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AbstractÐIn this paper, we propose a modified version of the K-means algorithm

to cluster data. The proposed algorithm adopts a novel nonmetric distance

measure based on the idea of ªpoint symmetry.º This kind of ªpoint symmetry

distanceº can be applied in data clustering and human face detection. Several data

sets are used to illustrate its effectiveness.

Index TermsÐData clustering, pattern recognition, k-means algorithm, face

detection.
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1 INTRODUCTION

CLUSTER analysis is one of the basic tools for exploring the
underlying structure of a given data set and is being applied in a
wide variety of engineering and scientific disciplines such as
medicine, psychology, biology, sociology, pattern recognition, and
image processing. The primary objective of cluster analysis is to
partition a given data set of multidimensional vectors (patterns)
into so-called homogeneous clusters such that patterns within a
cluster are more similar to each other than patterns belonging to
different clusters. Cluster seeking is very experiment-oriented in
the sense that cluster algorithms that can deal with all situations
are not yet available. Extensive and good overviews of clustering
algorithms can be found in the literature [1], [2], [3], [4], [5], [6].
Perhaps the best-known and most widely used member of the
family is the K-means algorithm or the Isodata algorithm [7].
Lately, neural networks, for example, competitive-learning net-
works [8], self-organizing feature maps [9], [10], and adaptive
resonance theory (ART) networks [11], [12] also have often been
used to cluster data. Each approach has its own merits and
disadvantages.

While it is easy to consider the idea of a data cluster on a rather

informal basis, it is very difficult to give a formal and universal

definition of a cluster. Most of the conventional clustering methods

assume that patterns having similar locations or constant density

create a single cluster. Location or density becomes a characteristic

property of a cluster. Other properties of clusters are proposed based

on human perception [13] or specific tasks (e.g., shape from texture

[14]). The properties of clusters have to be specified before clustering

is performed, however, they are usually unknown in advance.
In order to mathematically identify clusters in a data set, it is

usually necessary to first define a measure of similarity or

proximity which will establish a rule for assigning patterns to

the domain of a particular cluster center. As it is to be expected, the

measure of similarity is problem dependent. The most popular

similarity measure is the Euclidean distance. The smaller the

distance, the greater the similarity. By using Euclidean distance as
a measure of similarity, hyperspherical-shaped clusters of equal
size are usually detected. This measure is useless or even
undesirable when clusters tend to develop along principal axes.
To take care of hyperellipsoidal-shaped clusters, the Mahalanobis
distance from x to m, D�x;m� � �xÿm�T�ÿ1�xÿm�, is one of the
popular choices. The matrix � is the covariance matrix of a pattern
population, m is the mean vector, and x represents an input
pattern. One of the major difficulties associated with using the
Mahalanobis distance as a similarity measure is that we have to
recompute the inverse of the sample covariance matrix every time
a pattern changes its cluster domain, which is computationally
expensive.

In fact, not only similarity measures, but also the number of
clusters which cannot always be defined a priori will influence the
clustering results. One popular approach to specifying the number
of clusters is to increase the number of clusters and to compute some
certain performance measures in each run, until partition into an
optimal number of clusters is obtained. A good overview of cluster
validation is given in [1]. A new approach proposed by Su et al. [15],
Su and Chang [16] is to interpret self-organizing feature maps
trained by the data sets. In this paper, we focus on the selection of
similarity measures. We propose a nonmetric measure based on the
concept of point symmetry. We intend to trade-off flexibility in
clustering data with computational complexity. The paper is
organized as follows: In Section 2, we briefly present the idea of
point symmetry and the proposed point symmetry distance. In
Section 3, the clustering algorithm employing the point symmetry
distance is discussed. Several examples are used to demonstrate the
effectiveness of the new algorithm. Section 4 presents the simulation
results. Finally, Section 5 concludes the paper.

2 THE POINT SYMMETRY DISTANCE

Unless a meaningful measure of distance or proximity between

pairs of objects has been established, no meaningful cluster

analysis is possible. The most common proximity index is the

Minkowski metric, which measures dissimilarity [1]. Given N

patterns, xi � �xi1; � � � ; xin�T , i � 1; 2; � � � ; N the Minkowski metric

for measuring the dissimilarity between the jth and kth patterns is

defined by

d�j; k� �
Xn
i�1

jxji ÿ xkijr
 !1=r

�1�

where r � 1. The Euclidean distance �r � 2� is one of the most
common Minkowski distance metrics. By using the Euclidean
distance, the conventional K-means algorithm tends to detect
hyperspherical-shaped clusters.

Since clusters can be of arbitrary shapes and sizes, the

Minkowski metrics seem not a good choice for situations where

no a priori information about the geometric characteristics of the

data set to be clustered exists. Therefore, we have to find another

more flexible measure. One of the basic features of shapes and

objects is symmetry. Symmetry is considered a preattentive feature

which enhances recognition and reconstruction of shapes and

objects [17]. Looking around us, we get the immediate impression

that almost every interesting area consists of a qualitative and

generalized form of symmetry. Symmetry is such a powerful

concept and its workings can be seen in many aspects of the world.

For example, a square, a cube, or a four-bladed propeller can all be

turned 90 degrees without apparent change; they are said to have a

674 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 23, NO. 6, JUNE 2001

. M.-C. Su is with the Department of Computer Science and Information
Engineering, National Central University, Chung-Li, Taiwan 320, R.O.C.
E-mail: muchun@csie.ncu.edu.tw.

. C.-H. Chou is with the Department of Electrical Engineering, Tamkang
University, Tamsui, Taiwan 25137, R.O.C. E-mail: ister@ms19.hinet.net.

Manuscript received 9 Feb. 2000; revised 13 July 2000; accepted 23 Jan. 2001.
Recommended for acceptance by P. Meer.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 111428.

0162-8828/01/$10.00 ß 2001 IEEE



ªfour-fold axis of symmetry.º A sphere has the highest possible

symmetry; no twist or turn is detectable. The common starfish has

five appropriate planes of symmetry and a five-fold rotation axis.

Crystals of chemical substances show symmetry that derives from

the lattice of molecules composing them. Symmetry is also an

important parameter in physical and chemical processes and is an

important criterion in medical diagnosis. They show how the laws

of nature give symmetry to their products. However, the exact

mathematical definition of symmetry [18], [19] is inadequate to

describe and quantify symmetry found in the natural world or

those found in the visual world.
Since symmetry is so common in the abstract and in nature, it is

reasonable to assume some kinds of symmetry exit in the

structures of clusters. Based on this idea, we will assign patterns

to a cluster center if they present a symmetrical structure with

respect to the cluster center. The immediate problem is how to find

a metric to measure symmetry. A kind of symmetrical metric has

been proposed by Reisfeld et al. and they used the symmetry

transform as context-free attention operators [20]. For our opinions,

their symmetrical metric is useful in image processing instead of in

cluster analysis. Another kind of ªsymmetry distanceº has been

proposed by Zabrodsky et al. and their goal is to detect symmetry

in a figure extracted from an image [21]. Their basic strategy is to

choose the symmetry that is the ªclosestº to the figure measured by

an appropriate metric, in which they adopted the minimum sum of

the squared distances over which the vertices must be removed to

impose the assumed symmetry; they call it the symmetry distance. It
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Fig. 2. (a) The data set contains of a mixture of compact spherical and ellipsoidal clusters. (b) The clustering result achieved by the K-means algorithm with the Euclidean

distance. (c) The final clustering result achieved by the SBKM algorithm. (d) The clustering result achieved by the SBCL algorithm.

Fig. 1. An example of the point symmetry distance.



follows that we need an algorithm for efficiently imposing a given

symmetry with a minimum displacement [22]. In the K-means

algorithm, the cluster centroids represent the most important

information. Therefore, ªpoint symmetryº (symmetry about a

point, in this case, the cluster center) is suitable to be applied in the

K-means algorithm.

Based on above discussions, we propose a nonmetric distance

based on the concept of point symmetry. The point symmetry

distance is defined as follows: Given N patterns, xi; i � 1; � � � ; N ,

and a reference vector c (e.g., a cluster centroid), the ªpoint

symmetry distanceº between a pattern xj and the reference vector

c is defined as

ds�xj; c� � min
i�1;���;N
and i 6�j

jj�xj ÿ c� � �xi ÿ c�jj
�jjxj ÿ cjj � jjxi ÿ cjj�

; �2�

where the denominator term is used to normalize the point

symmetry distance so as to make the point symmetry distance

insensible to the Euclidean distances jjxj ÿ cjj and jjxi ÿ cjj. If the

right hand term of (2) is minimized when xi � xj�, then the pattern

xj� is denoted as the symmetrical pattern relative to xj with respect

to c. Note that (2) is minimized when the pattern xi � �2cÿ xj� exists

in the data set (i.e., ds�xj; c� � 0). The idea of the point symmetry is

very simple and intuitive. It is instructed to observe the geometrical

interpretation of the definition of the point symmetry distance. Fig. 1

gives the concept. For this case, we have four patterns x1 � �2; 0�T ,

x2 � �ÿ2; 0�T , x3 � �0; 1�T , x4 � �1;ÿ2�T , and one reference vector

c � �0; 0�T . According to (2), we can easily compute

ds�x1; c� �
jj�x1 ÿ c� � �x2 ÿ c�jj
jj�x1 ÿ c�jj � jj�x2 ÿ c�jj

� 0

2� 2
� 0;

ds�x2; c� �
jj�x2 ÿ c� � �x1 ÿ c�jj
jj�x2 ÿ c�jj � jj�x1 ÿ c�jj

� 0

2� 2
� 0;

ds�x3; c� �
jj�x3 ÿ c� � �x4 ÿ c�jj
jj�x3 ÿ c�jj � jj�x4 ÿ c�jj

�
���
2
p

1� ���
5
p � 0:437;

and

ds�x4; c� �
jj�x4 ÿ c� � �x3 ÿ c�jj
jj�x4 ÿ c�jj � jj�x3 ÿ c�jj

�
���
2
p���
5
p � 1

� 0:437:

Understandably, the patterns x1 and x2 are the most symmetrical

pair relative to the reference vector c in Fig. 1.
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Fig. 3. (a) The data set contains two ellipsoidal shells. (b) The clustering result achieved by the K-means algorithm with the Euclidean distance. (c) The final clustering

result achieved by the SBKM algorithm. (d) The clustering result achieved by the SBCL algorithm.



3 THE PROPOSED CLUSTERING ALGORITHM

In previous work [23], we proposed a new competitive learning
algorithm for training single-layer neural networks to cluster data.
The detected cluster may be a set of clusters of different
geometrical structures. Neurons compete with each other based
on the point symmetry distance instead of the Euclidean distance.
The symmetry-based competitive learning (SBCL) algorithm works
well for cases where data sets do not contain crossed geometrical
structures or they do not overlap too much. In this paper,
we propose a symmetry-based version of the K-means
(SBKM) algorithm. The SBKM algorithm is more effective than
the SBCL algorithm. The SBKM algorithm is presented as follows:

Step 1: Initialization. We randomly choose K data points from the
data set to initialize K cluster centroids, c1, c2 . . . ; cK .

Step 2: Coarse-Tuning. Now, use the ordinary K-means algorithm
with the Euclidean distance to update the K cluster centroids.
After the K cluster centroids converge or some kind of
terminating criteria is satisfied, we then proceed to the fine-
tuning procedure.

Step 3: Fine-Tuning. For pattern x, find the cluster centroid
nearest it in the symmetrical sense. That is, we find the cluster
centroid k� which is nearest to the input pattern x using the
minimum-value criterion:

k� � Arg min
k�1;...;K

ds�x; ck�; �3�

where the point symmetry distance ds�x; ck� is computed by (2).
If the point symmetry distance ds�x; ck�� is smaller than a
prespecified parameter �, then assign the data point x to the
k�th cluster. Otherwise, the data point is assigned to the cluster
centroid k� using the following criterion:

k� � Arg min
k�1;...;K

d�x; ck�; �4�

where d�x; ck� is the Euclidean distance between the input
pattern and the cluster centroid ck.

Step 4: Updating. Compute the new centroids of the K clusters.
The updating rule is given below:

ck�t� 1� � 1

Nk

X
i2Sk�t�

xi; �5�

where Sk�t� is the set whose elements are the patterns
assigned to the kth cluster at time t and Nk is the number
of elements in Sk.

Step 5: Continuation. If no patterns change categories or the
number of iterations has reached a prespecified maximum
number, then stop. Otherwise, go to Step 3.
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Fig. 4. (a) The data set contains a combination of two crossed lines. (b) The clustering result achieved by the K-means algorithm with the Euclidean distance (c) The final

clustering result achieved by the SBKM algorithm. (d) The clustering result achieved by the SBCL algorithm.



4 EXPERIMENTAL RESULTS

We used four examples to compare the SBKM algorithm and the

SBCL algorithm. In addition, we use one example to show how to

use the point symmetry distance in face detections The parameter �

is chosen for 0.18 and this was kept the same irrespective of the

data sets used. Since the K-means algorithm is very sensitive to the

choice of cluster centers, the best results in ten trials for each data

set are reported in this paper. However, we want to emphasize that

the majority of the ten trials have the same clustering results.

Example 1. We generated a mixture of spherical and ellipsoidal

clusters, as shown in Fig. 2a. There is no clear border between

the clusters. The total number of data points is 577. According

to the SBKM algorithm, we first clustered the data sets using the

ordinary K-means algorithm with the Euclidean distance.

Fig. 2b shows the clustering result. We notice that there are

several misclassified data points. We then used the point

symmetry distance as the dissimilarity measure and entered the

fine-tuning procedure. The clustering result is given in Fig. 2c.

Obviously, the clustering performance was greatly improved.

Fig. 2d shows the clustering result of the SBCL algorithm. The

two clustering results shown in Fig. 2c and Fig. 2d are identical.

Example 2. This data set contains 300 data points distributed on
two crossed ellipsoidal shells, as shown in Fig. 3a. We use this

example to illustrate that the proposed algorithm incorporated

with point symmetry distance can also be applied to detect

ring-shaped clusters even if they are crossed. The detection of

ring-shaped clusters from a digital image is important in

industrial applications. Fig. 3b shows the clustering result

achieved by the ordinary K-means algorithm with the Eu-

clidean distance. Fig. 3c illustrates the final result achieved by

the SBKM algorithm. Fig. 3d shows the clustering result of the

SBCL algorithm. We find that the SBCL algorithm cannot work

well for this case.

Example 3. The data set consists of two crossed lines. On each line,

200 data points are distributed, as shown in Fig. 4a. The

clustering result achieved by the ordinary K-means algorithm

with the Euclidean distance is shown in Fig. 4b. The final

clustering result of the SBKM algorithm is given in Fig. 4c. This

example shows that the proposed algorithm works well for

clusters with linear structures even if they are crossed. Fig. 4d

shows the clustering result of the SBCL algorithm. We notice

that the SBCL algorithm cannot work well for this example.

Example 4. This data set is a combination of ring-shaped, compact,

and linear clusters, as shown in Fig. 5a. The ring-shaped cluster

and the linear cluster are crossed to each other. The total

number of data points is 300. Most clustering algorithms based

on objective function minimization fail to detect this kind of

678 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 23, NO. 6, JUNE 2001

Fig. 5. (a) The data set contains a combination of ring-shaped, compact, and linear clusters. (b) The clustering result achieved by the K-means algorithm with the

Euclidean distance. (c) The final clustering result achieved by the SBKM algorithm. (d) The clustering result achieved by the SBCL algorithm.



data sets because their performance depends on the dissim-
ilarity measures used to generate a partition of the data sets. As
we discussed in Section 2, those popular metrics can only
characterize clusters which are compact. The clustering result
achieved by the ordinary K-means algorithm with the Eu-
clidean distance is shown in Fig. 5b. The final clustering result
of the SBKM algorithm is illustrated in Fig. 5c. This example
shows that the proposed algorithm works well for a set of
clusters of different geometrical structures. Fig. 5d shows the

clustering result of the SBCL algorithm. Obviously, the

SBCL algorithm can't get a good experimental result in this

example.

Example 5. In this example, we show how to apply the point

symmetry distance in face detection. Detecting a face in a

complex background is a difficult problem. In fact, it is not a

trivial task since the sizes and orientations of the objects of

interest may vary a lot. We assume the human face can be
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Fig. 6. (a) The original image. (b) The result after applying Sobel operator. (c) The thinned image. (d) The detected human face.

Fig. 7. Face detection: (a) The four original images and (b) the detected faces.



approximated by an ellipsoidal-shape. First, we use the
Sobel operator to find the edge map of the original image and
use a thinning algorithm [24] to thin the edge image. The idea of
proposed approach is based on the symmetrical feature of the
human face. We assume the object pixels in an edge image to be
the data points and measure the degree of symmetry of these
object pixels within a image region by using the point
symmetry distance. Then, the image region with the largest
degree of symmetry contains a face candidate. Using the
proposed approach, the face region can be located and clipped
out of the image. Fig. 6a gives an example of the original image,
which included a human face in a complex background. Fig. 6b
shows the edge image by using the Sobel operator. The thinned
image is given in Fig. 6c. Fig. 6d illustrates that the proposed
algorithm can be used to detect a human face in a complex
background. We also used the same algorithm to test the image
shown in Fig. 7a. For these four images, the detected faces are
shown in Fig. 7b.

5 CONCLUSIONS

Although the SBCL algorithm and the SBKM algorithm both use
the point symmetry distance as the dissimilarity measure, the
SBKM algorithm outperformed the SBCL algorithm in many cases,
e.g., in Examples 2, 3, and 4. The proposed SBKM algorithm can be
used to group a given data set into a set of clusters of different
geometrical structures. The price paid for the flexibility in
detecting clusters is an increase of computational complexity.
Besides, we can also apply the point symmetry distance to detect
human faces. The experimental results are encouraging.
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