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Abstract In this paper we deal with the issue of performing accurate testing infer-
ence on a scalar parameter of interest in structural errors-in-variables models. The
error terms are allowed to follow a multivariate distribution in the class of the el-
liptical distributions, which has the multivariate normal distribution as special case.
We derive a modified signed likelihood ratio statistic that follows a standard normal
distribution with a high degree of accuracy. Our Monte Carlo results show that the
modified test is much less size distorted than its unmodified counterpart. An applica-
tion is presented.

Keywords Elliptical distribution · Errors-in-variables model · Measurement error ·
Modified signed likelihood ratio statistic · Structural model

1 Introduction

Regression models are a powerful tool for exploring the dependence of a response
on a set of explanatory variables. It is often assumed that the explanatory variables
are measured without error. In many practical situations, however, the explanatory
variables are not measured exactly. Regression models that account for such mea-
surement errors are often named errors-in-variables models or measurement error
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models. Structural models assume that the covariates are random variables. In func-
tional models, on the other hand, the explanatory variables are treated as unknown
parameters. The structural model formulation poses identifiability problems, while
functional models lead to unlimited likelihood function. To circumvent such prob-
lems, a number of different restrictions can be imposed, such as that some variances
are known (e.g., Chan and Mak 1979, and Wong 1989), or that the intercept is known
(Aoki et al. 2001). In the present paper we deal with structural models. For details on
errors-in-variables models, see Fuller (1987) and Cheng and Van Ness (1999).

Normality is a common assumption for continuous response data. It is well known,
however, that likelihood inference in normal regression models is sensitive to extreme
observations. When the dataset contains outlying observations, it is advisable to as-
sume that the data were drawn from a distribution with heavier-than-normal tails,
such as the Student-t distribution. The family of the elliptical distributions provides
a useful alternative to the normal distribution since it includes the normal distribu-
tion, heavy-tailed distributions such as the exponential power, Student-t , Pearson II,
Pearson VII, logistic II, and light-tailed distributions, for example, logistic I. Further
information on elliptical distributions can be found in Fang et al. (1990) and Fang
and Anderson (1990).

Likelihood inference in errors-in-variables models is usually based on first-order
asymptotic theory, which can lead to inaccurate inference when the sample is small
or of moderate size. This is the case of the signed likelihood ratio test, often used to
perform testing inference on a scalar parameter of interest in the presence of nuisance
parameters. Asymptotically, its statistic has a standard normal distribution under the
null hypothesis, with error of order n−1/2, where n is the sample size. Aiming to
improve this approximation, Barndorff-Nielsen (1986) proposed an adjustment to the
test statistic, in such a way that the modified signed likelihood ratio statistic has, un-
der the null hypothesis, a standard normal distribution with error of order n−3/2. In
order to obtain such an adjustment, it is necessary to identify a suitable ancillary sta-
tistic. It is required that the maximum likelihood estimator coupled with the ancillary
statistic constitutes a sufficient statistic for the model. In many situations it is very dif-
ficult or even impossible to find an appropriate ancillary, which makes the approach
unfeasible. In this paper, we give the ancillary statistic and obtain a modified signed
likelihood ratio statistic in elliptical structural models.

The paper unfolds as follows. Section 2 introduces the elliptical structural models.
Section 3 contains our main results, namely the ancillary statistic and an explicit for-
mula for the modified signed likelihood ratio statistic. Section 4 presents a simulation
study on the finite sample behavior of the standard signed likelihood ratio test and its
modified counterpart. Our simulation results show that the signed likelihood ratio test
tends to be liberal and its modified version is much less size-distorted. An application
that uses real data is presented and discussed in Sect. 5. Finally, Sect. 6 concludes the
paper. Technical details are collected in two appendices.

2 Elliptical structural models

A p × 1 random vector Z is said to have a p-variate elliptical distribution with loca-
tion vector μ (p × 1), dispersion matrix Σ (p × p), and density generating function
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p0, and we write Z ∼ Elp(μ,Σ;p0), if

Z
d= μ + AZ∗,

where A is a p × k matrix with rank(A) = k, AA� = Σ , and Z∗ is a p × 1 random

vector with density function p0(z
�z) for z ∈ �p . The notation X

d= Y indicates that
X and Y have the same distribution. It is assumed that

∫ ∞
0 yp/2−1p0(y) dy < ∞. The

density function of Z is

p(z,μ,Σ) = |Σ |−1/2p0
(
(z − μ)�Σ−1(z − μ)

)
. (1)

Some special cases of (1) are the following multivariate distributions: normal, expo-
nential power, Pearson II, Pearson VII, Student-t , generalized Student-t , logistic I,
logistic II, and Cauchy. The elliptical distributions share many properties with the
multivariate normal distribution. In particular, marginal distributions are elliptical.
For a full account of the properties of the elliptical distributions, see Fang et al. (1990,
Sect. 2.5).

We consider the simple linear measurement error regression model

Yi = α + βxi + ei, (2)

Xi = xi + ui, (3)

for i = 1, . . . , n. Here, α ∈ � and β ∈ � are unknown parameters, and ei is an un-
observable random error associated with the response Yi . Also, the explanatory vari-
ables x1, . . . , xn are random variables and are not observed directly but, instead, are
observed with measurement errors, u1, . . . , un respectively. Equations (2)–(3) can be
written as

Zi = δ + Δbi , i = 1,2, . . . , n, (4)

where

Zi =
(

Yi

Xi

)

, δ =
(

α

0

)

, Δ =
(

β 1 0
1 0 1

)

, bi =
⎛

⎝
xi

ei

ui

⎞

⎠ .

We assume that b1, . . . ,bn are independent and bi ∼ El3(η,Ω;p0), with

η =
⎛

⎝
μx

0
0

⎞

⎠ , Ω =
⎛

⎝
σ 2

x 0 0
0 σ 2

e 0
0 0 σ 2

u

⎞

⎠ ,

μx ∈ �, σ 2
x > 0, σ 2

e > 0, and σ 2
u > 0. Therefore, Z1, . . . ,Zn are independent random

variables, and Zi ∼ El2(μ,Σ;p0) with μ = δ + Δη and Σ = ΔΩΔ� (Fang et al.
1990, Sect. 2.5). We assume that Σ is a positive definite matrix. We can write μ and
Σ as

μ =
(

α + βμx

μx

)

, Σ =
(

β2σ 2
x + σ 2

e βσ 2
x

βσ 2
x σ 2

x + σ 2
u

)

.
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The structural regression model (4) is not identifiable; see Fuller (1987,
Sect. 1.1.3). To circumvent this problem, it is often assumed one of the following
three conditions: (i) λe = σ 2

e /σ 2
u is known; (ii) λx = σ 2

x /σ 2
u is known; (iii) the inter-

cept (α) is known. Then, the vector of unknown parameters, θ say, is

θ = (θ1, θ2, θ3, θ4, θ5)
� =

⎧
⎪⎨

⎪⎩

(β,α,μx,σ
2
x , σ 2

u )� if λe is known,

(β,α,μx,σ
2
u , σ 2

e )� if λx is known,

(β,μx,σ
2
x , σ 2

u , σ 2
e )� if α is known.

Under any of these conditions, the log-likelihood function is


(θ) = −n

2
log |Σ | +

n∑

i=1

logp0
(
d�

i Σ−1d i

)
, (5)

where d i = d i (θ) = zi − μ.
When Z has a normal distribution and λx or λe is known, the maximum likeli-

hood estimator of θ has closed form; see Wong (1991), Arellano-Valle and Bolfarine
(1996), and Fuller (1987, Sect. 1.3.2). For distributions other than the normal or in
the case where the intercept α is known, the maximum likelihood estimator must
be numerically obtained by maximizing the log-likelihood function (5) through an
iterative algorithm, such as the Newton–Raphson, Fisher scoring, EM, or BFGS. In
this paper, we use the BFGS method, which is implemented in Ox as the MaxBFGS
function (Doornik 2006).

3 Modified signed likelihood ratio test

Let the parameter vector θ be partitioned as θ = (ψ,ω�)�, where ψ is the parameter
of interest (scalar), and ω is the vector of nuisance parameters. We focus on tests of
the null hypotheses H0a : ψ ≥ ψ(0), H0b : ψ = ψ(0), and H0c : ψ ≤ ψ(0), where ψ(0)

is a constant. Here, ψ = θ1 = β and ω = (θ2, θ3, θ4, θ5)
�. The unrestricted maximum

likelihood estimator of the θ is denoted by θ̂ = (ψ̂, ω̂�)�, and the corresponding es-
timator assuming that ψ = ψ(0), by θ̃ = (ψ(0), ω̃�)�. We use hat and tilde to indicate
evaluation at θ̂ and θ̃ , respectively.

Let rS be the signed likelihood ratio statistic,

rS = sgn
(
ψ̂ − ψ(0)

)√
2
(


(
θ̂

) − 

(
θ̃
))

,

which can be used to construct a confidence interval for ψ or to test either of the
hypotheses mentioned above. In any case, one must compute its exact or approximate
distribution. It is well known that, if ψ = ψ(0), rS has a standard normal distribution
with error of order n−1/2. If the sample size is large, the standard normal distribution
provides a good approximation. On the other hand, if the sample size is not large
enough to guarantee a good agreement between the true distribution of rS and its
limiting distribution, inference can be misleading.
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Barndorff-Nielsen (1986, 1991) proposed a modified version of the signed like-
lihood ratio statistic that has a standard normal distribution with a higher order of
approximation, n−3/2 instead of n−1/2. The modified statistic, denoted here by r∗,
retains the essential character of rS but can be difficult to obtain. The difficulty
arises from the need of an appropriate ancillary statistic and of derivatives of the
log-likelihood function with respect to the data. By “ancillary statistic” we mean a
statistic, a say, whose distribution does not depend on the unknown parameter θ and,
together with the maximum likelihood estimator θ̂ , is a minimal sufficient statistic
for the model. If (̂θ ,a) is sufficient, but not minimal sufficient, Barndorff-Nielsen’s
results still hold; see Severini (2000, Sect. 6.5). In fact, minimal sufficiency is only
required for the ancillary a to be relevant to the statistical analysis. Sufficiency im-
plies that the log-likelihood function depends on the data only through (̂θ ,a), and we
then write 
(θ; θ̂,a). The required derivatives of 
(θ; θ̂ ,a) with respect to the data
are


′ = ∂
(θ; θ̂ , a)

∂̂θ
, U ′ = ∂2
(θ; θ̂ ,a)

∂ θ̂∂θ� .

The modified signed likelihood ratio statistic is

r∗ = rS − 1

rS
logρ

with

ρ = ∣
∣Ĵ

∣
∣1/2∣∣Ũ ′∣∣−1∣∣J̃ωω

∣
∣1/2 rS

[(
̂′ − 
̃′)�(Ũ ′)−1]ψ
, (6)

where J is the observed information matrix, and Jωω is the lower right submatrix of
J corresponding to the nuisance parameter ω. Here, [v]ψ denotes the element of the
vector v that corresponds to the parameter of interest ψ .

In order to find an ancillary statistic, we first note that model (4) is a transformation
model. Hence any maximal invariant statistic is an ancillary statistic; see Barndorff-
Nielsen et al. (1989, Chap. 8) and Barndorff-Nielsen (1986). A statistic a(·) defined
on the sample space Z is invariant under a group of transformations G if a(g(z)) =
a(z) for all g ∈ G . Moreover, a(·) is a maximal invariant statistic if it is a function
of any invariant statistic, i.e., a(z) = a(z′) implies that there exists g ∈ G such that
z′ = g(z). Pace and Salvan (1997, Theorem 7.2) show that, in transformation models,
all invariant statistics are distribution constant, i.e., their distributions do not depend
on θ .

Consider the log-likelihood function (5) and assume that the maximum likeli-
hood estimate θ̂ of θ , based on z = (z�

1 ,z�
2 , . . . ,z�

n )�, exists and is finite. Let Gn

be the transformation group with elements gn(z) = (g(z1)
�, g(z2)

�, . . . , g(zn)
�)�,

where g(zi ) = ξ + Ψ zi , ξ ∈ �2, and Ψ is a (positive definite) lower triangular ma-
trix. Using gn(z), the induced transformation in the parameter space is ḡ(μ,P ) =
(ξ + Ψ μ,Ψ P ), where P is a lower triangular matrix such that PP � = Σ . Let
(μ̂(z), P̂ (z)) be the maximum likelihood estimate of (μ,P ) based on z. The cor-
responding estimate based on gn(z) is (ξ + Ψ μ̂(z),Ψ P̂ (z)) because of the equivari-
ance of the maximum likelihood estimate, see Pace and Salvan (1997, Sect. 7.6). We
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now argue that a = a(z) = (a�
1 (z),a�

2 (z), . . . ,a�
n (z))�, with

ai (z) = P̂ (z)−1(zi − μ̂(z)
)
, (7)

is maximal invariant with respect to Gn. First, we show that a is invariant with respect
to the group Gn, i.e., a(gn(z)) = a(z). Indeed,

ai

(
gn(z)

) = P̂
(
gn(z)

)−1[
g(zi ) − μ̂

(
gn(z)

)]

= [
Ψ P̂ (z)

]−1[
ξ + Ψ zi − (

ξ + Ψ μ̂(z)
)]

= P̂ (z)−1(zi − μ̂(z)
) = ai (z).

Now, assume that a(z) = a(z′). We have

P̂ (z)−1(zi − μ̂(z)
) = P̂

(
z′)−1(

z′
i − μ̂

(
z′))

or, equivalently,

z′
i = μ̂

(
z′) − P̂

(
z′)P̂ (z)−1μ̂(z) + P̂

(
z′)P̂ (z)−1zi = ξ + Ψ zi

with ξ = μ̂(z′) − P̂ (z′)P̂ (z)−1μ̂(z) and Ψ = P̂ (z′)P̂ (z)−1. Therefore, a is maximal
invariant with respect to the group Gn.

Using the maximal invariant statistic a, we can find the quantities needed for the
Barndorff-Nielsen adjustment in the elliptical structural model (4). Let T be a 5 × 5
matrix, whose (j, k)th element is tjk = tr(ΣθkΣθj) + tr(Σ−1Σθjθk), where Σθj

=
∂Σ/∂θj , Σθj θk

= ∂Σθj
/∂θk , and Σθj = ∂Σ−1/∂θj = −Σ−1Σθj

Σ−1 for j, k =
1,2,3,4,5. We define the 5n × 5 block diagonal matrices R = diag(r, r, r, r, r)

and V = diag(v,v,v,v,v), where the ith elements of the vectors r and v are
ri = Wp0(d

�
i Σ−1d i ) and vi = W ′

p0
(d�

i Σ−1d i ), respectively, and Wp0(u) =
∂ logp0(u)/∂u. Let w = (w(1)�,w(2)�,w(3)�,w(4)�,w(5)�) be a column vector of
dimension 5n, where the ith element of w(j) is w

(j)
i = (P̂θj

ai + μ̂θj
)�Σ−1(P̂ai +

μ̂ − μ), where Pθj
= ∂P/∂θj and μθj

= ∂μ/∂θj . Additionally, let B , C, M , and Q

be the 5n× 5 block matrices whose (j, k)th blocks are the vectors b(jk), c(jk), m(jk),
and q(jk), respectively, with the corresponding ith elements

b
(jk)
i = (

P̂θk
ai + μ̂θk

)�
Σθj

(
P̂ai + μ̂ − μ

) − μ�
θj

Σ−1(P̂θk
ai + μ̂θk

)
,

c
(jk)
i = (

P̂θk
ai + μ̂θk

)�
Σ−1(P̂ai + μ̂ − μ

)((
P̂ai + μ̂ − μ

)�
Σθj

(
P̂ai + μ̂ − μ

)

− 2μ�
θj

Σ−1(P̂ai + μ̂ − μ
))

,

m
(jk)
i = d�

i Σθj θkd i − 2μ�
θk

Σθj d i − 2μ�
θj

Σθkd i − 2μ�
θj θk

Σ−1d i + 2μ�
θj

Σ−1μθk
,

q
(jk)
i = (

d�
i Σθkd i − 2μ�

θk
Σ−1d i

)(
d�

i Σθj d i − 2μ�
θj

Σ−1d i

)
,

where μθj θk
= ∂μθj

/∂θk and Σθj θk = ∂Σθj /∂θk = −2ΣθkΣθj
Σ−1 −Σ−1Σθj θk

Σ−1.
We are now able to write the observed information matrix and the derivatives with
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respect to the data as

J = n

2
T − R�M − V �Q, 
′ = 2R�w, U ′ = 2

(
R�B + V �C

); (8)

see Appendix A. The adjustment term of the signed likelihood ratio statistic, ρ, is
obtained by replacing Ĵ , J̃ωω, 
̂′, 
̃′, and Ũ ′ in (6).

Computer packages that perform simple operations on matrices and vectors can
be used to calculate ρ. Note that ρ depends on the model through μ and P with
the corresponding first derivative, Σ , with its first two derivatives, and Σ−1. The
dependence on the specific distribution of Zi in the class of elliptical distributions
occurs through Wp0 . Appendix B gives the required derivatives of μ, Σ , and P for
each identifiability condition mentioned in Sect. 2.

4 Simulation study

In this section we shall present the results of a Monte Carlo simulation in which we
evaluate the finite sample performance of the signed likelihood ratio test (rS ) and the
modified signed likelihood ratio test (r∗). The simulations were based on model (4)

when the random vector Zi has a normal or a Student-t bivariate distribution. All
simulations were performed using the Ox matrix programming language (Doornik
2006). The number of Monte Carlo replications was 10,000, and the sample sizes
considered were n = 10,20,30, and 40. The tests were carried out at the following
nominal levels: γ = 1%,5%,10%. The rejection rates were obtained assuming that
the ratio λx or λe is known or that the intercept α is known and equal to zero. We test
H0a : β ≥ 1 against H1a : β < 1 and H0b : β = 1 against H1b : β �= 1. The parameter
values are α = 0.5, except for the case where α is assumed to be known; in this case
α = 0, μx = 5.0, σ 2

x = 1.5, σ 2
u = 0.5, and σ 2

e = 2.0. When the distribution considered
is the Student-t , we set the number of degrees of freedom at 3. The null rejection rates
of the tests are displayed in Tables 1, 2, and 3 for different sample sizes; entries are
percentages.

For λx or λe known, the signed likelihood ratio test is markedly liberal when the
sample is small. For instance, for the case where the distribution is Student-t , the ratio
λx is known and the sample size is n = 10, the two-sided unmodified test displays
rejection rates equal to 2.2% (γ = 1%), 8.5% (γ = 5%), and 15.2% (γ = 10%).
When the intercept is known, the test based on the signed likelihood ratio statistic is
less liberal relatively to the cases where one of the ratios, λx or λe, is known. In other
words, the adjustment is less needed when the intercept is known.

The test based on the modified signed likelihood ratio statistic, r∗, shows better
performance than the test based on the signed likelihood ratio statistic in all cases,
with rejection rates close to the nominal levels. For example, when the test is two-
sided, the distribution is Student-t , λe is known, n = 10, and γ = 10%, the rejection
rates are 10.0% (r∗) and 14.5% (rS). Overall, the best performing test is the one that
employs r∗ as the test statistic.

A comment on confidence intervals is now in order. Tests may be inverted to give
confidence sets. For instance, a confidence interval for a scalar parameter may consist
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Table 1 Null rejection rates of the tests of H0a and H0b—λx known

One-sided test (H0a )

Normal distribution Student-t distribution (ν = 3)

γ = 1% γ = 5% γ = 10% γ = 1% γ = 5% γ = 10%

n rS r∗ rS r∗ rS r∗ rS r∗ rS r∗ rS r∗

10 2.2 1.2 7.5 4.9 13.3 10.1 2.1 1.1 7.8 5.5 13.2 10.5

20 1.5 1.1 6.4 5.3 11.7 10.4 1.4 1.0 6.0 5.0 11.5 10.0

30 1.3 1.0 6.1 5.5 10.9 9.9 1.4 1.1 6.4 5.7 11.5 10.6

40 1.2 1.0 5.8 5.1 11.2 10.6 1.2 1.0 5.5 4.9 10.8 10.0

Two-sided test (H0b)

Normal distribution Student-t distribution (ν = 3)

γ = 1% γ = 5% γ = 10% γ = 1% γ = 5% γ = 10%

n rS r∗ rS r∗ rS r∗ rS r∗ rS r∗ rS r∗

10 2.6 1.0 8.6 5.2 14.9 9.9 2.2 1.2 8.5 5.3 15.2 10.4

20 1.6 1.0 6.4 4.8 12.2 10.0 1.4 1.0 6.3 5.1 11.8 9.8

30 1.3 0.9 5.9 5.0 11.6 10.3 1.3 1.0 5.9 5.1 12.1 10.8

40 1.2 1.0 5.6 4.8 11.2 10.0 1.2 1.0 5.7 5.0 10.8 9.7

Table 2 Null rejection rates of the tests of H0a and H0b—λe known

One-sided test (H0a )

Normal distribution Student-t distribution (ν = 3)

γ = 1% γ = 5% γ = 10% γ = 1% γ = 5% γ = 10%

n rS r∗ rS r∗ rS r∗ rS r∗ rS r∗ rS r∗

10 2.2 0.9 7.3 5.0 12.9 9.8 1.8 1.0 7.3 5.2 12.7 10.1

20 1.3 0.8 5.7 4.6 11.2 9.6 1.4 1.0 5.8 4.8 11.1 9.6

30 1.0 0.7 5.7 4.8 10.9 9.9 1.3 1.1 5.7 5.0 10.5 9.8

40 1.1 0.8 5.2 4.7 10.3 9.5 1.3 1.1 5.5 5.0 10.2 9.7

Two-sided test (H0b)

Normal distribution Student-t distribution (ν = 3)

γ = 1% γ = 5% γ = 10% γ = 1% γ = 5% γ = 10%

n rS r∗ rS r∗ rS r∗ rS r∗ rS r∗ rS r∗

10 2.4 1.0 8.5 5.1 14.6 9.8 1.8 0.9 7.8 4.8 14.5 10.0

20 1.4 1.0 6.1 4.5 11.7 9.5 1.5 1.1 6.5 5.1 11.9 10.0

30 1.3 0.9 5.6 4.7 11.6 9.9 1.4 1.1 6.1 5.3 11.6 10.2

40 1.2 0.9 5.9 5.0 10.9 10.1 1.2 0.9 5.4 4.8 11.1 10.2

of the parameter values that are not rejected by a given test at the corresponding level.
If the level of test is γ , the confidence coefficient of the corresponding confidence
interval is 1 − γ . Our simulations then suggest that confidence intervals should be
constructed from the inversion of the modified signed likelihood ratio statistic.
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Table 3 Null rejection rates of the tests of H0a and H0b—null intercept

One-sided test (H0a )

Normal distribution Student-t distribution (ν = 3)

γ = 1% γ = 5% γ = 10% γ = 1% γ = 5% γ = 10%

n rS r∗ rS r∗ rS r∗ rS r∗ rS r∗ rS r∗

10 1.7 1.1 6.8 5.3 12.7 10.7 1.6 1.2 6.5 5.5 11.8 10.6

20 1.2 0.9 5.7 5.1 11.1 10.0 1.2 1.1 5.5 5.1 10.8 10.3

30 1.2 1.0 5.4 4.9 11.0 10.4 1.3 1.1 5.3 5.1 10.7 10.3

40 1.1 1.0 5.5 5.2 10.8 10.4 1.3 1.2 5.6 5.3 10.7 10.5

Two-sided test (H0b)

Normal distribution Student-t distribution (ν = 3)

γ = 1% γ = 5% γ = 10% γ = 1% γ = 5% γ = 10%

n rS r∗ rS r∗ rS r∗ rS r∗ rS r∗ rS r∗

10 1.7 1.0 7.0 5.2 13.0 10.2 1.6 1.1 6.4 5.3 12.0 10.3

20 1.0 0.8 5.6 4.6 11.4 10.1 1.1 0.9 5.3 4.7 10.6 9.7

30 1.2 1.1 5.5 4.8 10.4 9.7 1.3 1.2 5.4 5.0 10.7 10.1

40 1.2 1.1 5.3 4.9 10.6 9.9 1.3 1.2 5.9 5.5 11.2 10.8

5 Babies data

In this section we illustrate an application of the usual signed likelihood ratio test
and its modified version in a real dataset. The observations are pairs of measurements
of serum kanamycin levels in blood samples drawn from twenty premature babies
(Kelly 1984). One of the measurements was obtained by a heelstick method (x), the
other using an umbilical catheter (y). Since both methods are subject to measurement
errors, model (2)–(3) seems to be adequate to fit the data. Following Kelly (1984), we
assume the normality for the error terms and that λe = 1, that is, σ 2

e = σ 2
u .

The maximum likelihood estimates of the parameters (standard errors between
parentheses) are β̂ = 1.070 (0.159), α̂ = −1.160 (3.390), μ̂x = 20.855 (1.112),
σ̂ 2

x = 20.352 (7.811), and σ̂ 2
u = 4.374 (1.383). Here, the interest lies in testing

H0 : β = 1 against H1 : β �= 1. We have rS = 0.452 (p-value = 0.651) and r∗ = 0.424
(p-value = 0.671). Both tests lead to the same conclusion, namely that H0 should not
be rejected at the usual significance levels. Here, the adjustment had negligible impact
on the value of the test statistic.

If the sample size were smaller, the adjustment could be much more pronounced.
To illustrate this, a randomly chosen subset of the data set with 17 premature ba-
bies was drawn. The maximum likelihood estimates are now β̂ = 1.285 (0.186),
α̂ = −4.935 (3.737), μ̂x = 19.800 (0.953), σ̂ 2

x = 12.803 (5.276), and σ̂ 2
u = 2.634

(0.904). The observed values of the test statistics are rS = 1.677 (p-value = 0.093)
and r∗ = 1.554 (p-value = 0.120). Clearly, the unmodified test rejects the null hy-
pothesis at the 10% significance level unlike the adjusted test. Also, approximately
90% confidence intervals for β constructed from the inversion of the tests that use r
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and r∗ are, respectively, (1.007,1.667) and (0.984,1.593). Therefore, the confidence
interval obtained from r∗ does not contradict the hypothesis that β = 1 unlike the one
obtained from r∗. The tests lead to different conclusions, and the conclusion obtained
using the adjusted test is compatible with that achieved using the complete dataset.

6 Concluding remarks

We considered a class of measurement error regression models that allow the error
terms to follow an elliptical distribution. Inference in this class of models rely on
asymptotic approximations, which can be inaccurate if the sample is not large. The
modified signed likelihood ratio statistic proposed by Barndorff-Nielsen (1986) has
an approximate standard normal distribution with high degree of accuracy and hence
is very attractive for inference purposes. The main difficulty in deriving the modified
statistic is the identification, if it is possible, of an appropriate ancillary statistic. In
this paper, we found an adequate ancillary statistic and derived Barndorff-Nielsen’s
modified signed likelihood ratio statistic. We gave closed-form expressions for the
adjustment term for different identifiability conditions. Our simulation results indi-
cated that the modified test is much more reliable than the unmodified test when the
sample size is small.
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Appendix A: The observed information matrix and derivatives with respect
to the data

The first- and second-order derivatives of the log-likelihood function (5) with respect
to the parameters are

∂
(θ)

∂θj

= −n

2
tr
(
Σ−1Σθj

) +
n∑

i=1

Wp0

(
d�

i Σ−1d i

)(
d�

i Σθj d i − 2μθj
Σ−1d i

)
,

Jθj θk
= − ∂2
(θ)

∂θj ∂θk

= n

2
tr
(
ΣθkΣθj

) + n

2
tr
(
Σ−1Σθj θk

)

−
n∑

i=1

{
W ′

p0

(
d�

i Σ−1d i

)[
d�

i Σθkd i − 2μ�
θk

Σ−1d i

]

× [
d�

i Σθj d i − 2μ�
θj

Σ−1d i

] + Wp0

(
d�

i Σ−1d i

)[
d�

i Σθj θkd i − 2μ�
θk

Σθj d i

− 2μ�
θj

Σθkd i − 2μ�
θj θk

Σ−1d i + 2μ�
θj

Σ−1μθk

]}
.

The (j, k)th element of the observed information matrix J = J (θ) is Jθj θk
. In matrix

notation, the observed information matrix can be written as in (8).
Let a = (a�

1 ,a�
2 , . . . ,a�

n )�, where ai = ai (z) is given in (7). For simplicity, we



A modified signed likelihood ratio test in elliptical structural models

write μ̂ = μ̂(z) and P̂ = P̂ (z). Replacing zi by P̂ai + μ̂ in the log-likelihood func-
tion (5), we have



(
θ; θ̂ ,a

) = −n

2
log |Σ | +

n∑

i=1

logp0
[(

P̂ai + μ̂ − μ
)�

Σ−1(P̂ai + μ̂ − μ
)]

.

Therefore, the j th element of the vector 
′ is


′
j = 2

n∑

i=1

Wp0

[(
P̂ai + μ̂ − μ

)�
Σ−1(P̂ai + μ̂ − μ

)]

× [(
P̂θj

ai + μ̂θj

)�
Σ−1(P̂ai + μ̂ − μ

)]
,

where P̂θj
is given in Sect. 3. Now, the (j, k)th element of the matrix U ′ is

U ′
jk = ∂

∂θ̂k

[
∂
(θ; θ̂,a)

∂θj

]

= 2
n∑

i=1

{
Wp0

[(
P̂ai + μ̂ − μ

)�
Σ−1(P̂ai + μ̂ − μ

)]

× [(
P̂θk

ai + μ̂θk

)�
Σθj

(
P̂ai + μ̂ − μ

) − μ�
θj

Σ−1(P̂θk
ai + μ̂θk

)]

+ W ′
p0

[(
P̂ai + μ̂ − μ

)�
Σ−1(P̂ai + μ̂ − μ

)]

× [(
P̂θk

ai + μ̂θk

)�
Σ−1(P̂ai + μ̂ − μ

)]

× [(
P̂ai + μ̂ − μ

)�
Σθj

(
P̂ai + μ̂ − μ

) − 2μ�
θk

Σ−1(P̂ai + μ̂ − μ
)]}

.

In matrix notation, 
′ and U ′ can be written as in (8).

Appendix B: Derivatives of μ, Σ , and P

In the following we give the first and second derivatives of μ, Σ , and P with respect
to the unknown parameters for each identifiability condition. Only nonnull derivatives
are presented. The matrix

P =
(

p11 0
p21 p22

)

comes from the Cholesky decomposition PP � = Σ , and p11, p21, and p22 are given
below.

Condition 1: λe = σ 2
e /σ 2

u known.

When λe = σ 2
e /σ 2

u is known, we have μθ1
= (μx,0)�, μθ2

= (1,0)�, μθ3
=

(β,1)�,

Σθ1 =
(

2βσ 2
x σ 2

x

σ 2
x 0

)

, Σθ4 =
(

β2 β

β 1

)

,
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μθ1θ3
= μθ3θ1

=
(

1
0

)

, Σθ1θ1 =
(

2σ 2
x 0

0 0

)

, Σθ1θ4 = Σθ4θ1 =
(

2β 1
1 0

)

.

Here, p11 = √
β2σ 2

x + λeσ 2
u , p21 = βσ 2

x /p11, and p22 =
√

p2
11(σ

2
x + σ 2

u ) − β2(σ 2
x )2/

p11. The derivatives of P with respect to the parameters β,σ 2
x , σ 2

u are, respectively,

Pθ1 =
(

p21 0

λeσ
2
x σ 2

u /p3
11 (−λeσ

2
x σ 2

up21)/(p
3
11p22)

)

,

Pθ4 =
(

β2/(2p11) 0

(β3σ 2
x + 2βλeσ

2
u )/(2p3

11) λ2
e(σ

2
u )2/(2p4

11p22)

)

,

and

Pθ5 =
(

λe/(2p11) 0

−βλeσ
2
x /(2p3

11) (λep
2
21 + p2

11)/(2p2
11p22)

)

.

Condition 2: λx = σ 2
x /σ 2

u known.

When λx is known, μθj
and μθj θk

for j, k = 1,2,3,4,5 coincide with those of the
previous case. The matrices Σθj

and Σθj θk
are

Σθ1 =
(

2λxβσ 2
u λxσ

2
u

λxσ
2
u 0

)

, Σθ2 = Σθ3 =
(

0 0
0 0

)

, Σθ4 =
(

1 0
0 0

)

,

Σθ5 =
(

λxβ
2 λxβ

λxβ λx + 1

)

, Σθ1θ1 =
(

2λxσ
2
u 0

0 0

)

,

Σθ1θ5 = Σθ5θ1 =
(

2λxσ
2
uβ λx

λx 0

)

.

Here, the nonnull elements of P are p11 = √
λxβ2σ 2

u + σ 2
e , p21 = λxβσ 2

u /p11, and

p22 =
√

σ 2
u (λxσ 2

e + p2
11)/p11. The derivatives of P with respect to β,σ 2

u , σ 2
e are,

respectively,

Pθ1 =
(

p21 0

λxσ
2
uσ 2

e /p3
11 −λxσ

2
uσ 2

e p21/(p
3
11p22)

)

,

Pθ4 =
(

λxβ
2/(2p11) 0

(λxβp2
11 + λxβσ 2

e )/(2p3
11) (λx(σ

2
e )2 + p4

11)/(2p4
11p22)

)

,

Pθ5 =
(

1/(2p11) 0

−p21/(2p2
11) p2

21/(2p2
11p22)

)

.

Condition 3: Known intercept.
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When α is known, μθ1
and Σθ1 are equal to those given under Condition 1, μθ2

=
(β,1)�,

Σθ3 =
(

β2 β

β 1

)

, Σθ4 =
(

0 0
0 1

)

, Σθ5 =
(

1 0
0 0

)

,

μθ1θ2
= μθ2θ1

=
(

1
0

)

, Σθ1θ1 =
(

2σ 2
x 0

0 0

)

, Σθ1θ3 = Σθ3θ1 =
(

2β 1
1 0

)

.

In this case, p11 = √
β2σ 2

x + σ 2
e , p21 = βσ 2

x /p11, and p22 =
√

σ 2
up2

11 + σ 2
x σ 2

e /p11.

The derivatives of P with respect to the parameters β,σ 2
x , σ 2

u , σ 2
e are, respectively,

given by

Pθ1 =
(

p21 0

σ 2
x σ 2

e /p3
11 −β(σ 2

x )2σ 2
e /(p4

11p22)

)

,

Pθ3 =
(

β2/(2p11) 0

(βp2
11 + βσ 2

e )/(2p3
11) (σ 2

e )2/(2p4
11p22)

)

,

Pθ4 =
(

0 0
0 1/(2p22)

)

, Pθ5 =
(

1/(2p11) 0

−p21/(2p2
11) p2

21/(2p2
11p22)

)

.
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