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Abstract. In multispectral imaging multiple discrete wavelength bands
are used to image a scene. The imaging process maps the scene contents
to different intensity levels and varies the scene appearance from band to
band. This induces intensity variations among the spectral images and
effects the performance of SIFT for cross spectral image matching. This
paper proposes modifications to the SIFT descriptor in order to improve
its robustness against spectral variations. The proposed modifications are
based on fact, that edges remain well preserved in multispectral imag-
ing and we can achieve better image matching results by boosting the
contribution of local edges in the SIFT descriptor construction process.
Therefore, we propose a Local Contrast (Δ) and a Differential Excitation
(ξ) function for the construction of SIFT descriptors. The experimental
results show, that the performance of Δ-SIFT and ξ-SIFT is superior to
standard SIFT for image matching under spectral variations.
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1 Introduction

Multispectral imaging decomposes a scene into multi-band images [2]. The de-
composition process generates useful information about the scene contents to
solve the visual computing problems related to scene recognition [1], remote
sensing [4] and visual surveillance [6] efficiently. The Scale Invariant Feature
Transform (SIFT) [7] has been widely used for these applications [1,4]. It ex-
tracts keypoints from the images and constructs keypoint descriptors using im-
age gradients. Recent studies show, that intensity differences among the spectral
images effect the performance of SIFT [10,12].

To overcome the effects of such spectral variations Yi et al. propose scale
restricted SIFT [13]. They use similar scale SIFT as candidates for descriptor
matching. The scale restriction is found efficient in reducing the number of out-
liers and improves the SIFT performance [13]. In the orientation restricted SIFT
(π-SIFT) approach [12] the gradient orientations are mapped to the [0,π] range
to overcome the intensity reversal problem in the images which in turn improves
the SIFT performance against spectral variations. However, it has been found
that the performance of SIFT remains low for images where spectral variations
are high inspite of such modifications [10].
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In multispectral images we observe that, edges remain well preserved due
to their sharp changes in intensity nature. This motivates us to boost their
contributions in the descriptor construction process in order to achieve better
robustness for SIFT against spectral variations. Therefore, we propose a Local
Contrast (Δ) [11] and a Differential Excitation (ξ) [3] function in this paper to
construct modified SIFT descriptors [7]. Each function has a spectral invariant
response to local edges and improves the performance of SIFT for spectral images
as compared to gradient magnitude (Ω) based SIFT descriptors [7].

The Δ function [11] uses minimum and maximum gray levels to estimate the
edge magnitude in a local window, whereas ξ estimates the edge magnitude via
the ratio between the local sum of gray level differences to the gray level of
the pixel under study [3]. Each function assigns high magnitude weights to edge
pixels which in turn cast spectral invariant votes for their corresponding gradient
orientation feature histogram bins in the Δ-SIFT and ξ-SIFT descriptors and
improves the performance of SIFT for image matching under spectral variations.

To illustrate the significance of Δ and ξ functions two regions of interest
from 460nm and 720nm wavelength bands are shown in Figure 1. It can be seen
that, only sharp edges are visible in the Ω images whereas the edges in the
low contrast regions are suppressed. Also the corresponding edge magnitudes
are different which lead to less correlated Ω based SIFT descriptors. In the Δ
images the edges are equally enhanced irrespectively to image contrast which
makes the Δ-SIFT descriptors more spectral invariant as compared to SIFT. In
the ξ images the edge magnitudes are more spectral invariant as compared to Ω
and Δ functions which increases the correlation between ξ-SIFT descriptors as
suggested by the table which summarizes the cross spectral descriptor matching
scores. Our experiments on spectral images of three different scenes suggest that,
the performance of ξ-SIFT and Δ-SIFT is superior to Ω based SIFT [7] for image
matching under spectral variations.
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Fig. 1. Two regions of interest from 460nm and 720nm wavelength bands. The edge
magnitude images are obtained via gradient magnitude (Ω), local contrast (Δ) and
differential excitation (ξ) functions. The table summarizes the cross spectral descriptor
matching score for each SIFT type.
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The rest of the paper is organized as follows. In Section 2 we discuss the Ω,
Δ and ξ functions for edge magnitude estimation. In Section 3 we describe the
experimental setup in detail. Section 4 presents the experimental results and
finally, we conclude the paper in Section 5.

2 Edge Magnitude Estimation

In this section we briefly describe the Ω, Δ and ξ functions for edge magnitude
estimation. We also discuss their significance in the SIFT descriptor construction
process.

2.1 Gradient Magnitude (Ω)

The gradient magnitude function uses local gray level changes to estimate the
edge magnitudes i.e, Ω = (G2

x + G2
y)

1/2 where Gx and Gy are image gradients
along x and y directions respectively using [−1, 0, 1] and [−1, 0, 1]t filter kernels,
where t stands for matrix transpose operation. The Ω based descriptor in this
paper is referred to as SIFT [7]. In Figure 1 we can see, that gradient magnitude
function is sensitive to local gray level changes and produces high magnitude
edges in the high contrast regions whereas the edges in the low contrast regions
are suppressed due to small changes in the gray levels.

2.2 Local Contrast (Δ)

The Δ function [11] uses minimum Imin(x, y) and maximum Imax(x, y) gray
levels in a local window around each image pixel I(x, y) to estimate the edge
magnitude according to (1).

Δ(x, y) =
Imax(x, y)− Imin(x, y)

Imax(x, y) + Imin(x, y) + ε
(1)

where (x, y) represents spatial location of the pixel under study and ε is an
infinitely small positive number added when Imax(x, y) is equal to 0. We use a
local window of 3×3 size to compute Imin(x, y) and Imax(x, y) gray levels. The
Δ function produces high magnitude edges irrespectively to image contrast as
shown in Figure 1 which suggest that, Δ based edge magnitudes are superior to
Ω and result in superior performance for Δ-SIFT under spectral variations.

2.3 Differential Excitation (ξ)

Differential excitation is an edge operator [3]. It estimates edge magnitude in
a 3×3 region around every image pixel as described in (2) where d(x, y) is a
local sum of gray level differences and I(x, y) is the gray level of the pixel under
study. The ξ function simulates the local salient variations similar to human
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perception [3]. Therefore, the edge pixels receive high magnitude weights via ξ
and the non edge pixels are suppressed.

ξ(x, y) = arctan

(
d(x, y)

I(x, y)

)
; d(x, y) = −9I(x, y)+

i=1∑
i=−1

j=1∑
j=−1

I(x+ i, y+ j) (2)

The domain range for ξ is [−π/2, π/2]. We map ξ to the [0,π] range via ξ :=
π/2+ ξ in order to avoid negative values in the descriptor construction process.
The descriptor constructed from ξ in this paper is referred to as ξ-SIFT. It can be
seen from Figure 1 that, the ξ function boosts the local edges irrespectively to the
wavelength band, which increases the correlation between corresponding ξ-SIFT
descriptors and results in superior descriptor matching measures as compared
to the SIFT descriptor in the presence of spectral variations.

2.4 Statistics of Edge Magnitudes

The histograms of Ω, Δ and ξ based edge magnitudes are shown in Figure 2.
Each histogram is constructed from 12,000 different Harris Laplace (HarLap)
regions [5,9] of size 41×41 pixels with gray levels in the normalized [0,1] range.
We use HarLap regions in this paper to evaluate the performance of Δ-SIFT
and ξ-SIFT. Therefore, the edge magnitude statistics in Figure 2 are useful to
understand the distribution and the contribution of each function values in the
descriptor construction process.

The histogram of Ω exhibits decaying exponential nature with majority sam-
ples in the [0, 0.3] range. This range represent homogenous and low contrast
regions where the edges are low in magnitude. The Δ distribution is relatively
uniform as compared to Ω because it boosts the edges irrespectively to image
contrast. In the ξ case, the majority samples lie close to the function boundaries
which represent regions of low gray levels. The edge pixels also belong to such
regions because the scene edges diffract the incoming light rays and less of them
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Fig. 2. The histograms of (a) gradient magnitudes (b) local contrast and (c) differ-
ential excitations computed from 12,000 different intensity normalized Harris Laplace
regions [5,9]
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are reflected back towards the camera. The ξ values in the middle represent ho-
mogenous regions where the local sum of gray level differences is close to zero in
magnitude.

3 Experimental Setup

This section describes the experimental setup in detail. It covers test images, the
SIFT descriptor construction process and performance evaluation measures.

3.1 Test Images

We use 460nm and 720nm wavelength band images of three different scenes from
Real World Hyperspectral Images (RWHI) dataset1 as test images. These images
are shown in Figure 3. The test images are under different levels of spectral
variations which make the cross spectral image matching a challenging problem
to solve. Here motivation is to evaluate the performance of SIFT [7] under such
intensity variations and then improve its spectral invariant characteristics via Δ
and ξ functions.

3.2 Interest Regions

We use HarLap regions [9] for cross spectral image matching. The descriptors
constructed from HarLap regions are scale invariant. We can also construct ro-
tation invariant descriptors by rotating the regions in the direction of their dom-
inant gradient orientations according to the application requirement. In the ex-
periments we resize each HarLap region to the size of 41×41 pixels and normalize
its gray level to the [0, 1] range for descriptor construction [5,8].

3.3 Descriptor Construction

In the descriptor construction stage every HarLap region is split into 4×4 cells
and for each cell a gradient orientation feature histogram is constructed [7]. The
gradient samples lying inside the cell region cast votes for their corresponding
orientation bins. The votes are computed from the product of gradient magni-
tudes with a Gaussian window. The window uses high weights for samples near
to the region center as compared to the region boundary. A soft binning approach
is then used to distribute the votes among the adjacent bins to compensate the
effect of region shift. Finally, the feature histograms are concatenated over all
cells to form a descriptor vector. The vector is then normalized to unit norm
and the elements are limited to 0.2 value [7]. At the end, the descriptor vector
is renormalized to unit norm. We use Δ and ξ functions for the construction of
Δ-SIFT and ξ-SIFT instead of gradient magnitudes whereas SIFT and π-SIFT
descriptors are constructed from gradient magnitudes.

1 http://vision.seas.harvard.edu/hyperspec

http://vision.seas.harvard.edu/hyperspec
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(a) imga1 460nm (b) imgb7 460nm (c) imge3 460nm

(d) imga1 720nm (e) imgb7 720nm (f) imge3 720nm

Fig. 3. Spectral images of three different test scenes for performance evaluation of
SIFT descriptors

3.4 Evaluation Criteria

The performance evaluation criterion is based on the number of correct and false
matches. We use the descriptor matching strategies of [8] for cross spectral image
matching. A match is declared where the distance between the descriptor vectors
of two interest regions is below a threshold. The ground truth for this match is
established via the overlap error [9]. This error measures how well two regions
A and B correspond under a known homography H and it is computed from
the ratio of intersections to union of the regions i.e, εs = 1− (A∩HTBH)/(A∪
HTBH) [9]. A match is declared as a correct match if εs < 0.5, otherwise it is
considered as a false match. At the end, recall and 1-precision scores are com-
puted using (3) for performance comparison. The num correspondences term
represents the number of matching regions (εs < 0.5) between the images and the
num all is the sum of correct (num correct) and false (num false) matches. The
perfect descriptor would give a recall value equal to 1 for any precision score [8].
We also compute the area under the recall versus 1-precision curve (AUC) as a
single valued measure for performance comparison.

recall =
num correct matches

num correspondences
; 1-precision =

num false matches

num all matches
(3)

4 Experimental Results

This section presents the experimental results for image matching between the
spectral images of the test scenes shown in Figure 3. The image matching uses
HarLap regions with SIFT, π-SIFT, Δ-SIFT and ξ-SIFT based descriptor ap-
proaches. We use three different descriptor vector matching strategies for im-
age matching [8] i.e, distance threshold, nearest neighbour and distance ratio.



658 S. Saleem and R. Sablatnig

Each matching strategy computes corresponding descriptor matches between the
460nm and 720nm wavelength band images.

4.1 Discussion on Test Images

The spectral images of imga1 scene have variations in illumination as well as
spectral variations. However the gray levels of corresponding pixels suggest that
illumination variations are dominant. We use normalized HarLap regions (see
Section 3.2), therefore, each SIFT approach is illumination invariant and we ex-
pect similar performance measures for each of them in this experiment. In the
imgb7 case, the spectral images appear different due to intensity reversal. This
effects the correlation between the corresponding HarLap region descriptors. But
there also exists HarLap regions which have only illumination variations, there-
fore, each SIFT approach also performs better in this experiment. The spectral
images of imge3 are challenging because most of the corresponding HarLap re-
gions are under spectral variations. This experiment is useful in comparing the
evaluation measures for each SIFT type under such spectral variations.

4.2 Distance Threshold Based Matching

In distance threshold (td) based matching two interest regions are considered as
a match if the distance between their descriptors are less than a threshold [8].
This matching strategy allows several matches for a single query descriptor and
several of them may be correct due to εs < 0.5. The evaluation curves for td based
matching are shown in Figure 4. The performance measures of each SIFT type
are almost similar for imga1 due to illumination differences between the spectral
images. However, Δ-SIFT and ξ-SIFT perform slightly better than SIFT.

In imgb7 the intensity reversal makes the contents of 720nm band image spec-
trally different from its 460nm band image. This effects the SIFT performance
because the corresponding gradient magnitudes are different, however, Δ-SIFT
and ξ-SIFT perform relatively better than SIFT especially in the low 1-precision
range. In imge3 every corresponding HarLap region is under spectral variations

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1−Precision

R
ec

al
l

SIFT
π−SIFT
Δ−SIFT
ξ−SIFT

(a) imga1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1−Precision

R
ec

al
l

SIFT
π−SIFT
Δ−SIFT
ξ−SIFT

(b) imgb7

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1−Precision

R
ec

al
l

SIFT
π−SIFT
Δ−SIFT
ξ−SIFT

(c) imge3

Fig. 4. Performance comparison of SIFT, π-SIFT, Δ-SIFT and ξ-SIFT using distance
threshold (td) based matching between the spectral images of Figure 3
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which in turn effects the correlation between corresponding descriptors. How-
ever, we can see that, the evaluation measures of ξ-SIFT is less effected by such
variations as compared to its counterparts. The td based image matching sug-
gest, that by boosting the contribution of local edges via Δ and ξ functions we
can improve the SIFT robustness against illumination and spectral variations.

4.3 Nearest Neighbour Based Matching

In nearest neighbour (tn) based descriptor matching, a nearest neighbor descrip-
tor match is searched in the 720nm band image for each query descriptor of the
460nm band image and a match is declared if distance between the query descrip-
tor and its nearest neighbor is found below a threshold. This matching strategy
allows only one match for each query descriptor, which in turn results in better
evaluation scores as compared to td based matching as shown in Figure 5. This
is because the nearest neighbour matching ends up with the correct matches [8].
The tn based matching suggest that, the performance of ξ-SIFT and Δ-SIFT is
superior to SIFT and π-SIFT for image matching under spectral variations.

4.4 Distance Ratio Based Matching

In distance ratio (tr) based descriptor matching, the distance ratio between the
nearest and the second nearest neighbour is computed. If the ratio is below
a threshold then a match is declared for the query descriptor. The evaluation
curves are shown in Figure 6. The curves suggest, that the SIFT performance
is superior in the imgb7 case but for the other scenes the ξ-SIFT and Δ-SIFT
evaluation measures are superior to SIFT for tr based image matching.

Table 1 summarizes the area under the td, tn and tr based recall versus 1-
precision evaluation curves (AUC%). The AUC% measures suggest that, the
performance of ξ-SIFT on average is superior to other SIFT approaches for td and
tn based image matching. However, in tr based matching SIFT performs better
than ξ-SIFT. It means that the nearest and the second nearest neighbour SIFT
descriptors are less correlated as compared to ξ-SIFT. From AUC measures we
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Fig. 5. Performance comparison of SIFT, π-SIFT, Δ-SIFT and ξ-SIFT using nearest
neighbour (tn) based matching between the spectral images of Figure 3
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Fig. 6. Performance comparison of SIFT, π-SIFT, Δ-SIFT and ξ-SIFT using distance
ratio (tr) based matching between the spectral images of Figure 3

Table 1. Performance comparison of SIFT, π-SIFT, Δ-SIFT and ξ-SIFT using AUC%
measures computed from recall versus 1-precision evaluation curves

(a) imga1

SIFT π-SIFT Δ-SIFT ξ-SIFT

td 35.3 31.7 38.5 38.7
tn 37.4 35.1 37.8 37.8
tr 31.2 29.8 31.3 31.1

(b) imgb7

SIFT π-SIFT Δ-SIFT ξ-SIFT

td 34.1 28.1 40.1 40.0
tn 54.0 44.8 55.5 54.4
tr 47.2 37.4 45.1 42.2

(c) imge3

SIFT π-SIFT Δ-SIFT ξ-SIFT

td 10.2 10.0 15.6 23.7
tn 15.4 14.4 16.4 19.2
tr 17.3 16.1 17.8 18.5

(d) mean

SIFT π-SIFT Δ-SIFT ξ-SIFT

td 26.5 23.3 31.4 34.1
tn 35.6 31.4 36.6 37.1
tr 31.9 27.8 31.4 30.6

conclude that ξ and Δ functions improve the SIFT robustness against spectral
variations and the idea of boosting local edges in the descriptor construction
process produces superior results for image matching.

5 Conclusion

This paper proposes modifications to the SIFT descriptor to improve its per-
formance for image matching under spectral variations. The modifications are
based on using the Local Contrast (Δ) and Differential Excitation (ξ) functions
instead of gradient magnitudes (Ω) for descriptor construction. Each function
produces high magnitude responses to edge pixels and boosts their contribu-
tions in the SIFT descriptor construction process. This results in better image
matching performance as compared to Ω based SIFT. We validate the pro-
posed Δ-SIFT and ξ-SIFT on the spectral images of three different test scenes.
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We use three different descriptor vector matching strategies for image matching
i.e, distance threshold (tt), nearest neighbour (tn) and distance ratio (tr). Ex-
perimental results show that Δ-SIFT and ξ-SIFT perform better than SIFT for
td and tn based image matching whereas the SIFT performance is found superior
in tr based image matching.
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