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Abstract.

This paper presents a controller design to compensate the effects of time
delay in a flexure-based piezoelectric stack driven nanopositioner. The effects of
the time delay in flexure nanopositioners is illustrated and identified by means
of experimentally obtaining the frequency response of the system. Moreover,
a theoretical model which takes into account the dependence between the
sampling time and the delay introduced is proposed. The proposed control design
methodology not only accommodates for time delay but also ensures the robust
stability and allows its application to systems with a larger delay than other
schemes proposed previously. Limitations and future work are discussed.
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1. Introduction

Nanopositioners generally come in two types viz:
tube-type and platform-type, which predominantly
employ piezoelectric actuators due to their easy
control and arbitrarily fine resolution [1]. The
achievable resolution, which can be in the range of
the atomic scale [2], makes nanopositioners widely
applicable in atomic force microscopes (AFM), micro-
/nanomanipulation [3], fiber optic alignment [4] and
electrical characterization of semiconductors [5].

Due to the recently increased demand for high-
speed AFM in the areas of imaging of fast biological
processes [6], and video-rate AFM [7, 8, 9], piezoelec-
tric tube scanners have been replaced by flexure-based
piezoelectric stack driven nanopositioners. Among
their advantages are low cross-coupling between mo-
tion axes, robust mechanical construction, large mo-
tion range and high mechanical bandwidth. How-
ever, the two main drawbacks of flexure-based mech-
anisms are: 1) the nonlinearity of piezoelectric actua-
tors employed to drive the nanopositioner, and 2) their
lightly damped resonance peaks, which impose an up-
per bound on the achievable bandwidth, determined
by the first resonance mode of the nanopositioner.

Because of these drawbacks the nanopositioners
are usually operated by means of different closed-
loop control schemes [2], and several feedback control
techniques have been successfully implemented to
suppress vibration and compensate for nonlinearity,
such as Positive Position Feedback (PPF) [10],
polynomial-based control (also known as Positive
Velocity and Position Feedback - PVPF) [11],
Resonant control [12], robust control [13], and Integral
Resonance Control (IRC) [14].

Flexure nanopositioners are typically composed
of five components: a flexure-hinge-based mechanism,
one or many piezoelectric actuators (PEAs), depending
on the number of degrees of freedom (DOF) of the
nanopositioner, a piezoelectric drive circuit for each
PEA, a displacement sensor for each DOF, and an
electronic control circuit, which executes the control
algorithm.

While the identification, modelling, and control of
the mechanical structure and the PEAs has attracted
significant attention in the literature, the dynamics
of the rest of the system, i.e. the piezoelectric
drive circuit, the displacement sensor, and the
electronic control circuit, is usually neglected because

it is assumed that its dynamics are much faster in
comparison to the mechanical part of the system.

However, the joint action of these three compo-
nents may lead to the introduction of a time delay
which becomes significant over the large bandwidth of
the nanopositioning system. The existence of this de-
lay, and its effect on nanopositioners was first noticed
in [15]. In this work, the delay introduced by finite
clock speeds of the signal conditioning circuitry associ-
ated with displacement sensors was quantified, and the
stability conditions of the IRC scheme were extended
to accommodate the effects of the delay by means of
the Padé approximation.

In this paper, the delay introduced not only by the
displacement sensors, but also by the electronic control
circuit is quantified, and it is found that there exists
a linear relationship between the sampling time and
the delay introduced. Once the delay of the system is
identified, it is included in the dynamical model of the
nanopositioner. Then the methodology of design of the
PVPF control scheme is extended to include such delay.
This yields some analytically exact expressions which
allow us to easily study the stability of the closed-loop
system and determine the maximum delay admissible
before running into instability. This modification of the
traditional PVPF will be denoted “modified PVPF”.

The identification of the relationship between
the sampling time and the delay introduced together
with the compensation of the effect of the delay
allows the utilisation of slower sampling rates to
control the nanopositioner. This relaxation in the
sampling rate allows the utilisation of a wider range of
electronic systems to control the nanopositioner and,
therefore, potentially reduce the cost associated with
the electronic control circuit.

It is important to note that traditional techniques
for delay compensation such as Smith predictor
[16], and direct inversion of plant dynamics are not
applicable to flexure-based nanopositioners. The
infinite number of unmodeled vibration modes prevents
the application of the Smith predictor, and the direct
inversion of plant dynamics is not possible as the time
delay introduces non-minimum phase (NMP) zeros in
the system which would lead to unstable poles. This
is the reason why research into the quantification and
compensation of the delay of the system is of utmost
interest.

This article is organized as follows. In Section
2, the background theory regarding the modeling of
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a nanopositioner including the delay is presented. In
Section 3, the theoretical model of the PVPF controller
and the methodology of parameter tuning for systems
without time delay are presented. The inclusion of
time delay in the model of the system, by means of a
Padé approximation, and the subsequent compensation
of its effects, utilising the modified PVPF control
scheme, is presented in Section 4. In Section 5, the
experimental platform is presented and the procedure
employed for the experimental system identification is
described. The experimental results, obtained for both
the traditional and modified PVPF control schemes,
are presented in Section 6. From these results it can
be seen that the modified PVPF scheme achieves better
performance than the traditional PVPF scheme when
the nanopositioner presents a time delay. In Section
7, the robustness of both controllers is analysed by
relating the value of the delay of the platform and
the stability of the closed loop system. The maximum
range of application of the modified PVPF control
scheme is also analysed, showing that the maximum
admissible delay in the plant is greater than with
traditional PVPF. Finally, Section 8 presents some
conclusions.

2. Background theory

In this section, the theoretical model utilised to capture
the behaviour of the nanopositioner is presented.
First, the equations utilised to reproduce the dynamics
of the flexure-hinge-based mechanism are presented,
and then the different elements which contribute to
the introduction of a delay are listed. Finally, the
dependence between the delay and the sampling time
is justified.

2.1. Theoretical model of the mechanical structure

A two-axis flexure-based nanopositioner can be
interpreted as a linear system with two inputs and
two outputs Y (s) = G(s)U(s), where U(s) denotes
the Laplace transform of [Vx, Vy]

T , the voltage signals
applied to the piezoelectric drive circuits along the x
and y directions, Y (s) denotes the Laplace transform
of [Dx, Dy]

T , the voltage signals read with the
displacement sensors along the x and y directions, and

G(s) =

[

Gxx(s) Gxy(s)
Gyx(s) Gyy(s)

]

(1)

the transfer matrix relating the inputs and the outputs.
As mentioned in the introduction, the cross-

coupling between the motion axes is very low and
can be considered negligible, which means Gxy(s) =
Gyx(s) = 0 (this hypothesis is confirmed in the section
devoted to the analysis of the experimental platform).
Furthermore, since only the x−axis of the platform was

used to conduct experiments in this work, Gyy(s) = 0.
Note that the y−axis was suitably biased and fed 0 V
as input to mimic realistic platform operation.

Therefore, the studied system can be interpreted
as Y (s) = G(s)U(s), where Y (s) = Dx(s), G(s) =
Gxx(s), and U(s) = Vx(s). The input-output
frequency response of the system can be represented
by means of an infinite sum of second-order transfer-
functions as follows:

G(s) =

M
∑

i=1

σ2

i

s2 + 2ζiωis+ ω2

i

(2)

where M → ∞, σ2

i corresponds to the gain of each
mode of vibration, ζi is the damping ratio of each
mode, and ωi is the natural frequency of vibration
of each mode. However, for practical purposes (2) is
usually truncated to contain a finite number of modes.
In several works [13, 15, 17, 18, 19], (2) is truncated at
the first mode as it is dominant.

Since the design of the PVPF control scheme is
based on a simplified model of the plant composed
only by the first mode of vibration [19], in this article
it is chosen M = 1. However, it is important to
note that the error introduced in the model due to
the truncation of the high-frequency modes, deems the
Smith Predictor and direct plant dynamics inversion
approach infeasible when compensating for the delay.
Since both techniques rely on the knowledge of a full
model of the plant, the higher order modes of vibration
cannot be controlled and become unstable.

Note that according to [20], it has been
mathematically verified that the dynamics of a PEA
can be approximated as a second-order system, and
the dynamics of the PEAs of the nanopositioner can
therefore be included in (2). However, in [21] it was
demonstrated that the typical resonance frequency of
stack PEAs is usually over 50 times greater than the
first mode of vibration of the mechanical structure
of the nanopositioner, and lies therefore outside the
bandwidth of interest.

2.2. Theoretical model of the electrical subsystem

The electrical subsystem of the nanopositioner is
comprised of the piezoelectric drive circuit, the
displacement sensor, and the electronic control circuit.
These three components work sequentially in the
following way: first, the displacement sensor reads the
position of the nanopositioner, second, the signal is
conditioned in the sensor and translated to a level of
voltage suitable for use in the electronic control circuit,
third, the analog signal available at the displacement
sensor is digitized by the electronic control circuit,
which utilizes that value as input for the control system
(when the system is operated in closed loop), or just in
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order to record the measured data (when the system
is operated in open loop). Finally, the output of the
electronic control circuit is converted to an analog
signal which is applied to the piezoelectric drive circuit.
This circuit raises the voltage level to the working
voltage of the PEAs.

The aforementioned set of operations is repeated
sequentially whether the system is operated in closed
loop or in open loop. The time taken to repeat each
cycle of the sequence is denoted cycle time, and since
in each cycle the system is sampled once, it can be seen
that the cycle time and the sampling time are equal,
and both terms are used synonymously hereinafter.
Note that the term “sampling rate”is the inverse of
the sampling time.

This set of operations is not instantaneous due
to physical limitations. The cumulative time taken
to complete them produces a fixed amount of delay
between the time instant at which the measurement is
taken and the instant at which the action is applied.
This is known as latency and its value is always
lower than or equal to the cycle time, determining,
therefore, a lower bound to the achievable sampling
time. Note that the main sources of latency are the
signal conditioning, the analog to digital conversion,
the hardware communication (which includes all the
processes necessary to transport the signal from the
DAC into the software execution system), and the
digital to analog conversion. The first source of latency
was the reason pointed out in [15] for the apparition
of a delay in the system, however we will show in this
paper that there are several reasons, and that they are
cumulative.

The latency of the system justifies the apparition
of a fixed amount of delay in the system. However,
according to [22, 23] the zero-order hold (which is
extensively used in the digital to analog conversion
stage) can be interpreted as a time delay element which
introduces a delay equal to half the sampling period.
Note that this property can be seen in the frequency-
dependent phase response of the hold, which is the
same technique utilised in [15] to identify the delay of
the system. This property predicts a linear dependence
between the sampling time and the delay introduced in
the system. When both delays are considered, it can
be seen that the total delay introduced in the system
is composed by the sum of a fixed amount produced
by the latency of the system and by a variable amount
determined by the sampling period.

The traditional way to increase the sampling rate,
and reduce the latency of the system (and therefore
reduce the delay introduced) is the utilization of a
custom, dedicated hardware implementation of the
control algorithm such as a FPGA, a custom-built
analog circuit, or PXI systems. However, these

systems are less flexible and more expensive that
the utilisation of software-dependent controllers. The
software-dependent controllers are usually presented in
the form of a traditional PC equipped with some real-
time operating system and signal acquisition hardware
[18, 24, 25]. This architecture is highly flexible
due to its integration with very popular design and
control software, such as Simulink or LabView, but the
sampling periods achievable with such equipment are
in the range of tens of microseconds, which makes the
effect of the introduced delay not negligible.

It is important to note that a reduction in the
sampling rate as a design constraint allows a reduction
in the cost of the electronics components utilised to
control the system, and an increase in the number of
control electronics available for this application.

3. Traditional PVPF control scheme without

delay compensation

In order to reduce the positioning errors in a
nanopositioner and to impart substantial damping to
the lightly-damped resonance mode, the polynomial-
based pole-placement technique [26] has been widely
employed in the form of three different control schemes:
resonant controller, PPF, and PVPF. The PVPF
design is composed of a closed-loop damping controller
in conjunction with a suitably gained integral tracking
controller. It is important to note that the integral
tracking controller of the PVPF is utilised in order to
reduce the tracking error produced by uncertainties in
the mathematical model of the nanopositioner and by
the nonlinearity of the actuators, and it must not be
confused with the lossy integrator utilised in [14], which
is utilised in order to to improve the stability margins
of the IRC damping scheme.

Typically, both the damping and the tracking
controllers are designed independently and sequentially
[27]; damping controller first and then the tracking
controller. However a design strategy was recently
proposed in [19] in which the selection of the
parameters for the PVPF controller as well as the
integral gain were carried out simultaneously to achieve
an optimal damping and tracking effect. The simple
structure of the PVPF scheme, its ability to arbitrarily
place the poles of the closed-loop system, and the
possibility of achieving an optimal damping and
tracking effect are the reasons why this control scheme
is utilised in this work.

The structure of the PVPF controller is shown in
Figure 1, where R(s), is the Laplace transform of r(t)
(the reference applied to the closed-loop system), and
Cdamp(s) and Ctrack(s) are given by:

Cdamp(s) =
Γ2s+ Γ1

s2 + 2γωcs+ ω2
c

(3)
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Figure 1. Block diagram of the closed-loop PVPF control
scheme with tracking

Ctrack(s) =
kt
s

(4)

Considering only the first mode of vibration of
the plant, and neglecting the time delay introduced,
the nanopositioner can be modeled by the following
equation:

G(s) =
σ2

s2 + 2ζωns+ ω2
n

(5)

The closed-loop transfer function, therefore, has
the following expression: Y (s)/R(s) = Mnum(s)/Mden(s),
where:

Mnum(s) =ktσ
2(s2 + 2γωcs+ ω2

c )

Mden(s) =s5 + (2ζωn + 2γωc)s
4

+ (2ζωn2γωc + ω2

n + ω2

c )s
3

+ (2ζωnω
2

c + 2γωcω
2

n − σ2Γ2 + ktσ
2)s2

+ (ω2

nω
2

c − σ2Γ1 + ktσ
22γωc)s+ ktσ

2ω2

c

(6)

Mden(s) can be expressed as:

Mden(s) = s5 +K4s
4 +K3s

3 +K2s
2 +K1s+K0 (7)

where:

K4 =2ζωn + 2γωc

K3 =2ζωn2γωc + ω2

n + ω2

c

K2 =2ζωnω
2

c + 2γωcω
2

n − σ2Γ2 + ktσ
2

K1 =ω2

nω
2

c − σ2Γ1 + ktσ
22γωc

K0 =ktσ
2ω2

c

(8)

It can be seen that the coefficients of the
characteristic polynomial (7) determine the location of
the closed-loop poles of the system. The five poles of
the closed loop can be therefore placed arbitrarily by
choosing the values of the five coefficients Ki.

Then, the parameters of the controllers Cdamp(s)
and Ctrack(s) can be solved recursively from (8) leading
to the following expressions:

2γωc =K4 − 2ζωn

ω2

c =K3 − ω2

n − 2ζωn2γωc

kt =K0/(σ
2ω2

c )

Γ2 =− (K2 − 2ζωnω
2

c − 2γωcω
2

n − ktσ
2)/σ2

Γ1 =− (K1 − ω2

cω
2

n − 2γωcktσ
2)/σ2

(9)

In this article the poles of the closed loop system
are placed by following the design criteria of [19], where
the desired closed-loop performance is defined by a flat
band response at low frequencies which rolls off above
the resonance frequency. This design criteria is met
when the poles of the closed-loop system lie along a
circle of radius ωn and are spaced at equal angular
distances as in the low pass Butterworth filter (which
is often referred to as a ”maximally flat magnitude”
filter).

4. Modified PVPF control scheme with delay

compensation

In the previous section the equations for designing
the traditional PVPF control scheme were presented.
It can be seen that these formulas are based on a
simplified model of the nanopositioner where the delay
is not considered. However, as stated in subsection 2.2,
the experimental system has a significant delay. The
theoretical model of the platform, therefore, has to be
modified in order to include the effects of the delay
leading to the following expression:

G(s) =
e−τsσ2

s2 + 2ζωns+ ω2
n

(10)

where τ is the value of the time delay introduced in the
system.

When (10) is considered, the equation of the
closed-loop transfer function has the following expres-
sion: M ′(s) = M ′

num(s)/M ′

den(s), where:

M ′

num(s) =e−τs(s2kt + 2sktωcγ + ktω
2

c )σ
2

M ′

den(s) =s5 + (2ζωn + 2γωc)s
4

+ (2ζωn2γωc + ω2

n + ω2

c )s
3

+ (2ζωnω
2

c + 2γωcω
2

n + e−τsσ2(kt − Γ2))s
2

+ (ω2

nω
2

c + (ktσ
22γωc − σ2Γ1)e

−τs)s

+ ktσ
2ω2

ce
−τs

(11)

As (11) shows, the effect of the delay is the
addition of an infinite number of poles in the closed-
loop transfer function, and a change in the location of
the five closed-loop poles placed by using the equations
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of the traditional PVPF control scheme. Moreover, as
the delay is increased, the pair of complex poles closest
to the imaginary axis are displaced towards the right
half plane, reducing the overall stability of the closed-
loop system. Note that since the delay introduced
in the system is related to the sampling rate, an
upper bound on the maximum admissible delay can be
translated to a lower bound for the admissible sampling
rate.

It is important to note that, besides the reduction
of the stability, the introduction of a delay displaces
the location of the five designed poles from the circle
with radius ωn, which means that the design criteria
for the PVPF cannot be achieved (flat band response
at low frequencies which rolls off above the resonant
frequency).

Since the design criteria for the PVPF cannot be
achieved for systems with delay, and the stability of
the controlled system is also conditioned by the delay,
the development of new control design methods to
overcome these problems is of utmost interest.

If the relationship (9) is substituted in (11), after
some rearrangements the characteristic polynomial of
the closed-loop transfer function becomes:

M ′

den(s) =s5 + s4K4 + s3K3

+ s2[(ω2

n(1− 4ζ2)K4 + 2ωnζK3

+ ω3

n(8ζ
3 − 4ζ)) + e−τs(ω2

n(4ζ
2 − 1)K4

− 2ωnζK3 +K2 + ω3

n(4ζ − 8ζ3))]

+ s[(−2ω3

nζK4 + ω2

nK3 + ω4

n(4ζ
2 − 1))

+ e−τs(2ω3

nζK4 − ω2

nK3 +K1 + ω4

n(1− 4ζ2))]

+K0e
−τs

(12)

Note that the controller coefficients do not appear
explicitly in (12). This expression only depends on
the plant parameters and the constants Ki, 0 ≤ i ≤ 4.
Controller coefficients are embedded in these constants
according to (8). The design procedure implies two
sequential steps: 1) determining constants Ki that
place the closed-loop poles in the desired locations and
2) obtaining controller coefficients from the Ki’s by
using the inverse relations (9).

For desired closed-loop poles given by pi, 1 ≤ i ≤
5, then conditions M ′

den(pi) = 0, 1 ≤ i ≤ 5 have to be
verified. This can be expressed in a compact matricial
form as:

A ·K = B (13)

where K = (K0K1K2K3K4)
T , and matrices B ∈ ℜ5x1

and A ∈ ℜ5x5 only depend on the plant parameters
and the desired closed-loop poles, being

bi =− p5i + p2i 4ω
3

nζ(e
−τpi − 1)(2ζ2 − 1)

+ piω
4

n(e
−τpi − 1)(4ζ2 − 1)

(14)

and

ai,1 =e−τpi

ai,2 =pie
−τpi

ai,3 =p2i e
−τpi

ai,4 =p3i − 2(e−τpi − 1)ωnζp
2

i − (e−τpi − 1)ω2

npi

ai,5 =p4i + ω2

n(e
−τpi − 1)(4ζ2 − 1)p2i + 2ω3

nζ(e
−τpi − 1)pi

(15)

where 1 ≤ i ≤ 5.
The linear equation (13) can be easily solved by

inverting matrix A, which would be full rank if it were
verified that pi 6= pj for i 6= j. Once constants Ki have
been obtained, the coefficients of controllers Cdamp(s)
and Ctrack(s) are obtained from (9).

Note that by following this procedure the exact
location of five closed loop poles can be defined.
However, the transcendentality of the delay brings
infinitely many characteristic roots in the closed-loop
transfer function. To complete the design procedure
it is therefore necessary to determine whether the
designed five closed-loop poles are dominant over the
infinite remaining poles introduced by the delay, i.e. if
the five designed poles are closer to the imaginary axis
than the remaining infinite poles of the system. This
issue will be studied in Section 7.

5. Experimental setup and system

identification

In this section, the hardware utilised to carry out all of
the experiments is described. The section also provides
details of the system identification procedure.

5.1. Experimental setup

Figure 2 shows the experimental setup used in this
work. It consists of a two-axis piezoelectric-stack
actuated serial-kinematic nanopositioner designed at
the EasyLab, University of Nevada, Reno, USA. It has
an input range of ± 100 V resulting in a displacement
range of ± 20 µm. Two low-noise, linear voltage
amplifiers (PDL200) from Piezodrive, each with an
output range of 0 V - 200 V, a variable bias capability
of 0 V - 200 V and a fixed voltage gain of 20 are
used to supply voltage inputs to the piezoelectric-
stack actuators. The displacement is measured by a
Microsense 4810 capacitive displacement sensor and a
2805 measurement probe with a measurement range
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Figure 2. A two-axis serial kinematic nanopositioner, designed
at the EasyLab, University of Nevada, Reno, driven by two
PiezoDrive 200V Linear amplifiers, with position measured by
a Microsense 4810 capacitive sensor

of ± 50 µm for a corresponding voltage output of ±
10 V. A PCI-6621 data acquisition card from National
Instruments installed on a PC running the Real-Time
Module from LabVIEW is used to interface between
the experimental platform and the control design. The
PC utilised is an OPTIPLEX 780 with an Intel(R)
Core(TM)2 Duo Processor running at 3.167 GHz and
equipped with 2GB of DDR3 RAM memory. The
whole system is able to achieve deterministic sampling
times as low as 30 microseconds.

The PCI-6621 data acquisition card has a
maximum sampling rate of 250 kS/s, this is the
maximum speed of both the A/D and the D/A
converter. The time for a conversion at this rate is 4
µs. Taking into account the additional 10 µs padding
added in each A/D and D/A conversions (according to
the technical details of the data acquisition drivers of
National Instruments (NI-DAQmx)), a single channel
of data acquisition will require at least a 14 µs period.
Since each cycle is composed of an analog acquisition
and an analog generation, the sum of both conversions
add up to a total latency of 28 µs per cycle. This
latency determines a lower bound on the cycle time
achievable by the experimental system of 28 µs (in
the experimental setup the lowest cycle time achievable
was 30 µs).

The cross-coupling between the two axes was
measured leading to a result close to -40 dB. Such a
small value justifies the assumption made in Section
2 of considering the effects of cross-coupling negligible
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Figure 3. FRF of the experimental platform and the second-
order model (including time delay), measured from the input to
output displacements

in the analysis. The x−axis of the platform is used
to conduct the experiments presented in this work.
However, the y−axis was set to 0 V as input to mimic
a realistic platform operation.

5.2. Identification of the experimental platform

In this section, the experimental procedure to
characterise the dynamics of the nanopositioner and
the hardware utilised are presented.

To identify the linear model of the plant, small
signal frequency response functions (FRFs) were
utilised. The FRFs are determined by applying a
sinusoidal chirp signal (from 10 to 5000 Hz) with
an amplitude of 0.2 V as input to the voltage
amplifier of the x−axis and measuring the output
signal in the same axis. Subsequently, the FRFs
are computed by taking the Fourier transform of the
recorded data. It should be noted that, using small
amplitudes, the nonlinear effects of the PEAs such as
hysteresis can be considered negligible. It should be
noted also that, since the capacitive sensor measures
relative displacements from a zero point, before each
experiment a new zero point is measured in order to
avoid any offset in the measurements. In Figure 3 the
magnitude and phase responses of the FRF of G(s) are
plotted for a sampling time of 50 µs.

The chosen frequency range captures the first four
resonance modes of the platform (which supports the
theoretical model (2)) and shows the effect of the delay
of the system. The presence of a delay can be observed
in the phase response of Figure 3, where the phase plot
shows a linear behaviour at low and high frequencies
(the two dotted lines in Figure 3). This result suggests
that the transfer function of the system corresponds to
that shown in (10). Note that although four resonance
modes have been identified in the measured FRF, only
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the first mode is considered in the design of the PVPF
control scheme, as the first mode is dominant.

The procedure utilised to obtain the transfer
function of the system consists of two steps: first the
dominant resonance mode of the transfer function of
the system was obtained by using the subspace based
modelling technique described in [28], and then the
delay was adjusted by minimizing the root mean square
error of the phase response.

In order to identify the dependence of the delay
on the sampling time, several FRF were obtained
for different sampling times, ranging from 30 to 100
µs in increments of 10 µs, and from 100 to 200 µs
in increments of 20 µs. The 13 measurements were
utilised to identify the following model of the system:

G(s) =
1.024 · 107e−τs

s2 + 99s+ 2.025 · 107
(16)

where the value of τ is determined by the following
equation:

τ =
1

2
Ts + 90 · 10−6 (17)

where Ts is the sampling time. Both the sampling time
Ts and the delay τ are expressed in seconds.

It can be seen that the resonance frequency of the
plant is 716.2 Hz, and that there is a linear relationship
between the sampling period and the delay introduced
in the system. The delay of the system is due to
two different phenomena: on the one hand there is
a fixed delay of 90 µs determined by the latency of
the system (30 µs) and the mechanical design of the
nanopositioner (60 µs). On the other hand, there
is a delay proportional to half the sampling time as
predicted theoretically in [22, 23]. The effects of the
different delays associated with each sampling rate are
shown in Figure 4, where it can be seen that the slope
of the phase response of the system is steeper as the
sampling period increases. These figures also show that
the identified model accurately fits the experimental
results.

6. Experimental results

In this section, the experimental results obtained
applying the traditional and the modified PVPF
control scheme are presented. It is shown that, with the
modified PVPF control scheme, the maximum delay
admissible in the plant before encountering instability
is greater than that observed using the traditional
PVPF design, which allows the utilisation of slower
sampling rates and cheaper equipment without a
meaningful loss of performance.
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Figure 4. Magnitude and phase response of the nanopositioning
platform measured from input to output displacement for
different sampling rates. Plots in blue are experimental results
and plots in green are simulated results including time delay

6.1. Experimental results with the traditional PVPF

control scheme

Neglecting the delay present in the nanopositioning
system can lead to performance degradation and
stability issues in closed-loop operation. In this article,
the PVPF controller is utilised to illustrate these
issues. Using the method described in Section 3 and
[19] to derive the controller parameters, the resulting
PVPF and tracking controllers are given by:

Cdamp(s) =
−15040s+ 68110000

s2 + 14460s+ 84350000
(18)

Ctrack(s) =
2136

s
(19)

However, when the designed controller is applied
to the experimental platform, the results obtained are
very different from the design criteria and from those
produced by simulation of the ideal case, i.e. without
delay in the plant. Figure 5 shows the magnitude
response of the simulated closed-loop system (without
delay), and the experimentally measured magnitude
response for different sampling times (note that
each sampling time has a different associated delay
determined by (17)). It can be seen that the
experimental results are not consistent with those
achieved by simulation (without delay). Consequently,
the design criteria is not met.

It is observed that the experimental response does
not achieve a flat band response, and that the 3 dB
bandwidth of the system is significantly lower than that



A Modified Positive Velocity and Position Feedback scheme with delay compensation for improved nanopositioning performance9

10
1

10
2

10
3

−20

−15

−10

−5

0

FRF of the closed−loop system without delay compensation

Frecuency (Hz)

M
ag

ni
tu

de
 (

dB
)

 

 

 

 

 

100 200 300 400 500 600 700 800 900 1000
−300

−200

−100

0

Frecuency (Hz)

Ph
as

e 
(d

eg
)

± 3 dB
Ts = 30 μs
Simulated results without delay

Ts = 100 μs
Ts = 70 μs

± 3 dB
Ts = 30 μs
Simulated results without delay

Ts = 100 μs
Ts = 70 μs

Figure 5. Frequency response of the experimental system
without delay compensation and simulated results for the ideal
case (without delay)

achieved in simulation. Note that the experimentally
measured bandwidth varies with sampling time, e.g.
538.9 Hz (30 µs), 526.6 Hz (70 µs), 503.4 Hz (100
µs). It can be seen that even in the most favorable
case (with a sampling time of 30 µs) the bandwidth
is very far from the resonance frequency. It can
also be seen that, as the sampling time is increased,
and consequently the delay associated with it, the
performance of the system deteriorates. The presence
of the delay displaces the five designed poles from their
original locations. Since these poles no longer lie in
the Butterworth pattern, the maximally flat magnitude
response cannot be achieved.

6.2. Experimental results with the modified PVPF

control scheme

In this section, the effect of the delay is considered in
the design of the control scheme by using the modified
PVPF proposed in this article.

Figure 6 shows the experimentally measured
magnitude response of the closed-loop system for
various sampling times and the simulated magnitude
response for the ideal case (without delay). The
modified PVPF control scheme is redesigned for each
specific sampling time, to reduce the effects of the
associated delay.

It can be seen that the experimental results more
closely match the desired flat band response than is
the case when the delay is not considered. It is also
observed that the 3 dB bandwidth of the closed loop
system is significantly higher than that achieved using
traditional PVPF, e.g. 711.3 Hz (30 µs), 707.2 Hz (70
µs), 707.2 Hz (100 µs), (this can be seen graphically
by comparing Figure 5 and Figure 6). Note that as
the sampling time is increased the deterioration in the
performance of the controller is lower than with the
traditional PVPF.

 

 

 

10
1

10
2

10
3

−20

−15

−10

−5

0

FRF of the closed−loop system with delay compensation

Frecuency (Hz)

M
ag

ni
tu

de
 (

dB
)

 

 

 

 

100 200 300 400 500 600 700 800 900 1000
−300

−200

−100

0

Frecuency (Hz)

Ph
as

e 
(d

eg
)

± 3 dB
Ts = 30 μs
Simulated results without delay

Ts = 100 μs
Ts = 70 μs

± 3 dB
Ts = 30 μs
Simulated results without delay

Ts = 100 μs
Ts = 70 μs

Figure 6. Frequency response of the experimental system with
delay compensation and simulated results for the ideal case
(without delay)

7. Analysis of the results

The modified PVPF scheme achieves better perfor-
mance than the traditional PVPF when applied to
systems with time delay. Additionally, the modified
PVPF can be applied to a wider range of systems with
different delays associated, and presents improved ro-
bustness to uncertainties in the delay of the system. In
this section, the identified model of the experimental
platform is utilised to illustrate, with numerical values,
the advantages of the modified PVPF over the tradi-
tional PVPF.

In order to deal with the issue of having an
infinite number of poles introduced by the delay (and
in order to simplify the analyses performed in this
section), it is desirable to represent an equivalent low
degree rational transfer function that approximates
the behaviour of the delay of the system. The
typical method to approximate the effect of the
delay is the Padé approximation [29]. The Padé
approximation technique has some useful features
such as the computational simplicity and the fitting
of time-moments. The poles introduced by Padé
approximation in the closed-loop transfer function can
be utilised therefore to check if the designed five closed-
loop poles are dominant over the poles introduced by
the delay.

A second order Padé approximation of the delay
is utilised in this work to compute the placement of
the poles of the closed-loop system, and to ensure the
designed poles of the controller are dominant. The
Padé approximation is defined as [30]:

For n > 1, the [n, n] Padé approximant is given
by:

e−τs =
p(−s)

p(s)
(20)

where
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p(s) =

n
∑

k=0

(

n

k

)

(2n− k)!

(2n)!
sk. (21)

When the second order Padé approximation
is utilised to substitute the exponential terms in
the transfer function of the closed-loop system, the
resulting characteristic equation consists of seven poles
(five poles are determined by the parameters of the
controller utilised and new two poles introduced by the
second order Padé approximation are determined by
the delay of the system).

7.1. Range of application of the proposed method

As stated in section 4, the last stage in the design of
the modified PVPF control scheme is to ensure the five
designed poles (which lie along a circle of radius ωn,
as consequence of the design procedure) are dominant
over the poles introduced by the delay. In this paper,
the five designed poles are considered dominant if their
proximity to the imaginary axis is greater than that of
the poles introduced by delay.

Since the delay introduces an infinite number of
closed-loop poles, the second order Padé approxima-
tion is utilised in order to compute only a finite number
of roots of the closed-loop system. It is assumed that
any meaningful pole introduced by the delay would be
situated further from the imaginary axis than those in-
troduced by the Padé approximation. Assuming this
hypothesis, the dominance of the five designed poles
only needs to be checked over a finite number of poles
(only two in our case).

The position of the closed-loop poles of the whole
system is shown in Figure 7, for increasing delay in
the range τ = [0, 600] µs. It can be seen that the
five designed poles always lie in the same position
(since a new controller has been computed for each
value of the delay). However, the remaining two poles
introduced by the Padé approximation are displaced,
moving towards the imaginary axis as the delay is
increased. This result suggests an upper limit on the
maximum permissable delay, in this case τ = 351 µs.
Any value of delay greater than τ = 351 µs places the
poles introduced by the Padé approximation closer to
the imaginary axis than some of the designed poles.

It was verified through simulation that the effect
of the poles introduced by the delay is non-negligible in
systems where the delay exceeds the maximum range
of application (τ = 351 µs). This determines that the
maximally flat magnitude response cannot be achieved
with the proposed method when the delay is greater
than τ = 351 µs.

It is important to note that, from a practical point
of view, the lower bound on the range of stability is not
meaningful since these limits depend on the nominal
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Figure 7. Evolution of the closed-loop poles of the experimental
platform for delay in the range [0,600] µs. The position of the
poles for a delay of 351 µs is indicated with crosses and diamonds.

time delay used in the controller design. For example,
for a nominal time delay of τ = 254 µs, this range of
stability becomes τ = [0, 613] µs.

It was experimentally confirmed that the slowest
admissible sampling frequency, in order to control
the system, is determined by 10 times the resonant
frequency. Therefore, the maximum sampling time
Tmax
s is determined by the following expression:

Tmax
s =

1

716.2 · 10
≃ 140 µs (22)

Since sampling times greater than Ts = 140 µs
cause the system to become unstable, only values of
delay as high as τ = 160 µs can be achieved (see
(17)). In this case, the instability of the closed-
loop experimental platform is caused by the fact
that the sampling rate is not fast enough to capture
the first resonant mode, not because of the problem
studied here, relating to the delay. This prevents the
theoretical ranges of admissible delay computed in this
section from being experimentally validated.

7.2. Stability robustness

In this subsection, the maximum admissible difference
between the nominal delay (the value used in the
controller design) and the actual delay of the system,
in both the traditional and modified PVPF control
schemes, is analysed. Unlike in the previous
subsection, in which a new controller was designed for
each value of delay, the control scheme is designed, as
in Sections 3 and 4, and the delay increased until the
system becomes unstable.

In order to analyse the traditional PVPF
controller, the controller designed in (18) and (19)
is utilised. Applying this controller to the simulated
model of the plant, the delay is varied in the range
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τ = [0, 600] µs and the root contours of the closed loop
system are plotted in Figure 8.

It can be seen that, as the delay is increased,
the five designed poles are displaced from their initial
location in the circle of radius ωn (indicated by the
dashed line). It is important to note that even for
small values of delay such as 105 µs (which is associated
with the highest experimentally achievable sampling
frequency) the position of the poles is highly distorted.
For delay greater than τ = 250 µs a pair of complex
poles are displaced to the right half-plane, leading to an
unstable system. Therefore, the traditional PVPF can
guarantee the stability of the system only for values of
delay τ ≤ 250 µs.

The modified PVPF can produce different con-
trollers depending on the value of the nominal delay
considered in the design stage. In order to reproduce
the worst-case scenario as in the analysis of the tradi-
tional PVPF, the controller is designed taking the up-
per limit of the range of application as nominal value
of delay.

Figure 9 depicts the evolution of the poles of the
closed-loop system with the modified PVPF control
scheme designed considering a nominal delay of τ =
351 µs. In order to compute the evolution of the closed-
loop poles, the actual delay of the plant is varied in the
range τ = [0, 800] µs.

It can be seen that as the difference between the
actual value of the delay and the nominal value is
increased, the distance of the closed-loop poles from
the circle of radius ωn is also increased. Whether the
delay is too small or too large, the system can become
unstable. It is found that the system is stable for delay
in the range τ = [107, 755] µs.

It is important to note that, from a practical point
of view, the lower bound of the range of stability is not
meaningful, since if the delay is lower than τ = 351 µs
a different controller can be designed which guarantees
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Figure 9. Root contours of the closed-loop system controlled
with the modified PVPF scheme scheme designed considering a
nominal value of delay τ = 351 µs (indicated with crosses). The
arrows in the figure indicate the moving direction of the poles
when the actual delay of the plant is increased

a maximally flat magnitude response.
From these results it can be seen that the

maximum admissible value of delay for each controller
in the worst-case scenario (and without taking into
account the sampling constraint (22) imposed by the
first natural frequency of the nanopositioner) are: τ =
250 µs for the traditional PVPF, and τ = 755 µs for
the modified PVPF. This means that the proposed
methodology can increase, by 3 times, the maximum
delay admissible which ensures system stability, with
respect to the value given by the traditional PVPF.

8. Conclusions

This paper has proposed a new methodology to
tune the parameters of the well-known PVPF control
scheme, which allows to place arbitrarily the dominant
closed-loop poles of the system, even in the presence
of a time delay in the nanopositioning system. It has
been experimentally and theoretically shown that the
delay introduced in the nanopositioner is determined
by the sampling rate utilised and its effects cannot
be neglected. It has also been demonstrated that the
performance of the traditional PVPF is greatly affected
by the time delay introduced by the controller, i.e. the
system performance deteriorates as the sampling time
is increased.

The experimental results and the analysis of
Section 7 show that the modified PVPF achieves better
performance in the presence of a time delay and, higher
stability robustness that the traditional PVPF. It has
also been demonstrated that, unlike the traditional
PVPF (in which the response is deteriorated by any
delay), the proposed controller can produce an ideal
response under a wide range of admissible values of
delay, and sampling times. These results determine the

usuario98d
Resaltado



A Modified Positive Velocity and Position Feedback scheme with delay compensation for improved nanopositioning performance12

potential utilisation of the modified PVPF with slower
sampling rates, which would allow the utilisation of
cheaper equipment for the electronic control circuitry,
and would reduce the overall cost of the system.

Furthermore, the proposed methodology and the
proposed theoretical model of the nanopositioner which
includes the effects of the delay could be utilised in
future works to extend other widely utilised control
schemes such as PPF, and IRC controllers.
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