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ABSTRACT
Tracking a capsule endoscope location is one of promising
application offered by implant body area networks (BANs).
In this paper, we pay attention to a particle filter algo-
rithm with received signal strength indicator (RSSI)-based
localization in order to solve the capsule endoscope loca-
tion tracking problem, which assumes a nonlinear transition
model on the capsule endoscope location. However, the orig-
inal particle filter requires to calculate the particle weight ac-
cording to its condition (namely, its likelihood value), while
the transition model on capsule endoscope location has some
model parameters which cannot be estimated by received
wireless signal. Therefore, for the purpose of applying the
particle filter to the capsule endoscope tracking, this pa-
per makes some modifications in the resampling step of the
particle filter algorithm. Our computer simulation results
demonstrates that the proposed tracking methods with the
modified particle filter can improve the performance as com-
pared with not only the conventional maximum likelihood
(ML) localization but also the original particle filter-based
location tracking.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless communication

General Terms
Measurement

1. INTRODUCTION
In recent years, wireless body area networks (BANs) has at-
tracted lots of attention with respect to medical and health-
care applications [1–3]. Wireless BANs realizes novel promis-
ing medical and healthcare applications such as wireless cap-
sule endoscopy. In wireless capsule endoscopy systems, the
location information of the capsule endoscope can help de-
tecting diagnose gastrointestinal (GI) conditions and assist-
ing the physicians for follow-up interventions. However,

since a capsule endoscope moves inside a human body, no-
body knows the location of the capsule endoscope in ad-
vance. Therefore, in the capsule endoscopy systems, it is
significant to estimate and track the capsule endoscope lo-
cation.

Various localization methods for the capsule endoscope have
been so far proposed [4–9]. For example, localization tech-
nologies include ultrasound [4], time of arrival (TOA)-based
pattern recognition [5], magnetic tracking [6, 7] and com-
puter vision [8, 9]. In these technologies, the localization
with radio frequency (RF) signals are advantageous in terms
of relatively low cost for implementation due to requiring no
specific device. In this paper, we pay attention to a received
signal strength indicator (RSSI)-based location estimation
method. This is because it is advantageous in terms of
cost and energy consumption since most of the current wire-
less communication standards have a function of measuring
RSSI in their protocols. As related works, a RSSI-based
triangulation system, which employs an external sensor ar-
ray which measures signal strength of capsule transmissions
at multiple points, has been proposed, and the average ex-
perimental error is reported to be 37.7mm [10]. In order to
further improve the performance of RSSI-based localization,
the use of a maximum likelihood (ML) estimation is effec-
tive [11, 12]. However, to use an ML estimation method, a
statistical model on the RSSI, which can well characterize
the real variation of the RSSI in the location estimation area
is required in advance. So, in order to successfully apply an
ML estimation technique to capsule endoscope localization,
we have so far investigated the statistical model of the prop-
agation characteristics of medical implant communication
services (MICS) band signals by using finite-difference time-
domain (FDTD) simulations together with an anatomical
human body model. [13].

In applying the RSSI-based ML localization to a capsule en-
doscope location tracking problem, it is important to take its
behavioral nature in consideration because the capsule en-
doscope is continuously localized. For example, its present
location is strongly related to its past locations, so we can
track it better by low-pass filtering its past locations. Fur-
thermore, if we know the mathematical model of the loca-
tion transition of the capsule endoscope, the tracking per-
formance can be improved even more. However, in the case
of a capsule endoscope tracking, the model is expected to be
nonlinear in reality, so we can have two approaches in this
case, one is an extended Kalman filter and the other is a par-



ticle filter [14–17]. In this paper, we focus on the particle
filter-based tracking method. As for the transition model of
the capsule endoscope location, the movement can be well
modeled as a random way point model [18]. If we employ
the random way point model as the transition model of the
capsule endoscope, some parameters in the model can not be
estimated by received wireless signal. The original particle
filter requires to calculate the particle weight according to
its condition (namely, its likelihood value), so it is difficult
to directly apply the particle filter to the capsule endoscope
location tracking. Therefore, in order to solve this problem,
we propose to modify the resampling step of the particle
filter algorithm.

In this paper, to begin with, we present the propagation
characteristics of the 400 MHz MICS band signals, and ex-
plain the ML localization method based on the propagation
characteristics. Then, Section 3 proposes the modified parti-
cle filter-based tracking method to successfully deal with the
random way point state transition model. Finally, in Section
4, we evaluate the performances of the modified particle fil-
ter algorithm for location tracking by computer simulations,
and discuss the location estimation accuracies in the capsule
endoscopy systems.

2. CONVENTIONAL ML LOCALIZATION
2.1 System Model
We assume that a capsule endoscope is located inside a hu-
man body and M receivers are put onto the human body
as shown in Fig. 1. The positions of receivers are known in
advance and the capsule endoscope location is unknown, so
the capsule endoscope location should be estimated by the
known receiver location information. We define the three-
dimensional locations of the capsule endoscope and the m-th
receiver (m = 1, · · · , M) as

r = [x, y, z]T (1)

rm = [xm, ym, zm]T (2)

where (·)T indicates the transpose of (·).

2.2 Propagation Characteristics
To introduce an ML estimation technique into the RSSI-
based localization, we have employed an FDTD simulation
with an anatomically-based numerical human body model to
investigate the propagation characteristics of implant BAN
signals [13]. From our investigation based on the FDTD
simulations, we have found that the variation of the RSSIs
can be well expressed with the following two-layered model:

μ(d) = log Pr = log[αd−n] (3)

p(Pr|d) =
1√

2πσPr

exp

»
−{log Pr − μ(d)}2

2σ2

–
. (4)

Here, Eq.(3) means the average received power Pr against
the transceiver distance d, and Eq.(4) indicates that the con-
ditional probability density function on RSSI Pr can be char-
acterized by the Log-Normal distribution when the transceiver
distance d is given. Note that the channel model parame-
ters in Eqs.(3) and (4) have been obtained by the FDTD-
simulated data as α = 10−7.50, n = 6.65 and σ = 5.50 dB in
[13].

Figure 1: System model for capsule endoscope lo-
calization

2.3 ML Localization
The log-likelihood function on r is defined as

L(r) = log p(P|r) (5)

where P is a measured RSSI vector P = [P1, · · · , PM ]T .
Based on the investigation of the propagation characteris-
tics, replacing d by dm(r) and Pr by Pm respectively in (3)
and (4) (also Pr by P ), Eq. (5) can be re-written as:
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where dm(r) denotes the distance between the capsule endo-
scope and the m-th receiver. The ML Localization method
gives the estimated location r̂ML as a value of r which max-
imizes L(r), that is, r̂ML can be obtained from the following
maximum likelihood equation:

∂L(r)

∂r

˛̨̨
˛
r=r̂ML

= 0. (7)

3. MODIFIED PARTICLE FILTER ALGO-
RITHM FOR LOCATION TRACKING

Particle filter is widely known as a sequential Monte Carlo
method, which is used as one of tools for Bayesian infer-
ence. The probability densities can be represented by point
mass (of “particle”) and the particles have information of the
parameters of the state transition model. As mentioned be-
low, the particle weight represents the likelihood value only
on the particle location, so the effect for some parameters
of the state transition model can not be considered in the
update step. To successfully apply the particle filter to the
capsule endoscope location tracking problem, we modify the
resampling step in the particle filter algorithm to take care
of all the state transition model parameters. The particle fil-
ter algorithm repeats the following four steps in an iterative
manner.

3.1 Prediction Step
The state of each particle is determined by state transition
model of the capsule endoscope location. This paper as-
sumes the following random way point model as the realistic



transition model [18]:

ri[n] = ri[n − 1] + vi[n]ek
i Δt (8)

vi[n] ∼ N (v̄, σv) (9)

ek
i =

gk
i − gk−1

i˛̨
gk

i − gk−1
i

˛̨ (10)

gk
i ∼

2
4 U(0, LX)

U(0, LY )
U(0, LZ)

3
5 (11)

where ri[n], vi[n], v, σv, Δt and gk
i represent the i-th par-

ticle location at the discrete-time index of n, the velocity of
the i-th particle at the discrete-time index of n, the average
velocity of the capsule endoscope moving, the standard devi-
ation of the capsule endoscope velocity, the time interval of
the location tracking and the k-th destination location vec-
tor of the i-th particle, respectively, and N (μ, σ) and U(a, b)
are the Gaussian distribution with mean μ and standard de-
viation σ, and the Uniform distribution between a and b,
respectively. Note that once particle reaches the destination
location (that is gk = rn), k becomes k + 1 so that gk and
ek will be updated.

3.2 Update Step
In the update step, the weight of each particle w̃i[n] at the
time index of n is updated as in the following way:

w̃i[n] = wi[n − 1]p(P1,i,P2,i, · · · ,PM,i|ri[n])

= wi[n − 1]

MY
m=1

p(Pm,i|ri[n]) (12)

wi[n] =
w̃i[n]PNp

j=1 wj [n]
(13)

where wi[n], Np is the normalized weight of the i-th particle,
the number of particles, respctively. In Eq.(6), the particle
weight w̃i[n] can be calculated by the likelihood function
represented in Eq.(6).

3.3 Resampling Step with Modification for In-
troducing Random Way Point State Tran-
sition Model

As the particle filter algorithm is iteratively performed, some
normalized particle weights become negligible. This leads to
degeneration of the particles, and finally, this phenomenon
gives a quite bad influence on the sequential Monte Carlo
method. From this reason, it is necessary to remove the
particles whose weights are relatively small and regenerate
them. For this purpose, we define the effective parameter
βeff as

βeff =
1PNp

i=1 w2
i [n]

. (14)

Note that βeff ranges from 1/Np to 1. Resampling will be
proceeded if βeff < βthr, where βthr is a threshold which in-
dicates the particles degeneration. Some particles with neg-
ligible weights are eliminated and regenerated as the copy
of the particle with a relatively large weight. Here, the orig-
inal particle is chosen with the probability according to its
weight. All the particle weights are then set to 1/Np. How-
ever, we herein point out that the particle weight is evalu-

Table 1: Parameters of computer simulations
LX 40 cm
LY 40 cm
LZ 20 cm

Number of particles Np 1000
Resampling threshold βthr 0.6

α 10−7.50

n 6.65
σ 5.50 dB
Δt 0.1 s
v 0.05 cm/s

σ2
v 0.005 (cm/s)2

ated based only on the likelihood value on its particle loca-
tion, that is, the other parameter, for example, the destina-
tion location of the particle, does not reflect its weight. In
order to consider the effect of this parameter, we make the
following additional procedure in the resampling step:

gk,modifed
i = gk,original

i + gpos
i (15)

gpos
i ∼ N (0, σpos) (16)

where gk,modified
i , gk,original

i and σpos denote the modified
destination location vector of the i-th particle, the destina-
tion location vector of the i-th particle regenerated in the
original particle filter algorithm and the standard deviation
of variational factor gpos

i , respectively.

3.4 Estimation Step
Finally, the estimated location of the particle filter is calcu-
lated as

r̂PF [n] =

NpX
i=1

wi[n]ri[n]. (17)

4. PERFORMANCE EVALUATION
4.1 Simulation Environment
In order to evaluate the performances of the proposed loca-
tion tracking method, we performed computer simulations.
In the computer simulations, we assumed that the capsule
endoscope moves inside a small intestine according to the
random way point model described in the previous section,
and the destination location of the transition model was de-
termined based on the small intestine of the numerical hu-
man model in advance as shown in Fig. 2. The estimation
area was assumed to a cuboid area around the small intes-
tine, whose size was LX = 40 cm (width) × LY = 40 cm
(height) × LZ = 20 cm (depth). We put 8 receivers at each
vertex of the cuboid. The computer simulation parameters
are summarized in Table 1.

4.2 Results
Fig. 3 shows the root mean square (RMS) location estima-
tion error for the modified particle filter algorithm against
the standard deviation σpos in the resampling step. As can
be seen from Fig. 3, the location estimation performance is
insensitive to both the resampling threshold βthr and σpos.
Since the resampling threshold βthr has a trade-off relation-
ship between the location estimation accuracy and the con-
vergence performance, we use σpos = 7 cm and βthr = 0.6



Figure 2: trajectory of capsule endoscope movement
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Figure 3: Effect of σpos and resampling threshold
βthr on the particle filter-based location tracking

for the quick convergence and optimal localization perfor-
mance.

Fig.4 shows the RMS location estimation error for the pro-
posed and original particle filter algorithms. Furthermore,
Fig.4 also includes the localization performance for the con-
ventional ML localization and the theoretical bounds for the
ML localization, namely, Cramer-Rao lower bound (CRLB) [19].
As can be seen from this figure, the performance of the ML
localization converges to the CRLB, therefore, the efficiency
of the ML estimator can be established. On the other hands,
Fig. 4 also shows the results for the original particle filter al-
gorithm with true destination vector gk

i information, which
can be realized only in a computer simulation, that is, it can-
not be realized in a reality because no one can obtain the true
destination of the capsule endoscope. From these results, the
performance of the original particle filter does not converge
because the particle weight cannot represent the destination
of the capsule endoscope, whereas the proposed algorithm
significantly improves the location estimation performance,
and furthermore, the localization performance of the mod-
ified particle algorithm converges to a good estimation ac-
curacy. Moreover, the proposed algorithm accomplishes the
estimation accuracy for the original particle filter algorithm
with true destination information. Therefore, it can be con-
cluded that the proposed particle filter algorithm properly
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Figure 4: Comparison of location estimation accu-
racies between FIR filter- and particle filter-based
tracking methods

deals with the destination information of each particle.

Then, let us compare the performances between the pro-
posed particle filter algorithm and another filter algorithm
for wireless capsule endoscope tracking. As comparison pur-
pose, we choose a finite impulse response (FIR) filter algo-
rithm, which tracks the capsule endoscope location by aver-
aging its past locations [20]. Fig. 4 also includes the localiza-
tion performance of the FIR filter algorithm. As compared
with the two location tracking methods, we have confirmed
that the localization accuracy for the modified particle filter
algorithm is better than that for the FIR filter algorithm.
This reason is that the proposed particle filter can success-
fully make use of the realistic capsule endoscope transition
model. For example, the achievable RMS location estima-
tion errors for the FIR filter and the proposed particle filter
algorithms are 1.5 cm and 0.7 cm, respectively, so the pro-
posed particle filter algorithm can improve the performance
by around 50% as compared with the FIR filter algorithm.

Finally, Fig.5 shows the cumulative distribution functions
(cdfs) on the location estimation error for the particle filter
based- and the FIR filter based-location tracking methods
and the ML localization. Similarly to the RMS location
estimation error, the proposed particle filter algorithm out-
performs the original particle filter and the FIR filter algo-
rithms in term of the cdf on the location estimation error.
From Fig.5, the maximum location estimation error of the
proposed article filter algorithm is achieved within 2 cm,
whereas that of the FIR filter is around 2.5 cm, and when the
cdf of the location estimation error is 0.7, the proposed par-
ticle filter algorithm improves the estimation performance
by around 50 % as compared with the FIR filter algorithm.

5. CONCLUSIONS
This paper has introduced the particle filter algorithm into
the RSSI-based localization for wireless capsule endoscope.
In order to successfully apply the particle filter algorithm
to the capsule endoscope tracking problem, we have pro-
posed to modify the resampling step in the particle filter
algorithm because the transition model has some param-
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eters that cannot be estimated by received wireless signal.
Our computer simulation results have demonstrated that the
particle particle filter algorithm outperforms not only the
original particle filter algorithm but also the conventional
FIR filter algorithm due to taking the realistic capsule en-
doscope transition model into consideration. We would like
to remark that our developed location tracking method can
accomplish a high estimation accuracy of 0.7 cm.

Our future subject is to introduce the particle filter-based
tracking into other localization method, such as TOA-based
localization to further improve the estimation accuracy of
the capsule endoscope location.
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