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For the deficiency of the basic sine-cosine algorithm in dealing with global optimization problems such as the low solution precision
and the slow convergence speed, a new improved sine-cosine algorithm is proposed in this paper. The improvement involves three
optimization strategies. Firstly, the method of exponential decreasing conversion parameter and linear decreasing inertia weight is
adopted to balance the global exploration and local development ability of the algorithm. Secondly, it uses the random individuals
near the optimal individuals to replace the optimal individuals in the primary algorithm, which allows the algorithm to easily jump
out of the local optimum and increases the search range effectively. Finally, the greedy Levy mutation strategy is used for the optimal
individuals to enhance the local development ability of the algorithm. The experimental results show that the proposed algorithm
can effectively avoid falling into the local optimum, and it has faster convergence speed and higher optimization accuracy.

1. Introduction

Many problems in the field of engineering practice and scien-
tific research come down to the global optimization prob-
lems. The traditional methods which purely lie upon the
exactly mathematical mode have unsatisfactory effect in solv-
ing such optimization problems. These problems need to be
continuous and derivable when the traditional methods are
used for solving such practical engineering optimization prob-
lems, and these methods do not have the ability of global opti-
mization for the multimodal, strong-nonlinearity, and dy-
namic change problems [1]. Accordingly, many scholars begin
to explore new solution methods. The swarm intelligence
optimization algorithm is a kind of global optimization algo-
rithm designed by simulating the mutual cooperation behav-
ior mechanism of gregarious biology in nature. Compared
with the traditional optimization methods, the swarm intel-
ligence optimization algorithm is characterized by simple
principle and fewer adjustment parameters, and the gradi-
ent information and strong global optimization algorithm of

problems are not required. So it is widely used in the engi-
neering field of function optimization [2-4], combinatorial
optimization [5], neural network training [6, 7], and image
processing. At present, many swarm intelligence optimiza-
tion algorithms are proposed [2, 8-15] like particle swarm
optimization (PSO) [8], differential evolution (DE) [9,10], ar-
tificial bee colony algorithm (ABC) [2, 11], cuckoo search (CS)
[12,13], and flower pollination algorithm (FPA) [14, 15].
Sine-cosine algorithm (SCA) is a new swarm intelligence
optimization algorithm proposed by Mirjalili in 2016 [16].
This algorithm has been concerned and studied by many
scholars due to its simple implementation and less parameter
setting, and its optimization search can be realized through
simple variation of sine and cosine function values. It has
been successfully applied to solving the parameter optimiza-
tion of support vector regression [17], short-term hydrother-
mal scheduling [18], and other engineering fields at present.
However, as with other swarm intelligence algorithms, this
algorithm also has the disadvantage of low optimization
precision and slow convergence speed. Many scholars have
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put forward various improved sine-cosine algorithms from
different perspectives in order to overcome this disadvantage
in last two years. Elaziz et al. [19] proposed a sine-cosine algo-
rithm based on the opposition method, and the more accu-
rate solutions is obtained. Nenavath et al. [20] adopted a hy-
brid algorithm by combining differential evolution with sine-
cosine to solve the problem of global optimization and target
tracking. This algorithm has faster convergence speed and
ability of seeking the optimal solution compared with the
basic sine-cosine algorithm and differential evolution algo-
rithm. Reddy et al. [21] applied a new binary variant of sine-
cosine algorithm to solve the PBUC (profit-based unit com-
mitment) problem. Sindhu et al. [22] used the elitism strategy
and new updating mechanism to improve the sine-cosine
algorithm, which improved the accuracy of classification
in the selection of features or attributes. Kumar et al. [23]
proposed a new sine-cosine optimization algorithm with the
hybrid Cauchy and Gaussian mutations in order to track MPP
(maximum power point) quickly and efficiently. Mahdad et
al. [24] presented a sine-cosine algorithm coordinated with
the interactive process to improve the security of the power
system aimed at loading margin stability and faults at speci-
fied important branches. Bureerat et al. [25] adopted an adap-
tive differential sine-cosine algorithm to solve the problem
of structural damage detection. Turgut et al. [26] combined
backtracking search algorithm (BSA) and sine-cosine algo-
rithm (SCA) to obtain the optimal design for the shell and
tube evaporator. Attia et al. [27] embed Levy’s flight into the
original sine-cosine algorithm to increase the local search
ability of the algorithm and avoided the algorithm being
trapped in a local optimal defect. Tawhid et al. [28] used
elite nondominated sorting to obtain different nondominated
grades and applied crowd distance method to maintain the
diversity of optimal solution sets, putting forward a multi-
objective SCA algorithm. Issa et al. [29] presented an en-
hanced version of SCA by embedding the particle swarm
optimization algorithm in SCA(ASCA-PSO). The ASCA-
PSO algorithm makes full use of developing ability of the
particle swarm optimization algorithm in the search space,
which is stronger than that of the SCA. In the tests of some
functions, it is found that the search performance of ASCA-
PSO is apparently superior to that of SCA and other recently
proposed basic metaheuristic algorithms. Rizk-Allah et al.
[30] proposed a multiorthogonal sine-cosine algorithm
(MOSCA) based on a multiorthogonal search strategy (MOSS)
to solve the problem of engineering designs. The MOSCA
algorithm eliminated the disadvantages which are that the
basic SCA lacked exploitability and it was easily trapped in
local optimum.

The modified sine-cosine algorithm (MSCA) based on
neighborhood search and the greedy Levy mutation has been
proposed in order to better balance the global exploration
ability and local exploitation ability. The improved algorithm
makes improvements in the following three aspects. Firstly,
both the linear decreasing inertia weight and exponen-
tial declining conversion parameters are used to balance
the global exploration and local exploitation ability, which
achieves the smooth transition of algorithm from global ex-
ploration to local development. Secondly, the guidance of
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random individuals near the optimal solution is fully used
to allow the algorithm easily jump out of the local optimum,
which effectively prevents the algorithm premature conver-
gence and increases the diversity of population. Thirdly, the
greedy Levy mutation strategy is used for the optimal indi-
viduals to enhance the local development ability of the algo-
rithm. Compared with other swarm intelligence algorithms,
the improved sine-cosine algorithm has better performance
in terms of searching precision, convergence speed, and sta-
bility.

2. Basic Sine-Cosine Algorithm

In the basic sine-cosine algorithm, the simple variation of sine
and cosine function values is used to achieve the optimization
search. In this paper, the population size is #n. The dimension
of search space is d, and the ith individual in the population
is p;. In each iteration, the update mode of p; can be obtained
by the following equation:

t+1

bij
Pf,j +1 - sin (7"2) : 'r3 'PZest,j - P,ij| , 14<05 1

t t t
bij+ 11 cos () - '73 " Phest,j ~ pi,j| s 13205

where t is the current iteration, pzest) ; is the jth dimension
value of the optimal individual at iteration ¢, and pf’ j is the
jth dimension value of the individual i at iteration . r, 75, 13,
and r, are the random numbers. r, and r; obey uniform dis-
tribution between 0 and 2. r, obey uniform distribution be-
tween 0 and 27, and r, obey uniform distribution between 0
and 1.

In (1), r, - sin(r,) or r; - cos(r,) jointly lead the global
exploration and local development ability of the algorithm.
When the value of r; - sin(r,) or r; - cos(r,) is greater than
1 or less than -1, the algorithm conducts a global exploration
search. When the value of r, -sin(r,) or r; -cos(r,) is within the
range of [-1 1], the algorithm conducts a local development
search. The value of sin(r,)or cos(r,) is within the range of
[-1 1]. So the control parameter r; plays a crucial role in
the global exploration, which controls the transition of the
algorithm from global exploration to local development. In
the basic algorithm, the control parameter r, adopts the linear
decreasing method of (2) to guide the algorithm transit from
the global exploration to the local development.

n=a <1 - N.iter) @

where a is a constant, ¢ is the current iteration, and N_iter is
the maximum number of iterations.

3. Modified Sine-Cosine Algorithm

3.1. Exponential Decreasing Conversion Parameter. The param-
eter setting is crucial to the search performance in the basic
sine-cosine algorithm, in which the control parameter r,
controls the transition of algorithm from global exploration
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to local development. The larger value r, can improve the
global searching ability of the algorithm, and the smaller
value r;can enhance the local development ability of the
algorithm. Therefore, r, is designed as the linear decreasing
method of (2) in the basic algorithm to balance the global
exploration and local development ability of the algorithm. In
the literature [31], experimental contrast analysis is made on
the linear decreasing method, parabola decreasing method,
and exponential decreasing method in the basic algorithm. It
is found that the exponential decreasing method is superior
to the other two methods in the search performance. At the
same time, the inertia weight remains unchanged in the itera-
tive process of the basic algorithm, which may easily cause the
population individuals to oscillate in the later period of
search. In this paper, both the linear decreasing inertia weight
and exponential decreasing conversion parameter strategy
are used on the basis of (1), which can better balance the
global exploration and local development ability of the algo-
rithm. The update mode of individuals is as follows:

t+1

bij

~ {w(t) ‘ Pf,j + 1y sin (ry) - |"3 'p}t;est,j - pit,j. » 13<05 ®
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r(t) = a- N (5)

t+1 _

i,j

where unifrnd(-1,1) is the uniform distribution number
within (-1, 1), and A is the disturbance coefficient. Other
parameters are in line with (3).

In the neighborhood search of the optimal individual, the
current optimal individual is taken as the center and A as the
step size, and the algorithm searches between the section r; -
pzest,j-(l—/\-unifrnd(o, 1)) and r3-pzest,j-(lw\-unifrnd(o, 1)).
It effectively expands the search orientation and increases the
probability of algorithm jumping out of the local optimum.

3.3. Greedy Levy Mutation. In the basic sine-cosine algo-
rithm, the optimal individuals lead the search direction of the
whole population. But the optimal individuals lack experien-
tial knowledge and self-learning ability. So they may hardly
get effective improvement and thus get into the domain of
local optimum. In order to further prevent the basic sine-
cosine algorithm from getting into the local optimum and
eliminate the defect of low efficiency in later period, a strategy
based on greedy Levy mutation is proposed for the optimum
individuals. Thus, the population individuals can jump out of
the position of optimal value searched previously through the

w (t) -pf’j +7, -sin(r,) - |r3 -piest,j ~(1+A-unifrnd (-1,1)) - pf)j' , 1,<05

w(t) 'pf)j +1,-cos(ry) - 'r3 'pzest’j (1 +A-unifrnd (-1,1)) - pf,j' ,

where t is the current iteration, N_iter is the maximum num-
ber of iterations, py,., ;is the jth dimension value of the opti-

mal individual at iteration f, p} ; is the jth dimension value of
the individual i of current iteration, and w,,,, and w,;,, are the
maximum and minimum inertia weight, respectively.

It can be seen from (3) that the population individuals
work together through the inertia weight w(¢) and conversion
parameter r,(t). The value of w(¢) and r,(f) is large in the
early iterations, which is conducive to the global exploration
of the algorithm. The values of w(t) and r, (¢) are small in later
iterations, which are conducive to the local development of
the algorithm so as to improve the searching precision and
convergence speed of the algorithm.

3.2. The Neighborhood Search of the Optimal Individual. In
the basic sine-cosine algorithm, the search directions of the
new individuals simply are updating process by optimal
individuals in the population. Once the global optimal
individuals fall into the local optimum, the whole algorithm
easily gets into premature convergence. Therefore, in order
to reduce the possibility of algorithm getting into the local
optimum, the guiding role of the better individuals possibly
existing near the optimal solution should be used. In this
paper, the random individuals near the optimal solution are
used to replace the current optimal individuals to guide the
algorithm search, so as to improve the possibility of algorithm
jumping out of the local optimum. The sine-cosine algorithm
strategy for the neighborhood search of the optimal individ-
ual is

(6)

ry 2 0.5

mutation operation, which retains the diversity of population.
The mutation method is as follows:

t+1

pbest,j = p:zest,j +0 (]) : ZEV)/ : pltaest,j 7)

where levy is the random number that obeys the Levy
distribution, 8(j) is the coeflicient of self-adapting variation,
and p}, +,j is the jth dimension value of the optimal individual
at iteration t (Algorithm 1).

3.3.1. Random Number Generated According to the Levy
Distribution. The levy flight is characterized by long-term
short-distance migration and occasional long-distance jump,
which is suitable for describing the life active law of many
colonial organisms. In this paper, the characteristic of levy
flight is used to form a levy mutation mechanism. This
mechanism ensures that the proposed algorithm makes
sufficient search near the area of the optimal individuals and
has a certain mutation at the same time, which can improve
the global searching ability of the algorithm. As the integral of
probability density function of levy distribution is difficult,
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4
generations N_iter, control parameter a et al.
(2) Generate a population p = (P, Pys s Pi> - Pp)-
(4) for t=1: N_iter
(5) r, «— a(l —t/N_iter)
(6) for i=l:n
(7) for j=1.d
(8) ry «— (2 * ) * rand()
9) ry «— (2 — t/N_iter) * rand()
(10) Generate a rand r,.
(11) ifr, < 0.5
(12) P,t] —
(13) else
(14) P,t] —
(15) end if
(16) end for
(17) Cross-border processing for p; i
(18) Calculate the fitness fit(p;)
(19) if fit(p;) < fit(Ppest)
(20) Prest = Pi
(21) fit(Phest) = flt(pz)
(22) end if
(23) end for
(24) end for
(25) Output the best solution py,,,

(1) Set the initial parameters, including the total population size #, the maximum number of

(3) Calculate the fitness fit(p;) and find the best solution p,,,, of the population.

t . t t
pij+ryesin(ry) - 175 Ppog  — Pl

13 13 t
pijtn - cos(ry) - Ir; * Prest,j ~ Pi,;"

AvrGoriTHM I: The pseudocode of the basic sine-cosine algorithm.

it has been proved that Mantegna algorithm can be used to
achieve the equivalent calculation [32]. That is,

levy = “
vl

-N(0,0), ®)

N (0.})

where 0, = 1, § = 3/2, and 0, can be calculated based on

- _{ I'(1+p)-sin(nB/2) }l/ﬁ o
“TAT[(1+p) /2] B 26D

where I is the standard Gamma function.

3.3.2. Coefficient of Self-Adapting Variation. The swarm intel-
ligence optimization algorithm is generally divided into two
stages in the iterative process, namely, global exploration at
the earlier stage and local development at the later stage.
Therefore, in order to achieve the goal of obtaining a big varia-
tion to conduct the global disturbances at the earlier stage and
decreasing the variation range to accelerate the local search

at the later stage, the proposed algorithm is used a self-
adapting mutation strategy. The self-adapting variation con-
trol coefficient is in

0 (]) _ e(—&t/N_iter)(l—r(j)/rmax(j)) (10)
r (J Pbest] zpl j (11)
P (7) = max (p{;) ~ min (p!;) (12)

where t is the current iteration, N_iter is the maximum
iteration, ¢ is the coefficient, r(j) is the difference between the
jth dimension value of the current optimal individual and the
jth dimension average value of the population individual, and
Tmax ()is the maximum distance of the jth dimension in the
population.

From (10) ~ (12), it can be seen that the coefficient 0( ) can
be mainly considered from both iterative process and diver-
sity. The iterative part is controlled by the part of —¢-t/N _iter,
and the diversity is adjusted by the part of 1 —7(j)/#,.<(j)- On
the early iterations, the individuals have poor performance
and large diversity. So large coefficient can cause enough dis-
turbances to the population and enhance the global searching
ability. As iterations go on, the individuals in the population
have better performance and gradually decrease coefficient,
which can ensure that the algorithm converges to the optimal
value smoothly to reduce the search oscillation of the opti-
mal value. The solution method is shown in Algorithm 2.
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(1) Set the parameters
(2)

(3)for j=1.d

(4) gs_best = pfmt;
(5)

Obtain the best individual p},, and its fitness value fit(pj,,)-

Calculate the value of r(j) according to Eq.(11).
(6) Calculate the value of r
(7) Calculate the value of 6(j) according to Eq.(10).
(8) Calculate the value of levy according to Eq.(8).
9) gs-best(j) = gs_best(j) +60(j) - levy - péest,j;
(10) if fit(gs_best) < fit(p;,.;)

(j) according to Eq.(12).

(l l) pliest,j = gs—beSt(j)

(12) fit(p,..) = fit(gs_best)
(13) end

(14)end

ALGORITHM 2: The pseudocode of the optimal individual based on greedy levy variation.

(4) for t=1: N_iter

(17) end for

(18) Cross-border processing forpf) i
(19) Calculate the fitness fit(p;).
(20) if fit(p;) < fit(Ppest)

(21) Prest = Pi
(22) fit(Phest) = flt(Pt)
(23) end if

(24)  end for

(26)  variation(described in Algorithm 2).
(27) end for
(28) Output the best solution p,,,.

(1) Set the initial parameters, including the total population size #, the maximum number of
generations N_iter, control parameter a, w

(2) Generate a population p = (py, Pas weor Pis - P)-

(3) Calculate the fitness fit(p;) and find the best solution p,,, of the population.

max> Pmin>

(5) Calculate the value of w(t) according to Eq.(4).

(6) Calculate the value of , according to Eq.(5).

(7) for i=l:n

(8) for j=1:d

9) r, «— (2 * ) * rand()

(10) ry «— (2 —t/N_iter) * rand()

(11) Generate a rand r,.

(12) ifr, <0.5

(13) p;]. — w(t) - pf)j + 1y - sin(ry) - |7, -péest,j (1 +A-unifrnd(-1,1)) - pf,].I
(14) else

(15) p;]. — w(t) - pf)j + 1, - cos(ry) - |7y - Pll;est,j -(1+ A-unifrnd(-1,1)) - pf)jl
(16) end if

(25)  Perform the improved sine-cosine algorithm based on the greedy levy

A, and € et al.

AvLGoriTHM 3: Algorithm 3 is the pseudocode of the improved sine-cosine algorithm based on the greedy levy variation.

3.4. The Modified Sine-Cosine Algorithm Based on the Greedy
Levy Variation. The procedure of the improved sine-cosine
algorithm based on neighborhood search and the greedy
Levy variation is shown in Algorithm 3.

For the basic SCA algorithm, the time complexity of
creating the initial population is O(n), the time complexity
of performing sine and cosine operations is O(n_iter * n * d),
and the cross-border processing is O(n_iter * n). So the time

complexity of the basic SCA algorithm is O(n)+O(n_iter =
n) + O(n_iter * n * d). In the MSCA algorithm, the time
complexity of creating the initial population is O(n), and the
time complexity of calculating @(¢) and r, is O(2 *n_iter). The
time complexity of performing the sine and cosine operations
based on the neighborhood search is O(n.iter * n * d).
The time complexity of cross-border processing is O(n_iter *
n), and the time complexity of the greedy Levy mutation



operation is O(n_iter * d % n). Therefore, the time complexity
of the MSCA algorithm is O(n) + O(2 * n_iter) + O(n_iter *
n+*d)+O(niter * n) + O(n_ter x d *n) = O(n) + O((n+2) *
n_iter) + O(2 * n_iter * d = n). Obviously, the time complexity
of the MSCA algorithm is higher than that of the standard
SCA algorithm while both of them are in the same order of
magnitude.

4. Experimental Simulation

In order to verify the performance of MSCA, the experiment
will be conducted from the following three aspects: (1) Con-
trast experiment is conducted between MSCA and particle
swarm optimization (PSO) [8], differential evolution (DE)
[9], bat algorithm (BA) [33, 34], teaching-learning-based
optimization (TLBO) [35, 36], grey wolf optimizer (GWO)
[37], and basic SCA algorithm. (2) The effectiveness of 3 im-
provement strategies is analyzed. (3) The parameter A in the
optimal individual neighborhood search strategy and param-
eter ¢ in the greedy levy mutation strategy are analyzed, re-
spectively, and the effectiveness of the algorithm is discussed,
so that the specific reference value of the above parameters in
the algorithm can be determined.

4.1. Test Function and Experimental Platform

4.1.1. Experimental Platform. In order to provide a compre-
hensive and full test environment, the simulation experiment
is conducted in the test environment with operating system
of Windows 10, CPU of Intel (R) Core (TM) i5-4210U (quad
core), dominant frequency of 2.4GHZ and internal storage of
4GB, and programming tool of Matlab 2016b.

4.1.2. Benchmark Functions. In order to validate the per-
formance of the presented algorithm, 20 benchmark test
functions in the literature [38, 39] are selected as experi-
mental subjects, which have been widely used in the test.
The benchmark test functions selected can be categorized
into three types (i.e., unimodal high-dimensional functions,
multimodal high-dimensional functions, and multimodal
low-dimensional functions ). f; ~ f; are the unimodal high-
dimensional functions, and they can be used to investigate
the optimization precision of the algorithm, which can hardly
converge to the global optimal point. fg ~ f5 are the multi-
modal high-dimensional functions with several local extreme
points, which can be used to test the global searching per-
formance and ability to avoid premature convergence of the
algorithm. f;, ~ f,, are the multimodal low-dimensional
functions. As the optimal value of the most test functions
is zero, we select some test functions with nonzero optimal
value. The function name, expression, dimension, search
range, and theoretical optimal value are shown in Table 1.

4.2. Contrastive Analysis of Sine-Cosine Algorithm Based on
Greedy Levy Mutation. In order to evaluate the performance
of the algorithm proposed in this paper, six algorithms are
selected as contrast algorithms in the experiment, that is,
PSO, DE, BA, TLBO, GWO, and SCA, respectively. The
contrast algorithms selected the same parameters as the
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original literature and the parameter setting as shown in
Table 2. The parameters of the MSCA algorithm are set as
follows. The population size is 100. The minimum inertia
weight w, ., is 0.9. The minimum inertia weight w,;,, is 0.4. €
is 30. A is 0.0L. The other parameters are consistent with the
basic SCA. For each test function, the number of iterations is
5000, and each algorithm runs independently 20 times. The
performance of each algorithm is measured by four indexes,
which are optimal value, average value, worst value, and
variance. The statistical results are as shown in Tables 3-5.

It can be seen from Table 3 that 5 theoretical optimal
values (f;, f,, f3,f4> and fg) are searched by the MSCA algo-
rithm for the 7 unimodal high-dimensional functions, and
the searching precision of another two functions (f; and
f7) is also close to the theoretical optimal values. The
MSCA algorithm performs better than PSO, DE, BA, and
CSA algorithms in the aspect of optimal value, average
value, worst value, and variance. For f,, f,, andf,, both
TLBO algorithm and MSCA algorithm can search the global
optimal theoretical value. For f;, f5, fq, and f;, the MSCA
algorithm obtains better results than the TLBO algorithm.
The MSCA algorithm obtains better results than the GWO
algorithm besides f; (both algorithms can search the global
optimal value). It shows that the MSCA algorithm has a
great advantage in the searching precision of unimodal high-
dimensional problems.

From the search results of the multimodal high-dimen-
sional functions in Table 4, it can be seen that 3 functions
(fs> fo» and f;;) obtain the globally optimal solution in the
MSCA algorithm, and the search results of the other func-
tions are also better than in the other 6 algorithms. The
search result of the PSO algorithm is not good, and the
search result of the DE algorithm is better than BA, TLBO,
GWO, and CSA algorithms. In contrast to TLBO, MCSA has
better performance in the aspect of optimal value, average
value, worst value, and variance (besides f;, ), which indicates
the superiority of optimization results of the MSCA in the
multimodal high-dimensional functions.

It can be seen from Tables 3 and 4 that the search ability
of MCSA is better than that of the TLBA in most high-
dimensional functions. Both MCSA and TLBA find out the
global optimizing in other functions (i.e., f, f,, fs> and fi;).

For multimodal low-dimensional functions (f1, ~ f50)
most functions have the characteristics of strong shocks. The
low-dimensional functions are usually used to test the ability
of the algorithm in breaking away from the local optimum.
From the search results of low-dimensional multimodal
functions in Table 5, it can be seen that the MSCA algorithm
obtains the global optimal solution of all functions, while the
basic CSA algorithm has poor stability in solving such prob-
lems. MSCA, DE, TLBO, and GWO can obtain theoretical
optimal value, illustrating that the four algorithms have the
ability of jumping out the local optimal values in multimodal
low-dimensional functions.

Figures 1-7 show the convergence curves of optimal
results for some high-dimensional functions by the 7 algo-
rithms. The data in the figures show the optimal results based
on the 7 algorithms after 20 independent experiments. For
the convenience of drawing, the abscissa takes the number
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TABLE 2: The parameters set of all other algorithms.

Algorithms Parameters

PSO the population size is 100, cl = 1.49445, c2 = 1.49445, ® = 0.729

DE the population size is 100, pCR=0.2, ,.;, = 0.2, B0 = 0.8

BA the population size is 100, Qmin=0, Qmax=2, R =01,A=09,a= 0.95,y =0.9
TLBO the population size is 100, TF=2 or 1

GWO the population size is 100

SCA the population size is 100, a=2

Best value of function f; (log;(f; (x)))

Best value of function f3(log, (f3(x)))

-100

=200

=300

-100

=200

-300

1000 2000 3000 4000 5000
Number of iterations
—— PSO —— GWO
—o— DE —>— SCA
—— BA —o— MSCA
—— TLBO
F1GURE 1: Convergence rates for f;(x).
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F1GURE 2: Convergence rates for f;(x).
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FIGURE 3: Convergence rates for f;(x).
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Best value of function fy(log; (fg(x)))
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FIGURE 5: Convergence rates for f,(x).
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FIGURE 6: Convergence rates for f(x).

of iterations, and the ordinate takes the logarithm of fitness
value for f,, f5, fo, and f;;. Besides, the ordinate takes the
fitness value for fs, f,,and f,5. It can be seen from Figures 1-7
that the MSCA algorithm has faster convergence speed and
higher optimization precision than the other 6 intelligence
algorithms.

In order to verify that the performance of the pro-
posed algorithm has significant advantages over other intel-
ligence algorithms, the statistics are carried out (optimal
value, average value, worst value, and variance) for the 7
algorithms after 20 independent experiments, and t-test is
also used in the experiments for the significance analysis
of the optimization results. The function ttest (x,0.05,
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F1GURE 7: Convergence rates for fi5(x).

“left”) is verified in the experiments. Here, “x” means the
experimental result of MSCA algorithm. “y” means the
experimental result of contrast algorithms. The significance
level is 0.05, and “left” means left-tailed test. The test
results are shown in Table 6. “+” indicates that the MSCA
algorithm has significant advantages over the contrast algo-
rithms. “=” indicates that there is no significant difference
between the MSCA algorithm and the contrast algorithms.
“-” indicates that the MSCA algorithm is inferior to the
contrast algorithms. According to the data listed in cor-
relation Table 6, compared with the PSO, DE, BA, TLBO,
GWO, and SCA algorithms, there are 20, 13, 19, 12, 15, and
17 test functions, respectively, in significant advantages. For
f1g> the search results of the MSCA algorithm are inferior
to that of the DE, BA, and TLBO algorithms. In addition,
there is no significant difference between the MSCA algo-
rithm and other contrast algorithms for the search results of
other test functions (such asfg, fo, fi1> fi3> fie f15> and fie
in the DE algorithm). The main reason is that both the
MSCA algorithm and contrast algorithms can obtain the
global theoretical solution.

4.3. Efficiency Analysis of the Improvement Strategy. In order
to analyze the influence of the three improvement strategies
on the performance of SCA algorithm, the odd-numbered
standard test functions in Table 1 have been used to exper-
imentalize. In the C-SCA algorithm, the linear decreasing
inertia weight and exponential decreasing conversion param-
eter strategy are combined with the basic SCA algorithm.
In the N-SCA algorithm, optimal individual neighborhood
search strategy is combined with the basic SCA algorithm. In
the G-SCA algorithm, the greedy Levy mutation strategy is
combined with the basic SCA algorithm. The C-SCA, N-SCA,
G-SCA, and the basic SCA are compared with the proposed
algorithm. The experimental parameters are consistent with
those in Section 4.2. Table 7 summarizes the experimental
results of the three strategies and the proposed algorithm. It
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TABLE 8: Test statistical results of Wilcoxon rank sum test.
Function C-SCA /SCA N-SCA /SCA G-SCA /SCA
P value Sig. P value Sig. P value Sig.
X .7956e- + . = .7956e- +
f1(x) 6.7956e-08 0.0909 6.7956e-08
X 5. e- .635 = .7956e- +
f3(x) 8923e-08 0.6359 6.7956e-08
f5(x) 0.6554 = 0.3369 = 6.7956e-08 +
£,(x) 0.4094 ~ 0.7557 ~ 6.7956e-08 +
fo(x) NaN NaN = NaN =
Ju) NaN = NaN = NaN ~
X . e- + . =~ . e- +
13(x) 2.6898e-06 0.2184 6.7956e-08
X . = . ~ . +
frs(x) 0.4570 0.7972 0.0123
X . =~ . =~ . e- +
17(x) 0.6168 0.9461 8.0065e-09
X . = 797 = 5.3656e- +
19(x) 0.3942 0.7972 3656e-08
number of winners (+/=) 3/7 0/0 8/2

can be seen from the experimental results that the C-SCA
which used a single strategy makes a limited improvement
on the search performance of the functions besides f;(x)
and f;(x). The N-SCA algorithm is basically the same as
the basic SCA algorithm. The G-SCA strategy has better
improvement effect on the test functions f,(x), f;(x), and
f>(x), while it has basically the same search results of other
test functions as the basic SCA algorithm. However, when
the three improvement strategies work together with the SCA
algorithm, the search performance of the proposed algorithm
can be greatly improved. The main reasons are analyzed as fol-
lows. Firstly, the optimal individual neighborhood research
allows the random individuals near the current optimal
individuals to play the roles of the leader, which increases
the probability of the proposed algorithm jumping out of the
local optimal solution. Secondly, the greedy Levy mutation
strategy increases the diversity of population and adequacy
oflocal search. Thirdly, as the linear decreasing inertia weight
and exponential declining conversion parameter method are
used, the algorithm chooses larger inertia weight value and
conversion parameter value in the early iteration, which is
conducive to the global searching ability of the algorithm.
In the later iteration, the algorithm chooses smaller values,
which is conducive to the local search. Thus, the presented
algorithm avoids falling into the local optimum. The solution
precision and convergence speed are significantly improved
by the collaboration of the three improvement strategies.

From the results of Wilcoxon rank sum test in Table 8,
it can be seen that the C-SCA algorithm has significant
advantages over the basic SCA algorithm only in the test
results of functions f;(x), f5(x), and f5(x). There is no
significant difference between the N-SCA algorithm and the
basic SCA algorithm. The G-SCA algorithm has significant
advantages over the basic SCA algorithm in the searching
performance other than fy(x) and f;(x).

4.4. Parameter Sensitivity Analysis in the Algorithm

4.4.1. The Analysis of Parameter A in the Optimal Individual
Domain Search Strategy. In order to explore the influence
of the parameter A in the optimal individual domain search

strategy, the even-numbered standard test functions in
Table 1 are selected. The parameter A takes 0.005, 0.01, 0.02,
0.03, and 0.05, respectively, for independent experiments,
with other parameters unchanged. The optimal individual
domain search strategy independently acts on the SCA
algorithm (N-SCA). Table 9 summarizes the results when the
N-SCA algorithm takes different values of A. Here, the black
boldface means the winners in the comparison expressed
by “+”. It can be seen from the last row of Table 9 that the
number of the winners is 3 when A = 0.01, which is better
than other cases. Therefore, A = 0.01 is the optimal parameter
selected.

4.4.2. The Analysis of Parameter € in the Greedy levy Mutation
Strategy. The value of parameter ¢ has a great effect on the
algorithm performance in the self-adapting mutation mode
adopted in (10). In order to explore the influence of the
parameter ¢ on the searching performance of the algorithm,
the even-numbered standard test functions in Table1 are
selected. The parameter ¢ takes 10, 30, 60, and 90, respec-
tively, for independent experiments, with other parameters
unchanged. The greedy levy mutation strategy independently
acts on the SCA algorithm (G-SCA). Table 10 summarizes the
results when the G-SCA algorithm takes different values of ¢.
Here, the optimal results are marked with “+” and showed by
overstriking. It can be seen from Table 10 that when & takes
10, 30, 60, and 90, respectively, the number of optimal search
results obtained by GLM-SCA is 1, 5, 0, and 1, respectively.
When e=30, the search results of GLM-SCA are much better
than those of other values. Therefore, e=30 is a reasonable
parameter chosen.

5. Conclusion

An improved sine-cosine algorithm based on greedy levy
mutation is proposed in this paper. The proposed algorithm
adopts the method of both exponential decreasing conversion
parameter and linear decreasing inertia weight to better
balance the global searching and local development ability
of the algorithm. The update mode guided by the of random
individual near the optimal individuals is introduced, which
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TABLE 9: Statistical results for different values of A.

Function A =0.005 A=0.01 A =0.02 A=0.03 A =0.05

(mean) (' mean) (' mean) (' mean) (' mean)
fr(x) 1.46279E-57 6.15031E-58 2.04298E-57 5.87904E-57 2.34908E-58(+)
fu(x) 2.45329E-29 3.29394E-30(+) 1.00414E-29 7.65892E-30 2.45329E-29
fo(x) 3.68341 3.63003(+) 3.68868 3.72788 3.63373
f3(x) -4363.10086 -4312.00222 -4446.01569(+) -4410.44537 -4371.62707
Jfro(x) 0.41008 0.08565 0.03147(+) 0.37909 0.07129
f1a(x) 0.34002(+) 0.35838 0.34005 0.34630 0.33576
fra(x) 0.99800 0.99800 0.99800 0.99800 0.99800
fr6(x) -1.03163 -1.03163 -1.03163 -1.03163 -1.03163
Sfrs(x) 3.00000 3.00000 3.00000 3.00000 3.00000
fro(x) -3.03411 -3.07592(+) -3.05259 -3.04242 -3.03034
number of winners 1 3 2 0 1

TABLE 10: Statistical results for different values of ¢.
Function e=10 e=30 =60 =90
(mean) ( mean) ( mean) ( mean)

£(x) 2.1934E-150 1.7432E-152(+) 1.5276E-150 9.7415E-152
fa(x) 6.19395E-36 5.81864E-37 9.3441E-38 2.0556E-38(+)
fo(x) 0.00152 0.00148(+) 0.00151 0.00153
fo(x) -7566.98206 -7598.33875(+) -7561.27736 -7596.35448
Sro(x) 0.198701(+) 0.398512 0.398299 0.398304
Fra(%) 0.00026 0.00024(+) 0.00027 0.00025
fra(x) 0.99800 0.99800 0.99800 0.99800
fr6(x) -1.03163 -1.03163 -1.03163 -1.03163
frs(x) 3.00000 3.00000 3.00000 3.00000
Foo() -3.25517 -3.23962(+) -3.23028 -3.23419
number of winners 1 0 1

increases the probability of algorithm jumping out of the local
extremum. Inspired by the levy flight mode of long-term
short-distance migration and occasional long-distance jump,
a self-adapting greedy levy mutation strategy is designed
to mutate the optimal individuals. The proposed strategy
can increase the population diversity and reduce the search
oscillation of algorithm, making the algorithm converge to
the global optimum smoothly. Twenty typical benchmark
test functions are applied to verify the performance of the
proposed algorithm. The results show that the searching pre-
cision and convergence speed of the proposed algorithm can
be greatly improved through the collaboration of the three
improvement strategies. At the same time, the contribution of
the three improvement strategies to the proposed algorithm
is analyzed in detail. The influence of parameter selection on
the algorithm performance is discussed, and suggestions on
parameter selection are also given in this paper. However,
the proposed algorithm is still theoretically and practically
in its infancy stage, and the setting of the parameters in
the algorithm is determined by empirical tests. At the same
time, when the algorithm introduces greedy Levy mutation
strategy, the time complexity of the algorithm is greatly

increased. Therefore, the proposed algorithm only conducts
the greedy Levy mutation strategy on the best individual at
each iteration.
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