
Vol.:(0123456789)

Optimization and Engineering (2022) 23:771–795

https://doi.org/10.1007/s11081-021-09605-3

1 3

RESEARCH ARTICLE

A modular framework for distributed model predictive
control of nonlinear continuous‑time systems (GRAMPC‑D)

Daniel Burk
1
 · Andreas Völz

1
 · Knut Graichen

1

Received: 25 August 2020 / Revised: 15 February 2021 / Accepted: 16 February 2021 /

Published online: 10 March 2021

© The Author(s) 2021

Abstract

The modular open-source framework GRAMPC-D for model predictive control of

distributed systems is presented in this paper. The modular concept allows to solve

optimal control problems in a centralized and distributed fashion using the same

problem description. It is tailored to computational efficiency with the focus on

embedded hardware. The distributed solution is based on the alternating direction

method of multipliers and uses the concept of neighbor approximation to enhance

convergence speed. The presented framework can be accessed through C++ and

Python and also supports plug-and-play and data exchange between agents over a

network.

Keywords Distributed model predictive control · Nonlinear model predictive

control · Modular framework · Multi-agent systems

1 Introduction

Model predictive control (MPC) is a modern control concept that attained increasing

attention during the last decades (Mayne et al. 2000; Allgöwer and Zheng 2012) as

it is capable to handle nonlinear systems while considering constraints on both states

and controls. It is based on solving an optimal control problem (OCP) on a finite

horizon and applying the first part of the control trajectory to the actual plant, cor-

responding to the sampling time Δ
t
 of the controller. At the next sampling instant,

the horizon is shifted and the OCP is solved again. This iterative scheme is executed

repetitively to stabilize the plant on an infinite horizon.

A main difficulty is the computational complexity of solving the OCP in real-

time, which in turn requires an efficient implementation of suitable MPC algorithms.

 * Daniel Burk

 daniel.burk@fau.de

1 Lehrstuhl für Regelungstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg,

Cauerstraße 7, 91058 Erlangen, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s11081-021-09605-3&domain=pdf

772 D. Burk et al.

1 3

In the recent past, several toolboxes were published that provide adequate software

frameworks such as ACADO (Houska et al. 2011) and ACADOS (Verschueren et al.

2019), VIATOC (Kalmari et al. 2015) or GRAMPC (Käpernick and Graichen 2014;

Englert et al. 2019). In case of distributed systems with a high number of controls

and states, the classic centralized approach is not capable of solving the overall OCP

in real-time anymore. Hence, algorithms for distributed model predictive control

(DMPC) (Camponogara et al. 2002; Maestre and Negenborn 2014) have been in the

focus over the last years. Their basic idea is to decouple the centralized OCP and to

split it into multiple local OCPs that can be solved in parallel. The expectation is to

compensate the higher computational complexity due to the decoupled formulation

as well as the increased communication effort by the parallel structure. There are

multiple approaches to distributed algorithms for optimal control problems, such as

sensitivity-based algorithms (Scheu and Marquardt 2011), the augmented Lagran-

gian based alternating direction inexact Newton method (ALADIN) (Houska et al.

2016, 2018) or the alternating direction method of multipliers (ADMM) (Boyd et al.

2011) that is also used in the presented framework.

The difficulty of an efficient implementation is drastically higher in case of

DMPC than for classic MPC algorithms, as a potentially high number of subsystems,

so-called agents, have to be managed. Several toolboxes for DMPC have been pub-

lished as well. Linear discrete-time systems are considered in the DMPC-Toolbox

(Gäfvert 2014) that is implemented in Matlab. The PnPMPC-TOOLBOX (Riverso

et al. 2013) focuses on the plug-and-play functionality and provides an implemen-

tation in Matlab that considers continuous-time and discrete-time linear systems.

Several algorithms are implemented in the Python-Toolbox DISROPT (Farina et al.

2019) regarding distributed optimization problems. ALADIN-� (Engelmann et al.

2020) is the most recent published toolbox that provides a Matlab implementation

of the ALADIN algorithm. However, there is a lack of a DMPC framework that

provides an implementation tailored to embedded hardware with the focus on real-

time capable distributed model predictive control. Many real-world problems such

as smart grids or cooperative robot applications are only equipped with weak hard-

ware on the subsystem level that is not able to handle complex computation tasks

in an appropriate time. Hence, for realizing distributed controllers on actual plants,

an implementation optimized on execution time is required to enable real-time con-

trol. Furthermore, providing the possibility of communication between agents over

a network is essential for a DMPC framework designed to control actual plants.

The restriction to neighbor-to-neighbor-communication decouples the agents com-

munication effort from the overall system size by bounding it to the cardinality of

its neighborhood. The focus on real-world plants requires the system class to cover

nonlinear dynamics including couplings between the agents in both dynamics and

constraints.

The presented framework, in the following GRAMPC-D, provides an open-

source C++implementation of the ADMM algorithm (Burk et al. 2019, 2020) that is

capable of solving optimal control problems in a distributed manner with a per-agent

computation-time in the millisecond range. The underlying minimization problems

are solved with the MPC toolbox GRAMPC that is suitable for embedded hard-

ware implementations. However, other toolboxes for solving the local minimization

773

1 3

A modular framework for distributed model predictive control…

problem can be used as well. To enable actual distributed optimization, a socket-

based TCP communication is provided to allow agents to exchange data over a net-

work. Furthermore, a Python interface is provided in addition to the C++-interface

using the software module Pybind11 (Jakob et al. 2017). The Python interface com-

bines both the functionality of Python and the performance of C++as it only wraps

the C++interface while the actual code executing the DMPC algorithm is still run-

ning in C++. Furthermore, it allows for fast and efficient prototyping when develop-

ing a controller for a distributed system as both a centralized as well as a distributed

controller can be derived based on the same problem description. The convergence

behavior of distributed controllers can be improved by optionally using the concept

of neighbor approximation. Thereby, the generated problem description of each

agent is adapted to additionally approximate parts of its neighbors OCP and by this

to improve the solution of its local OCP in each iteration, leading to an enhanced

convergence behavior of the overall algorithm. The modular structure of GRAMPC-

D enables modifying the overall system in the sense of plug-and-play by including

or removing agents or couplings at run-time. Supporting plug-and-play features is a

core functionality for a DMPC framework with focus on embedded systems, as the

assumption of a static system description does not hold for a large number of real-

world plants.

The paper is structured as follows. Section 2 outlines the considered class of cou-

pled systems and OCP formulation. The DMPC framework GRAMPC-D is intro-

duced in Sect. 3 including the ADMM algorithm as the method of choice for the

algorithm. In addition, the concept of neighbor approximation is explained and the

implemented algorithm for the crucial task of penalty parameter adaption is pre-

sented. The modular structure of the framework is presented in Sect. 4. Finally, sim-

ulation examples in Sect. 5 show the effectiveness and modularity of the DMPC

framework, before conclusions are drawn in Sect. 6.

Throughout the paper, each vector x⃗ ∈ ℝ
n is written in bold style. Standard

p-norms ��x⃗��p
=

�∑n

i=1

�
�xi

�
�
p� 1

p will be used as well as the weighted squared norm

defined by ‖‖x⃗‖‖

2

P⃗
= x⃗

�
P⃗x⃗ with a positive (semi-)definite square matrix P⃗ . The stack-

ing of individual vectors x⃗
i
, i ∈ V from a set V is denoted by x⃗ =

[

x⃗
i

]

i∈V
 . As far as

time trajectories are concerned, the explicit dependency on time t may be omitted to

ease readability. The derivative with respect to time is written using the dot notation
⃗̇x(t) =

d

dt
x⃗(t).

2 Problem description

The presented DMPC framework considers multi-agent systems that can be

described by a graph G = (V, E) with the sets of edges E and vertices V . Each ver-

tex represents an agent, while each edge between two vertices stands for a cou-

pling between the corresponding agents. The couplings may be both uni- and

bi-directional.

The considered optimal control problem for the coupled nonlinear system is

given by

774 D. Burk et al.

1 3

 with

states x⃗
i
(t) ∈ ℝ

n
x,i , controls u⃗

i
(t) ∈ ℝ

n
u,i and the horizon length T > 0 . Each agent

may have a general nonlinear cost function l
i
∶ ℝ

n
x,i ×ℝ

n
u,i ×ℝ → ℝ and terminal

cost V
i
∶ ℝ

n
x,i ×ℝ → ℝ . The overall cost function (1a) is given by the sum over

the individual cost functions. The subsystem dynamics (1b) are defined by the func-

tions f⃗i ∶ ℝ
nx,i ×ℝ

nu,i ×ℝ → ℝ
nx,i and f⃗ij ∶ ℝ

nx,i ×ℝ
nu,i ×ℝ

nx,j ×ℝ
nu,j ×ℝ → ℝ

nx,i .

The OCP additionally considers nonlinear equality constraints (1d)–(1e) and

inequality constraints (1f)–(1g) with the functions g⃗i ∶ ℝ
nx,i ×ℝ

nu,i ×ℝ → ℝ
ng,i ,

g⃗ij ∶ ℝ
nx,i ×ℝ

nu,i ×ℝ
nx,j ×ℝ

nu,j ×ℝ → ℝ
ng,ij and h⃗

i
∶ ℝ

n
x,i ×ℝ

n
u,i ×ℝ → ℝ

n
h,i ,

h⃗ij ∶ ℝ
nx,i ×ℝ

nu,i ×ℝ
nx,j ×ℝ

nu,j ×ℝ → ℝ
nh,ij as well as box constraints (1h) for the

control input u⃗
i
 of each agent i ∈ V.

(1a)min
u⃗

i
,i∈V

∑

i∈V

J
i
(x⃗

i
, u⃗

i
)

(1b)
s.t. ⃗̇xi = f⃗i(x⃗i, u⃗i, t) +

∑

j∈N
←

i

f⃗ij(x⃗i, u⃗i, x⃗j, u⃗j, t), i ∈ V

(1c)x⃗
i
(0) = x⃗

i,0, i ∈ V

(1d)0⃗ = g⃗i(x⃗i, u⃗i, t), i ∈ V

(1e)0⃗ = g⃗ij(x⃗i, u⃗i, x⃗j, u⃗j, t), j ∈ N
←

i
, i ∈ V

(1f)0⃗ ≥ h⃗
i
(x⃗

i
, u⃗

i
, t), i ∈ V

(1g)0⃗ ≥ h⃗ij(x⃗i, u⃗i, x⃗j, u⃗j, t), j ∈ N
←

i
, i ∈ V

(1h)u⃗
i
∈
[

u⃗
i,min

, u⃗
i,max

]

, i ∈ V

(2)J
i
(x⃗

i
, u⃗

i
) = V

i
(x⃗

i
(T), T) + ∫

T

0

l
i
(x⃗

i
, u⃗

i
, t) dt,

Fig. 1 The neighborhood

N1 = {2, 3, 4} of agent 1 is

composed of sending neighbors

N
←

1
= {2, 3} and receiving

neighbors N→

1
= {2, 4}

1

2

34

775

1 3

A modular framework for distributed model predictive control…

The neighborhood N
i
 of agent i ∈ V is given by two sets that differ in the direc-

tion of the coupling, sending neighbors N←

i
 and receiving neighbors N→

i
 , see Fig. 1

for an example. States and controls of sending neighbors have an explicit influence

on the dynamics of the agent i in form of functions f⃗ij , see (1b). Receiving neigh-

bors are neighbors of agent i that are explicitly influenced by this agent, hence states

or controls of the agent are part of a function f⃗ij of receiving neighbors. While a

neighbor can be both, receiving and sending, this separation is going to be beneficial

in the ADMM algorithm by reducing unnecessary computation and communication

effort.

The dynamics (1b) of each agent i ∈ V are neighbor affine in the sense that the

dynamics consists of a function f⃗i that depend only on states and controls of the

agent and a sum of functions f⃗ij that depend on states and controls of the agent and

one neighbor. The constraints (1d)–(1h) on each agent are separated into constraints

that depend on states and controls of the agent, given by g⃗i , h⃗i
 and the box con-

straints (1h), and constraints g⃗ij and h⃗ij depending on states and controls of the agent

and one neighbor, similar to the dynamics.

The considered OCP formulation (1) covers a wide class of distributed systems,

e.g. cooperative transport (Hentzelt and Graichen 2013) and scalable systems such

as smart grids (Filatrella et al. 2008). This generic system description combined

with the focus on a time-efficient implementation opens a wide spectrum of usabil-

ity for the presented DMPC framework.

3 Distributed model predictive control

Optimal control problems for coupled systems as in (1) contain a large number of

states and controls. This leads to a significant computational effort that is challeng-

ing for standard MPC algorithms to be handled in real-time. DMPC algorithms

instead assume that each of the distributed subsystems are equipped with a dedicated

control unit that is capable of solving a reduced optimal control problem. The idea

based on this assumption is to decouple the global OCP and spread the computation

effort over the set of agents in parallel. Overlying algorithms ensure convergence of

the local solutions to an optimal solution for the overall system. While the computa-

tional complexity and communication effort of algorithms for DMPC is higher than

solving the central problem, the expectation is to compensate this disadvantage by

the parallel structure. In the presented DMPC framework, the well-known ADMM

algorithm (Boyd et al. 2011) is employed in a continuous-time setting (Bestler and

Graichen 2019). Note that the formulation of the algorithm is based on previous

work (Burk et al. 2019, 2020).

776 D. Burk et al.

1 3

3.1 ADMM algorithm

The ADMM algorithm enables to spread the computation effort of the global

OCP (1) completely on distributed agents. As a starting point, the global OCP (1)

is brought into a decoupled form for each agent i ∈ V by introducing local copies
⃗̄xji(t) ∈ ℝ

nx,j and ⃗̄uji(t) ∈ ℝ
nu,j for the states x⃗j and controls u⃗j of each sending neigh-

bor j ∈ N
←

i
 , i.e.

These local copies (⃗̄xji,
⃗̄uji) represent new control inputs for the agent i and can

be seen as a proposal of agent i for its neighbors j ∈ N
←

i
 . Equivalence between the

local copies and the original variables is ensured by introducing the consistency

(3a)min
w⃗,z⃗

∑

i∈V

Ji(x⃗i, u⃗i)

(3b)
s.t. ⃗̇xi = f⃗i(x⃗i, u⃗i, t) +

∑

j∈N
←

i

f⃗ij(x⃗i, u⃗i,
⃗̄xji,

⃗̄uji, t), i ∈ V

(3c)x⃗
i
(0) = x⃗

i,0, i ∈ V

(3d)0⃗ = g⃗i(x⃗i, u⃗i, t), i ∈ V

(3e)0⃗ ≥ h⃗
i
(x⃗

i
, u⃗

i
, t), i ∈ V

(3f)0⃗ = g⃗ij(x⃗i, u⃗i,
⃗̄xji,

⃗̄uji, t), j ∈ N
←

i
, i ∈ V

(3g)0⃗ ≥ h⃗ij(x⃗i, u⃗i,
⃗̄xji,

⃗̄uji, t), j ∈ N
←

i
, i ∈ V

(3h)u⃗
i
∈
[

u⃗
i,min

, u⃗
i,max

]

, i ∈ V

(3i)0⃗ =

[

z⃗x,i

z⃗u,i

]

−

[

x⃗i

u⃗i

]

, i ∈ V

(3j)0⃗ =

[

z⃗x,j

z⃗u,j

]

−

[

⃗̄xji

⃗̄uji

]

, j ∈ N
←

i
, i ∈ V.

777

1 3

A modular framework for distributed model predictive control…

constraints (3i) and (3j) with the coupling variables z⃗x,i(t) ∈ ℝ
nx,i and z⃗u,i(t) ∈ ℝ

nu,i .

In (3) and the following, the notation

 is used.

The ADMM method is based on the Augmented Lagrangian formulation (Bes-

tler and Graichen 2019; Bertsekas 1996). Regarding the continuous-time setting

used in this paper, the consistency constraints (3i) and (3j) are accounted for in

the cost functional

subject to (3b)–(3h) with the Lagrange multipliers �⃗
x,ii
(t) ∈ ℝ

n
x,i , �⃗

u,ii
(t) ∈ ℝ

n
u,i ,

�⃗x,ji(t) ∈ ℝ
nx,j , �⃗u,ji(t) ∈ ℝ

nu,j and penalty parameters �⃗
x,i
(t) ∈ ℝ

n
x,i , �⃗

u,i
(t) ∈ ℝ

n
u,i ,

�⃗x,ji(t) ∈ ℝ
nx,j and �⃗u,ji(t) ∈ ℝ

nu,j . To ease notations, the multipliers and penalty

parameters are stacked according to

(4a)w⃗i =

⎡
⎢⎢⎢⎣

u⃗i�
⃗̄xji

⃗̄uji

�

j∈N
←

i

⎤
⎥⎥⎥⎦

, z⃗i =

�
z⃗x,i

z⃗u,i

�
, z⃗

-i =

�
z⃗x,j

z⃗u,j

�

j∈N
←

i

, i ∈ V

(4b)w⃗ =

[

w⃗i

]

i∈V
, z⃗ =

[

z⃗i

]

i∈V

(5)

J�,i(x⃗i, w⃗i, �⃗i, z⃗i, z⃗-i)

= Ji(x⃗i, u⃗i)

+ ∫
T

0

[
�⃗x,ii

�⃗u,ii

]� ([
z⃗x,i

z⃗u,i

]

−

[
x⃗i

u⃗i

])

+
1

2

‖‖‖
‖‖

[
z⃗x,i

z⃗u,i

]

−

[
x⃗i

u⃗i

]‖‖‖
‖‖

2

C⃗i

+
∑

j∈N
←

i

[
�⃗x,ji

�⃗u,ji

]� ([
z⃗x,j

z⃗u,j

]

−

[
⃗̄xji

⃗̄uji

])

+
1

2

‖
‖‖‖‖

[
z⃗x,j

z⃗u,j

]

−

[
⃗̄xji

⃗̄uji

]‖
‖‖‖‖

2

C⃗ji

dt

(6a)�⃗i =

⎡
⎢⎢⎢⎢⎣

�⃗x,ii

�⃗u,ii�
�⃗x,ji

�⃗u,ji

�

j∈N
←

i

⎤
⎥⎥⎥⎥⎦

, i ∈ V, �⃗ =

�
�⃗i

�
i∈V

(6b)C⃗i = diag

[

�⃗x,i

�⃗u,i

]

, i ∈ V C⃗ji = diag

[

�⃗x,ji

�⃗u,ji

]

, j ∈ N
←

i
, i ∈ V.

778 D. Burk et al.

1 3

The corresponding dual problem to (3) can be written as

 with the primal variables (w⃗, z⃗) and the dual variables �⃗ . The ADMM algorithm

solves the max–min-problem (7) by repetitively executing the three steps

 with the iteration counter q. The minimization with respect to the coupling vari-

ables z⃗ (8ab) can be solved analytically while the steepest ascent is used in (8ac).

Important to note is that each step can be subdivided into fully decoupled steps for

either agent i ∈ V . Hence, the algorithm is fully distributable which allows to spread

the computation effort over all agents.

(7a)max
�⃗

min
w⃗,z⃗

∑

i∈V

J�,i(x⃗i, w⃗i, �⃗i, z⃗i, z⃗-i)

(7b)
s.t. ⃗̇xi = f⃗i(x⃗i, u⃗i, �) +

∑

j∈N
←

i

f⃗ij(x⃗i, u⃗i,
⃗̄xji,

⃗̄uji, t), i ∈ V

(7c)x⃗
i
(0) = x⃗

i,0, i ∈ V

(7d)0⃗ = g⃗i(x⃗i, u⃗i, t), i ∈ V

(7e)0⃗ ≥ h⃗
i
(x⃗

i
, u⃗

i
, t), i ∈ V

(7f)0⃗ = g⃗ij(x⃗i, u⃗i,
⃗̄xji,

⃗̄uji, t), j ∈ N
←

i
, i ∈ V

(7g)0⃗ ≥ h⃗ij(x⃗i, u⃗i,
⃗̄xji,

⃗̄uji, t), j ∈ N
←

i
, i ∈ V

(7h)u⃗
i
∈
[

u⃗
i,min

, u⃗
i,max

]

, i ∈ V

(8a)
min

w⃗

∑

i∈V

J�,i(x⃗i, w⃗i, �⃗
q−1

i
, z⃗

q−1

i
, z⃗

q−1

-i
), s.t.(7b) − (7h)

(8b)min
z⃗

∑

i∈V

J�,i(u⃗
q

i
, �⃗

q−1

i
, z⃗i, z⃗-i;x⃗i,0)

(8c)�⃗
q

i
= �⃗

q−1

i
+ diag

⎡⎢⎢⎣
C⃗i�

C⃗ji

�
j∈N

←

i

⎤
⎥⎥⎦

⎡⎢⎢⎢⎢⎣

z⃗
q

i
−

�
x⃗

q

i

u⃗
q

i

�

�
z⃗

q

j
−

�
⃗̄x

q

ji

⃗̄u
q

ji

��

j∈N
←

i

⎤
⎥⎥⎥⎥⎦

, i ∈ V

779

1 3

A modular framework for distributed model predictive control…

The resulting ADMM algorithm for each agent is given in Algorithm 1. It con-

sists of the computation steps 1, 3, 5, the communication steps 2, 4, 6, and the evalu-

ation of a convergence criterion in Step 7. The algorithm starts with an initialization

of corresponding variables. The local OCP (9) is minimized in Step 1 with respect

to the local variables w⃗
i
 . This minimization represents the main computation effort

of the overall algorithm. In Step 2, the trajectories of the local variables are sent

to the sending neighbors j ∈ N
←

i
 of each agent i ∈ V . The analytic solution for the

minimization with respect to the coupling variables (8ab) is given in Step 3 of the

ADMM algorithm, before they are sent to the receiving neighbors j ∈ N
→

i
 of each

780 D. Burk et al.

1 3

agent in Step 4. The third computation step is given in Step 5 by a maximization

with respect to the Lagrange multipliers �⃗ . In Step 6, the result of the maximization

step is sent to the sending neighbors j ∈ N
←

i
 of each agent i ∈ V . A convergence

criterion is checked in Step 7. If it is satisfied or the iteration counter has reached its

maximum, the algorithm stops and returns the current trajectories. Otherwise, the

iteration counter is increased and the algorithm returns to Step 1.

3.2 Neighbor approximation

In practice, the convergence speed of the ADMM algorithm can be enhanced by

anticipating the actions of the neighbors in the own agents optimization. The con-

cept of neighbor approximation was introduced in Hentzelt and Graichen (2013)

and extended in Burk et al. (2020) and relies on the neighbor affine structure of the

dynamics (1b)–(1c) and constraints (1d)–(1h).

The basic idea is to use the already introduced local copies ⃗̄xji and ⃗̄uji to approxi-

mate parts of the neighbors OCP. The expectation is that the additional informa-

tion about the neighborhood improves the local solution of each agent and thus the

convergence behavior of the overall algorithm. This also reduces the number of

required ADMM iterations until convergence is reached, which has been confirmed

in numerical evaluations in Hentzelt and Graichen (2013) and Burk et al. (2020).

In practical experience, the reduced number of ADMM iterations can compensate

for the increased complexity of the extended OCP which can lead to a significantly

decreased computational effort (Burk et al. 2020).

The neighbor approximation implemented in GRAMPC-D is modular in the

sense that the neighbors cost, constraints, dynamics and each combination of the

three can be considered.

3.2.1 Neighbor cost

The global cost to be mininized (2) consists of the single cost functions of the agents

i ∈ V . The local copies of the neighbor variables ⃗̄xji and ⃗̄uji , j ∈ Ni , can be used to

anticipate the neighbors cost Jj(⃗̄uji;x⃗j,0) on the local level of agent i ∈ V , i.e.

The normalization with the factors

is necessary in order to avoid that the neighbors cost function would appear in the

overall cost function multiple times. Approximating the neighbor costs is especially

beneficial in examples with a strong dependency on the other agents costs and ena-

bles the agent to anticipate the neighbors control action to minimize its local costs.

(12)
J̃i(x⃗i, w⃗i) = �iJi(x⃗i, u⃗i) +

∑

j∈Ni

�jJj(⃗̄xji,
⃗̄uji), i ∈ V .

(13)�
i
=

1

1 + |
|
N

i
|
|

, i ∈ V

781

1 3

A modular framework for distributed model predictive control…

It is recommended to combine the neighbor cost approximation with the approxima-

tion of the neighbor dynamics introduced in the following lines.

3.2.2 Neighbor dynamics

Similar to the neighbor cost consideration, the neighbor affine structure of the dynam-

ics (1b)–(1c) can be exploited to approximate the neighbor dynamics and therefore

to improve the quality of the local copies ⃗̄xji and ⃗̄uji . To this end, the local dynam-

ics (1b)–(1c) are extended by the approximate neighbor dynamics

with the initial condition ⃗̄xji(0) = x⃗j,0 . The dependencies of the neighbor’s states and

controls in f⃗j and f⃗ji are decoupled using the local copies ⃗̄xji and ⃗̄uji . However, it is

not possible to decouple further functions f⃗js as these depend on states and controls

of agents s for which agent i has in general no local copies. For consistency, the

external influence

is introduced with v⃗ij(t) ∈ ℝ
nx,i that captures the remaining terms of the neigh-

bors dynamics. The external influence is considered in the approximated neighbor

dynamics (14) by introducing local copies ⃗̄vji(t) ∈ ℝ
nx,j . Thereby, the whole dynam-

ics of neighbor j is approximated in (14). To ensure convergence of the local copies
⃗̄vji to the original variables v⃗ij , the consistency constraints

 are introduced and replace the consistency constraints in (3i)–(3j) regarding the

states. Note that the local copies of the states ⃗̄xji are not considered as control varia-

bles anymore, but are determined by the differential equation (14). Instead, the local

copies of the external influence ⃗̄vji serve as new local control variables. In summary,

the stacked notations (4) and (6) are adapted according to

(14)⃗̄̇xji = f⃗j(⃗̄xji,
⃗̄uji, t) + f⃗ji(⃗̄xji,

⃗̄uji, x⃗i, u⃗i, t) + ⃗̄vji, j ∈ Ni, i ∈ V

(15)
v⃗ij =

∑

s∈N
←

i
⧵{j}

f⃗is(x⃗i, u⃗i, x⃗s, u⃗s, t), j ∈ Ni, i ∈ V

(16a)z⃗v,ij = v⃗ij, j ∈ Ni, i ∈ V

(16b)z⃗v,ji =
⃗̄vji, j ∈ Ni, i ∈ V

(17a)w⃗i =

⎡⎢⎢⎣

u⃗i�
⃗̄uji

⃗̄vji

�

j∈Ni

⎤
⎥⎥⎦

, i ∈ V z⃗i =

�
z⃗u,i�

z⃗v,ij

�
j∈Ni

�
, i ∈ V

782 D. Burk et al.

1 3

 and

with Lagrangian multipliers �⃗v,ij(t) ∈ ℝ
nx,i , �⃗v,ji(t) ∈ ℝ

nx,j , coupling variables

z⃗v,ij(t) ∈ ℝ
nx,i , and penalty parameters �⃗v,ij(t) ∈ ℝ

nx,i , �⃗v,ji(t) ∈ ℝ
nx,j.

3.2.3 Neighbor constraints

In addition to the consideration of the neighbor cost and dynamics within the local

OCP of agent i ∈ V , the constraints (1d)–(1h) of each neighbor j ∈ Ni of agent

i ∈ V can be taken into account by adding

 to the local OCP (9). Again, the constraints are decoupled from the neighbors states

and controls x⃗j and u⃗
i
 by using the local copies ⃗̄xji and ⃗̄uji.

As discussed before, this concept is restricted to the agent constraints of each

neighbor j ∈ Ni and the coupling constraints between neighbors j and agent i, while

further coupling constraints between neighbor j and its neighbors s ∈ N
←

j
⧵ {i}

depend on states and controls of agents s for which in general agent i has no local

copies.

3.3 Penalty parameter adaption

The update of the penalty parameters in the matrices C⃗
i
 and C⃗ji in (7) is crucial for a

fast convergence of the ADMM algorithm. The adaptation method implemented in

GRAMPC-D follows a proposal in [Boyd et al. (2011), Section 3.4.1] for the optimi-

zation problem

(17b)�⃗i =

⎡
⎢⎢⎢⎢⎣

�⃗u,ii

⎡
⎢⎢⎣

�⃗v,ij

�⃗u,ji

�⃗v,ji

⎤
⎥⎥⎦

j∈Ni

⎤
⎥⎥⎥⎥⎦

, i ∈ V z⃗
-i =

�
z⃗u,j

z⃗v,ji

�

j∈Ni

, i ∈ V

(17c)C⃗i = diag
�
�⃗u,i

�
, i ∈ V C⃗ji = diag

⎡
⎢⎢⎣

�⃗v,ij

�⃗u,ji

�⃗v,ji

⎤
⎥⎥⎦

, j ∈ Ni, i ∈ V

(18)w⃗ =

[

w⃗i

]

i∈V
, z⃗ =

[

z⃗i

]

i∈V
, �⃗ =

[

�⃗i

]

i∈V

(19a)0⃗ = g⃗j(⃗̄xji,
⃗̄uji, t), 0⃗ = g⃗ij(⃗̄xji,

⃗̄uji, x⃗i, u⃗i, t), j ∈ Ni, i ∈ V

(19b)0⃗ ≥ h⃗i(⃗̄xji,
⃗̄uji, t), 0⃗ ≥ h⃗ij(⃗̄xji,

⃗̄uji, x⃗i, u⃗i, t), j ∈ Ni, i ∈ V

(19c)⃗̄uji ∈
[

u⃗j,min
, u⃗j,max

]

, j ∈ Ni, i ∈ V

783

1 3

A modular framework for distributed model predictive control…

The proposed adaption algorithm is given by

with the primal residual r⃗q
= A⃗x⃗q

+ B⃗z⃗q
− c⃗ , the dual residual s⃗q = �A⃗�B⃗(z⃗q − z⃗q−1) .

The basic idea is to keep both within a factor of � of one another. Following this

idea for the OCP (7), the primal and dual residuals are given by

To reduce the number of tuning parameters, � = 1 is chosen which results in an

equality instead of the inequality in (21). To further simplify the implementation,

the equality is evaluated element-wise and at each discrete time step �
k
=

T

N−1
 with N

as discretization of the predicted horizon. This results in the condition

for each discrete time step �
k
 and the norm evaluated element-wise. The condi-

tion (23) can be reformulated in form of the update law

with m as index for an arbitrary element in (23). The implementation is presented

in Algorithm 2. At first, the division through small numbers, especially zero, is

caught to prevent numerical issues. The factor �q is computed afterwards and bound

between �
min

 and �
max

 , before the new penalty parameter is calculated by �q
= �

q
�

q−1

.

(20a)min
x⃗,z⃗

f (x⃗) + g(z⃗)

(20b)s.t. A⃗x⃗ + B⃗z⃗ = c⃗ .

(21)�q
=

⎧
⎪
⎨
⎪
⎩

� incr�q−1
if ��r⃗

q−1��2
> ���s⃗

q−1��2
�q−1

�decr
if ��s⃗

q−1��2
> ���r⃗

q−1��2

�q−1
otherwise

(22a)r⃗
q

i
=

⎡
⎢⎢⎢⎢⎣

x⃗
q

i

u⃗
q

i�
⃗̄
jix

q

⃗̄u
q

ji

�

j∈N
←

i

⎤
⎥⎥⎥⎥⎦
−

⎡
⎢⎢⎢⎢⎣

z⃗
q

x,i

z⃗
q

u,i�
z⃗

q

x,j

z⃗
q

u,j

�

j∈N
←

i

⎤
⎥⎥⎥⎥⎦

, i ∈ V

(22b)s⃗
q

i
= diag

⎡
⎢⎢⎣

C⃗
q−1

i�
C⃗

q−1

ji

�
j∈N

←

i

⎤⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

z⃗
q

x,i
− z⃗

q−1

x,i

z⃗
q

u,i
− z⃗

q−1

u,i�
z⃗

q

x,j
− z⃗

q−1

x,j

z⃗
q

u,j
− z⃗

q−1

u,j

�

j∈N
←

i

⎤
⎥⎥⎥⎥⎥⎦

, i ∈ V.

(23)
‖
‖
‖

r⃗
q

i
(�k)

‖
‖
‖2

!
=
‖
‖
‖

s⃗
q

i
(�k)

‖
‖
‖2

(24)�q
m
(�k) = �q−1

m
(�k)

|
|r

q
m(�k)

|
|

|
|s

q
m(�k)

|
|

= �q−1

m
(�k)�

q
m
(�k)

784 D. Burk et al.

1 3

4 Modular framework

GRAMPC-D is implemented in a modular fashion in order to achieve a scalable and

flexible implementation. At first, the modular structure is explained before the capa-

bility for plug-and-play scenarios is laid out.

4.1 Modular structure

The main parts of GRAMPC-D and their interaction are presented in the following.

Due to the modular concept, the implementation of GRAMPC-D can be subdivided

into single modules that are composed depending on the chosen type of controller,

centralized or distributed, as the structure of GRAMPC-D differs between the two

cases. Both are visualized in Fig. 2. Either structure is generated automatically by

choosing the corresponding controller type without further required interaction of

the user. Both the distributed and centralized structure are scalable due to the modu-

lar concept and therefore suitable to handle large or complex systems.

The distributed control structure in the left part of Fig. 2 assumes that each agent

only has access to its local variables and communication is required to acquire data

from other agents. Thus, the central part in the distributed setup is the communica-

tion interface. While it enables to exchange data between agents, the actual imple-

mentation depends on the chosen type of communication interface. If the DMPC is

simulated on a single processor, there is no need to actually send data over a net-

work. Instead, a central communication interface is provided that exchanges data

pointers, which is a significant difference in performance. If the ADMM algorithm

is implemented in an actual distributed setup, each agent creates its own local com-

munication interface that enables to exchange data over a network. The correspond-

ing protocol is encapsulated into the local communication interface due to the mod-

ular concept that enables implementing multiple protocols and switching between

them. In either case, each agent creates a local solver that contains the local OCP

785

1 3

A modular framework for distributed model predictive control…

depending on the neighborhood and the chosen optimization parameters such as

neighbor approximation. Hence, tasks like decoupling the global OCP by introduc-

ing local copies are done automatically in the background. The ADMM algorithm

is implemented inside the local solver with an abstract implementation of the min-

imization problem with respect to the local variables. This enables implementing

multiple solvers and switching between them without changing other parts of the

software, although GRAMPC is chosen as default. The remaining two important

modules are the coordinator and the simulator. The ADMM algorithm assumes a

fully synchronized execution, which has to be guaranteed even in a distributed setup.

This synchronization is handled by the coordinator by triggering each step of the

algorithm and waiting for a response of each agent before sending the following trig-

ger. The last module is an integrated simulator that enables simulations independent

of the chosen controller or the specific system.

A more simple structure is generated if a centralized controller is chosen, see

right part of Fig. 2. In this case, the global OCP (1) is solved in a centralized manner

including all agents dynamics and having knowledge of all variables. The central-

ized setup implicitly synchronizes the execution of the algorithm without the need

for a coordinator. The only remaining module is the simulator that is used to simu-

late the overall system.

Each part of GRAMPC-D is interchangeable by alternative software. As already

mentioned, the MPC toolbox GRAMPC is used by default to solve both the global

OCP (1) in case of a centralized controller and the underlying reduced OCP (9) in

Agent i

Local solver

Agent j

Local solver

Coordinator Simulator

Communication

Interface

Agent i

Central solver

Agent j

Simulator

Structure of GRAMPC-D

for a distributed setup

Structure of GRAMPC-D

for a centralized setup

Fig. 2 The communication interface is the central part of GRAMPC-D in case of distributed optimiza-

tion. Each agent has its own local solver that handles the steps of the ADMM algorithm. The coordinator

provides a synchronization of all agents while the simulator handles the simulation of the overall system.

If a centralized controller is chosen, GRAMPC-D is centered around the central solver that knows all

agents and can access their variables

786 D. Burk et al.

1 3

Step 1 of the ADMM algorithm in case of a distributed controller. GRAMPC is

tailored to embedded hardware and by this a natural choice, but if another solver

is desired, e.g. with a stronger focus on precision instead of computational speed,

then the only required change is to overload the class regarding the solver with a

new implementation. The same holds for each part of the framework such as the

implemented communication protocol. The TCP protocol is provided by default, but

alternative protocols can be implemented by overloading the local communication

interface.

4.2 Rapid prototyping

Both the local and global OCPs are dynamically generated at run-time based on the

same problem description provided by the user, see Fig. 3. In case of a centralized

controller, the global OCP is generated by the central solver while in case of a dis-

tributed controller, the local OCP is generated for each agent individually based on

its neighbors and the optimization parameters. Therein, the corresponding flags for

neighbor approximation are defined that state whether additional variables have to

be initialized, e.g. local copies ⃗̄xji and ⃗̄uji or the external influence v⃗ij , see Sect. 3.2.

This results in a convenient prototyping process while designing controllers, as each

type of controller can be automatically generated and evaluated based on the same

problem description. To further support the efficiency of prototyping, the possibility

of multi-threading can be activated to spread the computation effort on each avail-

able core of the processor and thus to speed-up the computations.

4.3 Plug-and-play functionality

Plug-and-play is a core feature for the usability of a framework in the field of DMPC,

see e.g. Zeilinger et al. (2013), Riverso et al. (2014), Riverso and Ferrari-Trecate

Problem description

G
en

er
at

e

ce
nt

ra
l O

C
P

G
enerate

local O
C
P
s

MPC DMPC

Default Neigh. approx.

Fig. 3 Based on the same problem description, the global OCP is generated for a centralized controller

and the local OCPs in the distributed case. The local OCPs are automatically extended by corresponding

terms if neighbor approximation is enabled for the distributed controller

787

1 3

A modular framework for distributed model predictive control…

(2015), where the OCP structure and size may change dynamically due to the

removal or plug-in of agents. The generation of the OCPs (9) during run-time and

the modular structure of the framework allows to integrate plug-and-play functional-

ity in the network. If an agent enters the system in the distributed control setting (left

part of Fig. 2), the coordinator informs the direct neighbors of the agents to include

the corresponding variables. Hence, only the OCPs (9) of the direct neighbors are

updated and the new agent is integrated into the network. If an agent leaves the

network, the agents and the coordinator delete the agent from their internal lists of

active agents. This results in a smooth transition between two problem formulations.

5 Simulation examples

The modular framework GRAMPC-D is evaluated for different examples. The scal-

ability is shown for a coupled spring-mass system. The plug-and-play functionality

and the concept of neighbor approximation are demonstrated for a smart grid and a

coupled water tank network, respectively. Finally, a distributed hardware implemen-

tation for a system of coupled Van der Pol oscillators is considered by communicat-

ing over an actual network using the TCP protocol.

In each example, the terminal and integral cost in (2) are chosen quadratically

with the positive (semi-)definite weighting matrices P⃗
i
∈ ℝ

n
x,i
×n

x,i , Q⃗i ∈ ℝ
nx,i×nx,i and

R⃗
i
∈ ℝ

n
u,i
×n

u,i . The desired state to be controlled is given by x⃗
i,des . The computation

times are measured on an Intel i5 CPU with 3.4 GHz using Windows 10. The com-

munication effort is neglected if not stated otherwise.

5.1 Scalable system

The scalability of GRAMPC-D is shown for a system consisting of a set of masses

that are coupled by springs. Each mass is represented by an agent i ∈ V and is

described by the differential equations

with the position (px,i, py,i) of the respective mass in the x - and y-axis and the respec-

tive controls (ux,i, uy,i) . This results in the state and control vectors

(25)

Vi(x⃗i, T) =
1

2
‖
‖

x⃗i(T) − x⃗i,des(T)
‖
‖

2

P⃗i

li(x⃗i, u⃗i, t) =
1

2
‖
‖x⃗i − x⃗i,des

‖
‖

2

Q⃗i

+
1

2
‖
‖u⃗i

‖
‖

2

R⃗i

(26)

[

p̈x,i

p̈y,i

]

=

[

ux,i

uy,i

]

+
∑

j∈Ni

c

m

(

1 −
�0

�ij(px,i, py,i)

)[

px,j − px,i

py,j − py,i

]

(27a)x⃗i =

[

px,i ṗx,i py,i ṗy,i

]�

788 D. Burk et al.

1 3

The spring is relaxed at the length �
0
= 1m . The spring constant is given by

c = 0.5Nm
−1 and each agent has a mass of mi = 7.5kg . The function

�ij(px,i, py,i) =

√

(px,i − px,j)
2 + (py,i − py,j)

2 computes the distance between two

agents i and j. The dynamics (26) can be split into functions f⃗i and f⃗ij corresponding

to the neighbor-affine form (1b). The weighting matrices are set to (SI units are

omitted for simplicity)

with the desired state

It was shown in Burk et al. (2019) that the computation time per agent is nearly

independent of the system size, whereas in the central MPC case the computation

time rises drastically. The simulation results for a system with 40 × 40 agents are

given in Fig. 4. It can be seen that the trajectories of the cost are quite similar. While

the distributed solution is slightly suboptimal, it would converge to the centralized

solution by increasing the number of ADMM iterations. The computation time for

each time step, however, is 1072.58 ms for the centralized controller, while the dis-

tributed controller requires a maximum of 9.59 ms and an average of 2.23 ms per

agent.

5.2 Plug-and-play

The plug-and-play capability of GRAMPC-D is presented using an exemplary setup

of a smart grid. The network is described by a set of coupled agents that represent

non-controllable power sinks and sources, such as private households, industry or

renewable energy as well as controllable power plants. The dynamical behavior

of the agents is generalized by describing them as generators with a mechanical

phase angle �
i
(t) ∈ ℝ that may differ from the phase of the grid. The corresponding

dynamics

(27b)u⃗i =

[

ux,i uy,i

]�

.

(28)P⃗i = diag[1, 1, 1, 1] , Q⃗i = diag[5, 2, 5, 2] , R⃗i = diag[0.01, 0.01]

(29)x⃗i,des =

[

px,i,des 0ms−1 py,i,des 0ms−1
]�

.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2,000

4,000

6,000

Simulation time t [s]

C
o
st

J

MPC

DMPC

Fig. 4 Global cost trajectory of the scalable spring-mass system with 40 × 40 agents for the central MPC

and DMPC case

789

1 3

A modular framework for distributed model predictive control…

with friction constant � > 0 and the moment of inertia I is given in a neighbor-affine

form and describes the dynamical behavior of the phase shift �
i
(t) ∈ ℝ given by

between the phase Ω� of the grid with frequency Ω and the mechanical angle �
i
 , see

Rohden et al. (2012). Hence, the state vector is given by

In (30), P
source,i

 describes the generalized non-controllable power, e.g. the demanded

power for private households and industry or the generated power by renewable

energy. The coupling between two agents consists of the maximum transferable

power P
max,ij that depends on the phase shift angle �j − �i between agent i ∈ V and

its neighbors j ∈ N
←

i
 . Agents that describe power plants have a controllable input

u
i
 that is used to stabilize the grid. A normalized parameterization is used with

Ω = 1 Hz and I = 1 Js
2 , the friction term set to � = 1 × 10

−3
Js and the maximum

transferable power to Pmax,ij = 0.1 Js
1 . The weighting matrices are set to

with the desired state

The first element of the desired state x⃗
i,des is set arbitrary, as there is no desired

value for the phase and the first state is not weighted in the cost functional.

The implemented setup is visualized in Fig. 5. At the start of the simulation,

one power plant is given that supplies one non-controllable power-sink such as

a private household. During run-time, an additional power sink is coupled to the

first one, i.e. the power plant has to supply both using the same connection. The

simulation results are shown in Fig. 6, starting with the first power sink that is

connected to the power plant. It can be seen that the phase difference between

the power plant and the household converges to a stationary value that leads to

a transmission of the demanded power. Furthermore, the angular velocity of the

(30)�̈i =
1

IΩ

(

ui + Psource,i − �Ω2
)

− 2
�

I
�̇ −

∑

j∈N
←

i

Pmax,ij

IΩ
sin

(

�j − �i

)

(31)�
i
= �

i
− Ω�

(32)x⃗
i
=

[

�
i
�̇

i

]�

.

(33)P⃗i = diag
[

0s2, 0.1s4
]

, Q⃗i = diag
[

0s2, 1s4
]

, R⃗i = 0.01 s2 J−2

(34)x⃗
i,des =

[

× 0s
−2
]�

.

Power plant Power sink Power sink

Fig. 5 The plug-and-play capability of GRAMPC-D is presented using the simulation of a smart grid. At

the beginning of the simulation, only one power sink is connected to the power plant. During run-time,

the second power sink is connected to the first one, i.e. the power plant has to supply both using the same

connection

790 D. Burk et al.

1 3

phase shift converges to zero. At simulation time t = 20 s, the second power sink

is plugged in, leading to an additional power demand. Consequently, the phase

shift between the power plant and the first power sink increases and the addi-

tional power is transmitted. The phase shift between the first and second power

sink is adapted accordingly. The computation time for the distributed controller

is given by a maximum of 84.67 ms and an average of 4.78 ms per agent using a

step size of Δ
t
= 100 ms. The average time is significantly lower due to the con-

vergence criterion of the ADMM algorithm.

This plug-in and plug-out functionality of agents is supported at any moment

during the simulation even if the controllers run on distributed hardware and

communicate over a network. GRAMPC-D can handle planned changes in the

system such as shown in this simulation example as well as spontaneous discon-

nections due to a broken network connection.

0 5 10 15 20 25 30 35 40
0

2

4

6

8

·10−3

Additional
power sink is
plugged in

G
lo

b
a
l
co

st
J

0 5 10 15 20 25 30 35 40

−6

−4

−2

0
·10−2

F
re

q
u
en

cy
φ̇

[r
a
d

s−
1
]

Powerplant

Power sink 1

Power sink 2

0 5 10 15 20 25 30 35 40

−0.2

−0.1

0

Simulation time t [s]

P
h
a
se

sh
if
t

φ
i

−
φ

j
[r

a
d
]

Powerplant - Power sink 1

Power sink 1 - Power sink 2

Fig. 6 The Plug-and-play functionality of GRAMPC-D for the smart grid example is shown. The plot at

the top shows the trajectory of the global cost, the plot in the middle the frequencies of the single agents

and the plot in the bottom the phase shift between the agents. The additional power sink is plugged in at

simulation time t = 20 s

791

1 3

A modular framework for distributed model predictive control…

5.3 Neighbor approximation

The concept of neighbor approximation is evaluated for a system of water tanks

that are coupled by pipes, see Fig. 7. Only the first water tank has a controllable

input u
1
(t) ∈ ℝ . The last water tank has a constant outflow d

5
= 0.01 m3s−1 and the

desired water height x5,des = 3 m . In addition, the inequality constraint h
i
≤ 3 m of a

maximum water height has to be satisfied by all tanks. The dynamics of each water

tank is given by

with the water height h
i
(t) ∈ ℝ and the state vector x

i
= h

i
 . The area of each water

tank is given by A
i
= 0.1 m

2 and the diameter of the pipes by aij = 0.005 m2 . The

weights for the cost functions are set to

The simulation is run with a distributed controller both with and without neigh-

bor approximation using the same set of parameters for the ADMM algorithm and

GRAMPC. The convergence of the ADMM algorithm is shown in Fig. 8 for both

simulations. The simulation with neighbor approximation converges smoothly to the

optimal solution and satisfies the convergence criterion after 7 iterations while 89

ADMM iterations are required without neighbor approximation. Note that the cost

is rising instead of falling as the solution is infeasible until the algorithm converges.

The improved convergence behavior with neighbor approximation comes with a

higher computational complexity per ADMM iteration. However, if a convergence

criterion is used, the decreased number of ADMM iterations per time step compen-

sate for the higher computational complexity. The required computation time for the

89 ADMM iterations without neighbor approximation is 955.6 ms and for the 7 iter-

ations using neighbor approximation 203.8 ms. Note that the same configuration for

(35)ḣi =
1

Ai

(
ui − di

)
+

∑

j∈N
←

i

aij

Ai

sign
(
hj − hi

)
√

2g
|
|
|
hj − hi

|
|
|

(36a)P1 = 0 m
−2

, Q1 = 0 m
−2

, R1 = 0.1 s
2
m

−6

(36b)Pi = 0 m
−2

, Qi = 0 m
−2

, Ri = 0s
2
m

−6
, i ∈ {2, 3, 4}

(36c)P5 = 1 m−2, Q5 = 1 m−2, R5 = 0s2m−6.

1 2 3 4 5

Fig. 7 The concept of neighbor approximation is shown at a simulation example of coupled water tanks.

Only the first one has an input and only the last one has a desired water height while being disturbed by a

constant outflow

792 D. Burk et al.

1 3

the ADMM algorithm and GRAMPC is used in this evaluation to provide a compa-

rable result. The standard ADMM algorithm may converge within less iterations if

more computation effort is spent per iteration while the algorithm may require even

less time if the parameters are tuned for neighbor approximation.

5.4 Distributed hardware implementation

This section shows the capability of GRAMPC-D to solve the ADMM algorithm

on distributed embedded hardware. The following simulation is run on four Rasp-

berry Pi 3B+ using Raspberry Pi OS that are connected via Ethernet. Each agent

runs on an individual Raspberry Pi while the coordinator and the simulator use the

same hardware. The local communication interface from GRAMPC-D based on the

TCP protocol is used. The simulation example consists of three coupled (Van der

Pol oscillators Barrón and Sen 2009)

with state pi(t) ∈ ℝ , control u
i
(t) ∈ ℝ , the uncoupled oscillator constant

�
1
= 1 m

−1
s
−2 , and the coupling constant �

2
= 1s

−2 . The state vector and desired

state are given by

 with the weighting matrices set to

(37)
p̈i = �

1

(

1 − p2

i

)

− pi + ui +

∑

j∈N
←

i

�
2

(

pj − pi

)

(38a)x⃗i =

[

pi ṗi

]�

(38b)x⃗
i,des =

[

0 m 0 m s−1
]�

(39a)P⃗
i
= diag

[

1 m−2 1 m−2 s2
]

,

10 20 30 40 50 60 70 80
8

10

12

14

ADMM iterations

C
o
st

J

With neighbor approximation

Without neighbor approximation

Fig. 8 Convergence behavior of the ADMM algorithm with and without neighbor approximation. The

algorithm converges within 89 ADMM iterations without neighbor approximation opposed to 7 iterations

if neighbor approximation is used

793

1 3

A modular framework for distributed model predictive control…

The simulation is run for 10.000 time steps using a fixed number of q
max

= 5

ADMM iterations.

Figure 9 shows the required time for computation and communication in each

time step. The computation time to execute 5 ADMM iterations amounts to 10 ms

per agent while the average time required to solve the ADMM algorithm in a dis-

tributed manner using the TCP protocol for the communication is 66.51 ms. Hence,

the average effort for the communication is 56.51 ms including 72 communication

steps. Since all agents have to be synchronized for the ADMM algorithm, either of

them has to wait for the slowest agent at each step of the algorithm. All five ADMM

iterations can be executed in 48 ms with the worst case time of 114 ms. This results

in the minimum time for each communication step of 0.53 ms, an average time of

0.79 ms and a maximum time of 1.44 ms. This time includes preparing the data to

be sent, sending and receiving it and recreating the sent data structure from the byte

array. These are plausible values as a ping to the loopback address 127.0.0.1 already

requires 0.14 ms in average and 0.22 ms at maximum. These results show that the

main effort in distributed optimization is the communication effort that requires

82.3% of the overall time in average for this simulation example.

6 Conclusions

The open-source, modular DMPC framework GRAMPC-D is presented in this

paper that enables to solve scalable optimal control problems in a convenient way

and to stabilize plants using distributed model predictive control. This problem

description can be used for both a centralized and a distributed controller. In the

(39b)Q⃗i = diag
[

1 m−2 1 m−2 s2
]

,

(39c)R
i
= 0.1 m

−1
s

4
.

20 40 60 80 100 120
0

2,000

4,000

6,000

Required time for 5 ADMM iterations [ms]

O
cc

u
rr

en
ce

s

Isolated com-
putation time Fastest Average Slowest

Fig. 9 Communication effort of the ADMM algorithm on distributed hardware with 48 ms (minimum),

66.51 ms (average), and 114 ms (maximum) compared to the computation time of 10 ms

794 D. Burk et al.

1 3

distributed setting, the global optimal control problem is automatically decoupled

and solved in a distributed manner using the ADMM algorithm. The convergence

behavior of the ADMM algorithm can be improved by sugint he concept of neighbor

approximation that allows the agents to anticipate the actions of their neighbors. The

presented DMPC framework supports plug-and-play to connect and remove agents

at run-time. Besides solving the ADMM algorithm on a single processor, it is pos-

sible to solve the local optimal control problems on distributed hardware. The local

communication interface enables communication between agents over a network

using the TCP protocol. By default, GRAMPC-D uses the MPC toolbox GRAMPC

for solving the local optimal control problems on agent level, which is suitable for

real-time and embedded implementations.

GRAMPC-D is licensed under the Berkeley Software Distribution 3-clause ver-

sion (BSD-3) license. The complete source-code is available at Github https ://githu

b.com/gramp c-d/gramp c-d. Future work will use the modular structure to extend

GRAMPC-D. For example, communication protocols besides TCP can be provided

or alternative solvers to GRAMPC for the underlying minimization problem imple-

mented to increase the usability and flexibility of the framework.

Acknowledgements This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German

Research Foundation) under Project No. GR 3870/4-1.

Funding Open Access funding enabled and organized by Projekt DEAL..

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,

which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as

you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-

mons licence, and indicate if changes were made. The images or other third party material in this article

are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the

material. If material is not included in the article’s Creative Commons licence and your intended use is

not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission

directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen

ses/by/4.0/.

References

Allgöwer F, Zheng A (2012) Nonlinear model predictive control, vol 26. Birkhäuser, Basel

Barrón MA, Sen M (2009) Synchronization of four coupled van der Pol oscillators. Nonlinear Dyn

56(4):357–367

Bertsekas DP (1996) Constrained optimization and Lagrange multiplier methods. Academic Press,

Belmont

Bestler A, Graichen K (2019) Distributed model predictive control for continuous-time nonlinear systems

based on suboptimal ADMM. Optim Control Appl Methods 40:1–23

Burk D, Völz A, Graichen K (2019) Towards a modular framework for distributed model predictive con-

trol of nonlinear neighbor-affine systems. In: Proceedings of 58th IEEE CDC, Nice (France), 2019,

pp 5279–5284

Burk D, Völz A, Graichen K (2020) Neighbor approximations for distributed optimal control of nonlinear

networked systems. In: Proceedings of ECC, St. Petersburg (Russia), 2020, pp 1238–1243

https://github.com/grampc-d/grampc-d
https://github.com/grampc-d/grampc-d
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

795

1 3

A modular framework for distributed model predictive control…

Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011) Distributed optimization and statistical learning

via the alternating direction method of multipliers. In: Foundations and trends in machine learning,

vol 3, no. 1, 2011. https ://doi.org/10.1561/22000 00016

Camponogara E, Jia D, Krogh B, Talukdar S (2002) Distributed model predictive control. IEEE Control

Syst Mag 22(1):44–52

Engelmann A, Jiang Y, Benner H, Ou R, Houska B, Faulwasser T (2020) ALADIN-�—an open-source

MATLAB toolbox for distributed non-convex optimization. arXiv preprint arXiv :2006.01866

Englert T, Völz A, Mesmer F, Rhein S, Graichen K (2019) A software framework for embedded nonlin-

ear model predictive control using a gradient-based augmented Lagrangian approach (GRAMPC).

Optim Eng 20(3):769–809

Farina F, Camisa A, Testa A, Notarnicola I, Notarstefano G (2019) DISROPT: a Python Framework for

Distributed Optimization. arXiv preprint arXiv :1911.02410

Filatrella G, Nielsen AH, Pedersen NF (2008) Analysis of a power grid using a kuramoto-like model. Eur

Phys J B 61(4):485–491

Hentzelt S, Graichen K (2013) An augmented Lagrangian method in distributed dynamic optimization

based on approximate neighbor dynamics. In: Proceedings of IEEE SMC, Manchester (United

Kingdom), 2013, pp 571–576

Houska B, Ferreau HJ, Diehl M (2011) ACADO toolkit—an open-source framework for automatic con-

trol and dynamic optimization. Optim Control Appl Methods 32:298–312

Houska B, Frasch J, Diehl M (2016) An augmented Lagrangian based algorithm for distributed noncon-

vex optimization. SIAM J Optim 26(2):1101–1127

Houska B, Kouzoupis D, Jiang Y, Diehl M (2018) Convex optimization with ALADIN. Math Program

Jakob W, Rhinelander J, Moldovan D (2017) pybind11—seamless operability between C++11 and

Python, 2017. https ://githu b.com/pybin d/pybin d11/commi t/e7d30 4fbc6 f0aa2 2b610 5e2b1 a4807

c7a29 4eafa

Kalmari J, Backman J, Visala A (2015) A toolkit for nonlinear model predictive control using gradient

projection and code generation. Control Eng Pract 39:56–66

Käpernick B, Graichen K (2014) The gradient based nonlinear model predictive control software grampc.

In: Proceedings of ECC, 2014, pp 1170–1175

Gäfvert O (2014) A practical guide to distributed model predictive control, 2014. [Online]. http://githu

b.com/olive rgafv ert/dmpc. Accessed 9 Mar 2021

Maestre JM, Negenborn RR (2014) Distributed model predictive control made easy. Springer, New York

Mayne D, Rawlings J, Rao C, Scokaert P (2000) Constrained model predictive control: stability and opti-

mality. Automatica 36(6):789–814

Riverso S, Farina M, Ferrari-Trecate G (2014) Plug-and-play model predictive control based on robust

control invariant sets. Automatica 50(8):2179–2186

Riverso S, Ferrari-Trecate G (2015) Plug-and-play distributed model predictive control with coupling

attenuation. Optim Control Appl Methods 36(3):292–305

Riverso S, Battocchio A, Ferrari-Trecate G (2013) PnPMPC toolbox, 2013. [Online]. http://sisdi n.unipv

.it/pnpmp c/pnpmp c.php. Accessed 9 Mar 2021

Rohden M, Sorge A, Timme M, Witthaut D (2012) Self-organized synchronization in decentralized

power grids. Phys Rev Lett 109(6):064 101-1–064 101-5

Scheu H, Marquardt W (2011) Sensitivity-based coordination in distributed model predictive control. J

Process Control 21(5):715–728

Verschueren R, Frison G, Kouzoupis D, van Duijkeren N, Zanelli A, Novoselnik B, Frey J, Albin T,

Quirynen R, Diehl M (2019) acados: a modular open-source framework for fast embedded optimal

control. arXiv preprint arXiv :1910.13753

Zeilinger M, Pu Y, Riverso S, Ferrari-Trecate G, Jones C (2013) Plug and play distributed model predic-

tive control based on distributed invariance and optimization. In: Proceedings of 52nd IEEE CDC,

Florence (Italia), December 2013, pp 5770–5776

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1561/2200000016
http://arxiv.org/abs/2006.01866
http://arxiv.org/abs/1911.02410
https://github.com/pybind/pybind11/commit/e7d304fbc6f0aa22b6105e2b1a4807c7a294eafa
https://github.com/pybind/pybind11/commit/e7d304fbc6f0aa22b6105e2b1a4807c7a294eafa
http://github.com/olivergafvert/dmpc
http://github.com/olivergafvert/dmpc
http://sisdin.unipv.it/pnpmpc/pnpmpc.php
http://sisdin.unipv.it/pnpmpc/pnpmpc.php
http://arxiv.org/abs/1910.13753

	A modular framework for distributed model predictive control of nonlinear continuous-time systems (GRAMPC-D)
	Abstract
	1 Introduction
	2 Problem description
	3 Distributed model predictive control
	3.1 ADMM algorithm
	3.2 Neighbor approximation
	3.2.1 Neighbor cost
	3.2.2 Neighbor dynamics
	3.2.3 Neighbor constraints

	3.3 Penalty parameter adaption

	4 Modular framework
	4.1 Modular structure
	4.2 Rapid prototyping
	4.3 Plug-and-play functionality

	5 Simulation examples
	5.1 Scalable system
	5.2 Plug-and-play
	5.3 Neighbor approximation
	5.4 Distributed hardware implementation

	6 Conclusions
	Acknowledgements
	References

