
Research Article

A Modified Scaled Spectral-Conjugate Gradient-Based
Algorithm for Solving Monotone Operator Equations

Auwal Bala Abubakar ,1,2 Kanikar Muangchoo ,3 Abdulkarim Hassan Ibrahim ,4

SundayEmmanuelFadugba ,5KazeemOlalekanAremu ,2,6andLateefOlakunleJolaoso 2

1Department of Mathematical Sciences, Faculty of Physical Sciences, Bayero University, Kano, Kano, Nigeria
2Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Ga-Rankuwa,
Pretoria 0204, South Africa

3Faculty of Science and Technology, Rajamangala University of Technology Phra Nakhon (RMUTP),
1381, Pracharat 1 Road, Wongsawang, Bang Sue, Bangkok 10800, 0ailand

4KMUTT Fixed Point Research Laboratory, Room SCL 802 Fixed Point Laboratory, Science Laboratory Building,
Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology 0onburi (KMUTT),
126 Pracha-Uthit Road, Bang Mod, 0rung Khru, Bangkok 10140, 0ailand

5Department of Mathematics, Ekiti State University, Ado Ekiti 360001, Nigeria
6Department of Mathematics, Faculty of Science, Usmanu Danfodio University Sokoto, Sokoto, Nigeria

Correspondence should be addressed to Kanikar Muangchoo; kanikar.m@rmutp.ac.th

Received 13 January 2021; Revised 11 April 2021; Accepted 13 April 2021; Published 26 April 2021

Academic Editor: Jen-Chih Yao

Copyright © 2021 Auwal Bala Abubakar et al. )is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

)is paper proposes a modified scaled spectral-conjugate-based algorithm for finding solutions to monotone operator equations.
)e algorithm is a modification of the work of Li and Zheng in the sense that the uniformly monotone assumption on the operator
is relaxed to just monotone. Furthermore, unlike the work of Li and Zheng, the search directions of the proposed algorithm are
shown to be descent and bounded independent of the monotonicity assumption. Moreover, the global convergence is established
under some appropriate assumptions. Finally, numerical examples on some test problems are provided to show the efficiency of
the proposed algorithm compared to that of Li and Zheng.

1. Introduction

We desire in this work to propose an algorithm to solve the
problem:

F(x) � 0, x ∈ C, (1)

where F: Rn⟶ Rn is monotone and Lipschitz continuous
and C⊆Rn is nonempty, closed, and convex.

Solving problems of form (1) are becoming interesting in
recent years due to its appearance in many areas of science,
engineering, and economy, for example, in forecasting of
financial market [1], constrained neural networks [2], eco-
nomic and chemical equilibrium problems [3, 4], signal and
image processing [5, 6], phase retrieval [7, 8], power flow

equations [9], nonnegative matrix factorisation [10, 11], and
many more.

Some notable methods for finding solution to (1) are:
Newton’s method, quasi-Newton method, Gauss–Newton
method, Levenberg–Marquardt method, and their vari-
ants [12–15]. )ese methods are prominent due to their
fast convergence property. However, their convergence is
local, and they require computing and storing of the
Jacobian matrix at each iteration. In addition, there is a
need to solve a linear equation at each iteration. )ese and
other reasons make them unattractive especially for large-
scale problems. To avoid the above drawbacks, methods
that are globally convergent and also do not require
computing and storing of the Jacobian matrix were
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introduced. Examples of such methods are the spectral
(SG) and conjugate (CG) gradient methods. However, SG
and CGmethods for solving (1) are usually combined with
the projection method proposed in [16]. For instance,
Zhang and Zhou [17] extended the work of Birgin and
Martinéz [18] for unconstrained optimization problems
by combining it with the projection method and proposed
a spectral gradient projection-based algorithm for solving
(1). Dai et al. [19] extend the modified Perry’s CG method
[20] for solving unconstrained optimization problem to
solve (1) by combining it with the projection method. Liu
and Li [21] incorporated the Dai-Yuan (DY) [22] CG
method with the projection method and proposed a
spectral Dai-Yuan (SDY) projection method for solving
nonlinear monotone equations. )e method was shown to
be globally convergent under appropriate assumptions.
Furthermore, to popularize and boost the efficiency of the
DY CG method, Liu and Feng [23] proposed a spectral
DY-type CG projection method (PDY), where the spectral
parameter is derived such that the direction is descent. It
is worth mentioning that all the methods mentioned
above require the operator in (1) to be monotone. Re-
cently, Li and Zheng [24] proposed scaled three-term
derivative-free methods for solving (1). )e method is an
extension of the method proposed by Bojari and Eslahchi
[25]. However, to establish the convergence of the
method, Li and Zheng assume that the operator is uni-
formly monotone which is a stronger condition. Some
other related ideas on spectral gradient-type and spectral
conjugate gradient-type methods for finding solution to
(1) were studied in [26–41] and references therein.

In this work, motivated by the strong condition imposed
on the operator by Li and Zheng [24], we seek to relax the
condition on the operator from uniformly monotone to
monotone. )is is achieved by modifying the two search
directions defined by Li and Zheng. In addition, the global

convergence is established under the assumption that the
operator is monotone and Lipschitz continuous. Numerical
examples to support the theoretical results are also given.

Notations: unless or otherwise stated, the symbol ‖ · ‖
stands for Euclidean norm on Rn. F(xk) is abbreviated to Fk.
Furthermore, PC[·] is the projection mapping from Rn onto
C given by PC[x] � argmin ‖x − y‖: x ∈ Rn, y ∈ C{ }, for a
nonempty closed and convex set C⊆Rn.

2. Motivation and Algorithm

In this section, we will begin by recalling a three-term
spectral-conjugate gradient method for solving (1). Given an
initial point x0, the method generates a sequence xk{ } via the
following formula:

xk+1 � xk + αkdk, k � 0, 1, 2, . . . , (2)

where xk+1 and xk are the current and previous points,
respectively. αk is the stepsize obtained via a line search and
dK is the search direction defined as

d0 ≔ − F0, dk ≔ − θkFk + βkdk−1 + ckyk−1, k≥ 1, (3)

where θk, βk, and ck are parameters and yk−1 � Fk − Fk−1.
Based on the three-term direction above, we will propose

a modified scaled three-term derivative-free algorithms for
solving (1). )e algorithms are a modification of the two
algorithms proposed by Li and Zheng [24]. )e aim of the
modification is to relax the uniformly monotone assumption
on the operator. )e search directions defined in [24] were
shown to be bounded under the uniformly monotone as-
sumption. Our main interest is to modify the search di-
rections defined in [24] and prove their boundedness
without requiring the uniformly monotone assumption. )e
directions in [24] are defined as follows:

STDF1:

dk ≔ − μ1Fk +
1

dTk−1yk−1
μ1F

T
kyk−1 − ck−1 yk− 1

 2( )dk−1 + 2 − μ1( )ck−1yk−1. (4)

STDF2:

dk ≔ − μ1Fk +
1

dTk−1yk−1
μ1F

T
kyk−1 − ck−1 yk− 1

 2 − μ2F
T
k sk−1( )dk−1 + 2 − μ1( )ck−1yk−1, (5)
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where

ck−1 �
FTkdk−1

dTk−1yk−1
,

ck−1 �
FTkdk−1

dTk−1yk−1

∣∣∣∣∣ ∣∣∣∣∣,
yk−1 � Fk − F zk−1( ),
sk−1 � zk−1 − xk−1,

zk−1 � xk−1 + αk−1dk−1, 1< μ1 ≤ 2, μ2 ≥ 0.

(6)

To obtain a lower bound for the term dTk−1yk−1, Li and
Zheng used the uniformly monotone assumption. So, in
order to relax this condition, we replace the term dTk−1yk−1 in
the directions defined by (4) and (5) with dTk−1wk−1. In
addition, we replace ck−1 and c in (4) and (5) with c̃k−1, sk−1 in
(5) with dk−1. Hence, we define the new directions as follows:

PSTDF1:

dk ≔ − μ1Fk +
1

dTk−1wk−1
μ1F

T
kyk−1 − c̃k−1 yk− 1

 2( )dk−1 + 2 − μ1( )c̃k−1yk−1. (7)

PSTDF2:

dk ≔ − μ1Fk +
1

dTk−1wk−1
μ1F

T
kyk−1 − c̃k−1 yk− 1

 2 − μ2F
T
kdk−1( )dk−1 + 2 − μ1( )c̃k−1yk−1. (8)

where

c̃k−1 �
FTkdk−1

dTk−1wk−1
,

yk−1 � Fk − Fk−1,

wk−1 � yk−1 + ℓk−1dk−1,

ℓk−1 � 1 +max 0,−
dTk−1yk−1

dk−1
 2

 .

(9)

Remark 1.

dTk−1wk−1 ≥ d
T
k−1yk−1 + dk− 1

 2 − dTk−1yk−1 � dk− 1
 2. (10)

From (10), a lower bound for the term dTk−1wk−1 is
obtained without any assumption on the operator F.

Let Sol(C, F) be the solution set of (1) and assume that
the following holds.

Assumption 1. )e constraint set C is nonempty, closed,
and convex.

Assumption 2. )e operator F is monotone, that is,
∀x1, x2 ∈ Rn:

F x1( ) − F x2( )( )T, x1 − x2( )≥ 0. (11)

Assumption 3. )e operator F is L-Lipschitz continuous on
R
n, that is, ∀x1, x2 ∈ Rn, L> 0,

F y1( ) − F y2( ) ≤ L x1 − x2 . (12)

In the following algorithm, we generate approximate
solutions to problem (1) under Assumptions 1–3
Algorithm 1.

Algorithm 1. PSTDF.

Input. Choose an initial guess x0 ∈ C, ϑ> 0, 0< ρ< 1,
1< μ1 ≤ 2, μ2 ≥ 0, t> 0, tol> 0 and k ≔ 0.

Step 1. If ‖Fk‖≤ tol, terminate. Else move to Step 2.

Step 2. Compute dk using (7) or (8).

Step 3. Compute

zk � xk + αkdk, (13)

αk � ϑρi, for i � 0, 1, . . ., where i is the least nonnegative
integer satisfying

−F zk( )Tdk ≥ tαk dk 2. (14)

Step 4. If zk ∈ C and ‖F(zk)‖≤ tol, then stop. Else,
compute
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xk+1 ≔ PC xk − ηkF zk( )[ ], (15)

where

ηk ≔
F zk( )T xk − zk( )

F zk( ) 2 . (16)

Step 5. Let k � k + 1 and repeat from Step 1.

3. Theoretical Results

In this section, we will establish the convergence analysis of
the proposed algorithm. However, we require the following
important lemmas. )e following lemma shows that the
proposed directions are descent.

Lemma 1. 0e search directions defined by (7) and (8) satisfy
the sufficient descent condition.

Proof. Multiplying both sides of (7) by FTk , we have

FTKdk � −μ1 Fk
 2 + 1

dTk−1wk−1
μ1F

T
kyk−1 − ck−1 yk− 1

 2( )FTKdk−1 + 2 − μ1( )ck−1FTKyk−1

� −μ1 Fk
 2 + μ1

FTKdk−1F
T
kyk−1

dTk−1wk−1
−
yk− 1
 2 FTKdk− 1( )2

dTk− 1wk−1( )2 + 2
FTKdk−1F

T
Kyk−1

dTk−1wk−1
− μ1

FTKdk−1F
T
Kyk−1

dTk−1wk−1

� −μ1 Fk
 2 − yk− 1

 2 FTKdk− 1( )2
dTk− 1wk−1( )2 + 2

FTKdk−1F
T
Kyk−1

dTk−1wk−1

� − μ1 − 1( ) Fk 2 − Fk −
FTKdk− 1
dTk− 1wk−1

yk− 1



2

≤ − μ1 − 1( ) Fk 2.

(17)

Also, multiplying both sides of (8) by FTk , we have

FTkdk � −μ1 Fk
 2 + 1

dTk−1wk−1
μ1F

T
kyk−1 − ck−1 yk− 1

 2 − μ2F
T
kdk−1( )FTkdk−1 + 2 − μ1( )ck−1FTKyk−1,

� −μ1 Fk
 2 + μ1

FTKdk−1F
T
kyk−1

dTk−1wk−1
−
yk− 1
 2 FTKdk− 1( )2

dTk− 1wk−1( )2 − μ2
FTkdk− 1( )2
dTk−1wk−1

+ 2
FTKdk−1F

T
Kyk−1

dTk−1wk−1
− μ1

FTKdk−1F
T
Kyk−1

dTk−1wk−1

� −μ1 Fk
 2 − yk− 1

 2 FTKdk− 1( )2
dTk− 1wk−1( )2 + 2

FTKdk−1F
T
Kyk−1

dTk−1wk−1
− μ2

FTKdk− 1( )2
dTk−1wk−1

� − μ1 − 1( ) Fk 2 − Fk −
FTKdk− 1
dTk− 1wk−1

yk− 1



2

− μ2
FTKdk− 1( )2
dTk−1wk−1

≤ − μ1 − 1( ) Fk 2.

(18)

Hence, for all k, the directions defined by (7) and (8)
satisfy

FTKdk ≤ − μ1 − 1( ) Fk 2. (19)

)e lemma below shows that the linesearch (14) is well-
defined and the stepsize is bounded away from zero. □

Lemma 2 (see [5]). Suppose Assumptions 1–3 are satisfied. If
dk{ }, zk{ }, and xk{ } are sequences defined by (7), (13), and
(15), respectively, then

(i) For all k, there is αk � ϑρi satisfying (14) for some
i ∈ N∪ 0{ } and ∀k≥ 0.

(ii) αk obtained via (14) satisfies
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αk >max ϑ,
ρ Fk
 2

(L + t) dk
 2

 . (20)

Lemma 3 (see [5]). Suppose Assumptions 1–3 are fulfilled,
then the sequences zk{ } and xk{ } defined by (13) and (15) are
bounded. Furthermore,

limk⟶∞ xk − zk
  � limk⟶∞αk dk

  � 0. (21)

Lemma 4 (see [5]). From Lemma 3, we have

xk+1 − x
 2 ≤ xk − x 2. (22)

Remark 2. Since xk{ } is bounded from Lemma 3 and F is
continuous from Assumption 3, Fk{ } is also bounded. )at
is, there exists c1, c2 > 0 such that, for all k,

xk
 ≤ c1, Fk ≤ c2. (23)

All are now set to establish the convergence of the
proposed algorithm.

Theorem 1. Suppose Assumptions 1 and 2 are satisfied. If
xk{ } is a sequence defined by (15), then

lim infk⟶∞ Fk
  � 0. (24)

Furthermore, the sequence xk{ } converges to a solution
of problem (1).

Proof. Suppose that lim infk⟶∞‖Fk‖≠ 0, then there is a
positive constant ]> 0 such that, for all k≥ 0,

Fk
 ≥ ]. (25)

By (17), (18), and the Cauchy–Schwartz inequality, we
have that, for all k≥ 0,

dk
 ≥ μ1 − 1( ) Fk ≥ μ1 − 1( )]. (26)

To complete the proof of the theorem, we need to show
that the search direction dk defined by (7) and (8) are
bounded.

For k � 0, we have

d0
  � F0

 ≤ c2. (27)

Now for k≥ 1, using (7), (10), (12), and (26), we have

dk
 ≤ μ1 Fk  + dk−1

 
dTk−1wk−1

μ1 Fk
  yk−1  + Fk

  dk−1 
dTk−1wk−1

yk− 1
 2( ) + 2

Fk
  dk−1  yk−1 

dTk−1wk−1
+ μ1

Fk
  dk−1  yk−1 

dTk−1wk−1

≤ μ1 Fk
  + 2 μ1 + 1( ) L xk − xk−1

 
dk−1
  +

L xk − xk− 1
 
dk−1
 ( )2

Fk
 

≤mu1 Fk
  + 2 μ1 + 1( ) L xk

  + xk−1
 ( )

dk−1
  +

L xk
  + xk− 1

 ( )
dk−1
  2

Fk
 

≤ μ1c2 + 2 μ1 + 1( ) L 2c1( )
μ1 − 1( )] + L 2c1( )

μ1 − 1( )]( )2

c2

≤ μ1c2 +
4c1L μ1 + 1( )

μ1 − 1( )] +
4c21L

2

μ1 − 1( )2]2c2.

(28)

Similarly, from (8),

dk
 ≤ μ1 + μ2( ) Fk  + 2 μ1 + 1( ) L xk − xk−1

 
dk−1
  +

L xk − xk− 1
 
dk−1
 ( )2

Fk
 ,

≤ μ1 + μ2( )c2 + 4c1L μ1 + 1( )
μ1 − 1( )] +

4c21L
2

μ1 − 1( )2]2c2.
(29)
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Letting
M1 � μ1c2 + (4c1L(μ1 + 1)/(μ1 − 1)]) + (4c21L

2/(μ1 − 1)2]2)
c2 and M2 � (μ1 + μ2)c2 + (4c1L(μ1 + 1)/(μ1 − 1)]) +(4c21
L2/(μ1 − 1)2]2)c2, then for all k,

dk
 ≤M2, (30)

since M2 >M1.
Multiplying (20) by ‖dk‖, we get

αk dk
 ≥max ϑ dk

 , ρ Fk
 2

(L + t) dk
 

  ≥max t μ1 − 1( )], μ μ1 − 1( )2]2
(L + t)M

{ }> 0. (31)

)is contradicts (21) and hence lim infk⟶∞‖Fk‖ � 0.
Because F is a continuous function and (24) holds, then

the sequence xk{ } has some accumulation point say x for
which F(x) � 0, that is, x is a solution of (1). From (22), it
holds that ‖xk − x‖{ } converges, and since x is an accu-
mulation point of xk{ }, xk{ } converges to x. □

4. Numerical Examples on Monotone
Operator Equations

)is segment of the paper would demonstrate the compu-
tational efficiency of the PSTDF algorithm relative to STDF
algorithm [24]. For PSTDF algorithm, we have PSTDF1

which corresponds to the direction defined by (7) and
PSTDF2 corresponding to the one defined by (8). Similarly,
for the STDF algorithm, we have STDF1 and STDF2 cor-
responding to (4) and (5), respectively. )e parameters
chosen for the implementation of the PSTDF algorithm are
ϑ � 1, μ1 � 1.9, μ2 � 0.8, ρ � 0.8, and t � 10− 4. )e pa-
rameters for STDF algorithm are chosen as reported in [24].
)e metrics considered are the number of iteration (NOI),
number of function evaluations (NFE), and the CPU time
(TIME). We used eight test problems with dimension
n � 1000, 5000, 10, 000, 50, 000, and 100, 000 and five initial
points x1 � (0.1, 0.1, . . . , 0.1)

T, x2 � (0.2, 0.2, . . . , 0.2)
T, x

3 � (0.5, 0.5, . . . , 0.5)
T, x4 � (1.5, 1.5, . . . , 1.5)T, x5 � (2, 2,

Table 1: List of test problems with references.

S/N Problem and reference

1 Modified exponential function 2 [42]
2 Logarithmic function [42]
3 Nonsmooth function [43]
4 Strictly convex function I [42]
5 Tridiagonal exponential function [44]
6 Nonsmooth function [45]
7 Problem 4 in [46]
8 Problem 9 in [32]

STDF1

STDF2

21 30 2.50.5 3.51.5

τ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
 (
τ)

PSTDF1

PSTDF2

Figure 1: Performance profiles for the number of iterations (NOI).
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. . . , 2)T. )e algorithms were coded in MATLAB R2019a
and run on a PC with Intel (R) Core (TM) i3-7100U pro-
cessor with 8GB RAM and CPU 2.40GHz. )e iteration
process is stopped whenever ‖F(xk)‖≤ 10− 5. Failure is de-
clared if this condition is not satisfied after 1000 iterations.

Table 1 consists of the test problems considered, where
the function F is F(x) � (f1(x), f2(x), . . . , fn(x))

T and
x � (x1, x2, . . . , xn)

T.
)e result of the experiments in Tabular form can be

found in the link https://documentcloud.adobe.com/link/
review?uri�urn:aaid:scds:US:77a9a900-2156-4344-a9d9-
b42e3a3dc8e5. It can be observed from the results that the
algorithms successfully solved all the problems considered
without a single failure. However, to better illustrate the

performance of each algorithm, we employ the Dolan and
Moré [47] performance profiles and plot Figures 1–3.
Figures 1–3 represent the performance of the algorithms
based on NOI, NFE, and TIME, respectively. In terms of
NOI (Figure 1), the best performing algorithm is PSTDF2
with 70% success, followed by PSTDF1 with 51% success.
STDF1 and STDF2 record less than 10% success each. Based
on NFE (Figure 2), the best performing algorithm is PSTDF1
with around 42% success, followed by PSTDF2 with almost
40% success. STDF1 and STDF2 record 20% and around
15% success, respectively. Lastly, in terms of TIME (Fig-
ure 3), PSTDF2 performs better with around 50% success,
followed by PSTDF1 with more than 30% success. STDF1
and STDF2 record around 20% and 5% success, respectively.

STDF1

STDF2

PSTDF1

PSTDF2

0.5 1 1.5 2 2.5 30

τ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
 (
τ)

Figure 2: Performance profiles for the number of function evaluations (NFE).
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0

0.1
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0.4

0.5
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0.9

1

p
 (
τ)

PSTDF1

PSTDF2

Figure 3: Performance profiles for the CPU time (in seconds).
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Overall, we can conclude that PSTDF1 and PSTDF2 out-
perform STDF1 and STDF2 based on the metrics
considered.

5. Conclusions

In this paper, a modified scaled algorithm based on the
spectral-conjugate gradient method for solving nonlinear
monotone operator equations was proposed. )e algorithm
replaces the stronger assumption of uniformly monotone on
the operator in the work of Li and Zheng (2020) with just
monotone, which is weaker. Interestingly, the search di-
rections were shown to be descent independent of line
search and also without monotonicity assumption (unlike in
the work of Li and Zheng). Furthermore, the convergence
results were established under monotonicity and Lipschitz
continuity assumptions on the operator. Numerical exper-
iments on some benchmark problems were conducted to
illustrate the good performance of the proposed algorithm.
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