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A Modi� ed Principal Component Technique
Based on the LASSO

Ian T. JOLLIFFE , Nickolay T. TRENDAFILOV , and Mudassir UDDIN

In many multivariate statistical techniques, a set of linear functions of the original p

variables is produced. One of the more dif� cult aspects of these techniques is the inter-
pretation of the linear functions, as these functions usually have nonzero coef� cients on
all p variables. A common approach is to effectively ignore (treat as zero) any coef� cients
less than some threshold value, so that the function becomes simple and the interpretation
becomes easier for the users. Such a procedure can be misleading. There are alternatives to
principal componentanalysiswhich restrict the coef� cients to a smaller number of possible
values in the derivationof the linear functions,or replace the principalcomponentsby “prin-
cipal variables.” This article introduces a new technique, borrowing an idea proposed by
Tibshirani in the context of multiple regressionwhere similar problems arise in interpreting
regression equations. This approach is the so-called LASSO, the “least absolute shrinkage
and selection operator,” in which a bound is introduced on the sum of the absolute values
of the coef� cients, and in which some coef� cients consequentlybecome zero. We explore
some of the propertiesof the new technique,both theoreticallyand using simulationstudies,
and apply it to an example.

Key Words: Interpretation;Principal component analysis; Simpli� cation.

1. INTRODUCTION

Principal component analysis (PCA), like several other multivariate statistical tech-
niques, replaces a set of p measured variables by a small set of derived variables. The
derived variables, the principal components, are linear combinationsof the p variables. The
dimension reduction achieved by PCA is especially useful if the components can be readily
interpreted, and this is sometimes the case; see, for example, Jolliffe (2002, chap 4). In
other examples, particularly where a component has nontrivial loadings on a substantial
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proportion of the p variables, interpretationcan be dif� cult, detracting from the value of the
analysis.

A number of methods are available to aid interpretation. Rotation, which is common-
place in factor analysis, can be applied to PCA, but has its drawbacks (Jolliffe 1989, 1995).
A frequently used informal approach is to ignore all loadings smaller than some thresh-
old absolute value, effectively treating them as zero. This can be misleading (Cadima and
Jolliffe 1995). A more formal way of making some of the loadings zero is to restrict the
allowable loadings to a small set of values; for example, ¡ 1; 0; 1 (Hausman 1982). Vines
(2000) described a variation on this theme. One further strategy is to select a subset of the
variables themselves,which satisfy similar optimalitycriterion to the principalcomponents,
as in McCabe’s (1984) “principal variables.”

This article introducesa new techniquewhich shares an idea central to both Hausman’s
(1982) and Vines’s (2000) work. This idea is that we choose linear combinations of the
measured variables which successively maximizes variance, as in PCA, but we impose
extra constraints, which sacri� ces some variance in order to improve interpretability. In
our technique the extra constraint is in the form of a bound on the sum of the absolute
values of the loadings in that component. This type of bound has been used in regression
(Tibshirani 1996), where similar problems of interpretationoccur, and is known there as the
LASSO (least absolute shrinkage and selection operator). As with the methods of Hausman
(1982) and Vines (2000), and unlike rotation, our technique usually produces some exactly
zero loadings in the components. In contrast to Hausman (1982) and Vines (2000) it does
not restrict the nonzero loadings to a discrete set of values. This article shows, through
simulationsand an example, that the new techniqueis a valuableadditionaltool for exploring
the structure of multivariate data.

Section 2 establishes the notation and terminology of PCA, and introduces an exam-
ple in which interpretation of principal components is not straightforward. The most usual
approach to simplifying interpretation, the rotation of PCs, is shown to have drawbacks.
Section 3 introduces the new technique and describes some of its properties. Section 4 re-
visits the example of Section 2, and demonstrates the practical usefulness of the technique.
A simulation study, which investigates the ability of the technique to recover known un-
derlying structures in a dataset, is summarized in Section 5. The article ends with further
discussion in Section 6, including some modi� cations, complications, and open questions.

2. A MOTIVATING EXAMPLE

Consider the classic example, � rst introduced by Jeffers (1967), in which a PCA was
done on the correlation matrix of 13 physical measurements, listed in Table 1, made on a
sample of 180 pitprops cut from Corsican pine timber.

Let xi be the vector of 13 variables for the ith pitprop, where each variable has been
standardized to have unit variance. What PCA does, when based on the correlation matrix,
is to � nd linear functions a

0

1x; a
0

2x; : : : ; a
0

px which successively have maximum sample
variance, subject to a

0

hak = 0 for k ¶ 2, and h < k. In addition, a normalization constraint
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Table 1. De�nitions of Variables in Jeffers’ Pitprop Data

Variable De� nition

x1 Top diameter in inches
x2 Length in inches
x3 Moisture content, % of dry weight
x4 Speci�c gravity at time of test
x5 Oven-dry speci�c gravity
x6 Number of annual rings at top
x7 Number of annual rings at bottom
x8 Maximum bow in inches
x9 Distance of point of maximum bow from top in inches
x10 Number of knot whorls
x11 Length of clear prop from top in inches
x12 Average number of knots per whorl
x13 Average diameter of the knots in inches

a
0

kak = 1 is necessary to get a bounded solution. The derived variable a
0

kx is the kth
principal component (PC). It turns out that ak , the vector of coef� cients or loadings for
the kth PC is the eigenvector of the sample correlation matrix R corresponding to the kth
largest eigenvalue lk . In addition the sample variance of a

0

kx is equal to lk. Because of
the successive maximization property, the � rst few PCs will often account for most of the
sample variation in all the standardized measured variables. In the pitprop example, Jeffers
(1967) was interested in the � rst six PCs, which together account for 87% of the total
variance. The loadings in each of these six components are given in Table 2, together with
the individual and cumulative percentage of variance in all 13 variables, accounted for by
1; 2; : : : ; 6 PCs.

PCs are easiest to interpret if the pattern of loadings is clear-cut, with a few large

Table 2. Loadings for Correlation PCA for Jeffers’ Pitprop Data

Component

Variable (1) (2) (3) (4) (5) (6)

x1 0.404 0.212 ¡0.219 ¡0.027 ¡0.141 ¡0.086
x2 0.406 0.180 ¡0.245 ¡0.025 ¡0.188 ¡0.111
x3 0.125 0.546 0.114 0.015 0.433 0.120
x4 0.173 0.468 0.328 0.010 0.361 ¡0.090
x5 0.057 ¡0.138 0.493 0.254 ¡0.122 ¡0.560
x6 0.284 ¡0.002 0.476 ¡0.153 ¡0.269 0.032
x7 0.400 ¡0.185 0.261 ¡0.125 ¡0.176 0.030
x8 0.294 ¡0.198 ¡0.222 0.294 0.203 0.103
x9 0.357 0.010 ¡0.202 0.132 ¡0.117 0.103
x10 0.379 ¡0.252 ¡0.120 ¡0.201 0.173 ¡0.019
x11 ¡0.008 0.187 0.021 0.805 ¡0.302 0.178
x12 ¡0.115 0.348 0.066 ¡0.303 ¡0.537 0.371
x13 ¡0.112 0.304 ¡0.352 ¡0.098 ¡0.209 ¡0.671

Simplicity factor (varimax) 0.059 0.103 0.082 0.397 0.086 0.266
Variance (%) 32.4 18.2 14.4 8.9 7.0 6.3

Cumulative Variance (%) 32.4 50.7 65.0 74.0 80.9 87.2
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Table 3. Loadings for Rotated Correlation PCA, Using the Varimax Criterion, for Jeffers’ Pitprop Data.

Component

Variable (1) (2) (3) (4) (5) (6)

x1 ¡0.019 0.074 0.043 ¡0.027 ¡0.519 ¡0.077
x2 ¡0.018 0.015 0.048 ¡0.024 ¡0.540 ¡0.102
x3 ¡0.024 0.705 ¡0.128 0.003 ¡0.059 0.107
x4 0.029 0.689 0.112 0.001 0.014 ¡0.087
x5 0.258 0.009 0.477 0.218 0.205 ¡0.524
x6 ¡0.185 0.061 0.604 ¡0.005 ¡0.032 0.012
x7 0.031 ¡0.069 0.512 ¡0.102 ¡0.151 0.092
x8 0.440 ¡0.042 ¡0.072 0.083 ¡0.221 0.239
x9 0.097 ¡0.058 0.045 0.094 ¡0.408 0.141
x10 0.271 ¡0.054 0.129 ¡0.367 ¡0.216 0.135
x11 0.057 ¡0.022 ¡0.029 0.882 ¡0.137 0.075
x12 ¡0.776 ¡0.056 0.091 0.079 ¡0.123 0.145
x13 ¡0.120 ¡0.049 ¡0.280 ¡0.077 ¡0.269 ¡0.748

Simplicity factor (varimax) 0.362 0.428 0.199 0.595 0.131 0.343
variance (% ) 13.0 14.6 18.4 9.7 23.9 7.6

cumulative variance (% ) 13.0 27.6 46.0 55.7 79.6 87.2

(absolute) values and many small loadings in each PC. Although Jeffers (1967) makes an
attempt to interpret all six components, some are, to say the least, messy and he ignores
some intermediate loadings.For example, PC2 has the largest loadingson x3; x4, with small
loadings on x6; x9, but a whole range of intermediate values on other variables.

A traditionalway to simplify loadings is by rotation. If A is the (13 £ 6) matrix whose
kth column is ak, then A is post-multipliedby a matrix T to give rotated loadingsB = AT.
If bk is the kth column of B then b

0

kx is the kth rotated component.The matrix T is chosen
so as to optimize some simplicitycriterion.Various criteria have been proposed,all of which
attempt to create vectors of loadings whose elements are close to zero or far from zero, with
few intermediate values. The idea is that each variable should be either clearly important
or clearly unimportant in a rotated component, with as few cases as possible of borderline
importance. Varimax is the most widely used rotation criterion and, like most other such
criteria, it tends to drive at least some of the loadings in each component towards zero. This
is not the only possible type of simplicity. A component whose loadings are all roughly
equal is easy to interpret but will be avoided by most standard rotation criteria. It is dif� cult
to envisage any criterion which could encompass all possible types of simplicity, and we
concentrate here on simplicity as de� ned by varimax.

Table 3 gives the rotated loadings for six components in the correlation PCA of the
pitprop data, togetherwith the percentageof total variance accounted for by each rotated PC
(RPC). The rotation criterion used in Table 3 is varimax (Krzanowski and Marriott 1995, p.
138), which is the most frequent choice (often the default in software), but other criteria give
similar results. Varimax rotation aims to maximize the sum, over rotated components, of a
criterion which takes values between zero and one. A value of zero occurs when all loadings
in the component are equal, whereas a component with only one nonzero loading produces
a value of unity. This criterion, or “simplicity factor,” is given for each component in Tables
2 and 3, and it can be seen that its values are larger for most of the rotated components than
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they are for the unrotated components.
There are, however, a number of disadvantages associated with rotation. In the context

of interpreting the results in this example, we note that we have lost the “successive max-
imization of variance” property of the unrotated components, so what we are interpreting
after rotation are not the “most important sources of variation” in the data. The RPC with
the highest variance appears arbitrarily as the � fth, and this accounts for 24% of the total
variation, compared to 32% in the � rst unrotated PC. In addition, a glance at the loadings
and simplicity factors for the RPCs shows that, more generally, those components which
are easiest to interpret among the six in Table 3 are those which have the smallest variance.
RPC5 is still rather complicated. Other problems associated with rotation were discussed
by Jolliffe (1989, 1995). A simpli� ed component technique (SCoT), in which the two steps
of RPCA (PCA, followed by rotation) are combined into one, was discussed by Jolliffe and
Uddin (2000). The technique is based on a similar idea proposed by Morton (1989) in the
context of projection pursuit. It maximizes variance but adds a penalty function which is
a multiple of one of the simplicity criteria, such as varimax. SCoT has some advantages
compared to standard rotation, but shares a number of its disadvantages.

The next section introduces an alternative to rotation which has some clear advantages
over rotated PCA and SCoT. A detailed comparison of the new technique, SCoT, rotated
PCA, and Vines’ (2000) simple components is given for an example involving sea surface
temperatures in Jolliffe, Uddin, and Vines (2002).

3. MODIFIED PCA BASED ON THE LASSO

Tibshirani (1996) studied the dif� culties involved in the interpretation of multiple re-
gression equations.These problems may occur due to the instability of the regression coef-
� cients in the presence of collinearity, or simply because of the large number of variables
included in the regression equation. Some current alternatives to least squares regression,
such as shrinkage estimators, ridge regression, principal component regression, or partial
least squares, handle the instabilityproblemby keepingall variablesin the equation,whereas
variable selection procedures � nd a subset of variables and keep only the selected variables
in the equation. Tibshirani (1996) proposed a new method, the “least absolute shrinkage
and selection operator” LASSO, which is a compromise between variable selection and
shrinkage estimators. The procedure shrinks the coef� cients of some of the variables not
simply towards zero, but exactly to zero, giving an implicit form of variable selection.
LeBlanc and Tibshirani (1998) extended the idea to regression trees. Here we adapt the
LASSO idea to PCA.

3.1 THE LASSO APPROACH IN REGRESSION

In standard multiple regression we have the equation

yi = ¬ +

p

j = 1

 jxij + ei; i = 1; 2; : : : ; n
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where y1; y2; : : : ; yn are measurements on a response variable y, xij , i = 1; 2; : : : ; n; j =

1; 2; : : : ; p, are corresponding values of p predictor variables, e1; e2; : : : ; en are error terms
and ¬ ;  1;  2; : : : ;  p are parameters in the regression equation. In least squares regression,
these parameters are estimated by minimizing the residual (or error) sum of squares,

n

i = 1

yi ¡ ¬ ¡
p

j = 1

 jxij

2

:

The LASSO imposes an additional restriction on the coef� cients, namely

p

j = 1

j j j µ t

for some “tuning parameter” t. For suitable choices of t this constraint has the interesting
property that it forces some of the coef� cients in the regression equation to zero. An equiv-
alent way of deriving LASSO estimates is to minimize the residual sum of squares with the
addition of a penalty function based on p

j = 1 j jj. Thus, we minimize

n

i = 1

yi ¡ ¬ ¡
p

j = 1

 jxij

2

+ ¶

p

j = 1

j jj;

for some multiplier ¶ . For any given value of t in the � rst LASSO formulation there is a
value of ¶ in the second formulation that gives equivalent results.

3.2 THE LASSO APPROACH IN PCA (SCOTLASS)

PCA on a correlation matrix � nds linear combinations a
0

kx(k = 1; 2; : : : ; p), of the
p measured variables x, each standardized to have unit variance, which successively have
maximum variance

a
0

kR ak; (3.1)

subject to

a
0

kak = 1 and (for k ¶ 2) a
0

hak = 0; h < k: (3.2)

The proposed method of LASSO-based PCA performs the maximization under the extra
constraints

p

j = 1

jakjj µ t (3.3)

for some tuning parameter t, where akj is the jth element of the kth vector ak; (k =

1; 2; : : : ; p). We call the new technique SCoTLASS (Simpli� ed Component Technique-
LASSO).
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= 1+

2

1 2aa

a

22

t = 1

t = sqrt (p)

Figure 1. The Two-Dimensional SCoTLASS.

3.3 SOME PROPERTIES

SCoTLASS differs from PCA in the inclusion of the constraints de� ned in (3.3), so a
decision must be made on the value of the tuning parameter, t. It is easy to see that

(a) for t ¶ p
p, we get PCA;

(b) for t < 1, there is no solution; and
(c) for t = 1, we must have exactly one nonzero akj for each k.

As t decreases from
p

p, we move progressivelyaway from PCA and eventuallyto a solution
where only one variable has a nonzero loading on each component. All other variables will
shrink (not necessary monotonically) with t and ultimately reach zero. Examples of this
behavior are given in the next section.

The geometry of SCoTLASS in the case when p = 2 is shown in Figure 1 where we
plot the elements a1; a2 of the vectora. For PCA, in Figure 1 the � rst component a

0

1x, where
a

0

1 = (a11; a12), corresponds to the point on circumference of the shaded circle (a
0

1a1 = 1)

which touches the “largest” possible ellipse a
0

1Ra1 = constant.
For SCoTLASS with 1 < t <

p
p we are restricted to the part of the circle a

0

1a1 = 1
inside the dotted square 2

j = 1 ja1jj µ t.
For t = 1, corresponding to the inner shaded square, the optimal (only) solutions are

on the axes.
Figure 1 shows a special case, in which the axes of the ellipses are at 45¯ to the a1; a2

axes, corresponding to equal variances for x1; x2 (or a correlation matrix). This gives two
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optimal solutions for SCoTLASS in the � rst quadrant, symmetric about the 45¯ line. If
PCA or SCoTLASS is done on a covariance, rather than correlation matrix (see Remark 1
in Section 6), with unequal variances, there will be a unique solution in the � rst quadrant.

3.4 IMPLEMENTATION

PCA reduces to an easily implemented eigenvalue problem, but the extra constraint
in SCoTLASS means that it needs numerical optimization to estimate parameters and suf-
fers from the problem of many local optima. A number of algorithms have been tried to
implement the technique including simulated annealing (Goffe, Ferrier, and Rogers 1994),
but the results reported in the following example were derived using the projected gradient
approach (Chu and Trenda� lov 2001; Helmke and Moore 1994). The LASSO inequality
constraint (3.3) in the SCoTLASS problem (3.1)–(3.3) is eliminated by making use of an
exterior penalty function. Thus, the SCoTLASS problem (3.1)–(3.3) is transformed into
a new maximization problem subject to the equality constraint (3.2). The solution of this
modi� ed maximization problem is then found as an ascent gradient vector � ow onto the
p-dimensional unit sphere following the standard projected gradient formalism (Chu and
Trenda� lov 2001; Helmke and Moore 1994). Detailed considerationof this solution will be
reported separately.

We have implemented SCoTLASS using MATLAB. The code requires as input the
correlation matrix R, the value of the tuning parameter t and the number of components
to be retained (m). The MATLAB code returns a loading matrix and calculates a number
of relevant statistics. To achieve an appropriate solution, a number of parameters of the
projected gradient method (e.g., starting points, absolute and relative tolerances) also need
to be de� ned.

4. EXAMPLE: PITPROPS DATA

Here we revisit the pitprop data from section 2. We have studied many other examples,
not discussed here, and in general the results are qualitativelysimilar. Table 4 gives loadings
for SCoTLASS with t = 2:25; 2:00; 1:75 and 1:50. Table 5 gives variances, cumulative
variances, “simplicity factors,” and number of zero loadings, for the same values of t, as
well as corresponding information for PCA (t =

p
13) and RPCA. The simplicity factors

are values of the varimax criterion for each component.
It can be seen that as the value of t is decreased, the simplicity of the components

increases as measured by the number of zero loadings and by the varimax simplicity factor,
although the increase in the latter is not uniform. The increase in simplicity is paid for by a
loss of variance retained. By t = 2:25; 1:75 the percentage of variance accounted for by the
� rst component in SCoTLASS is reduced from 32:4 for PCA to 26:7; 19:6, respectively.
At t = 2:25 this is still larger than the largest contribution (23:9) achieved by a single
component in RPCA. The comparison with RPCA is less favorable when the variation
accounted for by all six retained components is examined. RPCA necessarily retains the
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Table 4. Loadings for SCoTLASS for Four Values of t Based on the Correlation Matrix for Jeffers’
Pitprop Data

Component

Technique Variable (1) (2) (3) (4) (5) (6)

SCoTLASS x1 0.558 0.085 ¡0.093 ¡0.107 0.056 0.017
(t = 2.25) x2 0.580 0.031 ¡0.087 ¡0.147 0.073 0.047

x3 0.000 0.647 ¡0.129 0.215 ¡0.064 ¡0.101
x4 0.000 0.654 ¡0.000 0.211 ¡0.080 0.127
x5 ¡0.000 0.000 0.413 ¡0.000 0.236 0.747
x6 0.001 0.208 0.529 ¡0.022 ¡0.108 0.033
x7 0.266 ¡0.000 0.385 0.000 ¡0.121 0.020
x8 0.104 ¡0.098 0.000 0.584 0.127 ¡0.188
x9 0.372 ¡0.000 ¡0.000 0.019 0.142 ¡0.060
x10 0.364 ¡0.154 0.000 0.212 ¡0.296 0.000
x11 ¡0.000 0.099 ¡0.000 0.000 0.879 ¡0.156
x12 ¡0.000 0.241 ¡0.001 ¡0.699 ¡0.044 ¡0.186
x13 ¡0.000 0.026 ¡0.608 ¡0.026 ¡0.016 0.561

SCoTLASS x1 0.623 0.041 ¡0.049 0.040 0.051 ¡0.000
(t = 2.00) x2 0.647 0.076 ¡0.001 0.072 0.059 ¡0.007

x3 0.000 0.000 ¡0.684 ¡0.128 ¡0.054 0.106
x4 0.000 ¡0.001 ¡0.670 ¡0.163 ¡0.063 ¡0.100
x5 ¡0.000 ¡0.267 0.000 0.000 0.228 ¡0.772
x6 0.000 ¡0.706 ¡0.044 0.011 ¡0.003 0.001
x7 0.137 ¡0.539 0.001 ¡0.000 ¡0.096 0.001
x8 0.001 ¡0.000 0.053 ¡0.767 0.095 0.098
x9 0.332 0.000 0.000 ¡0.001 0.065 0.014
x10 0.254 ¡0.000 0.124 ¡0.277 ¡0.309 ¡0.000
x11 0.000 0.000 ¡0.065 0.000 0.902 0.194
x12 ¡0.000 0.000 ¡0.224 0.533 ¡0.069 0.137
x13 0.000 0.364 ¡0.079 0.000 0.000 ¡0.562

SCoTLASS x1 0.664 ¡0.000 0.000 ¡0.025 0.002 ¡0.035
(t = 1.75) x2 0.683 ¡0.001 0.000 ¡0.040 0.001 ¡0.018

x3 0.000 0.641 0.195 0.000 0.180 ¡0.030
x4 0.000 0.701 0.001 0.000 ¡0.000 ¡0.001
x5 ¡0.000 0.000 ¡0.000 0.000 ¡0.887 ¡0.056
x6 0.000 0.293 ¡0.186 0.000 ¡0.373 0.044
x7 0.001 0.107 ¡0.658 ¡0.000 ¡0.051 0.064
x8 0.001 ¡0.000 ¡0.000 0.735 0.021 ¡0.168
x9 0.283 ¡0.000 ¡0.000 0.000 ¡0.000 ¡0.001
x10 0.113 ¡0.000 ¡0.001 0.388 ¡0.017 0.320
x11 0.000 0.000 0.000 ¡0.000 ¡0.000 ¡0.923
x12 ¡0.000 0.001 0.000 ¡0.554 0.016 0.004
x13 0.000 ¡0.000 0.703 0.001 ¡0.197 0.080

SCoTLASS x1 0.701 ¡0.000 ¡0.001 ¡0.001 0.001 ¡0.000
(t = 1.50) x2 0.709 ¡0.001 ¡0.001 ¡0.001 0.001 ¡0.000

x3 0.001 0.698 ¡0.068 0.002 ¡0.001 0.001
x4 0.001 0.712 ¡0.001 0.002 ¡0.001 ¡0.001
x5 ¡0.000 0.000 0.001 ¡0.001 0.093 ¡0.757
x6 0.000 0.081 0.586 ¡0.031 0.000 0.000
x7 0.001 0.000 0.807 ¡0.001 0.000 0.002
x8 0.001 ¡0.000 0.001 0.044 ¡0.513 ¡0.001
x9 0.079 0.000 0.001 0.001 ¡0.001 ¡0.000
x10 0.002 ¡0.000 0.027 0.660 ¡0.000 ¡0.002
x11 0.000 0.001 ¡0.000 ¡0.749 ¡0.032 ¡0.000
x12 ¡0.000 0.001 ¡0.000 ¡0.001 0.853 0.083
x13 0.000 0.000 ¡0.001 0.000 ¡0.001 0.648
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Table 5. Simplicity Factor, Variance, Cumulative Variance and Number of Zero Loadings for Individual
Components in PCA, RPCA, and SCoTLASS for Four Values of t, Based on the Correlation
Matrix for Jeffers’ Pitprop Data

Component

Technique Measure (1) (2) (3) (4) (5) (6)

PCA Simplicity factor (varimax) 0.059 0.103 0.082 0.397 0.086 0.266
( = SCoTLASS with Variance (%) 32.4 18.2 14.4 8.9 7.0 6.3

t =
p

13) Cumulative variance (%) 32.4 50.7 65.1 74.0 80.9 87.2

RPCA Simplicity factor (varimax) 0.362 0.428 0.199 0.595 0.131 0.343
Variance (%) 13.0 14.6 18.4 9.7 23.9 7.6

Cumulative variance (%) 13.0 27.6 46.0 55.7 79.6 87.2

SCoTLASS Simplicity factor (varimax) 0.190 0.312 0.205 0.308 0.577 0.364
(t = 2.25) Variance (%) 26.7 17.2 15.9 9.7 8.9 6.7

Cumulative variance (%) 26.7 43.9 59.8 69.4 78.4 85.0
Number of zero loadings 6 3 5 3 0 1

SCoTLASS Simplicity factor (varimax) 0.288 0.301 0.375 0.387 0.646 0.412
(t = 2.00) Variance (%) 23.1 16.4 16.2 11.2 8.9 6.5

Cumulative variance (%) 23.1 39.5 55.8 67.0 75.9 82.3
Number of zero loadings 7 6 2 4 1 2

SCoTLASS Simplicity factor (varimax) 0.370 0.370 0.388 0.360 0.610 0.714
(t = 1.75) Variance (%) 19.6 16.0 13.2 13.0 9.2 9.1

Cumulative variance (%) 19.6 35.6 48.7 61.8 71.0 80.1
Number of zero loadings 7 7 7 7 3 0

SCoTLASS Simplicity factor (varimax) 0.452 0.452 0.504 0.464 0.565 0.464
(t = 1.50) Variance (%) 16.1 14.9 13.8 10.2 9.9 9.6

Cumulative variance (%) 16.1 31.0 44.9 55.1 65.0 74.5
Number of zero loadings 5 7 2 1 3 5

same total percentage variation (87:2) as PCA, but SCoTLASS drops to 85:0 and 80:1 for
t = 2:25; 1:75, respectively. Against this loss, SCoTLASS has the considerable advantage
of retaining the successive maximisation property. At t = 2:25, apart from switching of
components 4 and 5, the SCoTLASS componentsare nicely simpli� ed versions of the PCs,
rather than being something different as in RPCA. A linked advantage is that if we decide
to look only at � ve components, then the SCoTLASS components will simply be the � rst
� ve in Table 4, whereas RPCs based on (m ¡ 1) retained components are not necessarily
similar to those based on m.

A further “plus” for SCoTLASS is the presence of zero loadings, which aids inter-
pretation, but even where there are few zeros the components are simpli� ed compared to
PCA. Consider speci� cally the interpretation of the second component, which we noted
earlier was “messy” for PCA. For t = 1:75 this component is now interpreted as measuring
mainly moisture content and speci� c gravity, with small contributions from numbers of
annual rings, and all other variables negligible. This gain in interpretability is achieved by
reducing the percentage of total variance accounted for from 18.2 to 16.0. For other com-
ponents, too, interpretation is made easier because in the majority of cases the contribution
of a variable is clearcut. Either it is important or it is not, with few equivocal contributions.
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Table 6. Speci� ed Eigenvectors of a Six-Dimensional Block Structure

Eigenvectors

Variable (1) (2) (3) (4) (5) (6)

x1 0.096 ¡0.537 0.759 ¡0.120 0.335 ¡0.021
x2 0.082 ¡0.565 ¡0.599 0.231 0.511 ¡0.013
x3 0.080 ¡0.608 ¡0.119 ¡0.119 ¡0.771 0.016
x4 0.594 0.085 ¡0.074 ¡0.308 0.069 0.731
x5 0.584 0.096 ¡0.114 ¡0.418 0.052 ¡0.678
x6 0.533 0.074 0.180 0.805 ¡0.157 ¡0.069

Variance 1.8367 1.640 0.751 0.659 0.607 0.506

For t = 2:25; 2:00; 1:75; 1:50 the number of the zeros is as follows: 18, 22, 31, and 23. It
seems surprising that we obtain fewer zeros with t = 1:50 than with t = 1:75, that is, the
solution with t = 1:75 appears to be simpler than the one with t = 1:50. In fact this impres-
sion is misleading (see also the next paragraph). The explanation of this anomaly is in the
projected gradient method used for numerical solution of the problem, which approximates
the LASSO constraint with a certain smooth function and thus the zero-loadings produced
may be also approximate. One can see that the solution with t = 1:50 contains a total of 56
loadings with less than 0.005 magnitude, compared to 42 in the case t = 1:75.

Another interesting comparison is in terms of average varimax simplicity over the
� rst six components. This is 0:343 for RPCA compared to 0:165 for PCA. For t =

2:25; 2:00; 1:75; 1:50 the average simplicityis 0:326; 0:402; 0:469; 0:487, respectively.This
demonstrates, that although the varimax criterion is not an explicit part of SCoTLASS, by
taking t small enough we can do better than RPCA with respect to its own criterion. This is
achieved by moving outside the space spanned by the retained PCs, and hence settling for
a smaller amount of overall variation retained.

5. SIMULATION STUDIES

One question of interest is whether SCoTLASS is better at detecting underlying simple
structure in a data set than is PCA or RPCA. To investigate this question we simulated data
from a variety of known structures. Because of space constraints, only a small part of the
results is summarized here; further details can be found in Uddin (1999).

Given a vector l of positive real numbers and an orthogonal matrix A, we can attempt
to � nd a covariance matrix or correlation matrix whose eigenvalues are the elements of l,
and whose eigenvectorsare the column of A. Some restrictions need to be imposed on l and
A, especially in the case of correlation matrices, but it is possible to � nd such matrices for a
wide range of eigenvectorstructures.Havingobtaineda covarianceor correlationmatrix it is
straightforward to generate samples of data from multivariate normal distributions with the
given covariance or correlation matrix. We have done this for a wide variety of eigenvector
structures (principal component loadings), and computed the PCs, RPCs, and SCoTLASS
components from the resulting sample correlation matrices. Various structures have been
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Table 7. Speci� ed Eigenvectors of a Six-Dimensional Intermediate Structure

Eigenvectors

Variable (1) (2) (3) (4) (5) (6)

x1 0.224 ¡0.509 0.604 0.297 ¡0.327 0.361
x2 0.253 ¡0.519 ¡0.361 ¡0.644 ¡0.341 ¡0.064
x3 0.227 ¡0.553 ¡0.246 0.377 0.608 ¡0.267
x4 0.553 0.249 ¡0.249 ¡0.052 0.262 0.706
x5 0.521 0.254 ¡0.258 0.451 ¡0.509 ¡0.367
x6 0.507 0.199 0.561 ¡0.384 0.281 ¡0.402

Variance 1.795 1.674 0.796 0.618 0.608 0.510

investigated, which we call block structure, intermediate structure and uniform structure.
Tables 6–8 give one example of each type of structure. The structure in Table 6 has blocks of
nontrivial loadings and blocks of near-zero loadings in each underlying component. Table
8 has a structure in which all loadings in the � rst two components have similar absolute
values and the structure in Table 7 is intermediate to those of Tables 6 and 8. An alternative
approach to the simulation study would be to replace the near-zero loadings by exact zeros
and the nearly equal loadingsby exact equalities.However, we feel that in reality underlying
structures are never quite that simple so we perturbed them a little.

It might be expected that if the underlying structure is simple, then sampling variation
is more likely to take sample PCs away from simplicity than to enhance this simplicity.
It is of interest to investigate whether the techniques of RPCA and SCoTLASS which
increase simplicity compared to the sample PCs will do so in the direction of the true
underlying structure. The closeness of a vector of loadings from any of these techniques
to the underlying true vector is measured by the angle between the two vectors of interest.
These anglesare given in Tables9–11 for single simulateddatasets from three different types
of six-dimensional structure; they typify what we found in other simulations. Three values
of t (apart from that for PCA) are shown in the tables. Their exact values are unimportant,
and are slightly different in different tables. They are chosen to illustrate typical behavior
in our simulations.

The results illustratethat, for eachstructure,RPCA isperhapssurprisingly,and certainly
disappointingly,bad at recovering the underlying structure. SCoTLASS, on the other hand,

Table 8. Speci�ed Eigenvectors of a Six-Dimensional Uniform Structure

Eigenvectors

Variable (1) (2) (3) (4) (5) (6)

x1 ¡0.455 0.336 ¡0.087 0.741 ¡0.328 0.125
x2 ¡0.439 0.370 ¡0.212 ¡0.630 ¡0.445 ¡0.175
x3 ¡0.415 0.422 0.378 ¡0.110 0.697 0.099
x4 0.434 0.458 0.040 ¡0.136 ¡0.167 0.744
x5 0.301 0.435 ¡0.697 0.114 0.356 ¡0.306
x6 0.385 0.416 0.563 0.104 ¡0.234 ¡0.545

Variance 1.841 1.709 0.801 0.649 0.520 0.480
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Table 9. Angles Between the Underlying Vectors and the Sample Vectors of PCA, RPCA, and SCoT-
LASS With Various Values of t, for a Speci� ed “Block” Structure of Correlation Eigenvectors

Vectors

Technique t (1) (2) (3) (4)

PCA
p

6 12.9 12.0 15.4 79.5
RPCA 37.7 45.2 45.3 83.1

SCoTLASS t = 2.00 12.9 12.0 15.4 78.6
t = 1.82 11.9 11.4 13.8 73.2
t = 1.75 9.4 10.0 12.5 85.2

is capable of improvement over PCA. For example, for t = 1:75 it not only improves
over PCA in terms of angles in Table 9, but it also has 3; 3, and 2 zero loadings in its � rst
three components, thus giving a notably simpler structure. None of the methods manages
to reproduce the underlying structure for component 4 in Table 9.

The results for intermediate structure in Table 10 are qualitatively similar to those
in Table 9, except that SCoTLASS does best for higher values of t than in Table 9. For
uniform structure (Table 11) SCoTLASS does badly compared to PCA for all values of t.
This is not unexpected because, although uniform structure is simple in its own way, it is
not the type of simplicity which SCoTLASS aims for. It is also the case that the varimax
criterion is designedso that it stands littlechanceof � ndinguniform structure.Other rotation
criteria, such as quartimax, can in theory � nd uniform vectors of loadings, but they were
tried and also found to be unsuccessful in our simulations. It is probable that a uniform
structure is more likely to be found by the techniques proposed by Hausman (1982) or
Vines (2000). Although SCoTLASS will usually fail to � nd such structures, their existence
may be indicated by a large drop in the variance explained by SCoTLASS as decreasing
values of t move it away from PCA.

6. DISCUSSION

A new technique,SCoTLASS, has been introduced for discovering and interpreting the
major sources of variability in a dataset. We have illustrated its usefulness in an example,
and have also shown, through simulations, that it is capable of recovering certain types of

Table 10. Angles Between the Underlying Vectors and the Sample Vectors of PCA, RPCA, and SCoT-
LASS With Various Values of t, for a Speci� ed “Intermediate” Structure of Correlation Eigen-
vectors

Vectors

Technique t (1) (2) (3) (4)

PCA
p

6 13.7 15.1 23.6 78.3
RPCA 53.3 42.9 66.4 77.7

SCoTLASS t = 2.28 5.5 10.4 23.7 78.3
t = 2.12 9.5 12.0 23.5 77.8
t = 2.01 17.5 19.1 22.5 71.7
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Table 11. Angles Between the Underlying Vectors and the Sample Vectors of PCA, RPCA, and SCoT-
LASS with VariousValues of t, for a Speci� ed “Uniform” Structure of Correlation Eigenvectors

Vectors

Technique t (1) (2) (3) (4)

PCA
p

6 6.0 6.4 23.2 31.8
RPCA 52.0 54.1 39.4 43.5

SCoTLASS t = 2.15 24.3 24.6 23.4 30.7
t = 1.91 34.5 34.6 21.8 23.5
t = 1.73 41.0 41.3 22.5 19.0

underlying structure. It is preferred in many respects to rotated principal components, as a
means of simplifying interpretation compared to principal component analysis. Although
we are convincedof the value of SCoTLASS, there are a number of complicationsand open
questions which are now listed as a set of remarks.

Remark 1. In this article we have carried out the techniques studied on correlation
matrices. Although it is less common in practice, PCA and RPCA can also be implemented
on covariance matrices. In this case PCA successively � nds uncorrelated linear functions of
the original, unstandardized variables. SCoTLASS can also be implemented in this case,
the only difference being that the sample correlation matrix R is replaced by the sample
covariance matrix S in equation (3.1). We have investigated covariance-based SCoTLASS,
both for real examples, and using simulation studies. Some details of its performance are
different from the correlation-based case, but qualitatively they are similar. In particular,
there are a number of reasons to prefer SCoTLASS to RPCA.

Remark 2. In PCA, the constraint a
0

hak = 0 (orthogonality of vectors of loadings)
is equivalent to a

0

hRak = 0 (different components are uncorrelated). This equivalence is
special to the PCs and is a consequenceof the ak being eigenvectors of R. When we rotate
the PC loadings we lose at least one of these two properties (Jolliffe 1995). Similarly, in
SCoTLASS, if we impose a

0

hak = 0 we no longer have uncorrelated components. For
example, Table 12 gives the correlations between the six SCoTLASS components when
t = 1:75, for the pitprop data. Although most of the correlations in Table 12 are small in
absolute value, there are also nontrivial ones (r12; r14; r34; and r35).

Table 12. Correlation Matrix for the First Six SCoTLASS Components for t = 1.75 using Jeffers’ Pitprop
Data

Correlation matrix

Components (1) (2) (3) (4) (5) (6)

(1) 1.000 0.375 ¡0.234 0.443 ¡0.010 0.061
(2) 1.000 ¡0.114 ¡0.076 ¡0.145 ¡0.084
(3) 1.000 ¡0.438 0.445 ¡0.187
(4) 1.000 ¡0.105 0.141
(5) 1.000 ¡0.013
(6) 1.000
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It is possible to replace the constraint a
0

hak = 0 in SCoTLASS by a
0

hR ak = 0, thus
choosing to have uncorrelated components rather than orthogonal loadings, but this option
is not explored in the present article.

Remark 3. The choice of t is clearly important in SCoTLASS. As t decreases, simplic-
ity increases, but variation explained decreases, and we need to achieve a suitable tradeoff
between these two properties. The correlation between components noted in the previous
remark is another aspect of any tradeoff. Correlations are small for t close to

p
p, but have

the potential to increase as t decreases. It might be possible to construct a criterion which
de� nes the “best tradeoff,” but there is no unique construction, because of the dif� culty of
deciding how to measure simplicity and how to combine variance, simplicity, and correla-
tion. At present, it seems best to compute the SCoTLASS components for several values of
t, and judge subjectively at what point a balance between these various aspects is achieved.
In our example, we used the same value of t for all components in a data set, but varying t

for different components is another possibility.

Remark 4. Our algorithms for SCoTLASS are slower than those for PCA. This is
because SCoTLASS is implemented subject to an extra restriction on PCA and we lose
the advantage of calculation via the singular value decomposition which makes the PCA
algorithm fast. Sequential-based PCA with an extra constraint requires a good optimizer
to produce a global optimum. In the implementation of SCoTLASS, a projected gradient
method is used which is globally convergent and preserves accurately both the equality
and inequality constraints. It should be noted that as t is reduced from

p
p downwards

towards unity the CPU time taken to optimize the objective function remains generally
the same (11 sec on average for 1GHz PC), but as t decreases the algorithm becomes
progressively prone to hit local minima and thus more (random) starts are required to
� nd a global optimum. Osborne, Presnell, and Turlach (2000) gave an ef� cient procedure,
based on convex programming and a dual problem, for implementing the LASSO in the
regression context. Whether or not this approach can be usefully adapted to SCoTLASS
will be investigated in further research. Although we are reasonably con� dent that our
algorithm has found global optima in the example of Section 4 and in the simulations, there
is no guarantee. The jumps that occur in some coef� cients, such as the change in a3;6 from
¡ 0:186 to 0:586 as t decreases from 1:75 to 1:50 in the pitprop data, could be due to one of
the solutions being a local optimum. However, it seems more likely to us that it is caused by
the change in the nature of the earlier components, which together with the orthogonality
constraint imposed on the third component, opens up a different range of possibilities for
the latter component. There is clearly much scope for further work on the implementation
of SCoTLASS.

Remark 5. In a number of examples, not reportedhere, several of the nonzero loadings
in the SCoTLASS components are exactly equal, especially for large values of p and small
values of t. At present we have no explanation for this, but it deserves further investigation.
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Remark 6. The way in which SCoTLASS sets some coef� cients to zero is different in
concept from simply truncating to zero the smallest coef� cients in a PC. The latter attempts
to approximate the PC by a simpler version and can have problems with that approximation,
as shown by Cadima and Jolliffe (1995). SCoTLASS looks for simple sources of variation
and, likePCA, aims for highvariance,but becauseof simplicityconsiderationsthesimpli� ed
components can, in theory, be moderately different from the PCs. We seek to replace PCs,
rather than approximate them, although because of the shared aim of high variance, the
results will often not be too different.

Remark 7. There are a number of other recent developments which are relevant to
interpretation problems in multivariate statistics. Jolliffe (2002), Chapter 11 reviews these
in the context of PCA. Vines’s (2000) use of only a discrete number of values for loadings
has already been mentioned. It works well in some examples, but for the pitprops data
the components 4–6 are rather complex. A number of aspects of the strategy for selecting
a subset of variables were explored by Cadima and Jolliffe (1995, 2001), and by Tanaka
and Mori (1997). The LASSO has been generalized in the regression context to so-called
bridge estimation, in which the constraint p

j = 1 j j j µ t is replaced by p
j = 1 j j j® µ t

where ® is not necessarily equal to unity—see, for example, Fu (1998). Tibshirani (1996)
also mentioned the nonnegativegarotte, due to Breiman (1995), as an alternative approach.
Translation of the ideas of the bridge and nonnegative garotte to the context of PCA, and
comparison with other techniques, would be of interest in future research.

ACKNOWLEDGMENTS
An earlier draft of this article was prepared while the � rst author was visiting the Bureau of Meteorology

Research Centre (BMRC), Melbourne, Australia. He is grateful to BMRC for the support and facilities provided
during his visit, and to the Leverhulme Trust for partially supporting the visit under their Study Abroad Fellowship
scheme. Comments from two referees and the editor have helped to improve the clarity of the article.

[Received November 2000. Revised July 2002.]

REFERENCES

Breiman, L. (1995), “Better Subset Regression Using the Nonnegative Garotte,” Technometrics, 37, 373–384.

Cadima, J., and Jolliffe, I. T. (1995), “Loadings and Correlations in the Interpretation of Principal Components,”
Journal of Applied Statistics, 22, 203–214.

(2001), “Variable Selection and the Interpretation of Principal Subspaces,” Journal of Agricultural,
Biological, and Environmental Statistics, 6, 62–79.

Chu, M. T., and Trenda� lov, N. T. (2001), “The Orthogonally Constrained Regression Revisited,” Journal of
Computationaland Graphical Statistics, 10, 1–26.

Fu, J. W. (1998), “Penalized Regression: The Bridge Versus the Lasso,” Journal of Computationaland Graphical
Statistics, 7, 397–416.

http://www.ingentaconnect.com/content/external-references?article=/0040-1706^28^2937L.373[aid=366171]
http://www.ingentaconnect.com/content/external-references?article=/0266-4763^28^2922L.203[aid=1300959]
http://www.ingentaconnect.com/content/external-references?article=/1085-7117^28^296L.62[aid=3094772]
http://www.ingentaconnect.com/content/external-references?article=/1061-8600^28^2910L.1[aid=1543726]
http://www.ingentaconnect.com/content/external-references?article=/1061-8600^28^297L.397[aid=1891923]
http://www.ingentaconnect.com/content/external-references?article=/1085-7117^28^296L.62[aid=3094772]
http://www.ingentaconnect.com/content/external-references?article=/1061-8600^28^2910L.1[aid=1543726]
http://www.ingentaconnect.com/content/external-references?article=/1061-8600^28^297L.397[aid=1891923]


MODIFIED PRINCIPAL COMPONENT TECHNIQUE BASED ON THE LASSO 547

Goffe, W. L., Ferrier, G. D., and Rogers, J. (1994), “Global Optimizations of Statistical Functions with Simulated
Annealing,” Journal of Econometrics, 60, 65–99.

Hausman, R. (1982), “Constrained Multivariate Analysis,” in Optimization in Statistics, eds. S. H. Zanckis and J.
S. Rustagi, Amsterdam: North Holland, pp. 137–151.

Helmke, U., and Moore, J. B. (1994), Optimization and Dynamical Systems, London: Springer.

Jeffers, J. N. R. (1967),“Two Case Studies in the Applicationof Principal ComponentAnalysis,” AppliedStatistics,
16, 225–236.

Jolliffe, I. T. (1989), “Rotation of Ill-De� ned Principal Components,” Applied Statistics, 38, 139–147.

(1995), “Rotation of Principal Components: Choice of Normalization Constraints,” Journal of Applied
Statistics, 22, 29–35.

(2002), Principal Component Analysis (2nd ed.), New York: Springer-Verlag.

Jolliffe, I. T., and Uddin, M. (2000), “The Simpli� ed Component Technique—An Alternative to Rotated Principal
Components,” Journal of Computational and Graphical Statistics, 9, 689–710.

Jolliffe I. T., Uddin, M., and Vines, S. K. (2002), “Simpli� ed EOFs—Three Alternatives to Rotation,” Climate
Research, 20, 271–279.

Krzanowski, W. J., and Marriott, F. H. C. (1995), Multivariate Analysis, Part II, London: Arnold.

LeBlanc, M., and Tibshirani,R. (1998), “MonotoneShrinkageof Trees,” Journalof ComputationalandGraphical
Statistics, 7, 417–433.

Morton, S. C. (1989), “Interpretable Projection Pursuit,” Technical Report 106, Department of Statistics, Stanford
University.

McCabe, G. P. (1984), “Principal Variables,” Technometrics, 26, 137–144.

Osborne, M. R., Presnell, B., and Turlach, B. A. (2000), “On the LASSO and its Dual,” Journal of Computational
and Graphical Statistics, 9, 319–337.

Tanaka, Y., and Mori, Y. (1997),“Principal ComponentAnalysisBased on a Subset ofVariables: Variable Selection
and Sensitivity Analysis,” American Journal of Mathematical and Management Sciences, 17, 61–89.

Tibshirani, R. (1996),“Regression Shrinkageand Selection via the Lasso,” Journalof the Royal StatisticalSociety,
Series B, 58, 267–288.

Uddin, M. (1999), “Interpretation of Results from Simpli� ed Principal Components,” Ph.D. thesis, University of
Aberdeen, Aberdeen, Scotland.

Vines, S. K. (2000), “Simple Principal Components,” Applied Statistics, 49, 441–451.

http://www.ingentaconnect.com/content/external-references?article=/0304-4076^28^2960L.65[aid=353357]
http://www.ingentaconnect.com/content/external-references?article=/1061-8600^28^299L.689[aid=5195003]
http://www.ingentaconnect.com/content/external-references?article=/1061-8600^28^297L.417[aid=5195005]
http://www.ingentaconnect.com/content/external-references?article=/0040-1706^28^2926L.137[aid=1300967]
http://www.ingentaconnect.com/content/external-references?article=/1061-8600^28^299L.319[aid=5195006]
http://www.ingentaconnect.com/content/external-references?article=/0035-9254^28^2949L.441[aid=5195008]
http://www.ingentaconnect.com/content/external-references?article=/1061-8600^28^297L.417[aid=5195005]
http://www.ingentaconnect.com/content/external-references?article=/1061-8600^28^299L.319[aid=5195006]

