
J. Intell. Syst. 2020; 29(1): 1007–1027

Prem Singh* and Himanshu Chaudhary

A Modi�ed Jaya Algorithm for Mixed-Variable
Optimization Problems
https://doi.org/10.1515/jisys-2018-0273

Received June 25, 2018; previously published online October 23, 2018.

Abstract: Mixed-variable optimization problems consist of the continuous, integer, and discrete variables

generally used in various engineering optimization problems. These variables increase the computational

cost and complexity of optimization problems due to the handling of variables. Moreover, there are few

optimization algorithms that give a globally optimal solution for non-differential and non-convex objective

functions. Initially, the Jaya algorithm has been developed for continuous variable optimization problems.

In this paper, the Jaya algorithm is further extended for solving mixed-variable optimization problems. In

the proposed algorithm, continuous variables remain in the continuous domain while continuous domains

of discrete and integer variables are converted into discrete and integer domains applying bound constraint

of the middle point of corresponding two consecutive values of discrete and integer variables. The effective-

ness of the proposed algorithm is evaluated through examples ofmixed-variable optimizationproblems taken

from previous research works, and optimum solutions are validated with other mixed-variable optimization

algorithms. The proposed algorithm is also applied to two-plane balancing of the unbalanced rigid threshing

rotor, using the number of balance masses on plane 1 and plane 2. It is found that the proposed algorithm is

computationally more efficient and easier to use than other mixed optimization techniques.

Keywords:Modified Jaya algorithm, mixed variables, constraint handling, penalty function, balancing.

1 Introduction

Various optimization problems deal with integer, discrete, and continuous variables, known as mixed-

variable optimization problems. However, many practical design problems consider only discrete and integer

variables. Like structural design, the number of bolts for a connection, balancing of the rotor using a set

of the balance masses on each plane, and standard diametric pitch of the gear are some examples of dis-

crete variable optimization problems due to a predefined set of standard values. Integer variables are often

used for identical elements in engineering design problems such as the number of teeth of a gear [4]. Most

researchers have been focused on continuous variable optimization algorithms, where optimum values of

design variables lie within their bounds. However, these algorithms are not sufficient for practical design

problems due to a predefined set of design variables. Therefore, in recent years, the mixed-variable optimiza-

tion methods are developed for real-world optimization problems. However, mixed-variable optimization

problems can be solved by two classes of optimization techniques: classical and evolutionary techniques.

Classical techniques, such as sequential linear programming [24], branch and bound methods [5, 22, 40], a

penalty function approach [14, 41], Lagrangian relaxation [15, 18], rounding-off techniques based on con-

tinuous variables, cutting plane techniques, and zero-one variable techniques (integer programming) [1]

have been applied to mixed-variable optimization problems in order to find out the optimum design vari-

ables. However, these methods include more computational cost, low efficiency, and low complexity due

to the determination of derivatives and the Hessian matrix of the objective function [3]. Moreover, most of

*Corresponding author: Prem Singh,Mechanical Engineering Department, Malaviya National Institute of Technology, Jaipur,

Rajasthan, India, e-mail: premsingh001@gmail.com

Himanshu Chaudhary:Mechanical Engineering Department, Malaviya National Institute of Technology, Jaipur, Rajasthan, India

Open Access. © 2020 Walter de Gruyter GmbH, Berlin/Boston. This work is licensed under the Creative Commons Attribution

4.0 Public License.

https://doi.org/10.1515/jisys-2018-0273
mailto:premsingh001@gmail.com

1008 | P. Singh and H. Chaudhary: Modi�ed Jaya Algorithm

these algorithms work on continuous and differentiable objective function. Further, these give local optimal

solution due to convergence on optimal solution near the start point [2].

Recently, evolutionary optimization techniques are considered effective tools for mixed-variable opti-

mization problems. The differential evolution (DE) [21], evolutionary programming (EP) [7], evolutionary

algorithms (EAs) [11], genetic algorithms (GAs) based on mixed variables [10, 34, 46] and discrete variables

[30], particle swarm optimization (PSO) algorithms applied to mixed variables [16, 17, 19, 29, 44] and discrete

variables [23], ant colonyoptimization (ACO) [6], artificial bee colony (ABC) [43], teaching-learningbasedopti-

mization (TLBO) [12], and simulated annealing (SA) [20, 47] are some evolutionary optimization algorithms.

Moreover, these algorithms do not require any calculation of derivatives and the Hessian matrix as in the

case of classical optimization algorithms. Non-convex and non-differentiable objective function can also be

handled using these algorithms.

However, the performance of these algorithms can be affected due to the requirement of algorithmic

parameters for its convergence. The selection of these optimization parameters increases the complexity

of algorithms. However, these algorithms cannot guarantee giving the global solutions within a definite

time. Further, the convergence of these algorithms is slow, thus increasing the computational cost. More-

over, the TLBO algorithm also does not require any algorithmic parameter for its convergence. However, the

optimization problems have been solved using two phases: teacher phase and learner phase [9, 31, 35].

The Jaya algorithm is also an evolutionary algorithm. Initially, it has been developed for continuous

design variable optimization problems by Rao [32]. Recently, this algorithmhas been implemented for solving

integer and discrete variable optimization problems [13]. However, no relevant algorithm has been pub-

lished in which the Jaya algorithm has been applied for solving the mixed-variable optimization problems

or optimization problems associated with all variables. Therefore, a modification is made to the original

Jaya algorithm for solving themixed-variable optimization problems. In themodified Jaya algorithm, integer,

discrete, and continuous variables are treated as continuous variables in the initial solution.

Further, continuous variables remain in the continuous domainwhile continuous domains of integer and

discrete variables are converted into discrete and integer domains applying bound constraint of the middle

point of corresponding two consecutive values of integer and discrete variables. It works on one phase only

and uses an initial population to find an optimum global solution. Moreover, this algorithm finds the optimal

solution rapidly and updates the worse solution in every iteration [38, 39]. It is easier to use than the other

evolutionary optimization algorithms such as ABC, GA, SA, and PSO, etc., and any algorithmic parameters

are not required in this algorithm [36]. Furthermore, this algorithm gives a right balance between exploitation

and exploration in design space. The robustness and effectiveness of the proposed algorithm are validated

through examples of mixed-variable optimization problems taken from the literature, and optimum results

are comparedwith other evolutionary optimizationalgorithms. It is found that theproposedalgorithm ismore

efficient and easier to use for mixed-variable optimization problems. Continuous and discrete optimization

problems can also be solved separately using this algorithm.

The rest of the paper is structured as follows: the optimization problem based on mixed variables is

formulated in Section 2. A modified Jaya optimization algorithm is proposed in Section 3, while Section 4

analyzes and validates the results of the proposed algorithm through standard design examples. It is also

applied for two-plane balancing of the unbalanced rigid threshing rotor. Finally, conclusions are presented in

Section 5.

2 Formulation of Mixed-Variable Optimization Problems

This section describes the formulation of optimization problems based on mixed variables. The optimiza-

tion problem is generally formulated similarly as general optimization problems; the only difference is that

variables may be in any form of an integer, discrete, and continuous variable. The optimization problems are

formulated by considering continuous and discrete variables as a design variable; the optimization problems

are known as continuous and discrete optimization problems. Moreover, problems associated with discrete,

integer, and continuous variables are known as mixed-variable optimization problems. The mixed-variable

P. Singh and H. Chaudhary: Modi�ed Jaya Algorithm | 1009

optimization problem is defined in mathematical form as

Minimize/Maximize Z(x),

Subjected to gs(x) ≤ 0, s = 1, 2, cin.

x =

[

x
c, xint, xd

]T

=

[

xc1, x
c
2., ., ., x

c
nc , x

int
1 , xint2 ., ., ., , xintnint , x

d
1 , x

d
2 ., ., ., ., x

d
nd

]

xdi ∈ Di , Di

(

di1, di2, di3 dimi

)

, i = 1, ., ., ., .nd

xinti ∈ Gi , Gi

(

gi1, gi2, gi3 giqi
)

, i = 1, ., ., ., .nnint

xcLi ≤ xci ≤ xcUi

xdLi ≤ xdi ≤ xdUi

xintLi ≤ xinti ≤ xintUi ,

(1)

where Z(x) and g(x) denote the objective functions and non-equality constraints, respectively. cin denotes

the numbers of total inequality constraints. x =

[

x
c, xint, xd

]T

is the vector of design variables. xc, xd, and

x
int present the vector of continuous, discrete, and integer variables. nc, nd, and nint represent the num-

ber of continuous, discrete, and integer variables, respectively. The total number of variables is given as

n = nc + nint + nd. dij and gij are the jth discrete and integer values for the ith variable, respectively. mi

and qi are the number of discrete and integer values for the ith variable, respectively. Di and Gi are sets of dis-

crete values and integer values for the ith variable, respectively. However, the number of discrete values may

be different for each variable. xcLi , xdLi , and xintLi are the lower bounds of ith continuous, discrete, and integer

variables, respectively. xcUi , xdUi , and xintUi are the upper bounds of ith continuous, discrete, and integer vari-

ables, respectively. If there are any equality constraints in the optimization problem, these can be converted

into inequality constrains.

The constraint optimization problem described in Eq. (1) is changed into an unconstrained optimization

problem using penalty function [42]. The objective function is penalized for an infeasible solution for each

constraint violation. Hence, the global optimum solutions, those that satisfy all the constraints, are obtained.

Finally, the unconstrained optimization problem is posed as a combination of the objective function and

penalty function:

φ(x) = f (x) +

cin
∑

j=1

Cj ∗ pnr , (2)

x
L

i
≤ xi ≤ x

U

i
, (3)

where pnr (r = 1 to cin) presents the penalty value of 105 assigned to objective function for constraint

violation. The Boolean function [28] is represented by Cj, defined as

Cj =







0 if gs(x) ≤ 0

1 otherwise
. (4)

3 A Modi�ed Jaya Algorithm for Mixed-Variable Optimization

Problems

This section describes a modified Jaya algorithm proposed for mixed-variable optimization problems.

The original Jaya algorithm has been developed by Rao in 2016. It is a population-based evolutionary

algorithm that does not require any parameter for its convergence. It works only on one phase compared to

TLBO that works on two phases (teacher and learner phases). This algorithm converges rapidly toward the

1010 | P. Singh and H. Chaudhary: Modi�ed Jaya Algorithm

Figure 1: A Modi�ed Jaya Algorithm for Mixed-Variable Optimization Problems.

optimal solution in each iteration [33, 37]. The readers may refer to Ref. [32] for the flowchart of original Jaya

algorithm. Generally, continuous variables are converted into non-continuous variables using rounding-off

operators. Rounding-off operation of a continuous variablemay violate the constraints due to the existence of

optimal continuous solutions on the boundaries of the functional constraints. Further, researchers check the

optimum values for integer and discrete variables before rounding off corresponding continuous variables so

that constraints are not violated after rounding off, although this operation increases calculation time.

Therefore, the original Jaya algorithm is modified to handle the various design variables in optimization

problems without violation of constraints. This algorithm has no algorithmic parameter and converges fast

to the optimal global solution. This algorithm begins with the initialization of parameters. Initial solutions

P. Singh and H. Chaudhary: Modi�ed Jaya Algorithm | 1011

of all variables are generated in continuous space randomly. Further, continuous variables remain in contin-

uous space while the continuous domain of discrete/integer variables is converted into discrete domain by

using bound constraint of amiddle point of corresponding two consecutive values of discrete and integer vari-

ables. For example, the continuous solutions of discrete and integer variables (xncij) lie between corresponding

discrete values xnc(k) and xnc(k + 1). Then, the continuous solutions of discrete and integer variables are

converted into discrete solutions if xncij ≤ xnc(k)+xnc(k+1)
2 , xncij = xnc(k) otherwise xncij = xnc(k + 1), as shown

in Figure 1. Further, the best and worse solutions of the objective function are compared with previous solu-

tions at each iteration. Thus, the best solution is stored and the worse solution is updated in each iteration.

The procedure of this algorithm continues until the termination criteria are satisfied. The termination criteria

are described by function evaluations and the number of generations. The number of function evaluations

is the product of the number of iterations and initial populations or population size, i.e. (number of function

evaluations=population size × number of iterations). Thus, function evaluations are not affected by design

variables, but the computational time of the algorithm can be increased. Generally, an algorithm is efficient

if it takes the fewer number of function evaluations. The detailed procedure of this algorithm is explained

by the flowchart shown in Figure 1. Moreover, this algorithm reduces the computational effort than the other

mixed optimization algorithms. However, this is the first time it is applied to mixed optimization problems.

4 Design Problems

In this section, the effectiveness of the proposed algorithm as described in the previous section is val-

idated through five design problems taken from the literature. These design problems have been tested

using other evolutionary mixed optimization algorithms such as EP [7], EA [11], GAs [10, 30, 34, 46], PSOs

[16, 17, 19, 23, 29, 44], ACO [6], ABC [43], TLBO [12], and SAs [20, 47]. However, these problems involve contin-

uous, discrete, and integer variables. Moreover, the optimum results of the proposed algorithm are validated

to optimum solutions achieved by other algorithms. This algorithm is also applied to two-plane balancing of

unbalance rigid threshing rotor. This algorithm is implemented in MatLab. Bold faces in Tables represent the

best values of the design variables and the objectives.

4.1 Validation of the Proposed Algorithm Through Five Design Problems

The five design problems are given as follows:

Example 1: Design of a welded beam

This design problem includes mixed variables taken from Refs. [21, 29], and the objective of this example is

to determine the minimum cost of the welded beam design shown in Figure 2. There are seven non-linear

and linear constraints. The length of the welded joint (l), thickness of the weld (h), bar breadth (b), and

bar thickness (t) are taken as design variables. l and h are two integer variables, while b and t are two

discrete variables whose values are multiples of 0.5. These design variables are defined in vector form as

x = [x1, x2, x3, x4]
T

= [l, h, b, t]
T .

Figure 2:Welded Beam Design [29].

1012 | P. Singh and H. Chaudhary: Modi�ed Jaya Algorithm

The optimization formulation of this design is given as

min f (x) = 1.10471x22x1 + 0.04811x3x4(14 + x1).

Subjected to

g1(x) = x2 − x3 ≤ 0

g2(x) = σ(x) − σmax ≤ 0

g3(x) = 0.10471x22 + 0.04811x3x4(14 + x1) − 5.0 ≤ 0

g4(x) = τ(x) − τmax ≤ 0

g5(x) = 0.125 − x2 ≤ 0

g6(x) = P − Pc(x) ≤ 0

g7(x) = δ(x) − δmax ≤ 0

0.1 ≤ x1 ≤ 10.0

0.1 ≤ x2 ≤ 2.0

x3, x4 ∈ [0.5, 1.0, 1.5, 2.0, 2.5, ., ., ., ., ., ., ., ., ., ., .9.5, 10.0]







































































































































, (5)

where

δ(x) =
4PL3

Ex34x3
, σ(x) =

6PL

x3x
2
4

, Pc(x) =

4.013
√

EG
(

x24x
6
3/36

)

l2

(

1 − x4
2L

√

E

4G

)

τ(x) =

√

(τ′)
2

+ 2τ′τ′′
x2
2R

+ (τ′′)
2
, τ′ =

P√
2x1x2

, τ′′ =
MR

J
, M = P

(

L +
x1
2

)

, R =

√

x21
4

+

(x2 + x4
2

)2

J = 2
√
2x1x2

(

x21
12

+

(x2 + x4
2

)2
)

.

The design parameters are taken as

P = 6000 lb, E = 30 × 10
6 lbf/in2, G = 12 × 10

6 lbf/in2, L = 14 in,

τmax = 13,600 lbf/in2, δmax = 0.25 in, σmax = 30,000 lbf/in2.

A total of 20 initial populations and 30 iterations are chosen for this design example. The best objective

function values and themean of all function values corresponding to the best run are obtained in 20 indepen-

dent runs. The convergence performance of the best andmean values of the objective function is presented in

Figure 3. Thebest andmeanvalues of the objective function are obtained in 600 function evaluations as 4.3521

and 4.3521, respectively. The optimum solutions of the welded beam design are validated with the optimum

solutions of other algorithms, as shown in Table 1. Table 1 presents that the proposed algorithm gives a better

optimum design than that of Ref. [34] and equal to that of Refs. [29, 44]. However, the proposed algorithm

takes less function evaluation for finding the best objective function value compared to other evolutionary

optimization algorithms.

P. Singh and H. Chaudhary: Modi�ed Jaya Algorithm | 1013

0 100 200 300 400 500 600
4

4.5

5

5.5

6

6.5

7

7.5

8

Function evaluations

F
u
n
c
ti

o
n
 v

a
lu

e
s

Best

Mean

Figure 3: Convergence Graph of Best and Mean Values of Objective Function for Welded Beam Design.

Table 1: Optimum Designs of the Welded Beam.

Design variables (x) MDHGA [34] HPB [29] MPSO [44] This study

x1 2.0 1 1 1

x2 1.0 1 1 1

x3 1.0 1 1 1

x4 4.5 4.5 4.5 4.5

f (x) 5.67334 4.3521 4.3521 4.3521

Function evaluations - 800 6750 600

Constraints violation None None None None

MDHGA, Mixed discrete hybrid genetic algorithm; HPB, Hybrid particle swarm branch and bound; MPSO, Modi�ed particle

swarm optimization. Bold face represent the best values of the design variables and the objective.

Figure 4: Pressure Vessel Design [40].

Example 2: Pressure vessel design

This design deals with the pressure vessel design taken from the literature [40], as shown in Figure 4. The

objective of this design is to minimize the manufacturing cost of the pressure vessel with specific design

constraints. The design variables are taken as shell thickness (Ts), spherical head thickness (Th), radius (R),

and shell length (L). Ts and Th are the discrete variables whose values are multiples of 0.0625 in, while R and

L are defined as continuous variables. The design variables are described in vector form as

x = [x1, x2, x3, x4]
T

= [Th , Ts , l, R]
T
.

The optimization problem is posed [40] as

min f (x) = 0.6224x2x3x4 + 1.7781x1x4
2

+ 3.1661x2
2x3 + 19.84x2

2x4.

1014 | P. Singh and H. Chaudhary: Modi�ed Jaya Algorithm

Subjected to

g1(x) = 0.0193x4 − x2 ≤ 0

g2(x) = 0.00954x4 − x1 ≤ 0

g3(x) = 1296,000 − πx4
2x3 − 4

3
πx4

2 ≤ 0

g4(x) = x3 − 240 ≤ 0

10 ≤ x3 ≤ 200

10 ≤ x4 ≤ 200

x1, x2 ∈ [0.0625, 0.1250, 0.1875, 0.2500, ., ., ., ., ., ., 6.00, 6.0625, 6.1250, 6.1875]







































































. (6)

The number of iterations and initial populations are considered as 100 and 20, respectively, for this exam-

ple. Ten independent runs are chosen to find the best values of the objective function andmeanof all objective

function value corresponding to the best run. The convergence rates of the best and mean objective function

values are shown in Figure 5. The best and mean values of the objective function are obtained in 2000 func-

tion evaluations as 6059.70 and 6059.74, respectively. The optimum results for the design of pressure vessel

are shown in Table 2. Table 2 shows that the optimum value of the objective function is better than that of

other optimization algorithms. Moreover, the proposed algorithm takes less function evaluation for finding

the best objective function value compared to different evolutionary optimization algorithms.

0 500 1000 1500 2000

0.5

1

1.5

2

2.5

3
×104

Function evaluations

F
u

n
c
ti

o
n

 v
a
lu

e
s

Best

Mean

Figure 5: Convergence of Best and Mean Values of Objective Function for Pressure Vessel Design.

Table 2: Optimum Solutions for the Design of Pressure Vessel.

Design variables (x) EP [7] EA [11] GA [10] PSO [17] HPB [29] MPSO [44] This study

x1 0.625 0.5 0.4375 0.4375 0.4375 0.4375 0.4375

x2 1 0.9345 0.8125 0.8125 0.8125 0.8125 0.8125

x3 90.7821 112.679 176.654 176.6366 176.6366 176.636792 176.636792

x4 51.1958 48.329 40.0974 42.09845 42.09845 42.098446 42.098446

f (x) 7108.616 6410.381 6059.946 6059.714 6059.714 6059.718932 6059.700

Function evaluations 100,000 42,000 30,000 30,000 4013 400,000 2000

Constraints violation None None None None None None None

HPB, Hybrid particle swarm branch and bound; MPSO, Modi�ed particle swarm optimization. Bold face represents the best

values of the design variables and the objective.

P. Singh and H. Chaudhary: Modi�ed Jaya Algorithm | 1015

Example 3: Ten-bar planar truss design

A 10-bar planar truss design is taken as an optimization problem shown in Figure 6 [30]. In this truss struc-

ture design, a minimization optimization problem is formulated by considering the weight of the truss as

the objective function with the constraints of displacements at each nodal point and the stress induced in

each member. This problem is based on discrete optimization problems in which cross-sectional areas of

each member are discrete variables. The nodes 2 and 4 are subjected to a vertical nodal load of 100 kips.

The modulus of elasticity of the material of each bar and the density are considered as E = 10,000 ksi and

ρ = 0.1 lb/in3, respectively. The allowable displacements for the free nodes and the allowable stress for all

members are taken as ±2 in for both directions and ±25 ksi, respectively. Ten discrete design variables and

their values are selected from the standard values D = {1.62, 2.38, 1.99, 1.80, 2.13, 2.62, 2.88, 3.09, 2.93, 2.63,
3.13, 3.38, 3.47, 3.55, 3.63, 3.84, 3.87, 3.88, 4.18, 4.22, 4.49, 4.59, 4.80, 4.97, 5.12, 5.74, 7.22, 7.97, 11.5, 13.5, 14.2, 13.9,

15.5, 16.0, 16.9, 18.8, 1.99, 22.0, 22.9, 26.5, 30.0, 33.5} (in2) [1]. The vector form of design variables is expressed as

x = [xi] = [Ai] i = 1 to 10.

The formulation of the problem is presented as

Minimize weight (f) =

n
∑

i=1

ρxiLi .

Subjected to

σi
σa

− 1 ≤ 0

ui
ua

− 1 ≤ 0















, (7)

where Li, σi, ui, and Ai are length, stresses, deflection, and cross-sectional area of the i-th member,

respectively.

For this problem, the initial populations and the number of iterations are set to 10 and 95, respectively.

Ten independent runs are performed to find out the best values of the objective function, and the mean of

all objective function values correspond to best run. The best and mean values of the objective function in

10 runs are 5490.74 and 5493.54, respectively. This algorithm takes 9500 function evaluations. The conver-

gence plot of the best and mean values of the objective function is shown in Figure 7. The comparison of

optimum solutions for planar 10-bar truss is presented in Table 3. Table 3 shows that the optimum objective

function value is better than that of Refs. [23, 30] and close to that of Refs. [6, 12, 20, 32, 43]. However, the

proposed algorithm takes less function evaluation for finding the best objective function value compared to

other evolutionary optimization algorithms. Thus, the proposed approach is more efficient and reduces the

computational cost.

(6)

a = 360 in. (9144 mm)

y

3

5

10

(5) (3) (1)

a a

a

6

21

8

(4) (2)

P
1

P
1

4

7 9

Figure 6: A Planar 10-Bar Truss Structure [30].

1016 | P. Singh and H. Chaudhary: Modi�ed Jaya Algorithm

0 200 400 600 800
5000

5500

6000

6500

7000

7500

8000

8500

9000

9500

10,000

Function evaluations

F
u
n
c
ti

o
n
 v

a
lu

e
s

Best

Mean

Figure 7: Convergence of Best and Mean Values of Objective Function for Planar 10-Bar Planar Truss.

Table 3: Comparison of Optimum Solutions for Planar 10-Bar Truss Structure.

Design variables (in2) GA [30] SA [20] HPSO [23] ACO [6] ABC [43] TLBO [12] Jaya [32] This study

A1 33.5 33.5 30 33.5 33.5 33.5 33.5 33.5

A2 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62

A3 22 22.9 22.9 22.9 22.9 22.9 22.9 22.9

A4 15.5 14.2 13.5 14.2 14.2 14.2 14.2 14.2

A5 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62

A6 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62

A7 14.2 7.97 7.97 7.97 7.97 7.97 7.97 7.97

A8 19.9 22.9 26.5 22.9 22.9 22.9 22.9 22.9

A9 19.9 22 22 22 22 22 22 22

A10 2.62 1.62 1.8 1.62 1.62 1.62 1.62 1.62

W (lb) 5613.84 5490.74 5531.9 5490.74 5490.74 5490.74 5490.74 5490.74

Function evaluation N/A N/A 50,000 10,000 25,800 1000 950 950

Constraints violation None None None None None None None None

Bold face represents the best values of the design variables and the objective.

Example 4: A helical spring design

This example consists of the design of helical spring under the constant and axial load, as shown in Figure 8

[29]. The minimization of spring weight is considered as an objective function with certain inequality con-

straints. The number of spring coils (N), outside diameter of the spring (D), and spring wire diameter (d) are

the design variables. This problem involves integer, discrete, and continuous variables, where the number

of coils (N) is an integer variable, the outside diameter of the spring (D) is a continuous variable, and the

spring wire diameter is a discrete variable, whose standard values are chosen. Design variables are in vector

form as

x = [x1, x2, x3]
T

= [D, N, d]
T
.

The formulation of the optimization problem is posed as

min f (x) =
π2x2x

2
1(x3 + 2)

4
.

P. Singh and H. Chaudhary: Modi�ed Jaya Algorithm | 1017

Figure 8: Design of Helical Spring [29].

Subjected to

g1(x) =
8Cf Fmax x2

πx33
− S ≤ 0

g2(x) = lf − lmax ≤ 0

g3(x) = dmin − x3 ≤ 0

g4(x) = x2 − Dmax ≤ 0

g5(x) = 3.0 − x1
x3

≤ 0

g6(x) = δ − δm ≤ 0

g7(x) = δ +
Fmax − F

K
+ 1.05(x2 + 2)x3 − lf ≤ 0

g8(x) = δw − Fmax − F

K
≤ 0

0.6 ≤ x1 ≤ 3

1 ≤ x2 ≤ 70

x3 ∈ [0.009, 0.0095, 0.0104, 0.0118, 0.0128, 0.0132, 0.014, 0.015,

0.0162, 0.0173, 0.018, 0.020, 0.023, 0.025, 0.028, 0.032, 0.035,

0.041, 0.047, 0.054, 0.063, 0.072, 0.080, 0.092, 0.105, 0.120,

0.135, 0.148, 0.162, 0.177, 0.192, 0.207, 0.225, 0.244, 0.263,

0.283, 0.307, 0.331, 0.362, 0.394, 0.4375, 0.500]



























































































































































































(8)

where

Cf =

4
(

x1
x3

)

− 1

4
(

x1
x3

)

− 4
+

0.615x3
x1

, K =
Gx43
8x2x

3
1

, δ =
F

K
, lf =

Fmax

K
+ 1.05(x2 + 2)x3.

1018 | P. Singh and H. Chaudhary: Modi�ed Jaya Algorithm

The values of predefined parameters of spring are given as

Fmax = 1000.0 lb, lmax = 14.0 in, dmin = 0.2 in, S = 189,000.0 lbf/in2, dmax = 3.0 in, F = 300.0 lb.

δm = 6.0 in, δw = 1.25 in, G = 11.5 × 10
6 lbf/in2.

For this design problem, the number of iterations and initial populations are set to 40 and 20, respec-

tively. Twenty independent runs are chosen to find the best values of the objective function and the mean

of all objective function values corresponding to the best run. The convergence performance of the best and

mean objective function values is shown in Figure 9. The best and mean values of the objective function are

obtained in 800 function evaluations as 2.6585 and 2.7746, respectively. The optimum design of the spring is

validated with the results obtained by other algorithms as shown in Table 4. Table 4 shows that the proposed

algorithm gives a better optimumvalue of the objective function than that of Ref. [11] and equal to that of Refs.

[17, 21, 29, 44]. However, the proposed algorithm takes less function evaluation for finding the best objective

function value compared to other evolutionary optimization algorithms.

Example 5: Compound gear train design

The purpose of this design is to obtain the optimum gear ratio of the gear train arrangement as presented in

Figure 10 [16]. The ratio of the output shaft angular velocity to the input shaft angular velocity is known as

the gear ratio of the gear train. The effective overall gear ratio Gr is expressed as

Gr =
ωout

ωin
=

TbTd
TaTf

,

0 200 400 600 800
1

2

3

4

5

6

7

8

Function evaluations

F
u
n
c
ti

o
n
 v

a
lu

e
s

Best

Mean

Figure 9: Convergence Characteristic of Objective Function for Spring Design.

Table 4: Optimal Solutions Comparison for the Spring Design.

Design variables (x) EA [11] DE [21] PSO [17] HPB [29] MPSO [14, 44] This study

x1 1.226 1.223041 1.223041 1.223041 1.223041 1.2231

x2 9 9 9 9 9 9

x3 0.283 0.283 0.283 0.283 0.283 0.283

f (x) 2.665 2.65856 2.65856 2.6585 2.6585 2.6586

Function evaluations 30,000 30,000 30,000 835 10,000 800

Constraints violation None None None None None None

HPB, hybrid particle swarm branch and bound; MPSO, modi�ed particle swarm optimization. Bold face represent the best

values of the design variables and the objective.

P. Singh and H. Chaudhary: Modi�ed Jaya Algorithm | 1019

Figure 10: Gear Train Design [16].

where ωin and ωout represent input and output shaft angular velocities, respectively, and the number of

teeth of each gear is represented by T. The teeth number of each gear is taken as a design variable. How-

ever, all design variables are integers whose values lie between 12 and 60. A vector form of design variables

is expressed as

x = [Tb Td Ta TF]
T

= [x1 x2 x3 x4]
T
.

The optimization problem is posed as

f (x) =

(

1

6.931
− x1x2

x3x4

)2

,

12 ≤ xi ≤ 60, i = 1 to 4. (9)

The initial populations of 150 and the number of iterations of 100 are decided for this example. The best

value of the objective function and themean of all function values corresponding to best run are obtained for

30 independent runs. The convergence performance of objective function values is shown in Figure 11. The

best and mean values of the objective function are obtained in 15,000 function evaluations as 2.7 × 10−12

and 1.4311 × 10−7, respectively. The optimum design of the gear train is validated with the design achieved

byother algorithmsas shown inTable 5. Table 5 presents that theproposed algorithmgives anearly sameopti-

mum solution of the objective function to that of the different evolutionary algorithm. However, it minimizes

the percentage of error known as the difference between the mean and best values of objective functions,

compared to other optimization algorithms. Thus, the proposed algorithmcanbe effectively applied to integer

optimization problems.

0 5000 10,000 15,000

0.5

1

1.5

2

2.5

Function evaluations

F
u

n
c
ti

o
n

 v
a
lu

e
s

Best

Mean

×10–6

Figure 11: Convergence Graph of Best and Mean Values of Objective Function for Gear Train Design.

1020 | P. Singh and H. Chaudhary: Modi�ed Jaya Algorithm

Table 5: Optimal Design for the Compound Gear Train.

Design variables (x) SA [47] EP [7] HSIA [16] MPSO [44] Jaya [32] This study

x1 30 30 16 16 16 16

x2 15 15 19 19 19 19

x3 52 52 43 43 43 43

x4 60 60 49 49 49 49

f (x) 2.36 × 10−6 2.36 × 10−6 2.7 × 10−12 2.7 × 10−12 2.7 × 10−12 2.7 × 10−12

Function evaluations – – – 400,000 18,000 15,000

% Error 0.033 0.033 0.0011 0 9.8 × 10−13 9.8 × 10−13

Gear ratio 0.14423 0.14423 0.14428 0.14428 0.14428 0.14428

HSIA, Hybrid swarm intelligence approach; MPSO, Modi�ed particle swarm optimization. Bold face represent the best values of

the design variables and the objective.

4.2 Application – Two-Plane Balancing of Unbalanced Rigid Threshing Rotor

The proposed algorithm developed in Section 3 is applied for balancing of the rigid threshing rotor. The

threshing rotor is an important part of agricultural thresher machine and detaches grains from the panicles

by impact action of the beaters attached to the rotor [45]. In this problem, the rotor is balanced by placing the

number of discrete masses at corresponding discrete angles on two balanced planes. Moreover, this balanc-

ing problem involves only discrete variables. A rotor is mounted on bearings p and q, as shown in Figure 12.

A fixed coordinate system is denoted by (x, y, z), while a rotating coordinate (xr , yr , zr) is attached to the

shaft rotating at a constant angular velocity ω about the z-axis. The point O denotes the origin of the coordi-

nate system. Two balance planes are centered at points c1 and c2, respectively. The rotor’s center of mass is

eccentric at a distance of e from the axis of rotation due to imbalance of the rotor. Fp and Fq are lengths mea-

sured from O to the bearings p and q, respectively. The numbers of discrete massesmij (j = 1 toMi) placed at

radius Ri correspond to discrete angular positions αij made to x-axis on balance plane i (i = 1, 2), as shown in

Figure 12.

The rotor is described by its massm and inertia tensor IG. Inertia tensor IG is given as

[IG] =











Ixx Ixy Ixz

Ixy Iyy Iyz

Iyz Iyz Izz











. (10)

The position of its center of mass G is given as OG(ex , ey),

where ex = ecos(θ + ωt) and ey = esin(θ + ωt).

The equilibrium forces and moments acting on supports are determined.

Figure 12: Balancing Model of Rigid Threshing Rotor.

P. Singh and H. Chaudhary: Modi�ed Jaya Algorithm | 1021

The resultant forces Fp and Fq acting on supports p and q are determined using the Newton–Euler

equation [8] as

Fp =
ω2

lp − lq

√

√

√

√

√

√

√

√

√

√

√

√



Ixz + mlqex +

2
∑

i=1

Mi
∑

j=1

mijRi(lq − li)cosαij





2

+



Iyz + mlqey +

2
∑

i=1

Mi
∑

j=1

mijRi(lq − li)sinαij





2

.

(11)

Fq =
ω2

lp − lq

√

√

√

√

√

√

√

√

√

√

√

√



Ixz + mlpex +

2
∑

i=1

Mi
∑

j=1

mijRi(lp − li)cosαij





2

+



Iyz + mlpey +

2
∑

i=1

Mi
∑

j=1

mijRi(lp − li)sinαij





2

.

(12)

Moreover, the resultant reaction forces for the unbalanced rotor (when balance masses per plane are

placed as zero value) are calculated using Eqs. (15) and (16) as

Fpu =
ω2

lp − lq

√

(Ixz + mlqex)
2

+ (Iyz + mlqey)
2
. (13)

Fqu =
ω2

lp − lq

√

(Ixz + mlpex)
2

+ (Iyz + mlpey)
2
. (14)

Normalized forces FP,norm and FQ,norm with respect to FPu and Fqu is written as

Fp,norm =
FP
FPu

. (15)

Fq,norm =
Fq
Fqu

. (16)

The minimization of reaction forces Fp and Fq acting on supports is expressed as multi-objective func-

tionswith discrete constraints on design variables. Thesemulti-objective functions are converted into a single

objective function using appropriate weighting factors having any values of 0, 1, and between 0 and 1 based

on the importance of the objective functions. The rotor is balanced by placing themasses at different angular

positions at a fixed radius from the finite sets of masses and available angular position for each balancing

plane. Thesemasses and angular position per plane are taken as design variables, where xi of design variable

for the i-th plane is expressed in vector form as

xi =
[

mi1 αi1 mi2 αi2 mi3 αi3 . . . miMi
αiMi

]T
, (17)

wheremij and αij are the j-th mass and corresponding angular position of the i-th plane, respectively. Hence,

the design vector, x, for the rotor having two balancing planes as shown in Figure 12 is given by

x =

[

x
T
1 x

T
2

]T
. (18)

The formulation of the optimization problem is expressed as a weighted sum of the reaction forces acting

on supports as given in Eqs. (17) and (18) as

Minimize Z = w1FP,norm + w2FQ,norm . (19)

1022 | P. Singh and H. Chaudhary: Modi�ed Jaya Algorithm

The discrete constraint to design variables is defined as

mij ∈
{

m1;m2;m3;m
D1

}

αij ∈
{

α1; α2; α3; α
D2

}







for i = 1, 2 and j = 1, 2 . . . , . . . ,Mi .

LBi ≤ xi ≤ UBi i = 1, , N, (20)

WhereD1 andD2 are total numbers of discrete values of masses and discrete values of corresponding angular

position, LBi andUBi denote the lower and upper side constraints of i-th design variable, andM andN repre-

sent the number of balancing masses and number of design variables, respectively. The weighting factors w1

andw2 are used to assign weightage to forces acting on supports. These factors transform the multiple objec-

tive functions into a single objective function. The various approaches for selection of the weighting factors

are presented in Refs. [25, 26]. The weightage defines the importance of the various objective functions. How-

ever, both the objective functions have equal importance in the balancing of the unbalance rotor. Therefore,

w1 = 0.5 and w2 = 0.5 are chosen for this study.

Table 6: Comparison of Performance of the Modi�ed Jaya Algorithm with a GA Algorithm [27].

Algorithm No. of masses Population size No. of iterations No. of function evaluations Possible solutions

GA M1 = M2 = 1 50 150 7500 7056

M1 = M2 = 2 150 300 45,000 49.8 × 106

M1 = M2 = 3 400 3000 12 × 105 3.51 × 1011

Modi�ed Jaya M1 = M2 = 1 10 100 1000 (−87%) 7056

M1 = M2 = 2 100 200 20,000 (−56%) 49.8 × 106

M1 = M2 = 3 300 2500 7.5 × 105 (−38%) 3.51 × 1011

×104

×105

0 2000 4000 6000 8000
0.1

0.2

0.3

0.4

0.5

Function evaluations Function evaluations

F
u
n
ct

io
n
 v

al
u
es

M1 = M2 = 1

GA

Modified jaya

0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

F
u
n
ct

io
n
 v

al
u
es

M1 = M2 = 2

GA

Modified jaya

0 5 10 15
0

0.1

0.2

0.3

0.4

Function evaluations

F
u
n
ct

io
n
 v

al
u
es

M1 = M2 = 3

GA

Modified jaya

Figure 13: Convergence Rate of Best Objective Function Values in GA and Modi�ed Jaya for the Number of Balance Masses for

Case 1.

P. Singh and H. Chaudhary: Modi�ed Jaya Algorithm | 1023

0 5 10 15
0

0.5

1

1.5

Function evaluations

F
u
n
ct

io
n
 v

al
u
es

M1 = M2 = 3

GA

Modified jaya

0 2 4 6
0

2

4

6

8

10

Function evaluations

F
u
n
ct

io
n
 v

al
u
es

M1 = M2 = 2

GA

Modified jaya

0 2000 4000 6000 8000
0

0.5

1

1.5

2

2.5

Function evaluations

F
u
n
ct

io
n
 v

al
u
es

M1 = M2 = 1

GA

Modified jaya

×104

×105

Figure 14: Convergence Rate of Best Objective Function Values in GA and Modi�ed Jaya for the Number of Balance Masses for

Case 2.

0 2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

Function evaluations

F
u
n
ct

io
n
 v

al
u
es

M1 = M2 = 1

GA

Modified jaya

0 2 4 6
×104

×105

0

0.1

0.2

0.3

0.4

Function evaluations

F
u
n
ct

io
n
 v

al
u
es

M1 = M2 = 2

GA

Modified jaya

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

Function evaluations

F
u
n
ct

io
n
 v

al
u
es

M1 = M2 = 3

GA

Modified jaya

Figure 15: Convergence Rate of Best Objective Function Values in GA and Modi�ed Jaya for the Number of Balance Masses for

Case 3.

Further, the dimensions of the rotor are taken fromRef. [45] as R1 = R2 = 0.326, lp = −0.356, lq = 0.356,

l1 = −1.430, and l2 = 0.470 (in m). The total mass of rotor m = 60 kg and constant rotating speed

1024 | P. Singh and H. Chaudhary: Modi�ed Jaya Algorithm

Table 7: Comparison of Optimum Results of Modi�ed Jaya Algorithm to GA [27] for Case 1.

Algorithm No. of masses Plane 1 Plane 2 Fp (N) Fq (N)

M1 M2 m1j(g) α1j (
∘) m2j(g) α2j (

∘)

GA 1 1 100 180 100 210 5.12 7.08

2 2 50 180 20 300 0.3898 2.5052

50 210 100 180

3 3 200 270 50 150 0.82 0.105

100 180 50 180

10 360 50 270

Modi�ed Jaya 1 1 100 180 100 210 5.12 7.08

2 2 50 180 20 300 0.3898 2.5052

50 210 100 180

3 3 100 210 10 120 0.23 0.67

10 60 20 90

20 120 100 210

Table 8: Comparison of Optimum Results of Modi�ed Jaya Algorithm to GA [27] for Case 2.

Algorithm No. of masses Plane 1 Plane 2 Fp (N) Fq (N)

M1 M2 m1j(g) α1j (
∘) m2j(g) α2j (

∘)

GA 1 1 50 60 50 240 1.67 1.67

2 2 10 210 50 270 1.11 0.35

50 60 20 150

3 3 50 330 50 270 1.11 0.32

20 90 20 210

50 120 20 90

Modi�ed Jaya 1 1 50 60 50 240 1.67 1.67

2 2 10 180 50 240 0.48 0.48

50 60 10 360

3 3 20 90 20 270 0.35 0.35

10 30 20 240

20 60 10 210

Table 9: Comparison of Optimum Results of Modi�ed Jaya Algorithm to GA [27] for Case 3.

Algorithm No. of masses Plane 1 Plane 2 Fp (N) Fq (N)

M1 M2 m1j(g) α1j (
∘) m2j(g) α2j (

∘)

GA 1 1 100 180 100 210 7.06 4.57

2 2 100 180 20 210 2.90 0.32

20 30 100 210

3 3 10 60 10 240 0.832 1.989

20 30 20 210

100 180 100 210

Modi�ed Jaya 1 1 100 180 100 210 7.06 4.57

2 2 100 180 20 210 2.90 0.32

20 30 100 210

3 3 20 30 300 270 0.707 0.443

100 180 50 330

10 60 300 120

N = 400 rpm are chosen. The balance masses and corresponding angular positions on two planes are cho-

sen from set D1 = 7, mij ∈ [0; 10; 20; 50; 100; 200; 300] values in grams, and set D2 = 12 values in degree,

αij ∈ [30; 60; 90; 120; 150; 180; 210; 240; 270; 300; 330; 360], respectively.

P. Singh and H. Chaudhary: Modi�ed Jaya Algorithm | 1025

The optimization problem formulated in Eqs. (19) and (20) is applied in three different unbalancing cases

of rigid threshing rotor: static, couple, anddynamic unbalanced, respectively. The different inertia and eccen-

tricities components are considered in each case. The numbers of masses M1 and M2 are placed on balance

plane 1 and 2, respectively, for each case. However, the total numbers of design variables depend on the

number of masses. The lower and higher values of discrete variables represent the lower and upper bound of

design variables. This algorithm is coded in MatLab. The effectiveness of the algorithm is compared with

that of GA for the same problems by placing the number of masses as M1 = M2 = 1, M1 = M2 = 2, and

M1 = M2 = 3 on two balance planes for each case. In the case of GA, the population size in the number

of masses is taken as 50, 150, and 400, respectively, while the number of iterations is taken as 150, 300, and

3000 in all cases. Twenty independent runs of GA have been carried out to find out the optimum value of

the objective function. The function evaluations for three cases are 7500, 45,000, and 12 × 105, respectively.

However, the modified Jaya algorithm takes population size for the number of masses as 10, 100, and 300,

while 100, 200, and 2500number of generations are considered in all cases, respectively. Twenty independent

runs of the Jaya algorithm have been carried out to find out the optimum value of the objective function. The

function evaluations for the number of masses are 1000, 2 × 104, and 7.5 × 105, respectively. The function

evaluations of the modified Jaya algorithm for the number of masses are compared with those of GA. More-

over, the modified Jaya algorithm requires 87%, 56%, and 38% less the function evaluations for the number

of masses than those needed by GA, as shown in Table 6.

The computational efficiencies of GA and the modified Jaya algorithm for the number of masses in three

cases are shown inFigures 13–15, respectively. Theoptimal solutions for three cases obtainedusingamodified

Jaya algorithm validated with those of the GA algorithm are shown in Tables 7–9, respectively. It is observed

that the optimum solutions obtained by the proposed algorithm are better or in good agreement to those of

GA.Moreover, the proposed algorithm takes fewer function evaluations to find out the best values of objective

functions. Hence, the computation efficiency of the modified Jaya algorithm is better than that of GA.

5 Conclusion

This paper proposed a modified Jaya algorithm for the mixed-variable optimization problems. The original

Jaya algorithm has been developed for continuous optimization problems. Therefore, the Jaya algorithm is

further extended for solving mixed-variable optimization problems. In the proposed algorithm, continuous

variables remain in the continuous domain while continuous domains of discrete and integer variables are

converted into discrete and integer domains applying bound constraint of the middle point of correspond-

ing two consecutive values of discrete and integer variables. Furthermore, the efficiency of the modified Jaya

algorithm is demonstrated using five design problems taken from the literature. This algorithm is also applied

to two-plane balancing of an unbalanced rigid threshing rotor. Moreover, the optimum results obtained from

the proposed algorithm are compared with the results of well-known optimization algorithms. The results

show that it takes fewer function evaluations without violation of the design constraints and gives better and

nearly close results compared to other optimization algorithms. It also provides better balancing solutions

for the unbalanced rigid threshing rotor for all cases with less computational effort. Other mixed, continu-

ous, and discrete variable optimization problems can also be effectively solved using this algorithm. Hence,

a modified Jaya algorithm may be an essential tool for a wide range of mixed-variable problems.

Bibliography

[1] J. S. Arora, Methods for discrete variable structural optimization, Adv. Technol. Struct. Eng. (2000), 1–8. DOI:

10.1061/40492(2000)23.

[2] J. Arora, Introduction to Optimum Design, 3rd ed., Elsevier, Amsterdam, 2004.

[3] J. S. Arora, M. W. Huang and C. C. Hsieh, Methods for optimization of nonlinear problems with discrete variables: a review,

Struct. Optim. 8 (1994), 69–85.

1026 | P. Singh and H. Chaudhary: Modi�ed Jaya Algorithm

[4] R. Beck, J. N. Katz, A. D. Martin and K. M. Quinn, A review of discrete optimization algorithms, Polit. Methodol. 7 (1995),

6–10.

[5] B. Borchers and J. E. Mitchell, An improved branch and bound algorithm for mixed integer nonlinear programs, Comput.

Oper. Res. 21 (1994), 359–367.

[6] C. V. Camp and B. J. Bichon, Design of space trusses using ant colony optimization, J. Struct. Eng. 130 (2004), 741–751.

[7] Y. J. Cao, An evolutionary programming approach to mixed-variable optimization problems, Appl. Math. Model. 24 (2000),

931–942.

[8] S. K. Chaudhary and H. Saha, Dynamics and Balancing of Multibody Systems, Springer Verlag, Germany, 2009.

[9] K. Chaudhary and H. Chaudhary, Optimal dynamic design of planar mechanisms using teaching – learning-based

optimization algorithm,Mech. Eng. Sci. 230 (2016), 3442–3456.

[10] C. A. Coello Coello and E. M. Montes, Use of dominance-based tournament selection to handle constraints in genetic

algorithms, Intell. Eng. Syst. Through Artif. Neural Netw. 11 (2001), 177–182.

[11] K. Deb, GeneAS: a robust optimal design technique for mechanical component design, in: Evolutionary Algorithms in

Engineering Applications, pp. 497–514, Springer, Berlin, 1997.

[12] T. Dede, Application of teaching-learning-based-optimization algorithm for the discrete optimization of truss structures,

KSCE J. Civ. Eng. 18 (2014), 1759–1767.

[13] S. O. Degertekin, L. Lamberti and I. B. Ugur, Sizing, layout and topology design optimization of truss structures using the

Jaya algorithm, Appl. Soft Comput. J. 70 (2017), 903–928.

[14] J. F. Fu, R. G. Fenton and W. L. Cleghorn, A mixed integer-discrete-continuous programming method and its application to

engineering design optimization, Eng. Optim. 17 (1991), 263–280.

[15] A. M. Geo�rion, Lagrangean relaxation,Math. Program. Stud. 2 (1974), 82–114.

[16] C.-X. Guo, J.-S. Hu, B. Ye and Y.-J. Cao, Swarm intelligence for mixed-variable design optimization, J. Zhejiang Univ. Sci. 5

(2004), 851–60.

[17] S. He, E. Prempain and Q. Wu, An improved particle swarm optimizer for mechanical design optimization problems, Eng.

Optim. 36 (2004), 585–605.

[18] V. Jeet and E. Kutanoglu, Lagrangian relaxation guided problem space search heuristics for generalized assignment

problems, Eur. J. Oper. Res. 182 (2007), 1039–1056.

[19] S. Kitayama, M. Arakawa and K. Yamazaki, Penalty function approach for the mixed discrete nonlinear problems by

particle swarm optimization, Struct. Multidiscip. Optim. 32 (2006), 191–202.

[20] M. Kripka, Discrete optimization of trusses by simulated annealing, J. Braz. Soc. Mech. Sci. Eng. 26 (2004), 170–173.

[21] J. Lampinen and I. Zelinka, Mixed integer discrete continuous optimization by di�erential evolution: part 2. A practical

example, in: Proceedings of MENDEL’99, 5th International Mendel Conference on Soft Computing, pp. 77–81, Brno, Czech

Republic, 1999.

[22] S. Ley�er, Integrating SQP and branch-and-bound for mixed integer nonlinear programming, Comput. Optim. Appl. 18

(2001), 295–309.

[23] L. J. Li, Z. B. Huang and F. Liu, A heuristic particle swarm optimization method for truss structures with discrete variables,

Comput. Struct. 87 (2009), 435–443.

[24] H. T. Loh and P. Y. Papalambros, A sequential linearization approach for solving mixed-discrete nonlinear design

optimization problems, J. Mech. Des. 113 (1991), 325.

[25] R. T. Marler and J. S. Arora, Survey of multi-objective optimization methods for engineering, Struct. Multidiscip. Optim. 26

(2004), 369–395.

[26] R. T. Marler and J. S. Arora, The weighted sum method for multi-objective optimization: new insights, Struct. Multidiscip.

Optim. 41 (2010), 853–862.

[27] T. Messager and M. Pyrz, Discrete optimization of rigid rotor balancing, J. Mech. Sci. Technol. 27 (2013), 2231–2236.

[28] D. Mundo, G. Gatti and D. B. Dooner, Optimized �ve-bar linkages with non-circular gears for exact path generation,Mech.

Mach. Theory 44 (2009), 751–760.

[29] S. Nema, J. Goulermas, G. Sparrow and P. Cook, A hybrid particle swarm branch-and-bound (HPB) optimizer for mixed

discrete nonlinear programming, IEEE Trans. Syst. Man, Cybern. Part A Syst. Hum. 38 (2008), 1411–1424.

[30] S. Rajeev and S. C. Krishnamoorthy, Discrete optimization of structures using genetic algorithms, J. Struct. Eng. 118

(1992), 1233–1250.

[31] R. V. Rao, Teaching Learning Based Optimization Algorithm and its Engineering Applications, Springer, Cham, Switzer-

land, 2015.

[32] R. V. Rao, Jaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization

problems, Int. J. Ind. Eng. Comput. 7 (2016), 19–34.

[33] R. V. R. Rao, Jaya: an Advanced Optimization Algorithm and its Engineering Applications, Springer International

Publishing AG, part of Springer Nature, Switzerland, 2019.

[34] S. S. Rao and Y. Xiong, A hybrid genetic algorithm for mixed-discrete design optimization, J. Mech. Des. 127 (2005), 1100.

[35] R. V. Rao, V. J. Savsani and D. P. Vakharia, Teaching-learning-based optimization: a novel method for constrained

mechanical design optimization problems, CAD Comput. Aided Des. 43 (2011), 303–315.

P. Singh and H. Chaudhary: Modi�ed Jaya Algorithm | 1027

[36] R. V. Rao, K. C. More, J. Taler and P. Ocłoń, Optimal design of Stirling heat engine using an advanced optimization

algorithm, Sadhana – Acad. Proc. Eng. Sci. 41 (2016), 1321–1331.

[37] R. V. Rao, K. C. More, L. S. Coelho and V. C. Mariani, Multi-objective optimization of the Stirling heat engine through

self-adaptive Jaya algorithm, J. Renew. Sustain. Energy 9 (2017), 033703.

[38] R. V. Rao, D. P. Rai and J. Balic, A multi-objective algorithm for optimization of modern machining processes, Eng. Appl.

Artif. Intell. 61 (2017), 103–125.

[39] R. V. Rao, D. P. Rai and J. Balic, Multi-objective optimization of abrasive waterjet machining process using Jaya algorithm

and PROMETHEE method, J. Intell. Manuf. (2017), 1–27. https://doi.org/10.1007/s10845-017-1373-8.

[40] E. Sandgren, Nonlinear integer and discrete programming in mechanical design optimization, J. Mech. Des. 112 (1990),

223.

[41] D. K. Shin, Z. Gurdal and O. H. Gri�n, A penalty approach for nonlinear optimization with discrete design variables, Eng.

Optim. 16 (1990), 29–42.

[42] R. Singh, H. Chaudhary and A. K. Singh, Defect-free optimal synthesis of crank-rocker linkage using nature-inspired

optimization algorithms,Mech. Mach. Theory J. 116 (2017), 105–122.

[43] M. Sonmez, Discrete optimum design of truss structures using arti�cial bee colony algorithm, Struct. Multidiscip. Optim.

43 (2011), 85–97.

[44] C. Sun, J. Zeng and J. S. Pan, A modi�ed particle swarm optimization with feasibility-based rules for mixed-variable

optimization problems, Int. J. Innov. Comput. Inf. Control 7 (2011), 3081–3096.

[45] A. C. Varshney, Data Book for Agricultural Machinery Design, Central Institute of Agricultural Engineering, Bhopal, India,

2004.

[46] S.-J. Wu and P.-T. Chow, Genetic algorithms for nonlinear mixed discrete-integer optimization problems via meta-genetic

parameter optimization, Eng. Optim. 24 (1995), 137–159.

[47] C. Zhang and H. P. (Ben) Wang, Mixed-discrete nonlinear optimization with simulated annealing, Eng. Optim. 21 (1993),

277–291.

	A Modified Jaya Algorithm for Mixed-Variable Optimization Problems
	1 Introduction
	2 Formulation of Mixed-Variable Optimization Problems
	3 A Modified Jaya Algorithm for Mixed-Variable Optimization Problems
	4 Design Problems
	4.1 Validation of the Proposed Algorithm Through Five Design Problems
	4.2 Application – Two-Plane Balancing of Unbalanced Rigid Threshing Rotor

	5 Conclusion

