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Abstract. The quadratic assignment problem (QAP) is one of the well-known combinatorial opti-
mization problems and is known for its various applications. In this paper, we propose a modified
simulated annealing algorithm for the QAP – M-SA-QAP. The novelty of the proposed algorithm
is an advanced formula of calculation of the initial and final temperatures, as well as an original
cooling schedule with oscillation, i.e., periodical decreasing and increasing of the temperature. In
addition, in order to improve the results obtained, the simulated annealing algorithm is combined
with a tabu search approach based algorithm. We tested our algorithm on a number of instances
from the library of the QAP instances – QAPLIB. The results obtained from the experiments show
that the proposed algorithm appears to be superior to earlier versions of the simulated annealing
for the QAP. The power of M-SA-QAP is also corroborated by the fact that the new best known
solution was found for the one of the largest QAP instances – THO150.
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1. Introduction

The quadratic assignment problem (QAP) is formulated as follows. Let two matrices
A = (aij)n×n and B = (bkl)n×n and a set Π of permutations of the integers from 1 to n
be given. Find a permutation π = (π(1), π(2), . . . , π(n)) ∈ Π that minimizes

z(π) =

n
∑

i=1

n
∑

j=1

aijbπ(i)π(j). (1)

One of the applications of the quadratic assignment problem is computer-aided de-
sign, namely, the placement of electronic components into locations (positions) on a
board (chip) (Steinberg, 1961; Hanan and Kurtzberg, 1972). In this context, the matrix
A = (aij)n×n can be interpreted as a matrix of connections between components; in
this case, aij is the number of the nets connecting component i and component j. The
matrix B = (bkl)n×n is a distance matrix, where bkl represents the distance from loca-
tion k to location l. Each placement configuration corresponds to a certain permutation,
π = (π(1), π(2), . . . , π(n)), where π(i) denotes the location that component i is placed
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into. Thus, z can be treated as a total estimated wire length (sum of the half-perimeters
of the nets) obtained when n components are placed into n locations. The goal is to min-
imize the total estimated wire length. See, for example, (Burkard, 1984; Çela, 1998) for
an extended list of other applications of the QAP.

The quadratic assignment problem is one of the most complex combinatorial opti-
mization problems. It has been proved that the QAP is NP-hard (Sahni and Gonzalez,
1976). Problems of size, say n > 30, are not, to this date, practically solvable in terms
of obtaining exact solutions (Hahn et al., 1999). Therefore, heuristic approaches have to
be used for solving medium- and large-scale QAPs. One such approach that has yielded
promising results is simulated annealing (Burkard and Rendl, 1984; Wilhelm and Ward,
1987; Connolly, 1990; Thonemann and Bölte, 1994; Bölte and Thonemann, 1996). Other
approaches for the QAP, similar to the simulated annealing, are worth mentioning: thresh-
old accepting (Nissen and Paul, 1995), simulated jumping (Amin, 1999), intensive search
(Misevičius, 2000). An exhaustive list of other heuristic methods for the QAP one can find
in (Çela, 1998).

This paper is organized as follows. Sections 2, 3 survey the simulated annealing ap-
proach and its applications to the QAP. Section 4 describes a modified simulated annea-
ling algorithm for the quadratic assignment problem. The results of the computational
experiments are presented in Section 5. Section 6 completes the paper with conclusions.

2. Simulated Annealing for Combinatorial Optimization Problems

2.1. History

Simulated annealing originated in statistical mechanics. It is based on a Monte Carlo
model that was used by Metropolis et al. (1953) to simulate energy levels in cooling
solids (coercing solids into a low energy – highly ordered – state). Boltzmann’s law was
used to determine the probability of accepting a perturbation resulting in a change ∆E in
the energy at the current temperature t, i.e.,

P =

{

1, ∆E < 0,
e−∆E/CBt, ∆E � 0,

where CB is a Boltzmann’s constant. Cerný (1982) and Kirkpatrick et al. (1983) were
the first who applied simulated annealing to solve combinatorial optimization problems.
Starting from 1984, several authors applied simulated annealing to the QAP (see Sec-
tion 3).

2.2. Principle of the Simulated Annealing

Let S be a set of solutions of combinatorial optimization problems with objective (cost)
function f : S → R1. Furthermore, let N : S → 2S be a neighbourhood function which
defines for each s ∈ S a set N(s) ⊆ S – a set of neighbouring solutions of s. Each
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solution s′ ∈ N(s) can be reached directly from s by an operation called a move (gener-
ally, the move follows objective function evaluation which is called a trial). The principle
of the simulated annealing algorithm is simple (Kirkpatrick et al., 1983): start from a
random solution. Given a solution s select a neighbouring solution s′ and compute the
difference in the objective function values, ∆f = f(s′) − f(s). If the objective func-
tion value is improved (∆f < 0), then replace the current solution by the new one, i.e.,
perform a move, and use resulting configuration as the starting point for the next trial. If
∆f � 0, then accept a move with probability

P(∆f) = e−∆f/t, (2)

where t is the current temperature value (Boltzmann’s constant is not required when ap-
plying the algorithm to combinatorial problems). The procedure is repeated until a stop-
ping condition is satisfied, for example, a predefined number of trials has been performed
(for other termination criteria, see Section 2.5). Usually, “best so far” (BSF) solution
(instead of “where you are” (WYA) solution) is regarded as the result of the algorithm.
Regarding the probabilistic acceptance (2), it is achieved by generating a random num-
ber in [0,1] and comparing it against the threshold e−∆f/t(here, the exponential function
plays a role of an acceptance function).

Simulated annealing algorithms differ each from other with respect to the following
factors: neighbourhood search, cooling (annealing) schedule and termination criterion.

2.3. Neighbourhood Search

Suppose, S = {s|s = (s(1), s(2), . . . , s(n))}, where n is the cardinality of the set. Given
a solution s from S, a k-exchange neighbourhood functionNk(s) is defined as follows:

Nk(s) = {s′|s′ ∈ S, d(s, s′) � k} , (3)

where d(s, s′) is the distance between solutions s and s′: d(s, s′) =
∑n

i=1 sgn|s(i)

− s′(i)|. If k = 2, one obtains 2-exchange neighbourhood function which is widely used
in combinatorial problems. In this case, any neighbouring solution s′ can be reached from
the solution s by interchanging (displacement) exactly two elements in s.

Two alternatives exist when searching the neighbourhood. First, choose the next po-
tential solution at random. Second, explore the neighbourhood in a systematic way having
all the possible exchange elements ordered (“shuffled”). The precise order is irrelevant, it
is only essential that the neighbourhood is explored thoroughly.

2.4. Cooling Schedule

The cooling schedule, in turn, is specified by: a) an initial (and final) value of the tem-
perature, b) an updating function for changing the temperature, and c) an equilibrium
test.
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The “behaviour” of the simulated annealing algorithm depends on the temperature t.
Perhaps the most important thing is how the initial temperature t0 is determinated. If the
initial value of the temperature is chosen too high, then too many bad uphill moves are
accepted while if it is too low, then the search will quickly drop into a local optimum
without possibility to escape form it. Thus an optimum initial temperature must be some-
where between these two extremes. One may choose t0 = ∆fmax, where ∆fmax is the
maximal difference of the objective function values between any two neighbouring so-
lutions. Exact calculation of ∆fmax is quite time-consuming in many cases. Therefore,
various approximations are used. The final value of the temperature tf may be related to
the smallest possible change in the objective function values between two neighbouring
solutions.

The temperature is not a constant, but changes (usually, decreases) over time accord-
ing to some updating function. The updating function that guarantees optimality (i.e.,
optimal cooling schedule) is (Anily and Federgruen, 1987; Hajek, 1988)

tk = const/log(k + 2), k = 0, 1, . . . . (4)

In this case, the run time is too long for most applications. Hence, there are used heuristic
schedules that cool down much more faster. The most commonly used schedules are
(Kirkpatrick et al., 1983)

tk+1 = α · tk, k = 0, 1, . . . , t0 = const, α < 1 (geometric schedule), (5)

and (Lundy and Mees, 1986)

tk+1 = tk/(1+βtk), k=0, 1, . . . , t0 =const, β≪t0 (Lundy–Mees schedule). (6)

It should be noted that, in the state-of-the-art simulated annealing algorithms, the tem-
perature rather changes periodically than decreases monotonically, i.e., reannealing (or
tempering) – a sequence of heatings and coolings – is considered instead of the straight-
forward annealing. (Non-monotone cooling schedules have been introduced by Hajek and
Sasaki as far back as 1989 (Hajek and Sasaki, 1989).) A variety of ways exist to reanneal
(see, for example, (Osman, 1993; Bölte and Thonemann, 1996; Mann and Smith, 1996)).

Kirkpatrick et al. (1983) proposed that, at each temperature, the cooling schedule must
allow the simulation to proceed long enough for the process to reach steady state – equi-
librium. Various equilibrium tests can be used to determine if the temperature should be
updated (reduced). Typically, the temperature is decreased after a fixed number of trials;
as a standard, this number is proportional to the size of the neighbourhood (the cool-
ing schedule is said to have a fixed length). More sophisticated equilibrium criteria are
possible, for example, the number (ratio) of accepted and rejected pairwise interchanges
(Kirkpatrick et al., 1983). The number of trials at each temperature may be quite large,
although the temperature steps can be relatively large also. (This is the homogeneous
case of simulated annealing in analogy to homogeneous Markov chains which are used
to model the simulated annealing algorithm (Seneta, 1981).) Another case is when the
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temperature is reduced, but by a very small amount, after every trial; in fact, no equilib-
rium test is used. (This is the inhomogeneous case of annealing.) Note that formula (5) is
more suitable for the homogeneous annealing, whereas formula (6) – for the inhomoge-
neous one. In the last case, it is easy to relate the coefficient β and the number of trials,
i.e., schedule length, L, when the initial and final values of the temperature (t0, tf ) are
fixed:

β = (t0 − tf )/Lt0tf . (7)

2.5. Termination Criterion

In theory the simulated annealing procedure should be continued until the final temper-
ature tf is zero, but in practice other stopping criteria are applied: a) the value of the
objective function has not decreased for a large number of consecutive trials (it means
that it has become unlikely that any improvement can be reached); b) the number of
accepted moves has become less than a certain small threshold for a large number of
consecutive trials; c) a fixed a priori number of trials has been executed. In the first two
cases, the simulated annealing algorithm has a non-deterministic run time, whereas the
third case is the case of algorithms with a deterministic run time.

For more details about the simulated annealing, the reader is addressed to (van
Laarhoven and Aarts, 1987; Aarts and Korst, 1989; Aarts et al., 1997).

3. Simulated Annealing Algorithms for the Quadratic Assignment Problem

Several authors applied simulated annealing to the quadratic assignment problem, as
mentioned in Introduction.

Burkard and Rendl (1984) used the homogeneous simulated annealing. In their al-
gorithm, the process remains at temperature tk until a fixed number of trials has been
considered before “going” to the next temperature tk+1. The temperature is lowered ac-
cording to the formula tk+1 = 10× (0.9)k(this is a variant of the geometric schedule). If
all the temperatures have been used, i.e., if k > kmax, the algorithm stops.

Wilhelm and Ward’s implementation (Wilhelm and Ward, 1987) also was homoge-
neous, but with more sophisticated equilibrium test. One checks after a certain number of
trials the fluctuations in the objective function value. If the fluctuations are small enough,
equilibrium is said to be reached, and the temperature is decreased (according to the
above formula). Termination criterion is as follows: stop if the number of accepted moves
at three successive temperatures is less than a predetermined number.

Other researchers have tried the inhomogeneous annealing. In this case, the cool-
ing schedule used is due to Lundy and Mees with the schedule length (the number of
trials) being fixed a priori. In Connolly’s algorithm (Connolly, 1990), the initial tem-
perature is calculated according to the formula t0 = ∆zmin + 1

10 (∆zmax − ∆zmin),
where ∆zmin,∆zmax are, respectively, minimal and maximal difference of the objective
function values obtained after R random interchanges (R = K/2, where K = |N2 |=
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n(n− 1)/2, n is the problem size). The final temperature is set to be equal to ∆zmin. A
simple version of the reannealing is applied in this algorithm: if a large enough number
of the consecutive uphill moves are rejected, then the next uphill move is accepted, the
temperature is returned to the one at which the best so far solution was found, and the
search is carried out at this temperature (until a stopping condition is satisfied).

Bölte and Thonemann’s algorithm (Bölte and Thonemann, 1996) is similar to the one
described above, but it uses much more intelligent reannealing technique, which is re-
ferred to as oscillation. The authors have taken advantage of genetic programming to
determine efficient annealing schedules for the QAP. They ascertained that good sched-
ules have the following properties:

– the temperature at the beginning and at the end of schedule is far above zero;
– the temperature is usually not constant or monotone decreasing, but oscillated.
Bölte and Thonemann used cosine function to generate a schedule that oscillates

around the temperature t with an amplitude of 0.5t. The number of full periods the sche-
dule contains depends on the schedule length initially chosen.

4. A Modified Simulated Annealing Algorithm for the QAP

Now we describe details of the modified simulated annealing algorithm for the QAP –
M-SA-QAP.

We use random permutations as initial permutations for the simulated annealing algo-
rithm. These permutations can be generated by a very simple procedure.

The neighbourhood function we consider is, as usual, N2. In this case, a move from
the current permutation (solution) π to the neighbouring permutation π′ is formally de-
fined by using a special operator – 2-way perturbation pij : Π → Π (i, j = 1, 2, . . . , n),
which exchanges (swaps) ith and jth elements in the permutation considered (notation
π′ = π ⊕ pij ). Note that for a permutation π and a perturbation pij , it is more efficient
to compute ∆z(π, i, j) = z(π ⊕ pij) − z(π) than z(π ⊕ pij). The direct computation of
z(π ⊕ pij) needs time O(n2), whereas ∆z(π, i, j) can be calculated in O(n) operations:

∆z(π, i, j) = 2
n

∑

k=1,k �=i,j

(aik − ajk)
(

bπ(j)π(k) − bπ(i)π(k)

)

, (8)

where aii(bii) = const, i = 1, 2, . . . , n.
The neighbouring solutions are searched in a fixed order, not randomly. The order of

the search is unambiguously defined by the sequence p12, p13, . . . , p1n, p23, . . . , p2n, . . . ,

pn−1,n. K = n(n− 1)/2 trials are needed to explore all the neighbourhood of π(in
case the neighbourhood N2 is used). We say, one iteration is performed when K trials
(objective function evaluations) are made.

We use the inhomogeneous annealing schedule without any equilibrium test, as in
(Connolly, 1990; Bölte and Thonemann, 1996). The temperature is decreased according
to formula (6). The coefficient β is known from formula (7), because the fixed a pri-
ori schedule length (the number of trials) and the initial, as well as final temperatures
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are used. In order to determine the initial and final temperatures, we use an extended
approach compared to the one of Connolly. We rely on the idea that the initial and fi-
nal temperature values must depend on the average (positive) difference in the objective
function values (notation ∆zavg) – not only the minimal and maximal differences. (The
differences are assumed to be evaluated by performing a fixed number of moves before
starting the annealing.) Thus, our formula is as follows:

[

t0 = (1 − λ1 − λ
′
1)∆zmin + λ1∆zavg + λ′1∆zmax

tf = (1 − λ2 − λ
′
2)∆zmin + λ2∆zavg + λ′2∆zmax

, (9)

where λ1, λ
′
1, λ2, λ

′
2 are real numbers within the interval [0, 1] (λ1 + λ′1 � 1, λ2 + λ′2 �

1). They are referred to as temperature factors (weights). Note that, having λ1 = 0, λ′1 =

0.1, λ2 = 0, λ′2 = 0 we obtain Connolly’s formula.
In our algorithm, we ignore the maximal difference and make the temperature to be a

function of the minimal and average differences only, i.e., λ′1 = λ′2 = 0, hence t0 =

(1 − λ1)∆zmin + λ1∆zavg, tf = (1 − λ2)∆zmin + λ2∆zavg, λ1 ∈ (0, 1], λ2 ∈

[0, 1), λ1 > λ2. In fact, the algorithm operates with these temperature factors instead
of the direct temperature values. By choosing appropriate values of λ1 and λ2, one can
control the cooling process effectively. For example, having λ2 = const it is obvious that
the larger the value of λ1, the higher the initial temperature. On the other hand, the larger
the difference λ1 − λ2, the more “rapid” the cooling.

There exist four variants in the cooling process:

• LIT–LFT (λ1 < 0.5, λ2 < 0.5),
• HIT–LFT–SC (λ1 � 0.5, λ2 < 0.5, λ1 − λ2 < 0.5),
• HIT–LFT–RC (λ1 � 0.5, λ2 < 0.5, λ1 − λ2 � 0.5),
• HIT–HFT (λ1 � 0.5, λ2 � 0.5),

where LIT – low initial temperature, LFT – low final temperature, HIT – high initial
temperature, HFT – high final temperature, SC – “slow” cooling, RC – “rapid” cooling.
The variant to be used can be determined by conducting several experiments (one or few
small data examples are enough (see Section 5)).

Another improvement is due to modified reannealing, i.e., periodical annealing
scheme which is based on a dynamic, not static, cooling schedule. Its parameters (schedu-
le length, etc.) are adaptively changed during execution of the algorithm. We agree with
Bölte and Thonemann who argue that good annealing schedules have an oscillating com-
ponent (Bölte and Thonemann, 1996). Their cosine-based oscillation (COS-oscillation)
is rather neighbourhood-size-dependent. We propose a Lundy–Mees-function-based os-
cillation (LM-oscillation) that is rather process-dependent, i.e., it depends on the former
“behaviour” of the annealing.

So, let Q (Q � 1) be the total number of iterations. The reannealing scheme
can then be described as follows: set the schedule length L to Qn(n− 1)/2 and start
with the initial temperature defined by (9), then decrease it according to (6). When
0.5|N2 |= n(n− 1)/4 consecutive moves are rejected, stop the (preliminary) cooling.
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The temperature found at this moment is denoted by t∗ and the corresponding trial num-
ber, i.e., actual schedule length – L∗. After cooling is stopped, the temperature is imme-
diately increased, i.e., the system is heated up, then the annealing with new parameters
starts. Additionally, a slightly modified downhill search procedure (CRAFT) (Armour
and Buffa, 1963) is applied to the best solution found so far. The process is continued un-
til a termination criterion is satisfied. All the parameters of reannealing can be collected
in so-called meta-schedule table (MST) (see Tables 1a, 1b). Note that, in M-SA-QAP, the
oscillation period depends on the period (actual length) of the initial schedule (schedule
No. 0).

Remind that the execution of the simulated annealing algorithm is controlled by fixing
a priori the number of iterations of the neighbourhood search, Q (Q = 1, 2, . . .). The
algorithm terminates when the current iteration (trial) number exceedsQ (Qn(n− 1)/2).

Some authors propose to combine the simulated annealing algorithm with a post-
analysis algorithm. For example, Bölte and Thonemann applied the CRAFT algorithm.
We also use a post-optimization. We found the tabu search (Skorin–Kapov, 1990; Taillard,
1991) to be ideal for this purpose. Namely, the simplified version of the robust tabu search
(Taillard, 1991) was used in our implementation.

The PASCAL-like notation based detailed templates of the modified simulated an-
nealing algorithm, the CRAFT algorithm, as well as the simplified tabu search algorithm
for the quadratic assignment problem are presented in Figs. 1, 2, 3.

Table 1a
Meta-schedule table for the algorithm M-SA-QAP – LM-oscillation

Schedule No. 0 i (i � 1)

Schedule length L = L0 = Qn(n− 1)/2 L = min(L∗, L0 − iL∗)

Initial temperature t0 = (1 − λ1)∆zmin + λ1∆zavg t0 = iif(L < n, t∗, (1 + 1
3
)t∗)

Final temperature tf = (1 − λ2)∆zmin + λ2∆zavg tf = iif(L < n, t∗, (1 − 1
3
)t∗)

Updating function LM (β = (t0 − tf )/Lt0tf ) CONST (β = 0)(L < n) or LM (L � n)

Table 1b
Meta-schedule table for the Bölte and Thonemann’s algorithm (TB2) – COS-oscillation

Schedule No. 0 1

Schedule length L = L0 = Qn(n− 1)/2 L = L0 − L∗

Initial temperature t0 = 10a t0 = 1.5t∗

Final temperature tf = 2 UNDEFINED

Updating function LM (β = 0.4/L) COSb

a normalized data are used,
b see (Bölte and Thonemann, 1996) for the detailed expression.
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procedure M-SA-QAP { modified simulated annealing algorithm for the QAP }
{ input: π – current permutation, n – problem size }
{ Q – the number of iterations (Q � 1)}
{ λ1, λ2 – initial and final temperature factors (0 < λ1 � 1, 0 � λ2 < 1, λ1 > λ2)}
{ output: π∗ – the best permutation }
π∗ := π, K := n(n− 1)/2
found ∆zmin, ∆zavg by performing K random moves (starting from π)
L0 := QK{L0 – the total number of trials (initial cooling schedule length) }
initialize cooling schedule parameters L, t0, tf , β, set t to t0
i := 1, j := 1, k′ := ∞, MAXRN := K/2, rejected count := 0, oscillation := FALSE

for k := 1 to L0 do begin { main loop of the simulated annealing algorithm }
i := iif(j < n, i, iif(i < n− 1, i + 1, 1)), j := iif(j < n, j + 1, i + 1)
calculate ∆ = ∆z(π, i, j) { ∆z(π, i, j) is the current difference in the objective function values }
if ∆ < 0 then accept := TRUE

else begin if RANDOM() < e−∆/tthen accept := TRUE else accept := FALSE end

if accept = TRUE then begin

π := π ⊕ pij { replace the current permutation by the new one }
if z(π) < z(π∗) then π∗ := π { save the best permutation found so far }
if ∆ �= 0 then rejected_count := 0

end

else rejected_count := rejected_count + 1
if oscillation = FALSE then

if rejected_count � MAXRN then begin

L∗ := k, t∗ := t
update cooling schedule parameters L, t0, tf , β, set t to t0
oscillation := TRUE, k′ := 0
apply CRAFT to π∗

end { if . . . then . . . }
else { nothing }

else begin { oscillation = TRUE }
k′ := k′ + 1
if k′ � L then begin

if L0 − k < L∗ then update cooling schedule parameters L, t0, tf , β
set t to t0
k′ := 0
in case of new π∗ apply CRAFT to π∗

end { if . . . else . . . }
if k′ > 0 then t := t/(1 + βt) { decrease the temperature }

end { for }
apply simplified tabu search to π∗ with n iterations

end { M-SA-QAP }

Notes

1. The function “iif” is defined as follows: iif(x, y1, y2) =

{

y1, x = TRUE
y2, x = FALSE

.

2. ∆z(π, i, j) is calculated according to formula (8).
3. The in-built function RANDOM returns an uniform random number within the interval [0,1).

Fig. 1. Template of the simulated annealing algorithm for the QAP.
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procedure CRAFT { steepest descent procedure for the QAP in the neighbourhood N2}
{ input: π – the current permutation, n – problem size }
{ output: π – the optimized permutation }
not_locally_optimal := TRUE

i := 1, j := 1, K := n(n− 1)/2{K – size of the neighbourhood N2}
while not_locally_optimal do begin

deltamin := 0 { deltamin – minimum difference of the objective function values }
for k := 1 to K do begin

i := iif(j < n, i, iif(i < n− 1, i + 1, 1)), j := iif(j < n, j + 1, i + 1)
delta := z(π ⊕ pij) − z(π)
if delta < deltamin then begin deltamin := delta, u := i, v := j end { if }

end { for }
if deltamin < 0 then π := π ⊕ puv{ replace the current permutation by the new one }

else not_locally_optimal := FALSE

end { while }
end { CRAFT }

Fig. 2. Template of the CRAFT (steepest descent) procedure for the QAP.

procedure STS-QAP { simplified tabu search algorithm for the QAP }
{ input: π – current permutation, n – problem size }
{ M – the number of iterations (M ≤ n(n− 1)/2)}
{ output: π∗ – the best permutation }
π∗ := π, K := n(n− 1)/2
for i := 1 to n− 1 do for j := i + 1 to n do calculate DELTA(i, j) = ∆z(π, i, j)
for i := 1 to n− 1 do for j := i + 1 to n do TABU(i, j) := FALSE { tabu list initialization }
current_iteration := 0, i := 1, j := 1
repeat { main loop of the tabu search algorithm }

current_iteration := current_iteration + 1, ∆min := ∞
for k := 1 to K do begin {find the best move}
i := iif(j < n, i, iif(i < n− 1, i + 1, 1)), j := iif(j < n, j + 1, i + 1)
∆ := DELTA(i, j)
forbidden := TABU(i, j), aspired := (z(π) + ∆ < z(π∗)) AND (forbidden = TRUE)
if ((∆ < ∆min) AND (forbidden = FALSE)) OR (aspired = TRUE) then begin

u := i, v := j

if aspired = TRUE then ∆min := −∞ else ∆min := ∆
end { if }

end { for }
π := π ⊕ puv{ perform the move }
if z(π) < z(π∗) then π∗ := π { save the best permutation }
TABU(u, v) := TRUE

for u := 1 to n− 1 do for v := u + 1 to n do update DELTA(u,v)
until current_iteration = M { end of main loop }

end { STS-QAP }

Fig. 3. Template of the simplified tabu search algorithm for the QAP.

5. Computational Experiments

We have conducted a number of computational experiments in order to test the perfor-
mance of our simulated annealing algorithm – M-SA-QAP. We used the well-known
problem instances taken from the quadratic assignment problem library – QAPLIB
(Burkard et al., 1997). All the experiments were carried out on 120MHz Pentium com-
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puter by using the program OPTIQAP (OPTImizer for the QAP) developed by the author.
The other simulated annealing algorithms used in the experiments are: C-SA-

QAP – Connolly’s algorithm (the code sa_qap.c of the algorithm can be found at
http://ina.eivd.ch/Collaborateurs/etd/default.htm), TB2 – Bölte
and Thonemann’s algorithm (coded by the author according to the description pre-
sented in the paper of Bölte and Thonemann). It should be noted that, in the orig-
inal version of TB2, data normalization was used (t0 and tf are constants, namely,
t0 = 10, tf = 2). In the author’s version, normalization of the temperature is used in
such a way that t0 = 10NF , tf = 2NF ,NF = (amax × bmax)/25, amax = maxi,j aij ,
bmax = maxi,j bij (it seems, however, that the results of both original and author’s ver-
sion are very similar). In all the algorithms, the execution is controlled by the number of
iterations, Q.

The performance measures used are: a) the average deviation from the best known
solution – δ̄ (δ̄ = 100(z̄ − z̃)/z̃[%], where z̄ is the average objective function value over
W = 1, 2, . . . restarts (i.e., single applications of the algorithm to a problem instance),
and z̃ is the best known value (BKV) of the objective function); b) the percentage of
solutions that are within 1% optimality – P1%(P1% = 100C1%/W [%], where C1% is the
total count of solutions that are within 1% optimality over W restarts). Note, BKVs are
from (Burkard et al., 1997).

Firstly, we illustrate on the well-known problem instances TAI25A (n = 25) and
NUG30 (n = 30) that by using the temperature calculation according to our extended
formula one obtains better results (the average deviations) than by using Connolly’s for-
mula (see Table 2).

Secondly, we demonstrate on the same instances that by applying LM-oscillation the
results have slightly been improved in comparison with COS-oscillation due to Bölte
and Thonemann (see Table 3). The corresponding temperature curves for the instance
TAI25A are depicted in Fig. 4.

Table 2

A comparison of the temperature calculation formulas (Q = 50, W = 10)
(In order to determine ∆zmin, ∆zavg, ∆zmax, n(n− 1)/4 random moves are performed)

δ̄Instance
name

Formula
1 2 3 4 5 6 7 8 9 10

Connolly’s

formula
2.99 3.01 2.97 2.89 3.11 3.13 2.98 3.01 3.04 3.05

TAI25A
Extended

formulaa
2.49 2.56 2.35 2.34 2.60 2.62 2.71 2.73 2.59 2.69

Connolly’s

formula
1.26 1.07 1.07 1.20 1.25 1.13 1.22 1.11 1.11 1.06

NUG30
Extended

formulaa
0.90 1.00 1.04 0.88 0.95 0.92 0.97 1.01 0.90 0.91

a λ1 = 0.5, λ2 = 0.04.
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Table 3

A comparison of the oscillation rules (Q = 50, W = 10)

(Normalized initial and final temperatures are used)

δ̄
Instance

name

Oscilla-
tion
rule 1 2 3 4 5 6 7 8 9 10

COS-oscillation 2.73 2.83 2.87 2.72 2.74 2.60 2.83 2.75 2.86 2.82
TAI25A

LM-oscillation 2.55 2.67 2.66 2.52 2.60 2.59 2.67 2.69 2.71 2.57

COS-oscillation 1.06 1.08 1.05 1.02 1.04 0.94 1.17 1.02 1.05 1.02
NUG30

LM-oscillation 0.92 1.07 1.06 0.98 1.00 0.94 1.07 1.00 1.01 0.97

Then, a small experiment has been carried out in order to determine suitable values of
the parameters of M-SA-QAP, namely, λ1 and λ2. We have chosen λ1 = 0.5 and λ2 =

0.05. After this, we evaluated the performance of the algorithm M-SA-QAP by comparing
its solutions with those obtained by Connolly’s algorithm (C-SA-QAP) and Bölte and
Thonemann’s algorithm (TB2), the most powerful simulated annealing algorithm for the
QAP. All the algorithms use identical initial assignments and the same values of the
parameters Q and W (Q = 50, W = 100). No post-analysis procedure used in C-SA-
QAP; CRAFT used in TB2.

The results of the comparison, i.e., the average deviations from BKV and percentage
of solutions that are within 1% optimality, as well as average CPU times per restart (in
seconds), for each of the algorithm tested, are presented in Table 4 (the values of the best
average deviations are printed in bold face).

It is obvious from the experiments that M-SA-QAP appears to be superior to C-SA-
QAP and TB2 on the instances examined with respect to both performance measures,
especially, the average deviation. The difference in performance on the particular in-
stances (for example, STE36A–C) is really surprising. Note that the applying of the tabu
search as a post-analysis procedure in M-SA-QAP increases the CPU time insignificantly
due to very efficient computation of the objective function differences in the tabu search
algorithm.

Fig. 4. The temperature curves of COS-oscillation (a) and LM-oscillation (b) for the instance TAI25A. The first
curve was obtained by TB2 (Q = 25), the second one – by M-SA-QAP (Q = 25, λ1 = 0.5, λ2 = 0.05).
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Table 4

Comparison of the algorithms

C-SA-QAP TB2 M-SA-QAP
Instance

name
n BKV

δ̄ P1% time δ̄ P1% time δ̄ P1% time

KRA30A 30 88900 4.13 2 0.65 2.65 9 0.77 2.45 5 0.77

KRA30B 30 91420 2.41 16 0.63 1.19 48 0.76 1.14 55 0.77

NUG30 30 6124 1.11 51 0.67 0.94 63 0.76 0.85 62 0.77

SKO42 42 15812 1.22 42 1.67 0.66 83 1.86 0.61 84 1.96

SKO49 49 23386 0.99 55 2.57 0.67 86 2.87 0.57 94 3.02

SKO56 56 34458 1.05 52 3.73 0.66 84 4.22 0.57 91 4.41

SKO64 64 48498 0.94 60 5.46 0.57 92 6.25 0.50 100 6.47

SKO72 72 66256 0.94 59 7.65 0.60 97 8.93 0.55 94 9.07

SKO81 81 90998 0.83 72 10.7 0.46 100 12.7 0.43 100 12.8

SKO90 90 115534 0.82 80 14.6 0.49 99 17.7 0.44 100 17.3

SKO100A 100 152002 0.79 79 19.8 0.41 100 24.6 0.36 100 23.6

SKO100B 100 153890 0.83 72 19.8 0.39 100 24.8 0.35 100 23.6

SKO100C 100 147862 0.94 58 19.8 0.46 98 24.9 0.34 100 23.4

SKO100D 100 149576 0.88 69 19.9 0.49 100 24.7 0.43 100 23.6

SKO100E 100 149150 0.97 59 19.8 0.52 99 24.4 0.45 100 23.6

SKO100F 100 149036 0.90 65 19.8 0.54 100 24.8 0.47 100 23.6

STE36A 36 9526 5.48 0 1.03 9.32 0 1.42 2.35 24 1.27

STE36B 36 15852 9.66 3 1.02 15.91 0 1.47 4.06 11 1.23

STE36C 36 8239.11 5.92 5 1.00 6.90 0 1.44 1.89 21 1.26

TAI25A 25 1167256 2.82 0 0.41 2.85 0 0.52 2.32 3 0.47

TAI30A 30 1818146 2.88 0 0.66 2.59 3 0.84 2.23 2 0.78

TAI35A 35 2422002 2.94 0 1.00 2.71 0 1.26 2.37 1 1.21

TAI40A 40 3139370 3.00 0 1.44 2.69 0 1.80 2.45 1 1.76

TAI50A 50 4941410 3.14 0 2.66 2.85 0 3.30 2.60 0 3.31

TAI60A 60 7208572 3.07 0 4.41 2.84 0 5.45 2.56 0 5.60

TAI80A 80 13557864 2.53 0 10.1 2.31 0 12.2 1.96 0 12.9

TAI100A 100 21125314 2.34 0 19.4 2.16 0 22.9 1.82 0 24.6

THO30 30 149936 1.85 27 0.64 1.07 54 0.74 0.96 70 0.76

THO40 40 240516 2.19 9 1.40 1.33 31 1.64 1.18 44 1.71

THO150 150 8133484a 1.70 4 76.0 0.56 95 110.0 0.39 100 88.3

WIL50 50 48816 0.46 91 2.70 0.26 100 3.03 0.20 100 3.19

WIL100 100 273038 0.47 100 19.8 0.25 100 24.4 0.22 100 23.6

a comes from (Amin, 1999).

The way leading to improvement of the quality of the solutions produced by M-SA-
QAP is the adjustment of values of the parameters λ1 and λ2. The results of experiments
on the instance NUG30 are presented in Table 5.

We can also improve the quality of the results by increasing the value of the parameter
Q, but at the cost of a longer processing time. Seven long runs, each consisting of 100
restarts, were carried out in order to demonstrate this improvement. The long runs were
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Table 5

Average deviation versus the initial and final temperature factors (Q = 50, W = 100)

δ̄
λ1

λ2=0 λ2=0.01 λ2=0.02 λ2=0.03 λ2=0.04 λ2=0.05 λ2=0.06 λ2=0.07 λ2=0.08 λ2=0.09

0.1 1.19 1.15 1.18 1.03 1.02 0.93 0.84 0.86 0.81 0.74

0.2 1.15 1.00 0.99 0.86 0.86 0.76 0.78 0.76 0.79 0.66

0.3 0.90 0.77 0.83 0.84 0.75 0.75 0.77 0.76 0.79 0.80

0.4 0.97 0.80 0.79 0.86 0.79 0.71 0.85 0.75 0.77 0.89

0.5 0.99 0.82 0.80 0.81 0.78 0.85 0.71 0.84 0.75 0.80

Table 6

Computational results of M-SA-QAP with the various numbers of iterations

δ̄Instance
name

Q = 50 Q = 100 Q = 150 Q = 250 Q = 500 Q = 1000 Q = 2000 Q = 5000

KRA30A 2.45 1.84 1.58 1.19 0.83 0.53 0.33 0.12

NUG30 0.85 0.57 0.49 0.34 0.25 0.15 0.11 0.04

SKO42 0.61 0.43 0.32 0.22 0.18 0.12 0.08 0.04

STE36A 2.35 1.93 1.45 1.26 0.95 0.82 0.61 0.58

TAI25A 2.32 2.21 2.04 2.00 1.73 1.52 1.32 1.08

THO30 0.96 0.75 0.56 0.37 0.27 0.15 0.13 0.02

WIL50 0.20 0.16 0.14 0.11 0.10 0.08 0.07 0.06

Table 7

Additional results of M-SA-QAP on small QAP instances

Time (sec)[# of restarts] needed to find BKVInstance
name

Q = 100 Q = 200 Q = 300 Q = 400

KRA30A 6[4] 1[1] 8[2] 25[5]

NUG30 1[1] 19[7] 8[2] 5[1]

SKO42 11[3] 299[43] 18[2] 68[5]

STE36A 68[29] 85[19] 379[57] 26[3]

TAI25A 255[296] 170[103] 37[15] 27[9]

THO30 9[7] 19[7] 7[2] 21[4]

WIL50 3408[577] 787[69] 320[19] 691[31]

organized in such a way that the control parameters are the same (λ1 = 0.5, λ2 = 0.05),
except the number of iterations Q which increases over time. Table 6 show the results
obtained.

Fig. 5 illustrates the results of fifteen long runs for the instance NUG30. Additionally,
the results of four short runs are presented in Table 7.
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Fig. 5. Average deviation versus the number of iterations.

We would like also to stress that an improved solution has been found for the very
large instance THO150 (Q = 5000, λ1 = 0.8, λ2 = 0.025). The new value of the
objective function is equal to 8133398.

6. Conclusions

The quadratic assignment problem is a very difficult combinatorial optimization problem.
In order to obtain satisfactory results in a reasonable time, heuristic algorithms are to be
applied. One of them, a modified simulated annealing algorithm, was proposed in this
paper.

Based on the ideas of Connolly’s and Bölte and Thonemann’s algorithms, we de-
veloped a new modified simulated annealing algorithm for the QAP – M-SA-QAP. The
novelty of the algorithm M-SA-QAP is an advanced formula of calculation of the ini-
tial and final temperatures, as well as an original cooling schedule with oscillation, i.e.,
periodical decreasing and increasing of the temperature. No “tuning” to each new data
instance is needed, except determining once two control parameters. They are the initial
and final temperature factors. Their values, we guess, are data independent and not very
difficult to determine. These new features, in combination with the tabu search algorithm
as a post-analysis procedure, resulted in very good solutions with moderate amount of
computation time.

The results from the experiments testify that the proposed algorithm appears to be
superior to the earlier algorithms of this type and should be considered to be one of the
extremely efficient simulated annealing implementations for the QAP. In addition, this al-
gorithm, like other simulated annealing algorithms, is distinguished for simple neighbour-
hood structure and easy programming, as well as practical realization. The only shortage
is the presence of two control parameters.

An emphasis on the following directions should be made when carrying out the ex-
periments in the future: a) using modern optimization techniques in order to find optimal
values of the initial and final temperature factors, b) improving the oscillation mecha-
nism, c) exploiting the idea of hybrid simulated annealing and tabu search approach, d)
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incorporating the new simulated annealing algorithm into genetic (memetic) algorithms
as a very efficient local search procedure.
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Modifikuotas atkaitinimo modeliavimo algoritmas kvadratinio

paskirstymo uždaviniui

Alfonsas MISEVIČIUS

Šiame straipsnyje aprašomas algoritmas, pagri֒stas atkaitinimo modeliavimo (AM) (angl. simu-

lated annealing) principais. Pateikiama efektyvi modifikuoto AM algoritmo versija, kuri sėkmingai
pritaikyta sprendžiant viena֒ iš labai sunkiu֒ kombinatorinio optimizavimo uždaviniu֒ – būtent
kvadratinio paskirstymo (KP) (angl. quadratic assignment) uždavini֒.

Naujosios siūlomo algoritmo savybės yra tokios. Pirma, pasiūlyta patobulinta pradinės ir
galutinės atkaitinimo temperatūros skaičiavimo formulė, kuri pasirodė efektyvesnė palyginti su iki
tol plačiai naudota formule, pasiūlyta Connoly. Antra, išbandyta išplėtota atkaitinimo schema su os-
ciliacija, t.y., periodišku temperatūros mažinimu ir didinimu (tai vadinamoji re-atkaitinimo schema
(angl. re-annealing)). Pasiūlyta osciliacija (ji pavadinta LM-osciliacija, nes remiasi Lundy ir Mees
formulės panaudojimu) yra ne statinė, o dinaminė, jos parametrai keičiami algoritmo vykdymo
eigoje; kitaip tariant, osciliacija yra „priklausoma nuo proceso“, t.y., nuo vykusio atkaitinimo
pobūdžio. Vėlgi, ši osciliacija pasirodė pranašesnė už anksčiau pasiūlyta֒ (Bölte ir Thonemann’o)
osciliacija֒. Trečia, svarbus patobulinimas susije֒s su naujos strategijos – atkaitinimo modeliavimo,
kombinuojamo su tabu paieška, – išbandymu. Pasirodo, kad tabu paieškos panaudojimas „post-
analizės“ procedūros vaidmenyje leidžia žymiai pagerinti atkaitinimo modeliavimo fazėje gautu֒
sprendiniu֒ kokybe֒, tik nežymiai padidėjant algoritmo vykdymo laikui.

Naujasis algoritmas išbandytas su i֒vairiu֒ tipu֒ KP uždavinio testiniais pavyzdžiais (duomeni-
mis) iš KP uždavinio duomenu֒ bibliotekos – QAPLIB. Atliktu֒ eksperimentu֒ rezultatai liudija, jog
pasiūlytas algoritmas yra pakankamai efektyvus, pranokstantis ankstesnius pripažintus AM algorit-
mus KP uždaviniui. Šio algoritmo efektyvuma֒ liudija tas faktas, jog buvo surastas naujas geriausias
žinomas pasaulyje sprendinys vienam iš didžiausiu֒ KP uždavinio testiniu֒ pavyzdžiu֒ – tho150.

Pasiūlyta֒ modifikuota֒ AM algoritma֒ tikslinga išbandyti kitose meta-euristikose, pvz., hibri-
diniuose genetiniuose algoritmuose, kur šis algoritmas galėtu֒ vaidinti labai efektyvios lokaliosios
paieškos procedūros vaidmeni֒. Taip pat ši֒ algoritma֒, su nežymiomis korekcijomis, būtu֒ galima
panaudoti kitiems sunkiems kombinatorinio optimizavimo uždaviniams.


