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A modified sequence domain impedance definition

and its equivalence to the dq-domain impedance

definition for the stability analysis of AC power

electronic systems
Atle Rygg, Marta Molinas, Member, IEEE,, Chen Zhang and Xu Cai

Abstract—Representations of AC power systems by frequency
dependent impedance equivalents is an emerging technique in the
dynamic analysis of power systems including power electronic
converters. The technique has been applied for decades in
DC-power systems, and it was recently adopted to map the
impedances in AC systems. Most of the work on AC systems
can be categorized in two approaches. One is the analysis
of the system in the dq-domain, whereas the other applies
harmonic linearization in the phase domain through symmetric
components. Impedance models based on analytical calculations,
numerical simulation and experimental studies have been pre-
viously developed and verified in both domains independently.
The authors of previous studies discuss the advantages and
disadvantages of each domain separately, but neither a rigorous
comparison nor an attempt to bridge them has been conducted.
The present paper attempts to close this gap by deriving the
mathematical formulation that shows the equivalence between
the dq-domain and the sequence domain impedances. A modified
form of the sequence domain impedance matrix is proposed,
and with this definition the stability estimates obtained with the
Generalized Nyquist Criterion (GNC) become equivalent in both
domains. The second contribution of the paper is the definition
of a Mirror Frequency Decoupled (MFD) system. The analysis
of MFD systems is less complex than that of non-MFD systems
because the positive and negative sequences are decoupled. This
paper shows that if a system is incorrectly assumed to be MFD,
this will lead to an erroneous or ambiguous estimation of the
equivalent impedance.

Index Terms—dq-domain, Impedance, Power Electronic Sys-
tems, Sequence Domain, Stability Analysis.

I. INTRODUCTION

The stability of AC power systems with a high penetration

of power electronics is very difficult to analyze. The combi-

nation of multiple non-linearities and fast dynamics stemming

from controllers adds significant complexity to the analysis.

Impedance-based analysis of AC power systems is a relevant

and practical tool in this respect because it reduces the system

into a source and load subsystem, and analyses the dynamic

interactions between the two subsystem equivalents [1] [2].

The method is based on existing techniques for DC-systems,

first applied in [3].
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This method has some highly appealing properties. First,

it considers the subsystems as “black-boxes”, i.e. detailed

knowledge of the parameters and properties of the system

is not required as long as measurements can be obtained at

its terminals. Furthermore, the impedance equivalents can be

extracted based on measured signals in a real system. The

most accurate method for this purpose is based on frequency

scanning [4]-[6]. However, this method requires advanced and

dedicated equipment, and has limited real-time applicability.

There are several alternative methods which can estimate

impedance closer to real-time, and with low or zero addi-

tional hardware requirements. Examples are binary sequence

injection [7], impulse response [8], Kalman filtering [9] and

recurrent neural networks [10]. The accuracy of these methods

has not been extensively investigated in any comparative or

validation studies.

When an impedance equivalent is established, it can be

used for several purposes. Analytical impedance models for

relatively simple systems were derived in [11]-[14]. System

stability can be assessed based on these models through the

Generalized Nyquist Criterion (GNC) [15]. Other stability

criteria based on impedance models are described in [2],[16]-

[19]. Impedance equivalents have also been verified through

experimental studies [11],[12],[20]-[22].

Previous work in this field can be grouped into two ap-

proaches. The first analyzes the system in the sequence domain

using symmetric components (e.g. [1],[7],[8],[23]), whereas

the other applies the synchronous (dq) reference frame (e.g.

[2],[4],[11],[24]). Both domains have certain advantages and

disadvantages, but neither a rigorous comparison nor an at-

tempt to bridge them have yet been conducted. The present

paper shows mathematically how the two impedance domains

are related to each other, and that they can be viewed as

equivalent in terms of stability.

This paper makes two contributions. The first involves the

proposed modified definition of the 2x2 sequence domain

impedance matrix. In this matrix, the positive and negative

sequences are shifted with twice the fundamental frequency.

The coupling between these two frequencies is important

in power electronic systems, and is defined as the mirror

frequency effect. The equivalence between the proposed matrix

and the well-established 2x2 dq domain impedance matrix is

derived, and it is proven that the Generalized Nyquist Criterion

(GNC) estimates is equivalent for both matrices.
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The second contribution involves the definition of the Mirror

Frequency Decoupled (MFD) system, which is a sufficient

condition to avoid the mirror frequency effect. It is shown

how, in such systems, the impedance matrices become re-

duced. Furthermore, it is shown that the original definition

of sequence domain impedances [1] is ambiguous unless the

system is MFD.

II. RELATIONSHIP BETWEEN dq AND SEQUENCE DOMAINS

A. Assumption: Linear Time Invariance in dq-domain

The key assumption in this work is to consider systems

that are Linear Time Invariant (LTI) in the dq-domain. This

is a commonly applied assumption in previous work, and is

often a good approximation. Some well-known contributors to

violations of the assumption are:

• Line-commutated converters, e.g. diode rectifiers

• Phase unbalances in impedances

• Modulation and switching in self-commutated converters

Even if the LTI-assumption is violated, the resulting time

invariance is often small. Consequently, the assumption can

be applied without significant loss of accuracy.

One of the key points in this paper is to highlight that

systems that are LTI in the dq-domain might not be LTI in the

phase domain. It will be shown later that a current injection

at a given frequency can induce a voltage shifted by twice

the fundamental frequency. This phenomenon is denoted the

mirror frequency effect in this paper, and will occur in most

systems. This definition and its applications are presented in

section IV.

B. Sequence domain impedance extraction in previous work

In previous work, the sequence domain impedances have

been obtained in two ways. The most complete method takes

into account phase domain unbalances [25]. The resulting

impedance relation is similar to that proposed in this paper

(14), but does not consider the mirror frequency effect defined

in section IV. Similarly, although (14) takes into account

mirror frequency effects, it neglects phase domain unbalances.

The other, more simple method for obtaining sequence

domain impedance assumes that the positive and negative

sequence are decoupled [1],[7],[12]. This is equivalent to the

following definition, hereafter denoted the original sequence

domain impedance definition:

Zp =
Vp

Ip

Zn =
Vn

In
(1)

where Zp is denoted the positive sequence impedance

and Zn is denoted the negative sequence impedance. This

definition takes into account neither the sequence domain

unbalances nor the mirror frequency effect. Nonetheless, it can

be accurate in many cases, in particular at high frequencies as

will be shown by simulations in section V.

Another subsequent work has identified the mirror fre-

quency coupling by a case study analysis [26]. It was shown

in this paper that the stability analysis seems affected by the

coupling in this specific case.

C. Harmonic current and voltage equations

The first step in deriving the impedance relationship be-

tween dq and the sequence domain is to relate current and

voltage components to each other in the two domains. This

has been done in previous studies, e.g. [27], but the purpose of

this work was not related with impedance equivalents. Another

study presents an impedance derivation procedure similar to

the one in the present paper [23]. The derivation was here

applied to a case with diagonal dq-impedance matrix, and is

hence a special case of the relations derived in the following

sections.

First, the dq coordinate system is defined according to the

Parks transform:

[

vd
vq

]

=

√

2

3

[

cos(θ) cos(θ − 2π
3
) cos(θ + 2π

3
)

− sin(θ) − sin(θ − 2π
3
) − sin(θ + 2π

3
)

]





va
vb
vc





(2)

For a given three-phase set of signals, va, vb, vc, the

corresponding dq-domain signals are given by (2). θ is the

transformation angle typically obtained from a Phase Lock

Loop (PLL) or from an oscillator. In steady-state, θ = ω1t,

where ω1 is the fundamental frequency. (2) is here expressed in

the time-domain, but is valid in the frequency-domain as well.

From now on, all equations are expressed in the frequency

domain. The relationship between a time domain waveform

and its frequency domain components is

v(t) =
∞
∑

k=0

vk cos(ωkt+ φk) (3)

where vk is the amplitude of the frequency component at

frequency ωk, and φk is the corresponding phase angle. The

complex number

Vk = vke
jφk (4)

is defined as the harmonic phasor at frequency ωk. From this

point, the subscript k is omitted, and the relevant frequency

will be indicated.

The sequence domain, also denoted the symmetric com-

ponent domain, is widely applied in power system analysis

because it can decompose unbalanced three-phase systems into

three balanced and decoupled subsystems:

• A positive sequence subsystem (p)

• A negative sequence subsystem (n)

• A zero sequence subsystem (0)

The effect of zero sequence components is disregarded in

this paper. Note that in most applications of the sequence

domain, only the fundamental frequency components are con-

sidered, whereas in this work the phasors can be related to

any frequency. abc-phasors can be related to sequence domain

phasors by the symmetric component transform:

[

Vp

Vn

]

=

[

1 a a2

1 a2 a

]





Va

Vb

Vc



 (5)
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where Vp is the positive sequence voltage phasor, and Vn is

the negative sequence voltage phasor at an arbitrary frequency.

a = ej
2π

3 is the complex number corresponding to a 120o

phase shift. It can be shown that sequence domain phasors are

related to dq-domain phasors as follows:

[

Vp

Vn

]

=
1√
6

[

Vd + jVq

0

]

, ωp = ωdq + ω1

[

Vp

Vn

]

=
1√
6

[

0
Vd − jVq

]

, ωn = ωdq − ω1 (6)

In other words, a general dq voltage phasor at frequency

ωdq is equivalent to two sequence domain voltage phasors at

different frequencies, shifted by the fundamental:

• Positive sequence voltage at ωp = ωdq + ω1

• Negative sequence voltage at ωn = ωdq − ω1

Similarly, it can be shown that for a given positive or neg-

ative sequence voltage phasor, the corresponding dq-domain

phasors are:

[

Vd

Vq

]

=

√

3

2
Vp

[

1
−j

]

, ωdq = ωp − ω1

[

Vd

Vq

]

=

√

3

2
Vn

[

1
j

]

, ωdq = ωn + ω1 (7)

By definition, (2)-(7) also applies to currents.

D. Illustration of harmonic phasor relations

Equation (6) is illustrated in Fig. 1. A perturbation in a dq-

domain current waveform at a randomly selected frequency of

80 Hz is modelled as follows:

Id = 2∠80o

Iq = 3∠30o

}

, ωdq = 2π · 80 (8)

The waveform is expressed in the abc-domain using the

inverse of (2). FFT is used to calculate the frequency domain

harmonic phasors in both domains. These are drawn in the

complex plane in Fig. 1. It is seen that the single dq-tone at 80

Hz is transformed into a 30 Hz and a 130 Hz component in the

abc-domain. Moreover, it is seen that the 30 Hz waveforms

are pure negative sequence, whereas the 130 Hz waveforms

are pure positive sequence, which is consistent with (6). The

sequence domain phasors are calculated from the dq-domain

phasors by this equation. Note also that the sequence domain

phasors satisfies the following equation for balanced abc-

components: Iap = Ip and Ian = In.

III. MODIFIED SEQUENCE DOMAIN IMPEDANCE

DEFINITION

In the previous section, current and voltage phasors were

considered separately. This section will relate them to each

other through impedance. The main contribution of the paper

is then outlined, which is a 2x2 impedance matrix composed

of positive and negative sequence impedances at two different

frequencies. The proposed 2x2 matrix has many appealing

properties, as will be highlighted in further sections.

2 80dq

1

6

1

6

p d q

n d q

I I jI

I I jI

2 130

2 30

p

n

In
IpId

Iq

2 30n

Ian

Ibn

Icn

IcpIap

Ibp

an nI I
ap pI I

2 130p

Fig. 1: Harmonic phasors corresponding to (8). The 80 Hz-

waveform at ωdq equals the sum of a positive sequence

waveform at ωp = ωdq+ω1 and a negative sequence waveform

at ωn = ωdq − ω1

TABLE I: Overview of currents, voltages, and impedances and

the corresponding frequencies at which they are defined

Parameter Frequency

Vd , Id ωdq

Vq , Iq ωdq

Zdq ωdq

Vp , Ip ωp = ωdq + ω1

Vn , In ωn = ωdq − ω1

Zpp ωp

Znn ωn

Zpn ωn → ωp

Znp ωp → ωn

Zp ωp

Zn ωn

To provide a better overview, all current, voltages and

impedances are summarized in Table I. These definitions

highlight a key point in the paper: positive and negative

sequences are defined at two different frequencies, shifted by

twice the fundamental frequency. The two frequencies are also

denoted mirror frequencies later in the paper.

A. Definition and fundamental equations

The basis for the following derivations is the generalized

Ohms law in the dq-domain:

[

Vd

Vq

]

=

[

Zdd Zdq

Zqd Zqq

] [

Id
Iq

]

= Zdq

[

Id
Iq

]

(9)

where Zdq is a 2x2 matrix of complex numbers as a

function of frequency. This equation will now be transformed

into the sequence domain.

As shown by (7), any set of dq-domain phasors can be

written as the sum of positive sequence phasors at ωdq + ω1

and negative sequence phasors at ωdq −ω1. Substituting from

(7) gives a modified version of (9):
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L
ddZ

L L
dq qZ I

dV
L
dI

dq
1p dq1n dq

frequency

S L
n nI I

S
ddZ

S S
dq qZ I

S
dI

,inj dI L
qqZ

L L
qd dZ I

qV
L
qI

S
qqZ

S S
qd dZ I

S
qI

,inj qI

L
ppZ

L L
pn nZ I

pV
L
pI

S
ppZ

S S
pn nZ I

S
pI

,inj pIL
nnZ

L L
np pZ I

nV
L
nI

S
nnZ

S S
np pZ I

S
nI

sequence domain

dq domain

mirror frequencies

NB: positive sequence shunt 

current injection assumed

Fig. 2: Circuit equivalents of impedance equations in the dq and sequence domain. Mirror frequency coupling illustrated by

voltage sources in the sequence domain.

Vp

[

1
−j

]

+ Vn

[

1
j

]

= Zdq

(

Ip

[

1
−j

]

+ In

[

1
j

])

(10)

The definitions shown in Table I are based on this con-

venient representation. The next step is to multiply (10)

with 1

2

[

1 j
]

and 1

2

[

1 −j
]

, leading to the following two

equations:

Vp = Ip

(

1

2

[

1 j
]

Zdq

[

1
−j

])

+ In

(

1

2

[

1 j
]

Zdq

[

1
j

])

Vn = Ip

(

1

2

[

1 −j
]

Zdq

[

1
−j

])

+ In

(

1

2

[

1 −j
]

Zdq

[

1
j

])

(11)

(11) can conveniently be rewritten with matrix notation by

defining the modified sequence domain impedance matrix:

[

Vp

Vn

]

=

[

Zpp Zpn

Znp Znn

] [

Ip
In

]

= Zpn

[

Ip
In

]

(12)

with the four impedances substituted from (11):

Zpn =
1

2









[

1 j
]

Zdq

[

1
−j

]

[

1 j
]

Zdq

[

1
j

]

[

1 −j
]

Zdq

[

1
−j

]

[

1 −j
]

Zdq

[

1
j

]









(13)

The impedances have the following physical interpretation:

• Zpp: Measures the positive sequence voltage at ωp in-

duced by a positive sequence current at ωp

• Zpn: Measures the positive sequence voltage at ωp in-

duced by negative sequence current at ωn

• Znp: Measures the negative sequence voltage at ωn

induced by positive sequence current at ωp

• Znn: Measures the negative sequence voltage at ωn

induced by a negative sequence current at ωn

(13) can be rewritten in a more compact form as a linear

transformation by the unitary matrix AZ :

Zpn = AZ ·Zdq ·A−1

Z

Zdq = A−1

Z ·Zpn ·AZ

AZ =
1√
2

[

1 j

1 −j

]

, A−1

Z = A∗

Z =
1√
2

[

1 1
−j j

]

(14)

where * denotes complex conjugate transpose.

The corresponding admittance equations can be obtained in

the same way by interchanging voltages with currents in the

derivation process:

Ypn = AZ · Ydq ·A−1

Z

Ydq = A−1

Z · Ypn ·AZ (15)

The generalized Ohms law and the mirror frequency effect

are illustrated as circuit equivalents in Fig. 2. The figure

assumes positive sequence shunt current injection at frequency

ωp, but corresponding equivalents can be made for other

injection choices. In the dq-domain, all signals are expressed

using the same frequency ωdq . The cross coupling between

the d- and q-axis is represented by current dependent voltage

sources.
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TABLE II: Example of dq- and sequence domain frequencies

ωdq ωp ωn

500 550 450
120 170 70
65 115 15
40 90 -10→10∗

15 65 -35→35∗
∗ negative sequence frequencies where the impedances are transformed to

positive sequence as explained in section III-B

B. Positive sequence impedances below the fundamental fre-

quency

In this paper, the modified sequence domain impedance

definition has not thus far been defined for positive sequence

at frequencies below the fundamental frequency. Given that

ωp = ωdq+ω1, the dq-domain frequency ωdq will be negative

for 0 ≤ ωp < ω1. To extend the impedance definition to

positive sequence below the fundamental frequency, it is first

important to note that a balanced three-phase signal with a

negative frequency is equivalent to a balanced three-phase

signal with positive frequency at the same absolute value. Only

the phase order needs to be changed, i.e. a positive sequence

signal becomes a negative sequence, and vice versa.

Secondly, note that when 0 ≤ ωdq < ω1, the negative

sequence frequency ωn = ωdq−ω1 is negative. Consequently,

the negative sequence impedance Znn is associated with a

negative frequency. Based on the discussion above, the nega-

tive sequence impedance at a negative frequency is equal to

the positive sequence impedance at a positive frequency with

the same absolute value. Thus, a positive sequence impedance

below the fundamental frequency can be defined.

To summarize, an example of dq-domain and corresponding

sequence domain frequencies are given in Table II.

C. Nyquist stability criterion equivalence

The Generalized Nyquist stability Criterion (GNC) has been

widely applied in previous studies to analyze the stability of

power electronics systems (e.g. [13],[18],[21]). The criterion

is mathematically formulated in [15], and was first applied to

AC power electronic systems in [2]. It will now be shown that

when the GNC is applied to the dq and the modified sequence

domains, the results are identical.

Assuming the dq-domain, the basis for the stability criterion

is the system transfer function between source and load:

h = inv(I +Z
S
dqY

L
dq) (16)

For convenience, the minor-loop gain Ldq is defined as:

Ldq = Z
S
dqY

L
dq (17)

The eigenvalues of Ldq can be found by solving:

det (Ldq + λdqI) = 0 (18)

Assume in the following that the source is stable when

connected to an ideal load, and that the load is stable when

connected to an ideal source. The GNC then states that the

system is stable if and only if the characteristic loci of Ldq

do not encircle the point (−1, 0) when drawn in the complex

plane.

The minor-loop gain in the sequence domain can be ex-

pressed as:

Lpn = Z
S
pnY

L
pn =

(

AZ ·ZS
dq ·A−1

Z

) (

AZ · Y L
dq ·A−1

Z

)

= AZ ·ZS
dqY

L
dq ·A−1

Z = AZ ·Ldq ·A−1

Z (19)

The following equations prove that λdq , the eigenvalues of

Ldq , are equal to λpn, the eigenvalues of Lpn.

0 = det (Lpn − λpnI) = det
(

AZ ·Ldq ·A−1

Z − λpnI
)

= det
(

AZ ·Ldq ·A−1

Z −AZ · (λpnI) ·A−1

Z

)

= det(AZ) · det (Ldq − λpnI) · det
(

A−1

Z

)

= det (Ldq − λpnI) = 0

⇒ λpn = λdq (20)

Consequently, the stability analysis by GNC gives identical

results in the dq- and sequence domains when the modified

definition (14) is applied. By contrast, if the original definition

(1) is used, and one or both subsystems are not mirror

frequency decoupled (see section IV), the calculated stability

is different from the dq-domain stability calculations.

IV. THE MIRROR FREQUENCY EFFECT

The term mirror frequency effect is defined in this paper

to provide further insight into the properties of impedance

models. It has been shown that systems that are Linear Time

Invariant (LTI) in the dq-domain may not be LTI in the phase

domain by the original impedance definitions. However, it has

also been shown that the modified sequence domain is defined

in such a way that any LTI-system in the dq-domain is also

LTI in the modified sequence domain.

This section explores the conditions for systems to be LTI

under the original sequence domain definition. This is related

to the mirror frequency effects, and such systems will hereafter

be denoted Mirror Frequency Decoupled (MFD).

A. Mirror Frequency Decoupled (MFD) systems

A subsystem is said to be Mirror Frequency Decoupled

(MFD) if, when subjected to a harmonic disturbance at an

arbitrary frequency, it only responds with current/voltages at

the same frequency. In other words, it is LTI in the original

sequence domain. With reference to Fig. 2, this is equivalent

to removing the current-dependent voltage sources in the

sequence domain, i.e. Zpn = Znp = 0. MFD systems have

several interesting properties presented below.

B. Impedance matrices of MFD systems

MFD subsystems have sequence- and dq-domain impedance

matrices of the following form:

Zpn

∣

∣

∣

MFD
=

[

Zpp 0
0 Znn

]

Zdq

∣

∣

∣

MFD
=

[

Zdiag Zoffdiag

−Zoffdiag Zdiag

]

(21)
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where Zpn = Znp = 0 by the MFD-definition. The dq-

domain matrix in a MFD-system has Zdd = Zqq = Zdiag

and Zdq = −Zqd = Zoffdiag . The proof of these relations is

presented in Appendix C. In a previous study a similar result

was found under the assumption of Zdq = Zqd = 0 [23].

Since Zpn is diagonal, the original impedance definition (1)

is equivalent to the modified (14) for MFD-systems.

C. dq impedance extraction in MFD systems

It has been argued that sequence domain impedances are

easier to obtain than dq-domain impedances due to the de-

coupling between positive and negative sequence [1],[12].

Furthermore, the sequence domain impedance can be obtained

from a single measurement with no need for matrix inversions

because of this decoupling. However, it has been shown

in the previous section that sequence domain impedances

can been assumed to be decoupled only if the subsystem

is MFD. In contrast with the statements of previous work,

the following equations show that dq-domain impedances can

also be obtained from a single measurement in this case.

Combining (9) with (21) gives:

Zdiag = Zdd = Zqq =
VdId + VqIq

I2d + I2q

Zoffdiag = Zdq = −Zqd =
VdIq − VqId

I2d + I2q
(22)

Consequently, only a single measurement is needed to

obtain the dq impedance matrix in a MFD subsystem.

D. Sources to mirror frequency coupling

Mirror frequency coupling is introduced in all parts of the

power system where (21) is not satisfied. For example:

• Phase-Lock-Loops (PLL)

• Converter current controllers with unequal structure

and/or parameter values in the d- and q-axis

• DC-link voltage control systems

• Active and reactive power controllers

• Salient-pole synchronous machines

The analytical impedance calculation in the dq-domain is

described in e.g. [11], where the coupling related to the first

four bullet-points can be identified. Note that all transfer

functions must be identical in d- and q-axis in order for the

subsystem to be MFD. Furthermore, all cross-coupling be-

tween d- and q-axis must have opposite sign. The synchronous

machine is also mentioned because it is a vital part of many

power systems, and it possesses mirror frequency coupling

if the reluctance in d- and q-axes differ. Although mirror

frequency coupling is independent of power electronics, it

is clear from the bullet points above that power electronics

systems introduces many instances for this to occur.

V. VALIDATION BY NUMERIC SIMULATION

A. Obtaining impedances through simulation

The method for obtaining impedances through simulation

is best explained by the flowchart in Fig. 4. This method is

able to calculate both the dq-domain and sequence domain

impedances in an integrated process. The first step is to select

a vector of frequencies fdq,tab, i.e. the frequencies at which

the impedances shall be calculated. Note that these frequencies

are expressed in the dq-domain.

The system can be simulated under either shunt current

or series voltage injection. The difference between these two

methods is illustrated in Fig. 3. If shunt current is used, the

following three-phase perturbation signals will be injected:

iinj1 = Iinj





sin ([ωinj + ω1] t)
sin

(

[ωinj + ω1] t− 2π
3

)

sin
(

[ωinj + ω1] t+
2π
3

)





iinj2 = Iinj





sin ([ωinj − ω1] t)
sin

(

[ωinj − ω1] t+
2π
3

)

sin
(

[ωinj − ω1] t− 2π
3

)



 (23)

If series voltage injection is applied, i can be replaced with

v. The two sets of signals need to have different frequencies

because linear independent injections are required when solv-

ing for the impedance matrices (24)-(25). The selection of

injection signals is discussed in [4].

The needed output from simulations are the current and

voltage signals shown in Fig. 3. Note that the injection signal

itself is not needed in impedance calculations. After converting

time-domain signals to the frequency domain as described in

the flowchart, the following equations can be used to find the

impedances in the two domains:

[

Zdd Zdq

Zqd Zqq

]

=

[

Vd1 Vd2

Vq1 Vq2

] [

Id1 Id2
Iq1 Iq2

]

−1

(24)

[

Zpp Zpn

Znp Znn

]

=

[

Vp1 Vp2

Vn1 Vn2

] [

Ip1 Ip2
In1 In2

]

−1

(25)

After these two matrices are established, all other impedance

expressions in the paper can be derived based on them.
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S,dqZ
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Sv Ld Ld

Lq Lq
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V I
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=ê ú ê ú
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Sd Sd

Sq Sq

V I

V I

é ù é ù
=ê ú ê ú

ë û ë û
S,dqZ

Source subsystem Load subsystem

+ - Lv
injv

Fig. 3: Illustration of the two injection methods (shunt and

series) for a general source and load subsystem.
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Fig. 4: Illustration of simulation method to obtain both dq and

sequence domain impedances as a function of frequency. The

flowchart is valid for both shunt current and series voltage

injection.

B. Case study description

In this section, the validity of the previously derived ex-

pressions is checked through numeric simulations. Simulation

cases A and B are developed in MATLAB/Simulink, see Fig.

5 and Fig. 6. Both cases consist of a source converter and a

load converter. The control systems operate in the dq-domain.

In Case A the source converter controls the voltage v

according to set-points and the virtual inductances Lvd and

Lvq . The converter is synchronized to the fixed clock signal

θS = 2πfn · t. The load converter operates with DC-voltage

control and reactive current control, and a current source Idc
consumes power at the DC-side. The converter is synchronized

to the grid by a Phase Lock Loop (PLL).

The following sources to mirror frequency coupling is

present in Case A source subsystem:

• Lvd 6= Lvq

• Kpvd 6= Kpvq

• Tivd 6= Tivq

In Case A load subsystem, the following sources to mirror

frequency coupling is present:

• DC-link voltage controller

• PLL is connected to a non-stiff point in the grid

• Kpid 6= Kpiq

• Tpid 6= Tpiq

To better illustrate the findings in the paper, Case A has been

divided into two subcases, Case A1 and Case A2. In Case A1

both subsystems are mirror frequency coupled according to the

bullet-lists above. However, in Case A2 all mirror frequency

couplings in the source subsystem are removed by setting

Lvd = Lvq , Kpvd = Kpvq and Tivd = Tivq . Hence, in Case

A2 the source subsystem is MFD, while the load subsystem is

not. The differences between these two cases will be discussed

in the result section.

In Case B all mirror frequency coupling is removed in both

subsystems, leading to a complete MFD system. The source

subsystem is identical to the one in Case A2. In the load

subsystem the converter is connected to a constant voltage

at the DC-side, which eliminates the need for DC voltage

control. The control system consists of current controllers

with set-points i∗Ld and i∗Ld. The PI-controller parameters are

identical in d- and q-axis. Furthermore, the converter does

not contain a PLL, but is instead synchronized to the fixed

ramp θL = 2πfn · t in the same way as the source converter.

Consequently, all mirror frequency coupling sources from the

above bullet-list have been removed.

Parameter values applied in the simulation cases are given

in Appendix A.
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C. Simulation results - Zdq and Zpn

The resulting impedance curves for the three cases are

shown in Fig. 7-9 for the dq-domain, and in Fig. 10-12 for

the modified sequence domain. Only magnitude is presented

in these figures for simplicity, but is has been verified that the

angles are consistent with the conclusions. Impedances for the

load and source subsystem are plotted in the same graph. In

the sequence domain plots, impedances have been obtained in

two ways, denoted by subscript a and b:

• Za: Direct simulation of Zpn using (25)

• Zb: Based on simulated Zdq from (24) and the transform

given by by Zpn = AZ ·Zdq ·A−1

Z (14)

The following observations support the claims in the previ-

ous sections:

• The two ways of obtaining modified sequence domain

impedances (Za and Zb) produce identical results in all

cases. This confirms the transformation relationship from

dq- to sequence domain (14).

• In Case A1, there are no symmetries in the impedance

curves, neither in dq nor sequence domain. This is

expected since both subsystems have mirror frequency

coupling.

• In Case A2, ZS
pn ≈ ZS

np ≈ 0, as expected since the

source subsystem is MFD (see also (21)).

• In Case B, Zpn ≈ Znp ≈ 0 for both subsystems. This

is expected since both subsystems are MFD. It can also

be observed that Zdq = −Zqd and Zdd = Zqq for both

subsystems, again according to (21).
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D. Simulation results - Modified vs. original

The purpose of this section is to investigate the validity of

the equations derived in Appendix D, and to determine how

the original and modified sequence domain impedances relate

to each other. Fig. 13-15 presents the same comparison for

each of the three simulation cases. Only the load subsystem

impedance is included in the comparison. The original se-

quence domain impedances, Zp and Zn, are compared with the

diagonal elements in the modified sequence domain impedance

matrix, Zpp and Znn. Furthermore, the original sequence

domain impedances are simulated both by shunt current and

series voltage injection. Additionally, they are estimated in two

ways to validate the equations derived in Appendix D. Table

III summarizes the notation and estimation methods.

TABLE III: Explanation of the legends in Fig. 13-15

Legend notation Eq. notation Estimation mehtod

Zp,shunt,a ZL
p

∣

∣

∣

shunt
Direct simulation using (1)

Zp,shunt,b ZL
p

∣

∣

∣

shunt

Calculation based on simulated Zpn

from (25) and the formula (30)

Zp,series,a ZL
p

∣

∣

∣

series
Direct simulation using (1)

Zp,series,b ZL
p

∣

∣

∣

series

Calculation based on simulated Zpn

from (25) and the formula (33)

Zpp,a ZL
pp Direct simulation using (25)

Zpp,b ZL
pp

Calculation based simulated Zdq

from (24) and the formula (14)

First, it can be noted that the methods based on direct

simulations always overlap with the calculated one for all three

cases, which validates (30), (33) and (14).

In Case A1, the original impedances obtained by shunt

and series injection are not equal. This is expected based

on the difference between (30) and (33). The difference is

noticeable at frequencies below 100 Hz. It is also observed

that the modified sequence impedances Zpp and Znn deviate

substantially from the original ones at frequencies up to

≈ 500Hz; however, after this point they are close to equal.

Consequently, the load subsystem can be assumed to be MFD

for frequencies above 500 Hz.

In Case A2, it is clear that the load subsystem impedances

obtained from shunt and series injection are equal. This is

consistent with (35), because the source subsystem is MFD in

this case. The same equation give Zpp 6= Zp and Znn 6= Zn,

which is verified by the figure. However, the difference is close

to zero at frequencies above ≈ 500Hz, similar to Case A1.

In Case B, all impedance estimates coincide. From (36) we

have that Zp = Zpp and Zn = Znn whenever Zpn = Znp = 0.

Both systems are now MFD, and hence the assumption of

decoupled sequence domain is valid.
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sequence domain impedances in Case A1
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sequence domain impedances in Case B

E. Simulation results - Generalized Nyquist Criterion

It has been shown in section III-C that the Generalized

Nyquist Criterion will give same result in the dq-domain and

the modified sequence domain. Furthermore, it has been shown

that the stability analysis based on original sequence domain

impedances will give different results unless both subsystems

are MFD. This has been investigated by applying the GNC to

the impedance curves found in Fig. 7 to Fig. 15. The resulting

Nyquist plots are presented in Fig. 16. Note that only the most

critical eigenvalue is plotted, corresponding to the operating

point of isd = 1.1pu.

In all cases, the dq-domain gives exactly the same result as

the modified sequence domain. On the other hand, the original

sequence domain impedances do not give the same Nyquist

plot in Case A1 and A2. In Case B all methods give the same

Nyquist curves.
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Fig. 16: Comparison of Nyquist plots for cases A1, A2 and B
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F. Time-domain analysis

To complement the stability analysis from the previous

section, a time-domain simulation has been conducted and

presented in Fig. 17. Cases A1 and A2 are used for the

simulation, see Fig. 5 for the system block diagram. The

power consumed by the load converter is stepwise increased

by applying step changes to Idc. Fig. 17 shows the resulting

dq-currents at the source converter. The transient oscillations

in both isd and isq are gradually increasing until instability

occurs at the reference value of 1.2 p.u.. Note that a reference

value of 1.1 p.u. is the basis for the Nyquist plot in Fig. 16 as

indicated by arrows. This operation point has poorly damped

oscillations, supporting the fact that the Nyquist plot is close

to encircling the point (−1, 0). It can be observed that Case

A2 has stronger oscillations, which is also indicated by its

Nyquist plot being closer to (−1, 0) compared to Case A1.
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Fig. 17: Time-domain analysis of Case A1 and Case A2. Grid

converter dq-currents during stepwise increase in Idc. Arrows

indicate the operation point used for impedance calculations.

VI. DISCUSSION

After the derivations and proofs presented in the previous

sections it is useful to discuss the advantages and disadvan-

tages of the two impedance domains. In this discussion, the

modified sequence domain is assumed because the original

definition has been shown to be ambiguous and can be

inaccurate for systems that are not MFD.

The general statement is that the two domains are equiv-

alent. The impedance matrix in one domain can be obtained

from the other through a linear transformation where the eigen-

values are preserved. Hence, both domains should provide

the same results. However, from a more practical viewpoint,

there are a few advantages with the sequence domain over dq,

especially when impedances are obtained from simulation or

measurements:

1) There is no need to perform dq-transformations to any

measured signal, and hence no need for a reference

transformation angle.

2) The off-diagonal terms in the sequence domain

impedance matrix will often have low values, and are

equal to zero for a MFD system. In other words, the

sequence domain impedance matrix is “close to decou-

pled”.

3) It can be argued that the sequence domain can be

intuitively associated to a physical meaning and is less

abstract than the dq-domain.

The main advantage with the dq-domain is that most pre-

vious studies on the control and stability of power electronic

converters have been performed in dq-coordinates. Regarding

analytical impedance models, it is also possible that the

derivations are less complex in the dq-domain, but this has

not been yet extensively investigated.

In most of the previous work on stability analysis based

on the Nyquist criterion, it has been argued that off-diagonal

impedance matrix elements can be neglected. Based on the

impedance matrix structure for MFD systems (21), it is clear

that such simplifications are correct in the sequence domain

but not in the dq-domain.

The paper has shown that original sequence domain

impedances depends on injection type (shunt vs. series) when

both subsystems are non-MFD. In general, the load subsystem

prefer series injection, while the source subsystem prefer shunt

injection. This is due to the fact that the load subsystem

has higher impedance at most frequencies. When choosing

injection type for a given system, the system with more mirror

frequency coupling should be prioritized. It is expected that

this is often the load subsystem, in this case series injection

is more accurate.

VII. CONCLUSION

Stability analysis of AC power electronics systems through

frequency dependent impedance equivalents is a relatively

new field of research. Both dq-domain and sequence domain

analysis have been reported in previous works. However,

limited effort has been dedicated to the understanding of their

equivalence with respect to the stability estimates they provide.

This paper attempts to contribute in this direction by reporting

the following findings:

1) A modified definition for the sequence domain

impedance matrix, which extends the original sequence

domain impedance definition. The extension is related

with the ability to account for induced frequency com-

ponents shifted by twice the fundamental frequency

2) The relationship between the well-established dq-

domain impedance matrix and the modified sequence

domain impedance matrix. This can be viewed as a

linear transformation where many essential properties

are preserved.

3) The choice of impedance domain does not affect the

analysis of stability using the Generalized Nyquist Cri-

terion (GNC).

4) Definition of the terms mirror frequency effect and

Mirror Frequency Decoupled (MFD) systems.

5) The modified sequence domain impedance matrix is

diagonal for MFD systems. The dq-domain impedance

matrix is not.
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6) The dq-domain impedance matrix can be obtained from

single measurements without the need for matrix inver-

sions when both subsystems are MFD.

7) The original sequence domain impedance is shown to be

ambiguous in the general case; it depends on injection

type, and the source state variables appear in the load

impedance expression, and vice versa.

8) The relationship between the original and the modified

sequence domain impedance was derived under the

assumption of both ideal series and ideal shunt injection.

9) The original sequence domain impedance no longer

depends on injection type when one of the subsystems

is MFD. However, the source state variables still appear

in the load impedance expression (assuming the source

is MFD).

All equations were derived mathematically on a general

basis, and were verified by numeric simulations. Points 1-5

were examined in simulation section V-C, whereas points 6-9

were examined in simulation section V-D.

REFERENCES

[1] J. Sun, “Small-signal methods for ac distributed power sys-
tems;a review,” Power Electronics, IEEE Transactions on,
vol. 24, no. 11, pp. 2545–2554, Nov 2009.

[2] M. Belkhayat, Stability criteria for AC power systems with
regulated loads. Purdue University, 1997.

[3] R. D. Middlebrook, “Input filter considerations in design and
application of switching regulators,” in IEEE Industry Applica-
tions Society Annual Meeting, 1976.

[4] G. Francis, R. Burgos, D. Boroyevich, F. Wang, and K. Karimi,
“An algorithm and implementation system for measuring
impedance in the d-q domain,” in Energy Conversion Congress
and Exposition (ECCE), 2011 IEEE, Sept 2011, pp. 3221–3228.

[5] Y. Familiant, J. Huang, K. Corzine, and M. Belkhayat, “New
techniques for measuring impedance characteristics of three-
phase ac power systems,” Power Electronics, IEEE Transactions
on, vol. 24, no. 7, pp. 1802–1810, July 2009.

[6] J. Huang, K. Corzine, and M. Belkhayat, “Small-signal
impedance measurement of power-electronics-based ac power
systems using line-to-line current injection,” Power Electronics,
IEEE Transactions on, vol. 24, no. 2, pp. 445–455, Feb 2009.

[7] T. Roinila, M. Vilkko, and J. Sun, “Online grid impedance
measurement using discrete-interval binary sequence injection,”
Emerging and Selected Topics in Power Electronics, IEEE
Journal of, vol. 2, no. 4, pp. 985–993, Dec 2014.

[8] M. Cespedes and J. Sun, “Adaptive control of grid-connected
inverters based on online grid impedance measurements,” Sus-
tainable Energy, IEEE Transactions on, vol. 5, no. 2, pp. 516–
523, April 2014.

[9] N. Hoffmann and F. Fuchs, “Minimal invasive equivalent grid
impedance estimation in inductive-resistive power networks
using extended kalman filter,” Power Electronics, IEEE Trans-
actions on, vol. 29, no. 2, pp. 631–641, Feb 2014.

[10] P. Xiao, G. Venayagamoorthy, K. Corzine, and J. Huang, “Re-
current neural networks based impedance measurement tech-
nique for power electronic systems,” Power Electronics, IEEE
Transactions on, vol. 25, no. 2, pp. 382–390, Feb 2010.

[11] B. Wen, D. Dong, D. Boroyevich, R. Burgos, P. Mattavelli, and
Z. Shen, “Impedance-based analysis of grid-synchronization sta-
bility for three-phase paralleled converters,” Power Electronics,
IEEE Transactions on, vol. PP, no. 99, pp. 1–1, 2015.

[12] M. Cespedes and J. Sun, “Impedance modeling and analysis of
grid-connected voltage-source converters,” Power Electronics,
IEEE Transactions on, vol. 29, no. 3, pp. 1254–1261, March
2014.

[13] X. Wang, F. Blaabjerg, and W. Wu, “Modeling and analysis
of harmonic stability in an ac power-electronics-based power
system,” IEEE Transactions on Power Electronics, vol. 29,
no. 12, pp. 6421–6432, Dec 2014.

[14] R. Turner, S. Walton, and R. Duke, “A case study on the
application of the nyquist stability criterion as applied to inter-
connected loads and sources on grids,” Industrial Electronics,
IEEE Transactions on, vol. 60, no. 7, pp. 2740–2749, July 2013.

[15] C. Desoer and Y.-T. Wang, “On the generalized nyquist stability
criterion,” Automatic Control, IEEE Transactions on, vol. 25,
no. 2, pp. 187–196, Apr 1980.

[16] Z. Liu, J. Liu, W. Bao, and Y. Zhao, “Infinity-norm of
impedance-based stability criterion for three-phase ac dis-
tributed power systems with constant power loads,” Power
Electronics, IEEE Transactions on, vol. 30, no. 6, pp. 3030–
3043, June 2015.

[17] C. Wildrick, F. Lee, B. Cho, and B. Choi, “A method of defining
the load impedance specification for a stable distributed power
system,” Power Electronics, IEEE Transactions on, vol. 10,
no. 3, pp. 280–285, May 1995.

[18] J. Sun, “Impedance-based stability criterion for grid-connected
inverters,” Power Electronics, IEEE Transactions on, vol. 26,
no. 11, pp. 3075–3078, Nov 2011.

[19] R. Burgos, D. Boroyevich, F. Wang, K. Karimi, and G. Francis,
“On the ac stability of high power factor three-phase rectifiers,”
in Energy Conversion Congress and Exposition (ECCE), 2010
IEEE. IEEE, 2010, pp. 2047–2054.

[20] D. Dong, B. Wen, D. Boroyevich, P. Mattavelli, and Y. Xue,
“Analysis of phase-locked loop low-frequency stability in three-
phase grid-connected power converters considering impedance
interactions,” Industrial Electronics, IEEE Transactions on,
vol. 62, no. 1, pp. 310–321, Jan 2015.

[21] B. Wen, D. Boroyevich, R. Burgos, P. Mattavelli, and Z. Shen,
“Small-signal stability analysis of three-phase ac systems in the
presence of constant power loads based on measured d-q frame
impedances,” Power Electronics, IEEE Transactions on, vol. 30,
no. 10, pp. 5952–5963, Oct 2015.

[22] ——, “Analysis of d-q small-signal impedance of grid-tied
inverters,” Power Electronics, IEEE Transactions on, vol. 31,
no. 1, pp. 675–687, Jan 2016.

[23] Z. Bing, “Three-phase ac-dc converters for more-electric air-
craft,” Ph.D. dissertation, Rensselaer Polytechnic Institute,
2010.

[24] V. Valdivia, A. Lazaro, A. Barrado, P. Zumel, C. Fernandez, and
M. Sanz, “Black-box modeling of three-phase voltage source
inverters for system-level analysis,” Industrial Electronics, IEEE
Transactions on, vol. 59, no. 9, pp. 3648–3662, Sept 2012.

[25] M. Cespedes and J. Sun, “Three-phase impedance measurement
for system stability analysis,” in Control and Modeling for
Power Electronics (COMPEL), 2013 IEEE 14th Workshop on.
IEEE, 2013, pp. 1–6.

[26] M. K. Bakhshizadeh, X. Wang, F. Blaabjerg, J. Hjerrild, L. Ko-
cewiak, C. L. Bak, and B. Hesselbak, “Couplings in phase
domain impedance modeling of grid-connected converters,”
IEEE Transactions on Power Electronics, vol. 31, no. 10, pp.
6792–6796, Oct 2016.

[27] D. Zmood, D. Holmes, and G. Bode, “Frequency-domain anal-
ysis of three-phase linear current regulators,” Industry Applica-
tions, IEEE Transactions on, vol. 37, no. 2, pp. 601–610, Mar
2001.



13

APPENDIX

A. Parameter values used in simulations

Vbase= 690 V Sbase = 1 MW Vdc,base= 1400 V
VSdc = 1 p.u. V ∗

Ldc
= 1 p.u. ZS = 0.007 + j0.15 p.u.

Cdc = 11.5 mF Idc = 1.1 p.u. ZL = 0.02 + j0.25 p.u.
Lvd= 0.0 p.u. Kpvd = 1 p.u. Tivd= 0.1 s
Lvq= 0.2 p.u. Kpvq = 1.3 p.u. Tivq= 0.2 s
Kpid = 1.59 p.u. Tiid= 0.047 s fn= 50 Hz
Kpiq = 2.07 p.u. Tiiq= 0.033 s Kpvdc = 8.33 p.u.
Tivdc = 0.0036 s v∗

d
= 1.0 p.u. v∗q = 0.0 p.u.

i∗Lq = 0.4 p.u.

TABLE IV: Parameter values applied in Case A1

Vbase= 690 V Sbase = 1 MW Vdc,base= 1400 V
VSdc = 1 p.u. V ∗

Ldc
= 1 p.u. ZS = 0.007 + j0.15 p.u.

Cdc = 11.5 mF Idc = 1.1 p.u. ZL = 0.02 + j0.25 p.u.
Lvd= 0.1 p.u. Kpvd = 1 p.u. Tivd= 0.1 s
Lvq= 0.1 p.u. Kpvq = 1 p.u. Tivq= 0.1 s
Kpid = 1.59 p.u. Tiid= 0.047 s fn= 50 Hz
Kpiq = 2.07 p.u. Tiiq= 0.033 s Kpvdc = 8.33 p.u.
Tivdc = 0.0036 s v∗

d
= 1.0 p.u. v∗q = 0.0 p.u.

i∗Lq = 0.4 p.u.

TABLE V: Parameter values applied in Case A2. Parameters

in RED are different from Case A1.

Vbase= 690 V Sbase = 1 MW Vdc,base= 1400 V
VSdc = 1 p.u. VLdc = 1 p.u. ZS = 0.007 + j0.15 p.u.
Cdc = 11.5 mF i∗

Ld
= 1.1 p.u. ZL = 0.02 + j0.25 p.u.

Lvd= 0.1 p.u. Kpvd = 1 p.u. Tivd= 0.1 s
Lvq= 0.1 p.u. Kpvq = 1 p.u. Tivq= 0.1 s
Kpid = 1.59 p.u. Tiid= 0.047 s fn= 50 Hz
Kpiq = 1.59 p.u. Tiiq= 0.047 s i∗Lq = 0.4 p.u.

v∗
d
= 1.0 p.u. v∗q = 0.0 p.u.

TABLE VI: Parameter values applied in Case B. Parameters

in RED are different from Case A2.

B. Proof of equal determinants

The following relation prove that the determinant of Zdq is always
equal to the determinant of Zpn:

det(Zpn) = det
(

AZ ·Zdq ·A
−1

Z

)

= det(AZ) · det (Zdq) · det(A−1

Z )

= −j · det (Zdq) · j = det (Zdq) (26)

C. Proof of MFD impedance matrices relations (21)

When a subsystem is assumed MFD, the off-diagonal elements
in Zpn are equal to zero by definition. Hence Zpn = Znp = 0.
Substituting from (13) then gives:

Zpn =
1

2

[

1 −j
]

Zdq

[

1
−j

]

= 0

Znp =
1

2

[

1 j
]

Zdq

[

1
j

]

= 0 (27)

Expanding these expressions by substituting from (9) gives:

Zdd = Zqq = Zdiag

Zdq = −Zqd = Zoffdiag

Zpp =
Zdiag − jZoffdiag

2

Znn =
Zdiag + jZoffdiag

2
(28)

Zdiag and Zoffdiag are defined in (21).

D. Relationship between modified and original sequence do-

main impedance definitions

1) General case: The relationship between the modified se-
quence domain impedance definition (14) and the original (1) can
be derived by solving (11) for the source and load subsystem
simultaneously. When specifying the set of equations, one must
choose between:

• Shunt current or series voltage injection

.. and between

• Positive or negative sequence injection

One should choose positive sequence injection in order to find the
positive sequence impedance Zp, and negative sequence injection to
find Zn. The following set of equations should be solved to obtain
the impedance Zp for shunt current injection. This is equivalent to
solving the circuit presented in Fig. 2.

V
L
p = I

L
p Z

L
pp + I

L
nZ

L
pn

V
L
n = I

L
p Z

L
np + I

L
nZ

L
nn

V
S
p = I

S
p Z

S
pp + I

S
nZ

S
pn

V
S
n = I

S
p Z

S
np + I

S
nZ

S
nn

V
L
p = V

S
p = Vp

V
L
n = V

S
n = Vn

I
S
n = −I

L
n

Z
L
p

∣

∣

∣

shunt
=

Vp

ILp

Z
S
p

∣

∣

∣

shunt
=

Vp

ISp
(29)

The superscript L denotes load subsystem, whereas S denotes source
subsystem. The first four equations are the Generalized Ohms Law
with the modified sequence domain definition. The last five equations
depend on the choice of injection type, as well as the choice of
positive or negative sequence injection. The voltages in the two
subsystems are equal if the injection is shunt type. Furthermore, the
sum of negative sequence current must be zero because the injected
perturbation is assumed to be pure positive sequence. Solving (29)
gives the following original impedance:

Z
L
p

∣

∣

∣

shunt
=

Vp

ILp
=

ZL
ppD

S + ZS
ppD

L

DS + ZL
nnZ

S
pp − ZL

pnZ
S
np

Z
S
p

∣

∣

∣

shunt
=

Vp

ISp
=

ZS
ppD

L + ZL
ppD

S

DL + ZS
nnZ

L
pp − ZS

pnZ
L
np

(30)

where DS and DL are the determinants of the source and load
impedance matrices, respectively:

D
S = Z

S
ddZ

S
qq − Z

S
dqZ

S
qd = Z

S
ppZ

S
nn − Z

S
pnZ

S
np

D
L = Z

L
ddZ

L
qq − Z

L
dqZ

L
qd = Z

L
ppZ

L
nn − Z

L
pnZ

L
np (31)

It is shown in Appendix B that the determinant of Zpn equals the
determinant of Zdq .

A corresponding expression can be derived for series voltage
positive sequence injection. The last five equations in (29) are then
modified to:

I
L
p = −I

S
p = Ip

I
L
n = −I

S
n = In

V
S
n = V

L
n

Z
L
p

∣

∣

∣

series
=

V L
p

Ip

Z
S
p

∣

∣

∣

series
=

V S
p

Ip
(32)
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Solving the set of equations gives:

Z
L
p

∣

∣

∣

series
=

V L
p

Ip
=

ZL
ppZ

S
nn − ZL

pnZ
S
np +DL

ZS
nn + ZL

nn

Z
S
p

∣

∣

∣

series
=

V S
p

Ip
=

ZS
ppZ

L
nn − ZS

pnZ
L
np +DS

ZL
nn + ZS

nn

(33)

Given that (33) clearly differs from (30), it can be concluded that
the original sequence domain impedance is not well defined in the
general case because it depends on the injection type. This has been
illustrated by simulations in Fig. 13.

The additional equations for negative sequence are given in (34).

Z
L
n

∣

∣

∣

shunt
=

Vn

ILn
=

ZL
nnD

S + ZS
nnD

L

DS + ZL
ppZ

S
nn − ZL

npZ
S
pn

Z
L
n

∣

∣

∣

series
=

V L
n

In
=

ZL
nnZ

S
pp − ZL

npZ
S
pn +DL

ZS
pp + ZL

pp

Z
S
n

∣

∣

∣

shunt
=

Vn

ISn
=

ZS
nnD

L + ZL
nnD

S

DL + ZS
ppZ

L
nn − ZS

npZ
L
pn

Z
S
n

∣

∣

∣

series
=

V S
n

In
=

ZS
nnZ

L
pp − ZS

npZ
L
pn +DS

ZL
pp + ZS

pp

(34)

In section V these analytic expressions are validated through a
comparison where the original sequence impedances are obtained
directly by simulation.

2) Special case with one MFD subsystem: In the special case
where one subsystem is MFD, the expressions from the previous
sections can be simplified. If the source subsystem is MFD, i.e.
ZS

pn = ZS
np = 0, then, (30), (33) and (34) are reduced to:

Z
L
p

∣

∣

∣

shunt
= Z

L
p

∣

∣

∣

series
= Z

L
pp −

ZL
pnZ

L
np

ZS
nn + ZL

nn

Z
S
p

∣

∣

∣

shunt
= Z

S
p

∣

∣

∣

series
= Z

S
pp

Z
L
n

∣

∣

∣

shunt
= Z

L
n

∣

∣

∣

series
= Z

L
nn −

ZL
npZ

L
pn

ZS
pp + ZL

pp

Z
S
n

∣

∣

∣

shunt
= Z

S
n

∣

∣

∣

series
= Z

S
nn (35)

Three important observations are obtained from (35). As expected,
in the source subsystem the original and modified impedances are
equal, i.e. ZS

p = ZS
pp because this subsystem is MFD. Second,

in the load subsystem, the original sequence domain impedance no

longer depends on injection type, i.e. ZL
p

∣

∣

∣

shunt
= ZL

p

∣

∣

∣

series
. The

third observation is that ZL
p 6= ZL

pp. The difference between them is

proportional to ZL
pnZ

L
np, and also depends on the source impedance

ZS
nn. These observations can be seen in the simulation result shown

Fig. 14.

E. Special case in which both subsystems are MFD

In this case, (30), (33) and (34) are reduced to:

Z
L
p

∣

∣

∣

shunt
= Z

L
p

∣

∣

∣

series
= Z

L
pp

Z
S
p

∣

∣

∣

shunt
= Z

S
p

∣

∣

∣

series
= Z

S
pp

Z
L
n

∣

∣

∣

shunt
= Z

L
n

∣

∣

∣

series
= Z

L
nn

Z
S
n

∣

∣

∣

shunt
= Z

S
n

∣

∣

∣

series
= Z

S
nn (36)

In other words, the original and modified sequence domain
impedances are equal. This was also shown by (21), and demonstrates
the fact that MFD is a sufficient assumption for the original sequence
domain impedances to be uniquely defined. The corresponding sim-
ulation result is shown in Fig. 15.
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