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Abstract
The classical Method of Successive Approximations (MSA) is an iterative method
for solving stochastic control problems and is derived from Pontryagin’s optimality
principle. It is known that theMSAmay fail to converge.Using careful estimates for the
backward stochastic differential equation (BSDE) this paper suggests a modification
to theMSA algorithm. This modifiedMSA is shown to converge for general stochastic
control problems with control in both the drift and diffusion coefficients. Under some
additional assumptions the rate of convergence is shown. The results are valid without
restrictions on the time horizon of the control problem, in contrast to iterative methods
based on the theory of forward-backward stochastic differential equations.
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1 Introduction

Stochastic control problems appear naturally in a range of applications in engineering,
economics and finance. With the exception of very specific cases such as the linear-
quadratic control problem in engineering or Merton portfolio optimization task in
finance, stochastic control problems typically have no closed form solutions and have
to be solved numerically. In this work, we consider a modification to the method of
successive approximations (MSA), see Algorithm 1. The MSA is essentially a way of
applying the Pontryagin’s optimality principle to get numerical solutions of stochastic
control problems.

We will consider the continuous space, continuous time problem where the
controlled system is modelled by an R

d -valued diffusion process. Let W be a d ′-
dimensional Wiener martingale on a filtered probability space (�,F , (Ft )t≥0,P). We
will provide exact assumptions we need in Sect. 2. For now, let us fix a finite time T ∈
(0,∞) and consider the controlled stochastic differential equation (SDE) for given
measurable functions b : [0, T ] ×R

d × A → R
d and σ : [0, T ] ×R

d × A → R
d×d ′

dXs = b(s, Xs, αs) ds + σ(s, Xs, αs) dWs, s ∈ [0, T ], X0 = x . (1)

Here α = (αs)s∈[0,T ] is a control process belonging to the space of admissible
controls A, valued in a separable metric space A and we will write Xα to denote the
unique solution of (1) which starts from x at time 0 whilst being controlled by α.
Furthermore let f : [0, T ] × R

d × A → R and g : Rd → R be given measurable
functions and consider the gain functional

J (x, α) := E

[∫ T

0
f (s, Xα

s , αs)ds + g(Xα
T )

]
(2)

for all x ∈ R
d and α ∈ A. We want to solve the optimisation problem i.e. to find

the optimal control α∗ which achieves the minimum of (2) (or, if the infimum cannot
be reached by α ∈ A then an ε-optimal control αε ∈ A such that infα∈A J (x, α) ≤
J (x, αε) + ε).

In the present paper, we study an approach based on Pontryagin’s optimality
principle, see e.g. [4,7] or [25]. The main idea is to consider optimality condi-
tions for controls of the problem (2). Given b, σ and f we define the Hamiltonian
H : [0, T ] × R

d × R
d × R

d×d ′ × A → R as

H(t, x, y, z, a) = b(t, x, a) · y + tr(σ	(t, x, a)z) + f (t, x, a). (3)

Consider for each α ∈ A, the BSDE, called the adjoint equation

dY α
s = −DxH(s, Xα

s ,Y α
s , Zα

s , αs) ds + Zα
s dWs, Y α

T = Dxg(X
α
T ), s ∈ [0, T ].

(4)
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It is well known fromPontryagin’s optimality principle that, if an admissible control
α∗ ∈ A is optimal, Xα∗

is the corresponding optimally controlled dynamic (1) and
(Y α∗

, Zα∗
) is the solution to the associated adjoint equation (4), then ∀a ∈ A and

∀s ∈ [0, T ] the following holds

H(s, Xα∗
s ,Y α∗

s , Zα∗
s , α∗

s ) ≤ H(s, Xα∗
s ,Y α∗

s , Zα∗
s , a) a.s. (5)

Wenowdefine the augmentedHamiltonian H̃ : [0, T ]×R
d×R

d×R
d×d ′×A×A →

R for some ρ ≥ 0 by

H̃(t, x, y, z, a′, a) := H(t, x, y, z, a) + 1

2
ρ|b(t, x, a) − b(t, x, a′)|2

1

2
ρ|σ(t, x, a) − σ(t, x, a′)|2 + 1

2
ρ

∣∣DxH(t, x, y, z, a) − DxH(t, x, y, z, a′)
∣∣2 .

(6)
Notice that when ρ = 0 we have exactly the definition of Hamiltonian (3). Given

the augmented Hamiltonian, let us introduce the modified MSA in Algorithm 1 which
consists of successive integrations of the state and adjoint systems and updates to
the control. Notice that the backward SDE depends on the Hamiltonian H, while the
control update step comes from minimizing the augmented Hamiltonian H̃.

Algorithm 1Modified Method of Successive Approximations:

Initialisation: make a guess of the control α0 = (α0s )s∈[0,T ].
while difference between J (x, αn) and J (x, αn−1) is large do

Given a control αn−1 = (αn−1
s )s∈[0,T ] solve the following forward SDE, then solve backward SDE:

dXn
s = b(s, Xn

s , αn−1
s ) ds + σ(s, Xn

s , αn−1
s ) dWs , Xn

0 = x,

dYn
s = −DxH(s, Xn

s , Yn
s , Zn

s , αn−1
s ) ds + Zn

s dWs , Yn
T = Dx g(X

n
T ).

(7)

Update the control

αns ∈ arg min
a∈A

H̃(s, Xn
s , Yn

s , Zn
s , αn−1

s , a), ∀s ∈ [0, T ]. (8)

end while
return αn .

The method of successive approximations (i.e. case ρ = 0) for numerical solution
of deterministic control problems was proposed already in [5]. Recent application of
the modified MSA to a deep learning problem has been studied in [32], where they
formulated the training of deep neural networks as an optimal control problem and
introduced themodifiedmethod of successive approximations as an alternative training
algorithm for deep learning. For us, the main motivation to explore the modified
MSA for stochastic control problems is to obtain convergence, ideally with rate, of
an iterative algorithm, applicable to problems with the control in the diffusion part
of the controlled dynamics. This is in contrast to [36] where convergence rate of an
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the Bellman–Howard policy iteration is shown but only for control problems with no
control in the diffusion part of the controlled dynamics.

In Lemma 2.3, which can be established using careful BSDE estimates, we can see
the estimate on the change of J when we do a minimization step of Hamiltonian as
in (8). If the sum of the last three terms of (14) is bigger than the first term, then for
classicalMSA algorithm (i.e. case ρ = 0) we cannot guarantee that we do an update of
the control in optimal descent direction of J . That means that the method of successive
approximations may diverge. To overcome this, we need to modify the algorithm in
such way so that we ensure convergence. With this in mind the desirability of the
the augmented Hamiltonian (6) for updating the control becomes clear, as long as it
still characterises optimal controls like H does. Theorem 2.4 answers this question
affirmatively which opens the way to the modified MSA. In Theorem 2.5 we show
that the modified method of successive approximations, converges for arbitrary T , and
in Corollary 2.6, we show logarithmic convergence rate for certain stochastic control
problems.

Weobserve that the forward and backward dynamics in (7) are decoupled, due to the
iteration used. Therefore, it can be efficiently approximated, even in high dimension,
using deep learning methods, see [30,31]. However, the minimization step (8) might
be computationally expensive for some problems. A possible approach circumventing
this is to replace the full minimization of (8) by gradient descent. A continuous version
of this gradient flow is analyzed in [37].

The main contributions of this paper are the probabilistic proof of convergence of
the modified method of successive approximations and establishing convergence rate
for a specific type of optimal control problems.

This paper is organised as follow: in Sect. 1.1 we compare our results with existing
work. In Sect. 2 we state the assumptions and main results. In Sect. 3 we collect all
proofs. Finally, in Appendix 1 we recall an auxiliary lemma which is needed in the
proof of Corollary 2.6.

1.1 RelatedWork

One can solve the stochastic optimal control problem using dynamic programming
principle. It is well known, see e.g. Krylov [8], that under reasonable assumptions
the value function, defined as infimum of (2) over all admissible controls, satisfies the
Bellman partial differential equation (PDE). There are several approaches to solve this
nonlinear problem. Onemay apply a finite difference method to discretise the Bellman
PDE and get a high dimensional nonlinear system of equations, see e.g [19] or [22].
Or one may linearize the Bellman PDE and then iterate. The classical approach is the
Bellman–Howard policy improvement/iteration algorithm, see e.g. [1,2] or [3]. The
algorithm is initialisedwith a “guess” ofMarkovian control.Given aMarkovian control
strategy at step n one solves a linear PDEwith the given control fixed and then one uses
the solution to the linear PDE to update theMarkovian control, see e.g. [27,28] or [29].
In [36], a global rate of convergence and stability for the policy iteration algorithm
has been established using backward stochastic differential equations (BSDE) theory.
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However, the result only applies to stochastic control problems with no control in the
diffusion coefficient of the controlled dynamics.

It is known that the solution of the stochastic optimal control problem can be
obtained from a corresponding forward backward stochastic differential equation
(FBSDE) via the stochastic optimality principle, see [26, Chap. 8.1]. Indeed, let us con-
sider (1) and (4), and recall from the stochastic optimality principle, see [25, Theorem
4.12], that for the optimal control α∗ = (α∗

s )s∈[0,T ] we have that (5) holds. Assume
that under some conditions on b, σ and f we have that the first order condition stated
above uniquely determines α∗ for s ∈ [0, T ] by

α∗
s = ϕ(s, Xα∗

s ,Y α∗
s , Zα∗

s ), (9)

for some function ϕ. Therefore, after plugging (9) into (1) and (4), we obtain the
following coupled FBSDE:

dXα∗
s = b̄(s, Xα∗

s , Y α∗
s , Zα∗

s ) ds + σ̄ (s, Xα∗
s , Y α∗

s , Zα∗
s ) dWs , s ∈ [0, T ], Xα∗

0 = x .

dY α∗
s = −DxH̄(s, Xα∗

s , Y α∗
s , Zα∗

s ) ds + Zα∗
s dWs , YT = Dxg(X

α∗
T ), s ∈ [0, T ],

(10)

where (b̄, σ̄ )(s, Xα∗
s ,Y α∗

s , Zα∗
s ) = (b, σ )(s, Xα∗

s , ϕ(s, Xα∗
s ,Y α∗

s , Zα∗
s )) and

H̄(s, Xα∗
s ,Y α∗

s , Zα∗
s ) = H(s, Xα∗

s ,Y α∗
s , Zα∗

s , ϕ(s, Xα∗
s ,Y α∗

s , Zα∗
s )). It is worth men-

tioning that when σ does not depend on the control σ̄ will depend on forward process
and time only. This means that σ̄ does not have Y and Z components.

The theory of FBSDEhas been studiedwidely and there are severalmethods to show
the existence and uniqueness result, and a number of numerical algorithms have been
proposed based on those methods. First is the method of contraction mapping. It was
first studied by Antonelli [9] and later by Pardoux and Tang [15]. The main idea there
is to show that a certain map is a contraction, and then to apply a fixed point argument.
However, it turns out that this method works only for small enough time horizon T .
In the case when σ̄ does not depend on Y and Z , having small T is sufficient to get
contraction. Otherwise, one needs to assume additionally that the Lipschitz constants
of σ̄ in z and that of g in x satisfy a certain inequality, see [26, Theorem 8.2.1].
Using the method of contraction mapping one can then implement a Picard-iteration-
type numerical algorithm and show exponential convergence for small T . The second
method is the Four Step Scheme. It was introduced byMa et al., see [10], and was later
studied by Delarue [17]. The idea is to use a decoupling function and then study an
associated quasi-linear PDE. We note that in [10,17] the forward diffusion coefficient
σ̄ does not depend on Z . This corresponds to stochastic control problems with the
uncontrolled diffusion coefficient. The numerical algorithms based on this method
exploits the numerical solution of the associated quasi-linear PDE and therefore faces
some limitations for high dimensional problems, see Douglas et al. [12], Milstein and
Tretyakov [20],Ma et al. [21] andDelarue andMenozzi [18]. Guo et al. [24] proposed a
numerical scheme for high-dimensional quasi-linear PDE associated with the coupled
FBSDE when σ̄ does not depend on Z , which is based on a monotone scheme and
on probabilistic approach. Finally, there is the method of continuation. This method
was developed by Hu and Peng [11], Peng and Wu [16] and by Yong [14]. It allows
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them to show the existence and uniqueness result for arbitrary T under monotonicity
conditions on the coefficients, which one would not expect to apply to FBSDEs arising
from a control problem as described by (9), (10). Recently, deep learning methods
have been applied to solving FBSDEs. In [35], three algorithms for solving fully
coupled FBSDEs which have good accuracy and performance for high-dimensional
problems are provided. One of the algorithms is based on the Picard iteration and it
converges, but only for small enough T . In [34], an alternative algorithm for solving
high-dimensional fully coupled FBSDEs based on deep learning was proposed, and
the convergence result was shown assuming small T and other structural conditions
(sometimes referred to as weak coupling and monotonicity conditions).

2 Main Results

We fix a finite horizon T ∈ (0,∞). Let A be a separable metric space. This is the
space where the control processes α take values. We fix a filtered probability space
(�,F ,F = (Ft )0≤t≤T ,P). LetW = (Wt )t∈[0,T ] be a d ′-dimensional Wiener martin-
gale on this space. ByEt we denote the conditional expectation with respect toFt . Let
| · | denote any norm in a finite dimensional Euclidean space. By ‖ · ‖L∞ we denote the
norm in L∞(�). Let ‖Z‖H∞ := ess sup(t,ω) |Zt (ω)| for any predictable process Z .We
understand the following as Dxσ = Dxlσ

i j , D2
xb = D2

xl xn b
i and D2

xσ = D2
xl xnσ

i j ,
where i, l, n = 1, 2, . . . , d and j = 1, 2, . . . , d ′. By Z	 we denote the transpose of
Z .

The state of the system is governed by the controlled SDE (1). The corresponding
adjoint equation satisfies (4).

Assumption 2.1 The functions b and σ are jointly continuous in t and twice differen-
tiable in x . There exists K ≥ 0 such that ∀x ∈ R

d ,∀a ∈ A,∀t ∈ [0, T ],
|Dxb(t, x, a)| + |Dxσ(t, x, a)| + |D2

xb(t, x, a)| ≤ K . (11)

Moreover, assume that D2
xσ(t, x, a) = 0 ∀x ∈ R

d ,∀a ∈ A,∀t ∈ [0, T ].
Clearly the assumption (11) implies that ∀x, x ′ ∈ R

d ,∀a ∈ A,∀t ∈ [0, T ]we have
|b(t, x, a) − b(t, x ′, a)| + |σ(t, x, a) − σ(t, x ′, a)| ≤ K |x − x ′|. (12)

The assumption that D2
xσ(t, x, a) = 0 ∀x ∈ R

d ,∀a ∈ A,∀t ∈ [0, T ] is needed
so that (21), in the proof of Lemma 3.1, holds. Without this assumption (21) would
only hold if we could show that ‖Zα‖H∞ < ∞. Without additional regularization
of the control problem this is impossible. Indeed, with [13, Proposition 5.3] we see
that Zα

t is a version of DtY α
t (the Malliavin derivative of Y α

t ) and DtY α
t itself sat-

isfies a linear BSDE. However, to obtain the estimates using this representation,
one term that arises is Dtαs where t ∈ [0, T ] and s ∈ [t, T ]. So we would need
ess supω∈�,t∈(0,T ),s∈(t,T ) |Dtαs(ω)| < ∞. This is not necessarily the case here.

Assumption 2.2 The functions f is joinly continuous in t , and f and σ are twice
differentiable in x . There is a constant K ≥ 0 such that ∀x,∀a ∈ A,∀t ∈ [0, T ]
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|Dxg(x)| + |Dx f (t, x, a)| + |D2
x g(x)| + |D2

x f (t, x, a)| ≤ K . (13)

Under these assumptions, we can obtain the following estimate.

Lemma 2.3 Let Assumption 2.1 and 2.2 hold. Then for any admissible controls ϕ and
θ there exists a constant C > 0 such that

J (x, ϕ) − J (x, θ) ≤ E

∫ T

0
[H(s, X θ

s ,Y
θ
s , Z θ

s , ϕs) − H(s, X θ
s ,Y

θ
s , Z θ

s , θs)] ds

+ CE

∫ T

0
|b(s, X θ

s , ϕs) − b(s, X θ
s , θs)|2 ds

+ CE

∫ T

0
|σ(s, X θ

s , ϕs) − σ(s, X θ
s , θs)|2 ds

+ CE

∫ T

0
|DxH(s, X θ

s ,Y
θ
s , Z θ

s , ϕs)

− DxH(s, X θ
s ,Y

θ
s , Z θ

s , θs)|2 ds.
(14)

The proof will be given in Sect. 3.We now state a necessary condition for optimality
for the augmented Hamiltonian.

Theorem 2.4 [Extended Pontryagin’s optimality principle] Let α∗ be the (locally)
optimal control, Xα∗

be the associated controlled state solving (1), and (Y α∗
, Zα∗

) be
the associated adjoint processes solving (4). Then for any a ∈ A we have

H̃(s, Xα∗
s ,Y α∗

s , Zα∗
s , α∗

s , α
∗
s ) ≤ H̃(t, Xα∗

s ,Y α∗
s , Zα∗

s , α∗
s , a), ∀s ∈ [0, T ]. (15)

The proof of Theorem 2.4 will come in Sect. 3. We are now ready to present the
main result of the paper.

Theorem 2.5 Let Assumptions 2.1 and 2.2 hold. Then Algorithm 1 converges to a local
minimum of (2) for sufficiently large ρ > 0.

Theorem 2.5 will be proved in Sect. 3. It can be seen from the proof that ρ needs to
be two times larger than the constant appearing in Lemma 2.3, which itself depends
increases with T , d and constants from Assumption 2.1 and 2.2.

We cannot guarantee that the Algorithm 1 converges to the optimal control which
minimizes (2), since the extended Pontryagin’s optimality principle, see Theorem 2.4,
is the necessary condition for optimality. The sufficient condition for optimality tells
us that to get the optimal control we need to assume convexity of the Hamiltonian in
state and control variables, and need to assume convexity of the terminal cost function.
To that end, we need to assume convexity of b, σ, f and g in x and a.

In the following corollary, we show that under a particular setting of the problemwe
have logarithmic convergence of the modified method of successive approximations
to the true solution of the problem.
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Corollary 2.6 Let Assumptions 2.1 and 2.2 hold. Moreover, if b, σ and f are in the
form of

b(t, x, a) = b1(t)x + b2(t, a),

σ (t, x, a) = σ1(t)x + σ2(t, a),

f (t, x, a) = f1(t, x) + f2(t, a)

for ∀t ∈ [0, T ], ∀x ∈ R
d , ∀a ∈ A. In addition, assume that f and g are convex in

x, f2, b2, σ2 are convex in a. Then we have the following estimate for the sequence
(αn)n∈N from Algorithm 1:

0 ≤ J (x, αn) − J (x, α∗) ≤ C

n
,

where α∗ is the optimal control for (2) and C is a positive constant.

The proof of Corollary 2.6 will be given in Sect. 3. Theorem 2.5 and Corollary 2.6
are extensions of the result in [5] to the stochastic case.

3 Proofs

We start working towards the proof of Theorem 2.5. Recall the adjoint equation for
an admissible control α:

dY α
s = −DxH(s, Xα

s ,Y α
s , Zα

s , αs) ds + Zα
s dWs, s ∈ [0, T ], YT = Dxg(X

α
T ).

(16)
From now on, we shall use Einstein notation, so that repeated indices in a single

term imply summation over all the values of that index.

Lemma 3.1 Assume that there exists K ≥ 0 such that ∀x ∈ R
d ,∀a ∈ A,∀t ∈ [0, T ]

we have
|Dxb(t, x, a)| + |Dxσ(t, x, a)| ≤ K ,

and
|Dxg(x)| + |Dx f (t, x, a)| ≤ K .

Then ‖Y α‖H∞ is bounded.

Proof From the definition of the Hamiltonian (3) we have

DxiH(s, Xα
s ,Y α

s , Zα
s , αs) = Dxi b

j (s, Xα
s , αs)(Y

α
s ) j + Dxiσ

j p(s, Xα
s , αs)(Z

α
s ) j p

+Dxi f (s, X
α
s , αs), ∀s ∈ [0, T ], i = 1, 2, . . . , d.

Hence, one can observe that (16) is a linear BSDE. Therefore, from [33, Proposition
3.2] we can write the formula for the solution of (16):

Y α
t = Et

[
S−1
t ST Dxg(X

α
T ) +

∫ T

t
S−1
t Ss Dx f (s, X

α
s , αs) ds

]
,
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where the process S is the unique strong solution of

dSi jt = Silt Dxl b
j (t, Xα

t , αt ) dt + Silt Dxlσ
j p(t, Xα

t , αt ) dW
p
t , i, j = 1, 2, . . . , d, S0 = Id ,

and S−1 is the inverse process of S. Thus, due to [33, Corollary 3.7] and assumptions
of lemma we have the following bound:

‖Y α‖H∞ ≤ C‖Dxg(X
α
T )‖L∞ + CT ‖Dx f (·, Xα· , α·)‖H∞ .

Hence, due to assumptions of lemma we conclude that ‖Y α‖H∞ is bounded.

Proof of Lemma 2.3 Let ϕ and θ be some generic admissible controls. We will write
(Xϕ

s )s∈[0,T ] for the solution of (1) controlled by ϕ and (X θ
s )s∈[0,T ] for the solution

of (1) controlled by θ . We denote solutions of corresponding adjoint equations by
(Y ϕ

s , Zϕ
s )s∈[0,T ] and (Y θ

s , Z θ
s )s∈[0,T ]. Due to Taylor’s theorem, we note that for some

R1(ω) ∈ [0, 1], we have ∀ω ∈ � that

g(Xϕ
T ) − g(X θ

T ) = (Dxg(X
θ
T ))	(Xϕ

T − X θ
T )

+1

2
(Xϕ

T − X θ
T )	D2

x g(X
θ
T + R1(Xϕ

T − X θ
T ))(Xϕ

T − X θ
T )

≤ (Dxg(X
θ
T ))	(Xϕ

T − X θ
T )

+1

2
(Xϕ

T − X θ
T )	

∣∣∣D2
x g(X

θ
T + R1(Xϕ

T − X θ
T ))

∣∣∣ (Xϕ
T − X θ

T )

≤ (Dxg(X
θ
T ))	(Xϕ

T − X θ
T ) + K

2

∣∣Xϕ
T − X θ

T

∣∣2 .

The last inequality holds due to Assumption 2.2. Recall that Y θ
T = Dxg(X θ

T ).
Hence, using Itô’s product rule, we get

E[g(Xϕ
T ) − g(X θ

T )] ≤ E

[
(Y θ

T )	(Xϕ
T − X θ

T ) + K

2

∣∣Xϕ
T − X θ

T

∣∣2]

≤ E

∫ T

0
(Xϕ

s − X θ
s )

	 dY θ
s + E

∫ T

0
(Y θ

s )	[dXϕ
s − dX θ

s ]

+E

∫ T

0
tr[(σ (s, Xϕ

s , ϕs) − σ(s, X θ
s , θs))

	Z θ
s ] ds

+ K

2
E

[∣∣Xϕ
T − X θ

T

∣∣2] .

From this, the forward SDE (1) and the adjoint equation (4) we thus get

E[g(Xϕ
T ) − g(X θ

T )] ≤ −E

∫ T

0
(Xϕ

s − X θ
s )

	DxH(s, X θ
s ,Y

θ
s , Z θ

s , θs) ds

+ E

∫ T

0
(Y θ

s )	[b(s, Xϕ
s , ϕs) − b(s, X θ

s , θs)] ds
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+ E

∫ T

0
tr[(σ (s, Xϕ

s , ϕs) − σ(s, X θ
s , θs))

	Z θ
s ] ds

+ K

2
E

[∣∣Xϕ
T − X θ

T

∣∣2] . (17)

On the other hand, by definition of the Hamiltonian we have

E

∫ T

0
[ f (s, Xϕ

s , ϕs) − f (s, X θ
s , θs)] ds

= E

∫ T

0
[H(s, Xϕ

s ,Y θ
s , Z θ

s , ϕs) − H(s, X θ
s ,Y

θ
s , Z θ

s , θs)] ds

− E

∫ T

0
(Y θ

s )	[b(s, Xϕ
s , ϕs) − b(s, X θ

s , θs)] ds

− E

∫ T

0
tr[(σ (s, Xϕ

s , ϕs) − σ(s, X θ
s , θs))

	Z θ
s ] ds.

(18)

Summing up (17) and (18) we get

J (x, ϕ) − J (x, θ) = E[g(Xϕ
T ) − g(X θ

T )] + E

∫ T

0
[ f (s, Xϕ

s , ϕs) − f (s, X θ
s , θs)] ds

≤ E

∫ T

0
[H(s, Xϕ

s ,Y θ
s , Z θ

s , ϕs) − H(s, X θ
s ,Y

θ
s , Z θ

s , θs)

− (Xϕ
s − X θ

s )
	DxH(s, X θ

s ,Y
θ
s , Z θ

s , θs)] ds
+ K

2
E

[∣∣Xϕ
T − X θ

T

∣∣2] .

(19)
Due to Taylor’s theorem, there exists (R2

s (ω))s∈[0,T ] ∈ [0, 1] such that ∀ω ∈ � we
have

H(s, Xϕ
s ,Y θ

s , Z θ
s , ϕs) − H(s, X θ

s ,Y
θ
s , Z θ

s , θs)

= H(s, X θ
s ,Y

θ
s , Z θ

s , ϕs) − H(s, X θ
s ,Y

θ
s , Z θ

s , θs)

+ (Xϕ
s − X θ

s )
	DxH(s, X θ

s ,Y
θ
s , Z θ

s , ϕs)

+ 1

2
(Xϕ

s − X θ
s )

	D2
xH(s, X θ

s + R2
s (X

ϕ
s − X θ

s ),Y
θ
s , Z θ

s , ϕs)(X
ϕ
s − X θ

s ).

(20)

Since D2
xσ(s, X θ

s + R2
s (X

ϕ
s − X θ

s ), ϕs) = 0 by Assumption 2.1, we have that

∣∣∣D2
xi x jH(s, X θ

s + R2
s (X

ϕ
s − X θ

s ),Y
θ
s , Z θ

s , ϕs)

∣∣∣
=

∣∣∣D2
xi x j b

l(s, X θ
s + R2

s (X
ϕ
s − X θ

s ), ϕs)(Y
θ
s )l

+D2
xi x j f (s, X

θ
s + R2

s (X
ϕ
s − X θ

s ), ϕs)

∣∣∣ , i, j = 1, 2, . . . , d.
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From Lemma 3.1 we know that |Y θ
s | is bounded a.s. for all s ∈ [0, T ]. Hence by

Assumption 2.1 and 2.2 we have

|D2
xH(s, X θ

s + R2
s (X

ϕ
s − X θ

s ),Y
θ
s , Z θ

s , ϕs)| < ∞. (21)

Therefore, after substituting (20) into (19), and by 21 we get

J (x, ϕ) − J (x, θ) = E

[∫ T

0
[H(s, X θ

s ,Y
θ
s , Z θ

s , ϕs) − H(s, X θ
s ,Y

θ
s , Z θ

s , θs)

+ (Xϕ
s − X θ

s )
	(DxH(s, X θ

s ,Y
θ
s , Z θ

s , ϕs)

− DxH(s, X θ
s ,Y

θ
s , Z θ

s , θs))

+ K

2

∣∣Xϕ
s − X θ

s

∣∣2 ds

]
+ K

2
E

[∣∣Xϕ
T − X θ

T

∣∣2] .

Let us now get a standard SDE estimate for the difference of Xϕ and X θ . From
(a + b)2 ≤ 2a2 + 2b2, from taking the expectation, from Hölder’s inequality, from
Assumption 2.1, from the Burkholder–Davis–Gundy inequality and from Gronwall’s
inequality we obtain

E sup
0≤t≤T

|Xϕ
t − X θ

t |2 ≤ CE

∫ T

0
|b(s, X θ

s , ϕs) − b(s, X θ
s , θs)|2 ds

+ CE

∫ T

0
|σ(s, X θ

s , ϕs) − σ(s, X θ
s , θs)|2 ds.

(22)

Young’s inequality allows us to get the estimate

J (x, ϕ) − J (x, θ)

≤ E

∫ T

0
[H(s, X θ

s ,Y
θ
s , Z θ

s , ϕs) − H(s, X θ
s ,Y

θ
s , Z θ

s , θs)] ds

+1

2
E

∫ T

0
|Xϕ

s − X θ
s |2 ds

+1

2
E

[∫ T

0
|DxH(s, X θ

s ,Y
θ
s , Z θ

s , ϕs) − DxH(s, X θ
s ,Y

θ
s , Z θ

s , θs)|2

+K

2

∣∣Xϕ
s − X θ

s

∣∣2 ds

]
+ K

2
E

[∣∣Xϕ
T − X θ

T

∣∣2] .

Hence, from (22) we have that

J (x, ϕ) − J (x, θ) ≤ E

∫ T

0
[H(s, X θ

s ,Y
θ
s , Z θ

s , ϕs) − H(s, X θ
s ,Y

θ
s , Z θ

s , θs)] ds

+CE

∫ T

0
|b(s, X θ

s , ϕs) − b(s, X θ
s , θs)|2 ds
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+CE

∫ T

0
|σ(s, X θ

s , ϕs) − σ(s, X θ
s , θs)|2 ds

+CE

∫ T

0
|DxH(s, X θ

s ,Y
θ
s , Z θ

s , ϕs)

−DxH(s, X θ
s ,Y

θ
s , Z θ

s , θs)|2 ds,

for some constant C > 0, which depends on K , T , and d. �
Proof of Theorem 2.4 Since α∗ is the (locally) optimal control for the problem (2), the
Pontryagin’s optimality principle holds, see e.g. [23]. Hence for any a ∈ A we have

H(s, Xα∗
s ,Y α∗

s , Zα∗
s , α∗

s ) ≤ H(s, Xα∗
s ,Y α∗

s , Zα∗
s , a), ∀s ∈ [0, T ]. (23)

By definition of the augmented Hamiltonian (6) for all s ∈ [0, T ] we have

H̃(s, Xα∗
s ,Y α∗

s , Zα∗
s , α∗

s , a) = H(s, Xα∗
s ,Y α∗

s , Zα∗
s , a)

+ 1

2
ρ|b(s, Xα∗

s , a) − b(s, Xα∗
s , α∗

s )|2

+ 1

2
ρ|σ(s, Xα∗

s , a) − σ(s, Xα∗
s , α∗

s )|2

+ 1

2
ρ|DxH(s, Xα∗

s ,Y α∗
s , Zα∗

s , a) − DxH(s, Xα∗
s ,Y α∗

s , Zα∗
s , α∗

s )|2.

(24)

Therefore, due to (23) and (24) we have

H̃(s, Xα∗
s ,Y α∗

s , Zα∗
s , α∗

s , α
∗
s )

= H(s, Xα∗
s ,Y α∗

s , Zα∗
s , α∗

s ) ≤ H(s, Xα∗
s ,Y α∗

s , Zα∗
s , a)

+1

2
ρ|b(s, Xα∗

s , a) − b(s, Xα∗
s , α∗

s )|2

+1

2
ρ|σ(s, Xα∗

s , a) − σ(s, Xα∗
s , α∗

s )|2

+1

2
ρ|DxH(s, Xα∗

s ,Y α∗
s , Zα∗

s , a) − DxH(s, Xα∗
s ,Y α∗

s , Zα∗
s , α∗

s )|2

= H̃(s, Xα∗
s ,Y α∗

s , Zα∗
s , α∗

s , a).

This concludes the proof. �
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Proof of Theorem 2.5 Let us apply Lemma 2.3 for ϕ = αn and θ = αn−1. Hence, for
some C > 0 we have

J (x, αn) − J (x, αn−1)

≤ E

∫ T

0
[H(s, Xn

s ,Y
n
s , Zn

s , α
n
s ) − H(s, Xn

s ,Y
n
s , Zn

s , α
n−1
s )] ds

+ CE

∫ T

0
|b(s, Xn

s , α
n
s ) − b(s, Xn

s , α
n−1
s )|2 ds

+ CE

∫ T

0
|σ(s, Xn

s , α
n
s ) − σ(s, Xn

s , α
n−1
s )|2 ds

+ CE

∫ T

0

∣∣∣DxH(s, Xn
s ,Y

n
s , Zn

s , α
n
s ) − DxH(s, Xn

s ,Y
n
s , Zn

s , α
n−1
s )

∣∣∣2 ds.

(25)

Let

μ(αn−1) = E

∫ T

0
[H(s, Xn

s ,Y
n
s , Zn

s , α
n
s ) − H(s, Xn

s ,Y
n
s , Zn

s , α
n−1
s )] ds.

Due to the definition of αn (8) and (15) we have for all s ∈ [0, T ]

H(s, Xn
s ,Y

n
s , Zn

s , α
n
s ) + 1

2
ρ|b(s, Xn

s , α
n
s ) − b(s, Xn

s , α
n−1
s )|2

+1

2
ρ|σ(s, Xn

s , α
n
s ) − σ(s, Xn

s , α
n−1
s )|2

+1

2
ρ|DxH(s, Xn

s ,Y
n
s , Zn

s , α
n
s ) − DxH(s, Xn

s ,Y
n
s , Zn

s , α
n−1
s )|2

≤ H(s, Xn
s ,Y

n
s , Zn

s , α
n−1
s ).

Therefore, we can observe that μ(αn−1) ≤ 0. Hence we can rewrite the inequal-
ity (25) as

J (x, αn) − J (x, αn−1) ≤ μ(αn−1) − 2C

ρ
μ(αn−1) = Dμ(αn−1), (26)

where D := 1 − 2C
ρ
. By choosing ρ > 2C we have that D > 0. Notice that for any

integer M > 1 we have

M∑
n=1

(−μ(αn−1)) ≤ D−1
M∑
n=1

(J (x, αn−1) − J (x, αn))

= D−1(J (x, α0) − J (x, αM ))

≤ D−1(J (x, α0) − inf
α∈A

J (x, α)) < ∞.
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Since (−μ(αn−1)) ≥ 0 and
∑∞

n=1(−μ(αn−1)) < +∞we have that μ(αn−1) → 0
as n → 0. This concludes the proof. �

We need to introduce new notation, which will be used in the proof of Corollary 2.6.
Denote the set

Iτ,h := [τ − h, τ + h] ∩ [0, T ], τ ∈ [0, T ], h ∈ [0,+∞). (27)

Let us define for all s ∈ [0, T ]

�αn−1H(s) := H(s, Xn
s ,Y

n
s , Zn

s , α
n
s ) − H(s, Xn

s ,Y
n
s , Zn

s , α
n−1
s ),

and

μ(αn−1) := E

∫ T

0
�αn−1H(s) ds.

By definition of αn notice that �αn−1H(t) ≤ 0 for all t ∈ [0, T ]. Let us show an
auxiliary lemma.

Lemma 3.2 For any h > 0 there exists τ , which depends on h and αn−1, such that

E

∫
Iτ,h

�αn−1H(t) dt ≤ hμ(αn−1)

T
.

Proof We will prove by contradiction. Assume that there exists h∗ > 0 such that
∀τ ∈ [0, T ] we have

E

∫
Iτ,h∗

�αn−1H(t) dt >
h∗μ(αn−1)

T
. (28)

Denote τi = ih∗, i = 1, . . . , N (h∗), where N (h∗) = [T /h∗] - integer part. Since
�αn−1H(t) ≤ 0 for all t ∈ [0, T ] by definition of αn and ∪N (h∗)

i=1 Iτi ,h∗ is a superset of
[0, T ] we have

μ(αn−1) = E

∫ T

0
�αn−1H(t) dt ≥

N (h∗)∑
i=1

E

∫
Iτi ,h∗

�αn−1H(t) dt . (29)

Hence, by (28) we get

μ(αn−1) >

N (h∗)∑
i=1

h∗μ(αn−1)

T
= h∗N (h∗)

T
μ(αn−1) ≥ μ(αn−1).

Last inequality holds since h∗N (h∗)
T is less or equal to 1. Hence we get the contra-

diction. �
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Now we are ready to prove Corollary 2.6.
Proof of Corollary 2.6 First, observe that

b(s, Xn
s , α

n
s ) − b(s, Xn

s , α
n−1
s ) = b2(s, α

n
s ) − b2(s, α

n−1
s ),

σ (s, Xn
s , α

n
s ) − σ(s, Xn

s , α
n−1
s ) = σ2(s, α

n
s ) − σ2(s, α

n−1
s ),

DxH(s, Xn
s ,Y

n
s , Zn

s , α
n
s ) − DxH(s, Xn

s ,Y
n
s , Zn

s , α
n−1
s ) = 0.

Let us consider the set Iτ,h given by (27). We will specify the choice of τ and h
later. Hence, after applying Lemma 2.3 for αn and αn−1 we have for some C > 0

J (x, αn) − J (x, αn−1)

≤ E

∫
Iτ,h

[H(s, Xn
s ,Y

n
s , Zn

s , α
n
s ) − H(s, Xn

s ,Y
n
s , Zn

s , α
n−1
s )] ds

+CE

∫
Iτ,h

|b2(s, αn
s ) − b2(s, α

n−1
s )|2 + |σ2(s, αn

s ) − σ2(s, α
n−1
s )|2 ds

+E

∫
[0,T ]\Iτ,h

[H(s, Xn
s ,Y

n
s , Zn

s , α
n
s ) − H(s, Xn

s ,Y
n
s , Zn

s , α
n−1
s )] ds

+CE

∫
[0,T ]\Iτ,h

|b2(s, αn
s ) − b2(s, α

n−1
s )|2 + |σ2(s, αn

s ) − σ2(s, α
n−1
s )|2 ds.

Since the following holds for all s ∈ [0, T ] and ρ ≥ 0:

H(s, Xn
s ,Y

n
s , Zn

s , α
n
s ) − H(s, Xn

s ,Y
n
s , Zn

s , α
n−1
s )

+1

2
ρ|b2(s, αn

s ) − b2(s, α
n−1
s )|2 + 1

2
ρ|σ2(s, αn

s ) − σ2(s, α
n−1
s )|2 ≤ 0,

we have for ρ ≥ 2C

J (x, αn) − J (x, αn−1)

≤ E

∫
Iτ,h

[H(s, Xn
s ,Y

n
s , Zn

s , α
n
s ) − H(s, Xn

s ,Y
n
s , Zn

s , α
n−1
s )] ds

+CE

∫
Iτ,h

|b2(s, αn
s ) − b2(s, α

n−1
s )|2 + |σ2(s, αn

s ) − σ2(s, α
n−1
s )|2 ds.

Therefore, from Lemma 3.2 and from similar calculations as in (26), there exists τ

such that

J (x, αn) − J (x, αn−1)

≤
(
1 − 2C

ρ

)
E

∫
Iτ,h

[H(s, Xn
s ,Y

n
s , Zn

s , α
n
s ) − H(s, Xn

s ,Y
n
s , Zn

s , α
n−1
s )] ds

≤
(
1 − 2C

ρ

)
hμ(αn−1)

T
.
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Let us choose h = −(ρ − 2C)μ(αn−1)/(ρT ). Hence

J (x, αn) − J (x, αn−1) ≤ −(ρ − 2C)2(μ(αn−1))2/(ρ2T 2). (30)

Let α∗ be the optimal control. Indeed, by the sufficient condition for optimality,
see e.g. [23], and by assumptions of corollary, we have the existence of the optimal
control. Therefore, by convexity of g, and by Itô’s product rule we have

0 ≤ J (x, αn−1) − J (x, α∗)

= E

[∫ T

0
( f (s, Xn

s , α
n−1
s ) − f (s, Xs, α

∗
s )) ds + g(Xn

T ) − g(XT )

]

≤ E

[∫ T

0
( f (s, Xn

s , α
n−1
s ) − f (s, Xs, α

∗
s )) ds

]
+ E[(Dxg(X

n))	(Xn
T − XT )]

≤ E

[∫ T

0
( f (s, Xn

s , α
n−1
s ) − f (s, Xs, α

∗
s )) ds

]

+E

[∫ T

0
(Yn

s )	d(Xn
s − Xs) +

∫ T

0
(Xn

s − Xs)
	dY n

s

]

+E

[∫ T

0
tr((σ (s, Xn

s , α
n−1
s ) − σ(s, Xs, α

∗
s ))

	Zn
s ) ds

]
.

Hence, we have that

0 ≤ J (x, αn−1) − J (x, α∗)

≤ E

[∫ T

0
f (s, Xn

s , α
n−1
s ) − f (s, Xs, α

∗
s ) ds

]

+E

[∫ T

0
(Yn

s )	(b(s, Xn
s , α

n−1
s ) − b(s, Xs, α

∗
s )) ds

]

−E

[∫ T

0
(Xn

s − Xs)
	DxH(s, Xn

s ,Y
n
s , Zn

s , α
n−1
s ) ds

]

+E

[∫ T

0
tr((σ (s, Xn

s , α
n−1
s ) − σ(s, Xs, α

∗
s ))

	Zn
s ) ds

]
.

Recalling the form of b, σ and observing that

DxH(s, Xn
s ,Y

n
s , Zn

s , α
n−1
s ) = b1(s)Y

n
s + σ1(s)Z

n
s + Dx f (s, X

n
s , α

n−1
s ),
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we have

0 ≤ J (x, αn−1) − J (x, α∗)

≤ E

[∫ T

0
f (s, Xn

s , α
n−1
s ) − f (s, Xs , α

∗
s ) ds

]

+E

[∫ T

0
tr((σ2(s, α

n−1
s ) − σ2(s, α

∗
s ))

	Zn
s ) ds

]

+E

[∫ T

0
(Yn

s )	(b2(s, α
n−1
s ) − b2(s, α

∗
s )) ds −

∫ T

0
(Xn

s − Xs)
	Dx f (s, X

n
s , α

n−1
s ) ds

]
.

Since f is convex in x we have for all s ∈ [0, T ] that

f (s, Xs, α
n−1
s ) ≥ f (s, Xn

s , α
n−1
s ) + (Xs − Xn

s )
	Dx f (s, X

n
s , α

n−1
s ).

Therefore, we obtain

J (x, αn−1) − J (x, α∗)

≤ E

∫ T

0

[
H(s, Xn

s ,Y
n
s , Zn

s , α
n−1
s ) − H(s, Xn

s ,Y
n
s , Zn

s , α
∗
s )

]
ds

≤ −μ(αn−1),

(31)

where the second inequality holds due to

H(s, Xn
s ,Y

n
s , Zn

s , α
n
s ) ≤ H(s, Xn

s ,Y
n
s , Zn

s , α
∗
s ).

Let bn := J (x, αn) − J (x, α), then due to (30) and (31) we have that

bn − bn−1 ≤ −(ρ − 2C)2μ(αn−1)2

(ρ2T 2)
≤ −(ρ − 2C)2(bn−1)2

ρ2T 2 .

Therefore, due to Lemma A.1 we have

J (x, αn) − J (x, α∗) ≤ C1

n
.

for some constant C1 > 0. This concludes the proof. �
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Appendix A: Auxiliary Lemma

Lemma A.1 Let {bk}k∈N be the sequence of nonnegative numbers such that

bk+1 ≤ bk − qb2k ,

where q is a positive constant. Then bk = O(1/k).

One can find the proof in [6, Lemma 1.4, p. 93]. However, the proof is written in
Russian. For convenience of the reader we provide it here.

Proof Let bk = ck
k for some nonnegative sequence (ck)k∈N. Then it is enough to show

that ck is bounded for all k ∈ N. By assumption we have

bk − bk+1 = ck
k

− ck+1

k + 1
= ck

k

(
1 − ck+1

ck

k

k + 1

)
≥ q

c2k
k2

.

Therefore,

1 − ck+1

ck

k

k + 1
≥ q

ck
k

.

After some transformation, we can rewrite the equation above as

(
1 + 1

k

)(
1 − q

ck
k

)
≥ ck+1

ck
.

Thus

1 + 1

k
(1 − qck) − q

ck
k2

≥ ck+1

ck
.

If 1 − qck < 0 we have

1 > 1 + 1

k
(1 − qck) − q

ck
k2

≥ ck+1

ck
.

Hence ck+1 < ck . On the other hand, if 1 − qck ≥ 0, we have ck ≤ 1
q . Therefore,

we conclude that for all k we have

ck ≤ max

{
c1,

1

q

}
.

�
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