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Abstract: In this paper, we present a modification to so-called homotopy perturbation method for solving
linear and non-linear integral equations. This method gives an approximate analytic solution to the equations
(usually the exact solution of the equations). Some numerical examples presented to show the accuracy and
efficiency of the method.
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1 Introduction

Although perturbation techniques are widely applied to analyze nonlinear problems in science and engineering, they are
however so strongly dependent on small parameters appeared in equations under consideration that they are restricted only
to weakly nonlinear problems. For strongly nonlinear problems which don’t contain any small parameters, perturbation
techniques are invalid. So, it seems necessary and worthwhile developing at new kind of analytic technique independent
of small parameters.

Liao proposed a new analytic technique in his Ph.D. dissertation [1], namely the Homotopy Analysis Method (HAM).
Based on homotopy of topology, the validity of the HAM is independent of whether or not there exist small parameters
in considered equations. Therefore, the HAM can overcome the foregoing restrictions and limitations of perturbation
techniques so that it provides us with a powerful tool to analyze strongly nonlinear problems. [2]

In [2] some basic ideas about the HAM was described. In [3] some developments of the HAM was presented. Also
some lemmas and theorems was proved. In [4] a reliable approach for convergence of the HAM was discussed. In [10]–
[14] [46]–[48] [51]–[53] the HAM was applied on some equations. Also, some modifications and improvements was
discussed by authors (e.g. see [15]–[17]).

In [19, 20] the homotopy perturbation technique was presented. In [21]–[41] [49]–[50][54]–[55] the homotopy pertur-
bation technique was applied on different equations by some authors and with some modifications (e.g. linear and nonlin-
ear forth-order boundary value problems, functional integral equations, nonlinear problems, system of nonlinear Fredholm
integral equations, forth-order integro-differential equations, eighth-order boundary value problems, nonlinear oscillators,
partial differential equations, quadratic Riccati differential equation, Volterra integral equations, two-dimensional Fred-
holm integral equations, Stokes equations and nonlinear ill-posed operator equations). Also the homotopy perturbation
method and the HAM was compared by some authors (e.g. [5]–[9]).

We now review [39] to show how HPM applied to the following integral equations. Consider the following integral
equation:

γ(x) = f(x) +

∫ b

a

k(x, t)γ(t)dt, c 6 x 6 d. (1)

Let

L(u) = u(x)− f(x)−
∫ b

a

k(x, t)u(t)dt = 0, (2)
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with solution u(x) = γ(x), we can define a homotopy H(u, p) by

H(u, 0) = F (u), H(u, 1) = L(u), (3)

where F (u) is a functional operator with solution u0.We choose a convex homotopy

H(u, p) = (1− p)F (u) + pL(u) = 0, (4)

and continuously trace an implicitly defined curve from a starting point H(u0) to a solution H(γ, 1). In fact HPM uses
the homotopy parameter p as an expanding parameter [43, 44] to obtain

u = u0 + pu1 + p2u2 + · · · , (5)

when p → 1, (5) corresponds to (4) and gives an approximation to the solution of (2) as:

γ = lim
p→1

u = u0 + u1 + u2 + · · · , (6)

The series (6) converges in most cases, and the rate of convergence depends on L(u). Taking F (u) = u(x) − f(x), and
substituting (5) in (4) and equating the terms with identical power of p, we obtain

p0 : u0 − f(x) = 0 ⇒ u0 = f(x),

p1 : u1 −
∫ b

a

k(x, t)u0(t)dt = 0,

u1 =

∫ b

a

k(x, t)u0(t)dt,

...

and in general we have

u0(x) = f(x), (7)

un+1(x) =

∫ b

a

k(x, t)un(t)dt, n = 1, 2, . . . . (8)

2 The new modified HPM

In [39] modification applied to HPM for linear integral equations with degenerate kernels, which used a number m. In
this paper, m is a function (or a number), and our modification can be applied to linear or non-linear integral equations,
and there is no limitation on kernel type.

2.1 Application to linear second kind Fredholm integral equation

In this section, we apply the modified perturbation method to (1). To this end, we define a new convex homotopy pertur-
bation as

H(u, p,m) = (1− p)F (u) + pL(u) + p(1− p)mK∗f = 0, (9)

where F (u) = u(x) − f(x), L(u) = u(x) − f(x) −
∫ b

a
k(x, t)u(t)dt = 0 and K∗f =

∫ b

a
k(x, t)f(t)dt, hence we can

write

(1− p)(u− f) + p

[
u− f −

∫ b

a

k(x, t)u(t)dt

]
+ p(1− p)mK∗f = 0, (10)

or

u− f − p

∫ b

a

k(x, t)u(t)dt+ p(1− p)mK∗f = 0, (11)
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Substituting (5) into (11) and equating the coefficients of like terms with the identical powers of p , we obtain

p0 : u0 − f(x) = 0 ⇒ u0 = f(x),

p1 : u1 −
∫ b

a

k(x, t)u0(t)dt+mK∗f = 0,

u1 = (1−m)K∗f,

p2 : u2 −
∫ b

a

k(x, t)u1(t)dt−mK∗f = 0,

u2 = (1−m)K∗K∗f +mK∗f,

p3 : u3 −
∫ b

a

k(x, t)u2(t)dt = 0,

u3 =

∫ b

a

k(x, t)u2(t)dt,

...

pn+1 : un+1 =

∫ b

a

k(x, t)un(t)dt, n = 2, 3, . . . ,

now we find m such that u2 = 0. Since if u2 = 0 then u3 = u4 = · · · = 0, and the exact solution will be obtained as
u(x) = u0(x) + u1(x), hence for all values of x we should have

(1−m)K∗K∗f +mK∗f = 0,

or
m(x) =

K∗K∗f

K∗K∗f −K∗f
·

Note that the method can be applied as for Volterra integral equations, in same manner.

2.2 Application to non-linear Fredholm integral equations
Consider the following non-linear Fredholm integral equation

u(x) = f(x) +

∫ b

a

k(x, t)T (u(t))dt, a 6 x 6 b (12)

where the function k is given and T is a given nonlinear operator, and u the solution to be determined. We assume that
(12) has the unique solution. We define a convex homotopy perturbation as

H(u, p,m) = (1− p)F (u) + pL(u) + p(1− p)mK∗T (f) = 0, (13)

where

F (u) = u(x)− f(x) and L(u) = u(x)− f(x)−
∫ b

a

k(x, t)T (u(t))dt = 0, (14)

hence, we can write

(1− p)(u− f) + p

[
u− f −

∫ b

a

k(x, t)u(t)dt

]
+ p(1− p)mK∗T (f) = 0, (15)

or

u− f − p

∫ b

a

k(x, t)u(t)dt+ p(1− p)mK∗T (f) = 0, (16)

Substituting (5) into (16) results into

u0 + pu1 + p2u2 + · · · − f(x)− p

∫ b

a

k(x, t)T (u0 + pu1 + p2u2 + · · · )dt+ p(1− p)mK∗T (f) = 0 (17)
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In (17) we can write T (u0 + pu1 + p2u2 + · · · ) as follows

T (u0 + pu1 + p2u2 + · · · ) = A0 + pA1 + p2A2 + · · · , (18)

where Ak are Adomian polynomials which depend upon u0, u1, u2, . . . , uk. [39, 45] By differentiating both sides of (18)
we can write

dk

dpk
T (u0 + pu1 + p2u2 + · · · ) |p=0=

dk

dpk
(A0 + pA1 + p2A2 + · · · ) |p=0 . (19)

From (19) we have

Ak = Ak(u0, u1, u2, . . . , uk) =
1

k!

dk

dpk
T (u0 + pu1 + p2u2 + · · · ) |p=0, k = 0, 1, . . . (20)

By substituting (18) into (17) we have

u0 + pu1 + p2u2 + · · · − f(x)− p

∫ b

a

k(x, t)(A0 + pA1 + p2A2 + · · · )dt+ p(1− p)mK∗T (f) = 0. (21)

Equating the terms with identical powers of p, we have

p0 : u0 − f(x) = 0 ⇒ u0 = f(x),

p1 : u1 −
∫ b

a

k(x, t)A0(t)dt+mK∗T (f) = 0,

u1 = (1−m)K∗T (f),

p2 : u2 −
∫ b

a

k(x, t)A1(t)dt−mK∗T (f) = 0,

u2 = K∗((1−m)K∗T (f)T ′(f)) +mK∗T (f),

p3 : u3 −
∫ b

a

k(x, t)A2(t)dt = 0,

u3 =

∫ b

a

k(x, t)A2(t)dt,

...

pn+1 : un+1 =

∫ b

a

k(x, t)An(t)dt, n = 3, 4 . . . ,

now we find m such that u2 = 0. Since if u2 = 0 then u3 = u4 = · · · = 0, and the exact solution will be obtained as
u(x) = u0(x) + u1(x), hence for all values of x we should have

(1−m)K∗(K∗T (f)T ′(f)) +mK∗T (f) = 0,

or

m(x) =
K∗(K∗T (f)T ′(f))

K∗(K∗T (f)T ′(f))−K∗T (f)
·

Note that the method can be applied as for Volterra integral equations, in same manner.

3 Numerical Examples
Example 1 Consider the equation

u(x) = (1− 2π) cosx+ sinx+

∫ π

0

4 cosx cos tu(t)dt, (22)

with exact solution u(x) = sinx+ cosx. Using the method, we have

u0 = f(x),

u1 = (1−m)K∗f, where m(x) =
K∗K∗f

K∗K∗f −K∗f
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and

K∗f =

∫ b

a

k(x, t)f(t)dt

u(x) = u0 + u1.

In this example K∗f = 2(1− 2π)π cosx and K∗K∗f = 4(1− 2π)π2 cosx hence

m(x) =
2π

−1 + 2π
,

u0 = (1− 2π) cosx+ sinx,

u1 = 2π cosx

so we have u(x) = cosx+ sinx, which is the exact solution.

Example 2 Consider the following Fredholm integral equation

u(x) = e2x+
1
3 − 1

3

∫ 1

0

e2x+
5
3 tu(t)dt,

with exact solution u(x) = e2x.
In this example K∗f = −(−1 + e

1
3 )e

1
3+2x and K∗K∗f = (−1 + e

1
3 )2e

1
3+2x hence

m(x) = 1− 1

e
1
3

u0 = e2x+
1
3 ,

u1 = −(−1 + e
1
3 )e2x

so we have u(x) = e2x, which is the exact solution.

Example 3 Consider the following Volterra integral equation

u(x) = 12x+ x2 − 2x3 − x6

30
− 11 sinx+ 2

∫ x

0

(x− t)3u(t)dt,

with exact solution u(x) = x2 + sinx.
In this example

K∗f = 2

(
66x− 11x3 +

3x5

5
+

x6

60
− x7

70
− x10

25200
− 66 sinx

)
and

K∗K∗f = 1584x− 264x3 +
66x5

5
− 11x7

35
+

x9

210
+

x10

12600
− x11

23100
− x14

25225200
− 1584 sinx

hence

m(x) =

x(−39956716800 + 6659452800x2 − 332972640x4 + 7927920x6 − 120120x8 − 2002x9 + 1092x10 + x13) + 39956716800 sin x

x(−36626990400 + 6104498400x2 − 302702400x4 + 840840x5 + 7207200x6 − 120120x8 − 4004x9 + 1092x10 + x13) + 36626990400 sin x

u0 = 12x + x
2 − 2x

3 −
x6

30
− 11 sin x,

u1 =

143(x(−1663200 + 277200x2 − 15120x4 − 420x5 + 360x6 + x9) + 1663200 sin x)2

900(x(−36626990400 + 6104498400x2 − 302702400x4 + 840840x5 + 7207200x6 − 120120x8 − 4004x9 + 1092x10 + x13) + 36626990400 sin x)

u(x) = 12x + x
2 − 2x

3 −
x6

30
− 11 sin x +

143(x(−1663200 + 277200x2 − 15120x4 − 420x5 + 360x6 + x9) + 1663200 sin x)2

900(x(−36626990400 + 6104498400x2 − 302702400x4 + 840840x5 + 7207200x6 − 120120x8 − 4004x9 + 1092x10 + x13) + 36626990400 sin x)
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Example 4 Consider the following Volterra integral equation

u(x) = x−
∫ x

0

sinh(x− t)u(t)dt,

with exact solution u(x) = x− x3

6 .
Here, K∗f = x− sinhx and K∗K∗f = x+ 1

2x coshx− 3 sinh x
2 hence

m(x) =
2x+ x coshx− 3 sinhx

x coshx− sinhx

u0 = x,

u1 = − 2(x− sinhx)2

x coshx− sinhx

u(x) =
−2x2 + x2 coshx+ 3x sinhx− 2 sinhx2

x coshx− sinhx

Example 5 Consider the following Volterra integral equation

u(x) =
1

16
(7 cosx+ 9 cos 3x+ 4x sinx)−

∫ x

0

(x− t) cos(x− t)u(t)dt,

with exact solution u(x) = 1
3 (2 cos 3x+ 1).

Here, K∗f = 1
1536

(
−3(45 + 56x2) cosx+ 135 cos 3x− 4x(15 + 8x2) sinx

)
and

K∗K∗f =
1

245760

(
5(−675 + 24x2 + 224x4) cosx+ 3375 cos 3x+ 4x(3345 + 40x2 + 32x4) sinx

)
hence

m(x) =
5(−675 + 24x2 + 224x4) cos x + 3375 cos 3x + 4x(3345 + 40x2 + 32x4) sin x

5(3645 + 5400x2 + 224x4) cos x − 18225 cos 3x + 4x(5745 + 1320x2 + 32x4) sin x

u0 =
1

16
(7 cos x + 9 cos 3x + 4x sin x),

u1 = −
5(3(45 + 56x2) cos x − 135 cos 3x + 4x(15 + 8x2) sin x)2

48(5(3645 + 5400x2 + 224x4) cos x − 18225 cos 3x + 4x(5745 + 1320x2 + 32x4) sin x)

u(x) =
1

1536

(
96(7 cos x + 9 cos 3x + 4x sin x) −

160
(
3(45 + 56x2) cos x − 135 cos 3x + 4x(15 + 8x2) sin x

)2
5(3645 + 5400x2 + 224x4) cos x − 18225 cos 3x + 4x(5745 + 1320x2 + 32x4) sin x

)

Example 6 Consider the following nonlinear Volterra integral equation

u(x) = 1 + sin2x− 3

∫ x

0

sin(x− t)u2(t)dt,

with exact solution u(x) = cosx. Using the method, we have

u0 = f(x),

u1 = (1−m)K∗T (f), where m(x) =
K∗(K∗T (f)T ′(f))

K∗(K∗T (f)T ′(f))−K∗T (f)

and

K∗T (f) =

∫ b

a

k(x, t)T (f(t))dt

u(x) = u0 + u1.

In this problem K∗T (f) = 1
40 (−285 + 344 cosx− 60 cos 2x+ cos 4x) and

K∗(K∗T (f)T ′(f)) =
1

5600
(−176509 cosx+ 7315 cos 2x− 3(−57750 + 1505 cos 3x− 154 cos 4x+ cos 6x+ 30100x sinx))
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Table 1: The values of absolute error for examples 3–6.
x example 3 example 4 example 5 example 6

0.1 1.40e-14 2.183e-11 2.082e-9 5.735e-10
0.2 2.15e-14 2.790e-9 1.329e-7 1.42e-7
0.3 2.78e-13 4.759e-8 1.509e-6 3.423e-6
0.4 8.85e-12 3.556e-7 8.435e-6 3.148e-5
0.5 1.63e-10 1.691e-6 3.196e-5 1.689e-4
0.6 1.76e-9 6.036e-6 9.464e-5 6.397e-4
0.7 1.32e-8 1.768e-5 2.363e-4 1.895e-3
0.8 7.54e-8 4.480e-5 5.202e-4 4.668e-3
0.9 3.52e-7 1.016e-4 1.040e-3 9.964e-3
1.0 1.40e-6 2.111e-4 1.927e-3 1.896e-2

hence

m(x) =
176509 cosx− 7315 cos 2x+ 3(−57750 + 1505 cos 3x− 154 cos 4x+ cos 6x+ 30100x sinx)

−193200 + 200589 cosx− 11515 cos 2x+ 4515 cos 3x− 392 cos 4x+ 3 cos 6x+ 90300x sinx
,

u0 = 1 + sin2x,

u1 =
7(−285 + 344 cosx− 60 cos 2x+ cos 4x)2

4(−193200 + 200589 cosx− 11515 cos 2x+ 4515 cos 3x− 392 cos 4x+ 3 cos 6x+ 90300x sinx)
,

u(x) = 1 + sinx2 +
7(−285 + 344 cosx− 60 cos 2x+ cos 4x)2

4(−193200 + 200589 cosx− 11515 cos 2x+ 4515 cos 3x− 392 cos 4x+ 3 cos 6x+ 90300x sinx)
.
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