757.40 757.51 756.25

RC1-06-90 259.43 259.43 259.43 259.43 259.43 259.43

RC2-02-70 569.12 568.58 571.81 571.81 571.81 571.81

RC2-03-90 265.61 265.61 265.61 265.61 265.61 265.61

RC2-08-30 747.95 748.86 735.77 742.39 745.45 747.59

Table 2: �e mean results of the HSVND with di�erent HMCR values.

Instance 0.5 0.6 0.7 0.8 0.9

C1-01-50 706.23 706.23 706.23 706.23 706.23

C1-05-90 285.06 285.06 285.06 286.13 285.06

C2-01-30 535.42 535.42 535.42 535.42 535.42

C2-07-10 568.77 568.77 568.77 568.77 568.73

R1-03-30 988.65 984.84 982.53 982.12 984.08

R1-03-10 1195.26 1194.61 1197.47 1194.21 1197.23

R1-09-70 444.40 445.30 445.35 444.81 447.66

R2-03-50 636.37 623.86 624.63 614.65 646.19

R2-06-10 906.32 915.68 899.75 910.53 886.24

R2-09-70 485.30 477.34 484.11 483.45 479.04

RC1-04-50 760.15 757.74 758.86 756.36 761.30

RC1-06-90 259.72 259.72 259.43 259.43 259.43

RC2-02-70 571.81 569.12 563.74 555.66 560.51

RC2-03-90 265.61 265.61 265.61 265.61 265.61

RC2-08-30 754.78 753.12 767.84 767.31 762.27

split the DVRP into a series of static VRPs during the solving
process, we only user the static customers at the beginning of
the planning horizon (� = 0) in all experiments, andwe set the
termination condition of the algorithm to consider only the
maximum number of improvisations (NI = 1000). Tables 1–3
show the results of the optimization of the objective functions
using di�erent settings for HMS, HMCR, and PAR.

�e results in Table 1 demonstrate that the performance
of the HSVND depends on the size of the HM: the larger the
HMS is, the better the mean results are. Consequently, using
larger values for HMS can achieve better solutions with lower
objective function values. �is may occur because having a
larger number of solutions in the HM provides better shi�
patterns that are more likely to be combined into good new
solutions. �erefore, HMS = 30 is chosen for all benchmark
instances.

As listed in Table 2, the performance of the proposed
algorithm degrades when increasing the number of random

selections when HMCR values are below 0.8. However,
perturbation is necessary to bring diversity to the HM and
avoid local minima. �erefore, we suggest a value of 0.8 for
the HMCR based on the experimental results.

Table 3 shows that small PAR values reduce the conver-
gence rate of the HSVND. Based on the experimental results,
we suggest using PAR values greater than 0.6.

We also evaluated the convergence speed of the HSVND.
In this experiment, we set HMS = 30, HMCR = 0.8, and PAR
= 0.6 as described above. In the same way as the previous
experiments, for each instance we ran the HSVND 10 times
and terminated it a�er a maximum of NI = 1000 iterations.
�e maximum and average of the Continuous Unimproved
Iteration Number (CUIN) and the Count of Best Solutions
(CBS) are reported in Table 4, where CUIN indicates the
number of iterations required to 	nd the next local optimal
solution from the current local optimal solution. During this
period between the current best solution and the next one,

10 Scienti	c Programming

Table 3: �e e�ect of the PAR on the mean function optimization.

Instance 0.3 0.4 0.5 0.6 0.7

C1-01-50 706.23 706.23 706.23 706.23 706.23

C1-05-90 285.06 287.20 285.06 286.13 285.06

C2-01-30 535.42 535.42 535.42 535.42 535.42

C2-07-10 568.77 568.77 568.77 568.77 568.77

R1-03-30 983.47 979.55 980.48 986.82 979.57

R1-03-10 1195.97 1197.94 1195.36 1194.18 1197.12

R1-09-70 444.40 445.30 444.40 445.83 444.40

R2-03-50 621.23 630.18 621.72 616.62 626.34

R2-06-10 914.09 934.96 914.46 912.56 934.58

R2-09-70 490.88 482.95 478.68 483.16 487.21

RC1-04-50 759.02 759.43 759.22 757.86 759.66

RC1-06-90 260.01 260.30 259.43 259.43 259.72

RC2-02-70 568.58 571.81 571.81 563.20 571.81

RC2-03-90 265.61 265.61 265.95 265.61 265.61

RC2-08-30 749.31 763.16 773.31 710.28 769.66

Table 4: �e maximum and average of CUIN and CBS.

Instance
CUIN CBS

Max Avg. Max Avg.

C1-01-50 509 92.37 20 6.92

C1-05-90 911 42.95 17 2.02

C2-01-30 101 12.31 1 1.00

C2-07-10 131 24.66 30 7.09

R1-03-30 662 51.77 1 1.00

R1-03-10 611 75.46 1 1.00

R1-09-70 356 34.12 30 6.26

R2-03-50 152 23.45 1 1.00

R2-06-10 560 118.37 1 1.00

R2-09-70 563 40.15 1 1.00

RC1-04-50 713 126.00 1 1.00

RC1-06-90 71 30.63 1 1.00

RC2-02-70 152 19.34 1 1.00

RC2-03-90 49 21.30 1 1.00

RC2-08-30 815 148.10 1 1.00

CBS is de	ned as the number of solutions found that have
the same objective value as the current best solution.

From Table 4, it can be seen that, on average, the HSVND
requires at least 13 iterations to 	nd a new local optimal
solution, while, at most, it requires 150 iterations. During
the search, it 	nds at least one solution and, at most, 	nds
7 solutions with the same objective value. Consequently, we
set the other termination conditions as follows: CUIN = 200
and CBS = 10.

4.2. Comparison with Existing Algorithms. To assess the
performance of the proposed HSVND algorithm, we ran
the algorithm on the Lackner benchmark instances and
compared it with two existing methods: ILNS [9] and GVNS
[10]. Comparisons were made concerning these algorithms

based on the ratios of refused service, the number of vehicles
required, and the total distance travelled. To collect the
experimental data, ten separate runs were performed for each
instance and for each degree of dynamism from the Lackner
benchmark. We recorded the best execution from the ten
runs and calculated average values for each group. Items in
boldface text in these tables indicatematches with the current
best-known solution. We set the HS parameters as follows:
HMS = 30, HMCR = 0.8, PAR = 0.6, NI = 1000, CUIN =
200, and CBS = 10. Table 5 lists the comparison results, where
the 	rst column indicates the group of instances (�), the
second column shows the degrees of dynamism (-), and the
other columns show the average number of vehicles, average
total distance, average insertion time, and the refusal ratio,
respectively. �e last two rows of this table list the overall

Scienti	c Programming 11

Table 5: Comparison of the experimental results of the proposed method with other methods.

� - Avg. vehicle number Avg. total distance Avg. insertion time Ratio refuse service

HSVND ILNS GVNS HSVND ILNS GVNS HSVND ILNS GVNS HSVND ILNS GVNS

R1

90 13.58 14.25 14.67 1214.29 1335.94 1250.38 4.91 17.43 14.50 3.08 2.33 3.83

70 13.50 14.33 14.75 1223.57 1331.34 1267.78 6.55 21.73 10.95 2.58 1.75 3.08

50 13.92 14.08 14.58 1224.42 1295.81 1267.47 9.28 28.27 11.84 2.00 0.67 1.92

30 13.58 13.92 14.25 1214.46 1286.63 1256.04 13.99 46.59 15.70 1.25 0.58 1.58

10 13.75 13.50 14.17 1216.82 1257.08 1250.16 21.64 67.99 15.29 0.33 0.17 0.50

C1

90 10.44 10.78 10.67 907.93 1039.77 963.33 3.04 6.60 7.81 0.11 0.22 0.00

70 10.44 10.78 11.33 888.79 1031.68 1009.47 4.59 10.79 7.67 0.11 0.22 0.00

50 10.33 10.89 11.00 865.28 1001.18 992.97 6.91 19.01 6.22 0.11 0.22 0.00

30 10.22 10.56 11.56 870.22 962.08 949.95 10.51 28.03 9.13 0.11 0.33 0.00

10 10.33 10.56 10.56 852.33 895.77 898.30 16.69 15.40 13.74 0.11 0.22 0.00

RC1

90 14.13 14.00 14.63 1465.45 1513.94 1470.45 3.13 17.31 15.39 1.13 2.00 1.88

70 13.88 13.88 14.88 1469.64 1511.29 1489.28 4.17 25.32 13.43 1.00 1.88 2.13

50 13.63 13.63 14.50 1428.24 1514.72 1484.01 6.77 48.78 13.72 1.00 1.38 1.75

30 13.50 13.88 14.38 1426.26 1492.22 1471.00 9.96 45.26 16.51 0.50 1.13 1.00

10 13.38 13.38 13.50 1394.37 1436.23 1417.07 16.49 83.52 23.01 0.50 1.13 0.50

R2

90 4.73 3.55 4.00 989.84 1047.82 1086.78 6.56 13.20 16.47 0.00 0.09 0.00

70 4.82 3.64 4.36 973.08 1032.04 1078.03 10.47 20.15 12.74 0.00 0.09 0.00

50 4.82 3.82 4.55 960.29 1016.52 1071.83 16.51 30.03 11.96 0.00 0.00 0.00

30 4.91 4.91 4.73 937.70 985.59 1035.60 26.73 57.07 10.18 0.00 0.00 0.00

10 4.45 6.36 5.27 938.06 950.00 1000.00 47.68 68.58 9.48 0.00 0.09 0.00

C2

90 3.13 3.25 3.38 615.67 636.79 668.99 2.93 6.12 16.67 0.00 0.00 0.00

70 3.13 3.13 3.38 613.49 636.47 672.95 3.63 10.01 14.03 0.00 0.00 0.00

50 3.00 3.13 3.13 601.62 604.98 623.10 6.46 16.80 20.25 0.00 0.00 0.00

30 3.13 3.63 3.25 599.93 651.42 624.81 9.05 29.87 34.82 0.00 0.00 0.00

10 3.13 3.00 3.25 596.03 594.67 615.93 15.30 59.70 80.78 0.00 0.00 0.00

RC2

90 6.00 4.00 4.63 1122.00 1257.19 1275.93 4.35 11.34 28.05 0.00 0.13 0.00

70 6.00 3.88 5.13 1095.71 1239.46 1234.36 6.88 19.26 16.07 0.00 0.00 0.00

50 6.13 4.25 5.88 1078.33 1190.54 1200.26 10.82 27.84 11.46 0.00 0.13 0.00

30 5.88 5.38 5.88 1064.58 1166.04 1172.33 18.51 41.51 11.68 0.00 0.25 0.00

10 5.63 6.75 6.13 1059.94 1103.30 1153.43 32.96 55.55 13.27 0.00 0.00 0.00

Avg. 8.58 8.50 8.88 1030.28 1100.62 1098.40 11.92 31.64 16.76 0.46 0.50 0.61

average results obtained by the di�erent methods and the
characteristics of the computers on which the algorithms
were executed.

As shown in Table 5, HSVND outperforms other meth-
ods on average. First, HSVND obtains the smallest average
refusal ratio, 0.46%, whereas ILNS refused 0.50%, and GVNS
refused 0.61%. Both HSVND and GVNS were able to service
all requests for groups R2, C2, and RC2; consequently,
they obtained the same refusal ratio (i.e., 0.00%). HSVND
performed better than GVNS for groups R1 and RC1 with
respect to the refusal ratio while GVNS performed best for
the C1 group. On average, ILNS achieves a better refusal
ratio thanGVNS.�e average number of vehicles required by
our algorithm is lower than that of GVNS but slightly larger
than that of ILNS. �e average number of vehicles is 8.58,
8.50, and 8.88 for HSVND, ILNS, and GVNS, respectively.
However, HSVND revealed good performance in 	nding
short distances; its average distance was 1030.28, while the
average distances of ILNS and GVNS were 1100.62 and

1098.40, respectively. Note that HSVND was the best at
optimizing travel distances among the three algorithms for
all groups. Overall average insertion time also indicates that
our proposed algorithm improves on the others; however,
note that the computational environments under which the
algorithms were executed are di�erent.

Similar to the evaluation performed for GVNS, we also
calculated the average performance of 10 executions for
each customer and compared that with GVNS, as shown
in Table 6. HSVND improved on GVNS in terms of the
avg. total distance in all cases. �ere are 7 types, and
HSVND outperformed GVNS completely on refusal ratio,
avg. number of vehicles, and avg. total distance. When the
refusal ratio remains constant, there are 10 types for which
HSVND can 	nd a better solution than GVNS.

Overall, our results demonstrate that HS achieved good
results compared with the existing methods as our algorithm
has the ability to strike a good balance between diversi	cation
and intensi	cation for the DVRPTWs.

12 Scienti	c Programming

Table 6: �e average performance comparison of HSVND and GVNS.

� - Ratio of refuse Avg. vehicle number Avg. total distance Avg. insertion time

HSVND GVNS HSVND GVNS HSVND GVNS HSVND GVNS

R1

90 2.83 3.33 14.43 15.34 1253.57 1328.74 4.65 15.89

70 2.26 2.42 14.36 15.31 1262.20 1340.38 6.75 12.45

50 1.67 1.67 14.29 15.33 1256.42 1340.17 9.32 12.32

30 1.16 1.17 14.13 14.96 1243.40 1312.73 14.01 17.21

10 0.33 0.33 14.02 14.73 1240.66 1296.59 22.09 16.69

C1

90 0.11 0.00 10.78 11.37 935.06 1092.18 2.96 8.94

70 0.11 0.00 10.80 11.92 926.97 1150.27 4.36 8.51

50 0.11 0.00 10.57 11.81 901.09 1129.58 6.88 7.32

30 0.11 0.00 10.47 11.81 895.69 1081.52 10.19 10.17

10 0.11 0.00 10.50 11.36 878.01 986.99 16.50 14.87

RC1

90 1.04 1.50 14.73 15.62 1511.27 1587.89 3.12 15.89

70 0.93 1.25 14.61 15.88 1515.20 1614.43 4.26 14.72

50 0.73 0.88 14.29 15.51 1476.00 1579.34 6.63 14.05

30 0.46 0.63 14.28 15.22 1470.15 1551.93 9.64 16.89

10 0.31 0.25 13.99 14.25 1438.48 1474.09 14.54 24.52

R2

90 0.00 0.00 4.92 3.88 1022.27 1181.31 6.37 17.05

70 0.00 0.00 4.87 4.22 1008.85 1161.98 9.83 13.41

50 0.00 0.00 4.83 4.49 992.01 1153.79 16.44 12.58

30 0.00 0.00 4.80 4.77 974.35 1112.92 26.66 10.86

10 0.00 0.00 4.34 5.49 972.57 1054.82 45.81 10.75

C2

90 0.00 0.00 3.26 3.66 634.73 749.33 2.78 17.85

70 0.00 0.00 3.30 3.71 637.30 722.45 3.91 14.91

50 0.00 0.00 3.31 3.53 615.68 670.23 6.32 22.34

30 0.00 0.00 3.04 3.36 610.82 670.88 9.32 35.92

10 0.00 0.00 3.05 3.53 603.39 660.93 15.20 85.73

RC2

90 0.00 0.00 6.01 8.02 1165.36 2032.46 4.40 29.51

70 0.00 0.00 6.04 4.94 1134.00 1359.18 6.70 17.18

50 0.00 0.00 5.85 5.39 1113.19 1311.97 10.90 12.86

30 0.00 0.00 5.94 5.83 1101.98 1278.62 18.27 13.54

10 0.00 0.00 5.29 6.01 1104.00 1240.55 31.22 13.98

Avg. 0.41 0.45 8.84 9.38 1063.16 1207.61 11.67 17.96

5. Conclusions

In this paper, we have proposed a Modi	ed Harmony
Search for DVRPTW, called MHS, which is based on HS
algorithm. First of all, the encoding of harmony memory
has been improved based on the characteristics of routing
in VRPs. Secondly, in order to provide an e�ective balance
between the global diversi	cation and local intensi	cation,
an enhanced basic Variable Neighbourhood Descent (VND)
is incorporated into the iterative HS. �irdly, improvisation
of a new harmony has also been improved. In this procedure,
in order to prevent premature convergence of the solution,
we evaluate the population diversity by using entropy. Finally,
when dynamic requests arrive, 	ve rules were employed
within the DVRPTW that address the insertion of dynamic
requests into theDVRPTW. In order to verify the e�ciency of
our approach, we carried out some numerical experiments by
using standard benchmarks. Results are analyzed intensively

by comparing with recently proposed algorithms. �e com-
parison results show that the proposed MHS algorithm can
obtain better solutions than other existing algorithms. �ere
are several interesting future research subjects to explore.One
of them can be adapting the MHS heuristic for solving other
dynamic vehicle problems. Another prospective research
may focus on extending the DVRPTW by introducing some
realistic aspects and constraints.

Conflicts of Interest

�e authors declare no con�icts of interest.

Acknowledgments

�is research was partly supported by the National Natural
Science Foundation of China (no. 61402070, no. 61672122,

Scienti	c Programming 13

and no. 61602077), the Natural Science Foundation of Liaon-
ing Province of China (no. 2015020023), the Educational
Commission of Liaoning Province of China (no. L2015060),
and the Fundamental Research Funds for the Central Uni-
versities (no. 3132016348, no. 3132017125). �is support is
gratefully acknowledged.

References

[1] G. B. Dantzig and J. H. Ramser, “�e truck dispatching
problem,”Management Science, vol. 6, no. 1, pp. 80–91, 1959.

[2] A. Goel and V. Gruhn, “Solving a Dynamic Real-Life Vehicle
Routing Problem,” in Operations Research Proceedings, Oper-
ations Research Proceedings, pp. 367–372, Springer, Berlin,
Heidelberg, 2006.

[3] A. Larsen, O. B. Madsen, andM.M. Solomon, “Classi	cation of
Dynamic Vehicle Routing Systems,” in Dynamic Fleet Manage-
ment, Operations Research/Computer Science Interfaces Series,
pp. 19–40, Springer, Boston, MA, USA, 2007.

[4] V. Pillac, C. Guéret, and A. Medaglia, Dynamic vehicle routing
problems: state of the art and prospects 5-6, Universidad de los
Andes, Bogotá, Colombia, 2010.

[5] H. N. Psara�is, “Dynamic programming solution to the single
vehicle many-to-many immediate request dial-a-ride problem,”
Transportation Science, vol. 14, no. 2, pp. 130–154, 1980.

[6] D. J. Bertsimas and G. Van Ryzin, “A stochastic and dynamic
vehicle routing problem in the Euclidean plane,” Operations
Research, vol. 39, pp. 601–615, 1991.

[7] Z.-L. Chen and H. Xu, “Dynamic column generation for
dynamic vehicle routing with time windows,” Transportation
Science, vol. 40, no. 1, pp. 74–88, 2006.

[8] S. M. de Oliveira, S. R. de Souza, and M. A. L. Silva, “A solution
of dynamic vehicle routing problem with time window via
ant colony system metaheuristic,” in Proceedings of the 10th
Brazilian Symposium on Neural Networks, SBRN ’08, pp. 21–26,
Brazil, October 2008.

[9] L. Hong, “An improved LNS algorithm for real-time vehicle
routing problem with time windows,” Computers & Operations
Research, vol. 39, no. 2, pp. 151–163, 2012.

[10] J. de Armas and B. Melián-Batista, “Variable neighborhood
search for a dynamic rich vehicle routing problem with time
windows,” Computers & Industrial Engineering, vol. 85, pp. 120–
131, 2015.

[11] V. Pillac, M. Gendreau, C. Guéret, and A. L. Medaglia, “A
review of dynamic vehicle routing problems,” European Journal
of Operational Research, vol. 225, no. 1, pp. 1–11, 2013.

[12] T. Bekta, P. P. Repoussis, and C. D. Tarantilis, Dynamic Vehicle
Routing Problems, 2014.

[13] H. N. Psara�is, M. Wen, and C. A. Kontovas, “Dynamic vehicle
routing problems: �ree decades and counting,” Networks, vol.
67, no. 1, pp. 3–31, 2016.

[14] Z. W. Geem, J. H. Kim, and G. V. Loganathan, “A new heuristic
optimization algorithm: harmony search,” Simulation, vol. 76,
no. 2, pp. 60–68, 2001.

[15] M. A. Al-Betar and A. T. Khader, “A harmony search algo-
rithm for university course timetabling,” Annals of Operations
Research, vol. 194, pp. 3–31, 2012.

[16] M. A. Al-Betar, A. T. Khader, andM. Zaman, “University course
timetabling using a hybrid harmony search metaheuristic algo-
rithm,” IEEE Transactions on Systems, Man, and Cybernetics,

Part C: Applications and Reviews, vol. 42, no. 5, pp. 664–681,
2012.

[17] M. Hadwan, M. Ayob, N. R. Sabar, and R. Qu, “A harmony
search algorithm for nurse rostering problems,” Information
Sciences, vol. 233, pp. 126–140, 2013.

[18] Z. W. Geem, “Particle-swarm harmony search for water net-
work design,” Engineering Optimization, vol. 41, no. 4, pp. 297–
311, 2009.

[19] Z. Geem, “Harmony Search Algorithm for Solving Sudoku,”
in Knowledge-Based Intelligent Information and Engineering
Systems, B. Apolloni, R. J. Howlett, and L. Jain, Eds., vol. 4692,
pp. 371–378, Springer, Berlin, Germany, 2007.

[20] R. Kawtummachai and T. Shohdohji, “A Hybrid Harmony
Search (HHS) algorithm for a Green Vehicle Routing Problem
(GVRP),” in Proceedings of the 4th International Conference
on Engineering Optimization, pp. 573–578, CRC Press, Lisbon,
Portugal, 2000.

[21] T. Pichpibul and R. Kawtummachai, “Modi	ed harmony search
algorithm for the capacitated vehicle routing problem,” in
Proceedings of the International MultiConference of Engineers
and Computer Scientists, IMECS ’13, pp. 1094–1099, HongKong,
China, 2013.

[22] E. T. Yassen, M. Ayob, M. Z. A. Nazri, and N. R. Sabar, “Meta-
harmony search algorithm for the vehicle routing problem with
time windows,” Information Sciences, vol. 325, pp. 140–158, 2015.

[23] K. Lund, O. Madsen, and J. Rygaard, “Vehicle routing problems
with varying degrees of dynamism,” Tech. Rep., IMM Institute
of Mathematical Modelling. Technical University of Denmark,
Lyngby, Denmark, 1996.

Submit your manuscripts at

https://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 201

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

