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implements a kind of Hebbian learning and we trained the network with sparse 
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Abstract 
 

An important research topic in neuroscience is the study of mechanisms underlying 
memory and the estimation of the information capacity of the biological system. In 
this report we investigate the performance of a modular attractor network with 
recurrent connections similar to the cortical long- range connections extending in the 
horizontal direction. We considered a single learning rule, the BCPNN, which 
implements a kind of Hebbian learning and we trained the network with sparse 
random patterns. The storage capacity was measured experimentally for networks of 
size between 500 and 46K units with a constant activity level, gradually diluting the 
connectivity. We show that the storage capacity of the modular network is comparable 
with the theoretical values estimated for simple associative memories and furthermore 
we introduce a new technique to reduce the connectivity, which enhances the storage 
capacity up to the asymptotic value. 

 

 
Introduction 
 
The basic mechanism of information processing in the cortex is supposed to be a kind of 
association between concepts (Palm 1982, Rolls & Treves 1998).   Information acquired 
through the senses is stored by creating an internal representation corresponding to a pattern 
of elevated neuronal activities. Later the brain is able to remember and recognize a pattern 
stored previously even if just a partial or distorted external stimulus is provided. This primary 
process has been extensively investigated giving rise to a specific type of artificial network, 
the Neural Associative Memory. Most of associative memory models are based on Hebb's 
theory of cell assemblies. Hebb hypothesized that synaptic connections increase their strength 
when two neurons are simultaneously active and when groups of neurons tend to be active at 
the same time and repeatedly, a kind of association can be assumed thus forming a cell-
assembly (Hebb, 1949). These concepts have been formalized slightly different in the 
Willshaw-Palm and Little-Hopefield models (Willshaw et al., 1969, Palm 1980, Hopefield 
1982), followed by more realistic attractor memory models including spiking neurons and 
conductance-based synapses (Fransen & Lansner 1995, Compte et al. 2000). The process of 
association can be realized through two different mechanisms: hetero-association which 
connects two different patterns and auto-association which connects one pattern to itself. A 
key issue concerns the amount of information that a system is able to store and recall 
correctly. The storage capacity of a network can be expressed in terms of number of patterns 
(pattern capacity) stored in the whole system or number of bits (information capacity) stored 
in the whole system or per synapse. Optimal values for the storage capacity have been 
estimated through the analysis of each specific model, using different methods. Without a 
global optimization procedure, the upper values obtained in the limit of large networks can be 
considerably lower. The main results have recently been summarized by Palm (2013). 
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Asymptotic bounds are typically computed for full connectivity and depend upon the specific 
learning rule, the task performed by the network and the activity level. The connectivity and 
the retrieval procedure can also affect the asymptotic value, but on a smaller scale (Bosh & 
Kurfess 1998, Schwenker, Sommer & Palm 1996). The storage capacity obtained for auto-
associative memories with a local learning rule is half of the corresponding value achieved 
with hetero-association since the memory matrix is symmetric and contains roughly half of 
the information of an arbitrary matrix of the same size (Palm, 1992). In this report we 
investigate pattern completion of sparse Hebbian auto-associative memories, in different 
operating conditions. For such networks, the asymptotic completion capacity obtained with 
one step retrieval is,  ln2⁄4  ≅0.17 for binary storage and 1⁄8ln2  ≅0.18  for additive storage 
(Willshaw et al. 1969, Palm 1980, Palm 1988, Palm 1991). Higher capacities have been 
obtained with iterative retrieval and a pattern recognition task, namely  ln2⁄2  ≅0.34 for the 
binary Hebb rule and  1⁄4ln2  ≅0.36  for the additive Hebb rule (Palm & Sommer, 1992). An 
extensive study on the storage capacity of large auto-associative networks has been presented 
by Treves and Rolls (1991). Through the analysis of a wide class of models, with different 
Hebbian learning rules and architectures, they showed that the storage capacity is mostly 
affected by the sparseness of the neuronal representation and by the number of synapses per 
neuron rather than by the total number of units and connections in the system. They showed 
also that in the limit of sparse coding, the total number of patterns that can be stored in an 
auto-associative network with diluted connectivity is roughly proportional to the number of 
connections per neuron. . In the first section we briefly introduce attractor networks and the 
specific model we use, the Bayesian Confidence Propagation Neural Network (BCPNN). The 
second section outlines the new features we have introduced in the model, in the third section 
we present the details of the method and finally the results of the numerical simulations, 
followed by the discussion. 
 
 
Attractor Networks and neocortex 

 
Attractor networks are currently considered, both for their architecture and dynamical 
properties, one of the best abstract model of the cerebral cortex (Palm 1981, Hopefield 1982, 
Amit 1989, Rolls & Treves 1998, Lansner 2009). This type of network can generically be 
described as a system of N interacting units which converges over time towards a stable state 
belonging to some subspace. The time evolution can vary depending on whether the 
trajectories in the state space are strongly or weakly affected by the initial states. Different 
kind of equilibrium states or attractors can be reached such as fixed point, cyclic, line or 
chaotic attractors. In the simplest form of these neural networks, stationary fixed point 
attractors are identified with memories. When the network is in an attractor state, each unit 
persists in the same state over time, but activity is terminated by neural adaptation and 
synaptic depression. Attractor networks are thus a formalization of Hebbian learning, 
implemented in different ways through several learning rules, accounting for the complex 
phenomena leading to the changes in the synaptic efficacies. For this type of network, a key 
parameter is the size of the basins of attraction of the stored memories. The set of points in 
the states space from which the system evolves to an attractor, defines its basin of attraction. 
Similar patterns, corresponding to states lying in the same basin will be recalled as a single 
memory. Spurious stationary states can arise from the overlapping of patterns, leading to a 
loss of information since they can disturb the retrieval process. The idea that different parts 
of the brain act as an attractor network has diffused rapidly, supported by the experimental 
evidence of states similar to attractors found in cortical slices (Cossart et al. 2003, Shu et al. 
2003). The architecture of this type of networks bears some resemblance to the structure of 



 5 

cerebral cortex, especially its layers 2/3, characterized by many lateral recurrent connections 
between a huge number of similar units. The cortex is the largest single structure in the 
mammalian brain and it is assumed to be involved in high level functions such as memory, 
attention, sensory perception, thought and language. It consists of about  neurons in 
humans (Pakkenberg & Gundersen 1997), covering the outer part of the whole cerebrum like 
a thin sheet, about 3mm thick in humans (Hofman 1985). The basic elements are mostly 
excitatory pyramidal neurons (75-80%) and inhibitory interneurons (20-25%) organized in a 
modular structure (Braitenberg & Schüz 1998). This modularity reflects the way neurons are 
connected to each other. Both locally and over long distances, connectivity in the cortex is 
mostly recurrent and it appears to be locally denser in the vertical direction, giving rise to 
columnar structures. The average overall connectivity is very sparse, a total of about 10

14 
synapses in the human cortex gives a connectivity density on the order of 10

-6 . The smallest 
observed module, the minicolumn, comprises some 100 neurons (Mountcastle 1997, 
Buxhoeveden & Casanova 2002, Amirikian & Georgopoulos 2003), while the hypercolumn 
is a larger module formed by a group of minicolumns, 100 minicolumns on average (Hubel 
& Wiesel 1977, Amirikian & Georgopoulos 2003). The minicolumn is sometimes considered 
the smallest repetitive building block of the cortex (Peters & Yilmaz 1993, Buxhoeveden & 
Casanova 2002). Although with some differences in the size and structure, the module is 
repeated throughout the volume. Evolutionary studies have shown that the increase in the 
volume has occurred through an increase in the number of minicolumns (Rakic 1995). In the 
horizontal direction cortex is organized in layers. These differ somewhat in thickness and 
composition of neurons and connections depending on location. In cortex, six main layers 
can be observed through the entire volume, with some exceptions as in those regions where 
layer IV is missing. The cortex is further partitioned into distinct functional areas: sensory, 
motor and association cortex, with a further subdivision within the single areas. 
 

 

 
 
BCPNN 

 
The BCPNN model implements a kind of Bayesian-Hebbian learning, based on probabilistic 
considerations and a derivation from Bayes rule (Lansner & Ekberg 1989, Lansner & Holst 
1996). During the learning process, connections between simultaneously active units are 
increased in strength while those between anti-correlated units are weakened and may even 
become inhibitory, leading to the formation of new attractors, i.e. memories. The basic idea of 
the model is to express weights and their biases in terms of the probability of each unit being 
active and the probability of two units being active at the same time. The state of the network 
at a certain stage is thus conditioned by the previous states through Bayesian probabilities. 
The memory matrix is formed by a local learning rule:    
 

 

 

(1) 

 
the weights  and the biases  are computed from the probability  of the presynaptic unit 
being active, the probability  of the postsynaptic unit being active and the probability   of 
the pre- and postsynaptic units being active at the same time. The retrieval is realized through 
an iterative process which updates units’ activities according to biases and weights values. 
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The relaxation process ends when a stationary state is reached (i.e. an attractor).  For each unit 
the support   is computed by a weighted sum of the inputs  added to the bias term (2), the 

potential  is computed from the support value through an ordinary differential equation (3):
  

 

 

(2) 

 
 

 
 

(3) 

 
 

 
and finally the output  of the post-synaptic unit is computed from the potential  through 
an exponential activation function. A complete derivation of equations 1-3 can be found in 
Lansner & Holst (1996) both for the single layer Bayesian network and multilayered 
network, i.e. a network with a modular structure. One simple way to estimate the 
probabilities  and  is by counting the occurrences of activation (  ) and co-activation 
( ) of the units during the learning process:

  
 

 
 

(4) 

 
where C is the total number of inputs. After the training, the weights and the biases are set to: 
 

 
 

(5) 

 
In order to apply the same equations in the modular case, correlated units are grouped to form 
independent modules. The single module or “hypercolumn” represents a discrete coded 
attribute and the sum of its inner units’ activities should sum to 1. A schematic view of the 
artificial unit is represented in Fig. 1.  
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Figure 1.On the left, a schematic model of a single processing unit in a BCPNN is represented. 

The box on the right is relative to the whole module and   represents the set of units pertaining 

to it. The output of each unit in the hypercolumn is computed by passing its potential through a 

softmax function. 

 
 
Goals 

 
The aim of this study is to investigate and improve the performance, in terms of storage 
capacity, of large recurrent networks up to about 50K units. We focused our analysis on the 
structure and the connectivity pattern of the network, introducing new features in the abstract 
model. First, we considered a modular network to represent the columnar structure observed 
in the cortex with long-range connections between hypercolumns, neglecting the local 
connections within each module. To flexibly regulate the activity level in the network we 
used silent hypercolumns, as previously proposed (Johansson & Lansner 2006). Second, we 
introduced a new technique to obtain a diluted network based on non-random removal of 
connections between single presynaptic units and clusters of postsynaptic units, resulting in 
“patchy connectivity”. We want to verify if and how a change in the connectivity pattern can 
affect the storage capacity and also to investigate if it is possible to get closer to biology by 
introducing a criterion to prune connections, based on their effective contribution to the 
performance, hence obtaining a higher storage capacity. A theoretical estimation of the 
storage capacity for the BCPNN is beyond the scope of this paper. Here we present the 
results acquired through simulations and we discuss in a qualitative way the factors which 
possibly enhance the storage capacity. 
 
 

Network Model 
 

 
Our network has been implemented based mainly on the model presented by Johansson and 
Lansner (2006). They investigated the performance of a modular attractor network using 
different learning rules and introducing the concept of silent hypercolumns to vary the 
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activity level. In our model we used a single learning rule, the BCPNN, that was the best 
performing and we introduced new features related to the connectivity pattern, maintaining 
the same architecture and the same technique to regulate the activity level. We have 
previously also studied memory retrieval dynamics in a biophysically detailed spiking 
version of the model, with a similar hypercolumnar structure and minicolumns comprising 
different types of neurons and synapses (Lundqvist et al. 2006, Djurfeldt et al. 2008). In the 
following the key aspects of the model are reported, highlighting the differences with the 
previous study (Johansson & Lansner, 2006). First we describe the structure of the network 
and patchy connectivity, then we explain how the activity can be regulated using silent 
hypercolumns and finally we present a new technique to obtain the diluted weight matrix by 
weight pruning. 
 
 
Patchy Connectivity 

 
Long-range corticocortical and callosal connections, show mostly a point-to-surface mapping 
which differs in complexity for the extent and number of their terminal regions, both in the 
tangential and vertical directions. Axons spreading in the tangential direction over long 
distances, often form terminal clusters covering a region comparable to the size of a single or 
a group of columns (Goldman & Nauta 1977, DeFelipe et al. 1986, Gilbert & Wiesel 1989, 
Bosking et al. 1997). The branching geometry can be quite different, first in the number of 
branches originating from the single axon and hence in the number of terminal clusters and 
second in the structure of arborisation. Some axons show a kind of parallel architecture that 
can be related to simultaneous activation of different columns closely located, some others 
have a serial architecture with branches generating from a single trunk at larger distances 
from the parent cell body; sometimes both architectures are present in the same axon. The 
distribution of connections in the vertical direction is also variable: an individual cluster may 
terminate in one specific layer or involve more layers, and branches pertaining to the same 
axon can have different distributions. A detailed description of morphology is reported by 
Houzel, Milleret and Innocenti (1994). A definite relation between morphology and 
functional properties is not easy to establish, but similarities in the organization have been 
found for connections that are supposed to have similar functions (Gilbert & Wiesel 1969, 
Martin & Whitteridge 1984, Boyd & Matsubara 1991). Reproducing this complex structure 
with a single artificial system is complicated and requires several steps. We attempted a first 
step in this direction, introducing a modular structure and changing the connectivity pattern. 
In our model, identical binary units are grouped in modules of constant size and are 
connected to each other through recurrent, long-range patchy connections, with specialized 
local treatment of the connections within the module. Each module can be identified with a 
single hypercolumn and each unit with a single minicolumn. In the previous model 
(Johansson & Lansner, 2006), connections were implemented only between single units 
pertaining to different modules, while with “patchy connectivity” each presynaptic unit is 
connected to a group of terminal clusters through single connections and all minicolumn 
units pertaining to a module share the same input connections, though with individual 
weights. Thus, in our abstract model each processing unit represents a group of biological 
neurons and in the same way each connection between two units represents a group of 
synapses, even though sometimes we generically refer to it as a synapse in the following. A 
schematic view of patchy connectivity is shown in Fig. 2. It is important to verify if this 
change in the connectivity pattern, can affect the dynamical properties and the storage 
capacity of the system. Long-range connections have been previously examined in relation to 
the wiring cost of biological networks. In order to ensure compactness and low energy 
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consumption, i.e. the amount of wiring inside the cortex volume, long-range connections 
extending in the horizontal direction are supposed to be wired in a much more efficient way 
than randomly. Voges et al. (2009) investigated different spatial configurations and have 
shown that the optimal wiring is achieved with patchy-networks, characterized by a single 
long-range connection to each terminal cluster. 
 
 

 
 

Figure 2.Schematic view of patchy connectivity in a network with hypercolumns. Each unit is 

connected to a number of terminal clusters and all the units in a module receive input from the 

same set of presynaptic units. Connections can be recurrent between hypercolumns and between 

single units pertaining to different modules, but all local connections within a hypercolumn are 

removed. 

 
 
 

Silent Hypercolumns 

 
In order to estimate the storage capacity of the brain, it is important to have an activity level 
comparable to the activity measured in the biological system. Many experiments in different 
cortical areas showed that only a small fraction of neurons are active in response to an 
external stimulus (Lennie 2003, Waydo et al. 2006). In a network with hypercolumns, a 
pattern of activity can be represented by a binary vector of size N, composed by H sub-
vectors of size U. The local activity is normalized, provided that the sum of non-normalized 
activity values exceeds 1. The global activity in the network can be regulated through the 
introduction of silent hypercolumns. In our model, a silent hypercolumn can be seen as 
representing an attribute which is not relevant for and does not contribute to represent a 
particular stimulus. This interpretation follows from experimental studies on the activation 
patterns in the visual cortex (Cheng et al. 2001, Tsunoda et al. 2001), which have shown that 
single stimuli activate patches of neurons, each one covering an area corresponding to a 
hypercolumn and that the set of active hypercolumns, changes in response to different 
stimuli. Thus with silent hypercolumns it is possible to regulate the activity level more freely 



 10 

than just by varying the module size (U). Moreover the number of units in the module should 
be consistent with the number of minicolumns in the biological network and therefore once 
the optimal size is reached, the usage of silent hypercolumns is preferred to further increase 
the sparseness of activity. Previous studies on attractor networks tested with uniformly 
distributed random patterns have shown that the storage capacity increases when sparse 
coding conditions are applied (Fulvi Mari & Treves 1998, Fulvi Mari 2004). However, the 
information content per pattern and hence the total amount of information that the network is 
able to store, decreases. In a modular network   with the constraint of unary activity in each 
module, the information content per random binary pattern is equal to   bits, 
where H is the number of hypercolumns and U the number of units in each module. If S 
hypercolumns are randomly set as silent, it becomes instead: 
 

   (6) 

The storage capacity expressed in bits per connection can then be computed by: 
 

 
 

(7) 

 
 
where  is the total number of stored patterns and  is the total number of connections 
in the network, that can be approximated by :  
 

  (8) 

 
where c is the connectivity density, N the total number of units and the last term accounts for 
not having connections within hypercolumns, which makes a negligible difference for large 
networks. In our implementation, a fraction of the hypercolumns is set automatically silent 
during pattern generation and in that case all the units in the module are OFF, as shown in 
Fig. 3 for a single pattern. 
 

 
  

 

Figure 3.Schematic representation of a modular pattern with 5 units per hypercolumn 
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Weight Pruning 

 
The total number of synapses in the adult brain is about constant over time, however 
alterations in the structure of synaptic connectivity are observed in the developing brain and 
also later related to learning and memory encoding. The formation of new synapses or their 
elimination is an activity-dependent process and is referred to as “structural plasticity” 
(Bailey & Kandel 1993, Muller et al. 2002, Lamprecht & LeDoux 2004). In a similar way, 
the connectivity pattern in an artificial network can be achieved through an activity-
dependent weight pruning, aiming to remove the least useful connections. A standard 
technique to obtain a diluted weight matrix is random removal of connections. In Johansson 
& Lansner (2006) this technique was applied to remove single connections between two units 
and blocks of connections between two modules. We implemented a random and a non-
random method removing single patchy connections, i.e. the connections between a 
presynaptic unit i and all the postsynaptic units j = 1, …, U  in a hypercolumn. A schematic 
representation of the different methods is shown in figure 4. The non-random method has 
been developed in the attempt to realize more realistic connectivity patterns. The idea here is 
to estimate the overall impact of each presynaptic unit on the postsynaptic hypercolumn 
through a local score, e.g. a measure of the value of a patchy connection. In this way it is 
possible to operate a selection by removing the patches with a lowest value. Both with the 
random and non-random removal we obtain an asymmetric weight matrix, which however 
still allows for stable fixed point attractors in the operating conditions employed here. 
 

 

 
 
 
 

Figure 4.Schematic of standard random, patchy random and patchy non-random removal. With 

the standard random connections are removed independently for each unit, while with the patchy 

random and non-random the same set of connections are removed for each hypercolumn. For the 

non-random case, the score of patchy connections is represented by a different line thickness. 
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Methods 
 

 
The storage capacity has been measured under different conditions for networks of increasing 
size, having the structure described above. We tested the effect of patchy connectivity and 
weight pruning in the very simple case of a non-spiking network trained with the BCPNN 
learning rule. We started to investigate small systems of 50 hypercolumns with 10 units per 
module, in order to compare with the systems investigated in the previous study (Johansson & 
Lansner 2006). The procedure adopted, is standard for testing the performance of an 
associative memory. In the following we describe in detail the learning and retrieval phases, 
and we explain how the storage capacity can be measured in this context. 
 

 

 

Learning & Retrieval 

 
In a non-spiking model, patterns can be stored by “one-shot learning”, i.e. after a single 
presentation, by clamping the network in an attractor state automatically through the input, 
without dynamics. The training set is generated with a fixed fraction of silent hypercolumns 
and by random activation of a single unit in each active hypercolumn. After the whole 
training set has been encoded, weights and biases are computed according to (5). The diluted 
weight matrix is then obtained by removing a fixed percentage of patchy connections. The 
procedure is executed independently for each hypercolumn, through a random selection or by 
measuring the score of each patchy connection. In our implementation, the average strength 
of the patchy connections is evaluated by summing the absolute values of the weights: 
 

 

 

(9) 

we also considered a weighted sum : 
 

 

 

 

(10) 

 
and a number of different statistical measures based on the mutual information. However, the 
above measure (9) gave the best results and we did not test the others on the larger networks. 
The performance of the system was measured through pattern completion. The test patterns 
consisted of a subset of the training set, randomly chosen. A certain number of hypercolumns 
were selected to perform the retrieval without external input. The missing portion of the test 
pattern was restored based on the activities of the connected units according to (2). Each 
pattern was presented repeatedly until a stable state was reached, or a fixed number of 
iterations had been executed. If the final state perfectly matches the original stored pattern, 
the retrieval is considered as correct. The stability could then be tested through the 
spontaneous evolution of the network, after a single presentation of the input, by comparing 
the final state reached in a fixed number of iterations with the original stored pattern. 
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Estimation of the Storage Capacity 

 
The storage capacity was measured by computing the percentage of patterns correctly 
retrieved. As described above, each single pattern must be identical to the original stored 
pattern and if the network is able to restore all the test patterns correctly, then the whole 
retrieval is considered 100% successful. The number of training patterns was increased until 
the percentage fell below 95%, which is our reference point. The curve can be steep or gentle 
depending on the operating conditions, as shown in Fig. 5. Each curve represents the average 
response of the system tested for a fixed set of parameters. In our implementation, the 
training set and the final configuration of the connectivity pattern are not preserved at the end 
of the simulation, so we average over many runs. Each point of a curve was obtained by 
repeating the same experiment 10 times. The pattern capacity is the crossing point at 95% 
and it is determined through a linear interpolation. We considered networks of size 
comprised between 500 and 46K units, with a constant activity level fixed to 0.1 and 0.04 
and we decreased the connectivity to 3%, reaching the diluted regime1 beyond 11K units. 
Thus the largest networks approached the operating conditions of the diluted networks 
studied by Treves and Rolls (1991), and we can compare our results with the pattern capacity 
predicted according to their formula (11), although it has been derived for networks without a 
modular structure: 
 

 

 

(11) 

where  is the number of synapses per unit, a the sparseness of the representation and k is 
a factor that gathers the characteristics of the network and is between 0.2-0.3 (see also Rolls 
(2012)). 
 

                                                 
1 According to Treves and Rolls the diluted regime is reached when the ratio  between the number of 
synapses per unit and the total number of unit in the network is in the range 0.1-0.01. 
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Figure 5: Crossing point for a network of 144 hypercolumns with full connectivity and without silent H 

(first on the left), with half connectivity and 60% silent H, using patchy random removal (in the middle) 

and non-random removal (on the right). 

 

 

 

Implementation 

 
In a non-spiking model, patterns can be stored by “one-shot learning”, i.e. after a single 
presentation, by clamping the network in an attractor state automatically through the input, 
without dynamics. The model has been implemented in a parallel environment using the MPI 
library and all the simulations have been executed on a Cray machine (XE6 system). For a 
modular network, the simplest way to implement parallelism is to assign a module or a group 
of modules to a single CPU. The training and retrieval phases described above are executed 
locally by each CPU for the hypercolumns it is in charge of and all the activities and other 
data are exchanged through collective communications. The collective scheme is suitable for 
the training process since we have a fully connected system, while during the testing a 
considerable amount of unutilized data is exchanged. On the other hand, a single collective 
communication can be faster than a series of point to point communications when the size of 
the system is not too large and furthermore in this particular case the retrieval is performed 
on a subset of the training set. Thus we maintained the same scheme in both phases. 
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Results 
 
 
 

In the following we present our results on the storage capacity, starting with small systems of 
500 units up to large systems of 46K units. First we tested the effect of decreasing 
connectivity using random and non-random methods, for systems with a constant number of 
units in each hypercolumn (U=10). In the same way we tested the effect of increasing the 
number of silent hypercolumns, hence the sparseness of the representation, for different levels 
of connectivity. The same experiments for systems without silent hypercolumns are also 
presented, where the sparse coding limit is reached by changing the structure of the network, 
i.e. by fixing the size (N = HU) and increasing the number of units in each module. The 
scaling properties have been investigated for systems having about 1400 synapses per unit, 
the same as in most of the preliminary tests on small systems, gradually decreasing the 
connectivity to 3%. 
 
 
4.2. Systems with sparse Connectivity 

 
In Figs. 6 and 7 the storage capacity is plotted as a function of the connectivity for a system of 
500 and 1440 units respectively. Each curve is related to a specific method and to a different 
percentage of silent hypercolumns, from zero to 60% with 20% increments. On the top of the 
figures, we compare the patchy random with the standard random method, on the bottom the 
patchy random with the non-random method. The systems have been tested with 50% 
occlusion, i.e. only half of the hypercolumns in the network receive input during the retrieval. 
From Figs. 6 and 7 it is evident that the larger system is stable in the interval investigated, 
while the smaller system shows a drop in the performance when the connectivity level is 
below 50%. This happens because the amount of active input connections to units drops 
below a critical value and the recurrent network can no longer complete the attractor states. 
However, the overall response of the two systems is quite similar. The storage capacity is 
higher when the sparseness of the representation increases. When the connectivity is reduced, 
the pattern capacity decreases and the information capacity shows a gentle raise until 20-30% 
of the connectivity for the larger system and until around 40-50% for the system of 50 
hypercolumns.  More interesting is the comparison between the different methods. The patchy 
random and the standard random removal, show a similar response for both systems while a 
visible difference is observed when the non-random method is used. The storage capacity is 
higher when connections are removed through a selection and there is a maximal difference at 
about 40% connectivity for the 144 hypercolumn case. However, the effect of the non-random 
pruning method tends to disappear when the connectivity is too low, showing a worse 
performance compared to the patchy random for the system with a higher percentage of silent 
hypercolumns. The curves in figure 6, representing the standard random method, reproduce 
earlier results for the BCPNN learning rule (Johansson & Lansner 2006). 
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Figure 6: The storage capacity in terms of patterns (on the left side) and bits per connections (on 

the right) for a network of 50 hypercolumns. The patchy random method is compared with the 

standard random (on the top) and with the non-random (on the bottom). 
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Figure 7: The storage capacity in terms of patterns and bits per connection for a network of 144 

hypercolumns. In this case the system is more stable and it is possible to compare the different 

methods till the lowest level of connectivity. 

 

 

Systems with sparse activity 

 
In Fig. 8 the storage capacity is plotted as a function of the fraction of silent hypercolumns in 
the network, for three different systems of size 1440, 2880 and 5760 units respectively. We 
performed two tests by setting the connectivity in order to have about the same number of 
synapses per unit in the three systems, around 1400 and around 700 synapses per unit. We 
assigned exactly the same task to each system, keeping constant the number of hypercolumns 
to be filled in, equal to 43, which corresponds to 30% occlusion in the smallest system. First, 
we notice that the response of the three systems is about the same, when the random removal 
is applied (Fig. 8, top) while with the non-random method we observe three different 
responses with the largest system performing better (Fig. 8, bottom). This effect will be 
further discussed in the next section. As expected, the systems having a higher number of 
synapses per unit are able to store more patterns and the difference becomes larger as the 
number of silent hypercolumns increases (Fig. 8, left), while the systems having less synapses 
per unit can store more bits per connection (Fig. 8, right), until the total number of synapses, 

 , is the leading term in eq. (7). When the representation is too sparse, the storage capacity 
collapses and this happens first for the systems with less synapses per unit, when the fraction 
of silent hypercolumns is around 0.80. In terms of bits per connection the maximum is slightly 
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shifted, at around 0.70 for the systems with 700 synapses per unit and at around 0.85 for the 
systems with 1400 synapses per unit, due to the decreasing of the information content per 
pattern (eq. 6). A similar trend is observed for the non-random method (Fig. 8, bottom), with a 
steeper drop in the performance for the systems having less synapses per unit. As expected, 
the storage capacity is considerably higher for the non-random compared to the patchy 
random (full-connectivity curves) and the difference is larger as the sparseness increases, up 
to about 40% more. In a network with a modular structure, the activity level can be regulated 
by varying the number of units inside each module. In Fig. 9 the storage capacity is plotted as 
a function of the sparseness a, for two systems of the same size but different structure. One 
network consists of 288 hypercolumns with 10 units (S-system) the other network consists of 
2880 units with variable number of hypercolumns (U-system). The size of the module has 
been gradually increased from 10 to 60 units, in order to compare with the same level of 
sparseness achieved while increasing the percentage of silent hypercolumns from 50% to 
83%. The information content per pattern for the system with silent hypercolumns, S-system, 
is higher compared to the system without silent, i.e. the U-system: 
 

  (12) 

 
 

 
 

(13) 

 
 

 represents the constant number of hypercolumns and  their constant size in the S-system, 
while H and U are variable in the U-system with : 
 

      (14) 

 
 can be rewritten in terms of the S-system parameters and by separating the logarithm we 

obtain: 
 

 ) (15) 

 
 

which is always less than  . For a fixed activity level, the percentage of silent hypercolumns 
in the test portion is variable since they are set randomly, therefore the task performed by the 
two systems can be slightly different. We assigned a similar task to the networks by setting 
the number of test hypercolumns to a higher value for the U-system. For increasing values of 
the sparseness we kept constant the number of test hypercolumns in the S-system, while we 
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decreased the number of test hypercolumns in the U-system, since the information content per 
module increases. The connectivity was set to 50% for both systems, using random and non-
random removal. Fig. 9 shows that the U-system performs better in terms of pattern capacity 
when the patchy random removal is applied (blue and red curves, left), while with the non-
random method the difference to the S-system is reduced and the trend is reversed for 
sparseness above the value 0.03 (green and cyan curves, left). In terms of information 
capacity, we observe a similar response for the patchy random (blue and red curves, right), 
while with the non-random method the S-system performs better and the difference to the U-
system increases with the sparseness (green and cyan curves, right). This effect suggests that 
the non-random removal is less powerful in the U-system when the size of the module is 
comparable with the number of hypercolumns in the network. To summarize, we do not 
observe any important effect that prevent the use of silent hypercolumns and we believe that 
for larger networks, a combination of the two methods should be applied to reach the required 
level of sparseness. 
 
 

 
 

 
Figure 8. The storage capacity in terms of patterns (left) and bits per connection (right) for three 

networks of 144, 288 and 576 hypercolumns. The connection matrix is diluted proportionally to the size, 

using patchy-random (top) and non-random method (bottom). 
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Figure 9.The storage capacity of a network of 2880 units with variable module size (U-system), is 

compared with the storage capacity of a network having the same number of units and a fixed size 

module (S-system), for increasing values of the sparseness. The connectivity is diluted to 50%, 

using both patchy random and non-random removal. 

 

 
 

Scaling to large Networks 

 
We present here the effect of non-random removal for large networks with diluted 
connectivity, using silent hypercolumns to lower the activity level. In Fig. 10 the storage 
capacity is plotted for networks of increasing size, starting from a fully connected system of 
144 hypercolumns up to a system of 4608 hypercolumns with a weight matrix sparseness 
around 3%. The structure of the network and the number of synapses per unit are fixed to 10 
units per module and 1430 synapses respectively. The systems have been tested using patchy 
random and non-random methods first without then with 60% silent hypercolumns. As in the 
previous tests, each network performs the same task with the number of hypercolumns to be 
filled in set to 43. First we remark that sparseness is crucial to enhance the storage capacity: 
we obtained about double the value with silent hypercolumns both for the pattern capacity and 
the information capacity. Second, we obtained a considerable increase of the storage capacity 
with the non-random removal. In accordance with the results presented in Treves & Rolls 
(1991), systems having the same number of synapses per unit, can store roughly the same 
number of patterns, as shown in Fig. 10 for the patchy random method. When the sparse 
matrix is achieved through a selection, we observe an increase of the storage capacity with the 
size of the network and this means that the measure we used for the pruning (9) is effective at 
least for this range of parameters. The difference can be explained comparing the connectivity 
patterns in the two systems after the removal. In a fully connected network, trained with 
sparse random patterns, only part of the synapses are involved in the learning process. With 
the non-random method we try to identify and preserve these connections, in order to exploit 
the whole information stored during learning. When connections are removed randomly, part 
of this information is lost and this explains the difference in performance. For larger 
networks, the connectivity is further reduced and the efficiency of the configuration does not 
change since the number of synapses per unit is the same, hence we obtain a constant storage 
capacity. The corresponding increase observed with the non-random method, suggests that the 
distribution of patchy connections according to the measure (9), improves the efficiency of 
the configuration in this interval. The weakest connections are removed first from each input 
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set, preventing the loss of information which occurs with a random selection. Therefore, we 
expect a higher storage capacity comprised between the value achieved with the random 
method and the storage capacity of the fully connected network. This effect should persist 
until the number of synapses per unit is not too small compared to the size of the network. 
The information capacity achieved with the patchy random method is about 0.08 bit per 
synapse for the systems without silent hypercolumns, i.e. an activity level equal to 0.1 and 
about 0.19 bit per synapse when the sparseness is increased to 0.04. The maximum 
information capacity reached with the non-random method is about 0.19 bit per synapse for 
the system without silent and about 0.35 bit per synapse for the system with 60% silent, 
approaching the asymptotic values for a standard auto-associative memory presented in 
Willshaw et al. (1969), Palm (1991) and Palm & Sommer (1991). In fact, in the context of a 
binary associative memory, which has maximum information capacity when the connection 
matrix is filled to 50%, if we can avoid storing non-used connections we would about double 
the information capacity. This is what we approach here with our non-random selection. The 
maximum pattern capacity we achieved with the non-random method, with the highest 
dilution (3%) and sparseness (a=0.04), namely about 2140 patterns, is a bit lower compared to 
the value predicted by formula (12), which falls in the range 2220-3330. 
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Figure 10.The effect of non-random removal on large networks, up to 46080 units, with sparse 

connectivity up to 3%. The storage capacity in terms of patterns (top) and bits per connection 

(bottom) is plotted for systems without silent hypercolumns and systems with 60% silent.  

 

 

 

 

 

Discussion 
 
The main subject addressed in this paper is the assessment of the storage capacity of an 
attractor network, after imposing specific constraints on the connectivity and activity level. 
We developed an abstract model reproducing, with some approximations and on a smaller 
scale, the modular structure and the sparse connectivity of the mammalian cortical network, as 
well as the low level of activity estimated for the cortex. Our network represents an extension 
of a previous model (Johansson & Lansner, 2006), characterized by a similar modular 



 23 

structure but without patchy connectivity. The results of the simulations showed that the 
pattern capacity of a modular network with patchy connectivity is lower, but yet comparable 
with the values achieved with standard associative memories and that higher values can be 
obtained increasing the sparseness of the representation, with a corresponding information 
capacity close to the asymptotic value for standard associative memories. We proposed a local 
method to prune the connectivity of the network, which further improves the storage capacity. 
With the random removal of patchy connections, we obtained a constant storage capacity for 
networks of increasing size having the same number of synapses per unit, in agreement with 
the theoretical results presented by Treves and Rolls (1991). With the non-random removal, 
the storage capacity increased and seemed to depend upon the size of the network. We 
speculate that this effect could disappear for larger networks, resulting in a constant storage 
capacity but higher compared with the random removal. In principle, this method can be 
applied to any kind of associative network, adopting proper measures to evaluate the value of 
connections. The results achieved in this study are important for the development of more 
realistic high-capacity large-scale networks with sparse connectivity. First, we have found that 
introducing patchy connectivity and silent hypercolumns in the abstract model, does not 
imply a drastic reduction for the storage capacity. The performance of a modular network 
with patchy connectivity is equivalent to that of a modular network with random connections 
between units pertaining to different modules. Furthermore, with silent hypercolumns it is 
possible to reproduce a more realistic activity pattern, characterized by a small fraction of 
active hypercolumns. A second point made in this paper, is related to the diluted connectivity 
of the biological network. The connectivity pattern obtained with the standard techniques is 
rather unrealistic since part of the information acquired during learning is lost and part of the 
connections in the final configuration, do not bring any information. With the non-random 
removal of patchy connections, we improved the performance of the modular network and 
obtained a connectivity pattern with most of connections actively involved in the encoding. 
However, the proper selection is much more difficult if the network connectivity is diluted 
from the start as in the brain. The method we propose could then be implemented over time 
by pruning patches (terminal clusters) that have a low value according to some local scoring, 
and sprout a terminal cluster somewhere else which may be more useful and thus having a 
higher score and better chance to survive. An abundance of connections during early 
childhood would also help such a structural plasticity process. Our model is partly incomplete 
regarding both the architecture of the network and the new method we proposed for the 
removal of connections. We considered mostly modules with ten units, while in the biological 
network we observe more like 100 minicolumns in each hypercolumn (Hubel & Wiesel 1977, 
Amirikian & Georgopoulos 2003). Moreover, the scaling properties have been investigated 
for systems having about 1400 synapses per unit, while in the biological network it is in the 
order of 104 (Rolls & Treves 1998, Rolls 2008). We used a simple measure to evaluate the 
strength of the single patchy connection, that allowed obtain a higher storage capacity for the 
range of parameters investigated. However we are not able to predict at this stage if this 
measure would be effective for similar networks operating in different conditions. For 
instance, an interesting aspect that could be further developed is the analysis of the storage 
capacity using non-random patterns. In this context, it would be interesting to test if our 
simple measure (eqn. 9) is still efficient. More in depth theoretical analysis of the structural 
plasticity processes proposed here would give valuable additional insights and better 
implementations. The next step would be to apply the non-random removal to the long-range 
connections in a spiking network model (Lundqvist et al., 2006, Djurfeldt et al., 2008). It 
would also be interesting to analyse different aspects related to the geometry of the network. 
We could consider a more complex architecture with modules having different size and 
introduce a spatial reference in the network and new physical variables like the transmission 
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velocity to simulate more specific events. In conclusion, this study has shown that the storage 
capacity of large-scale attractor memory networks with patchy connectivity is comparable to 
and scales as efficiently as do traditional random sparsely connected networks. They are, 
however, more biologically plausible and much more efficient when it comes to wiring of the 
network. We have further shown that a biologically plausible method to prune network 
connectivity based on a local measure is able to enhance significantly the storage capacity. It 
remains to extend this to a strategy that works also for networks that are sparsely connected 
from the very beginning. 
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