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Abstract

The modular open-source framework GRAMPC-D for model predictive control of 

distributed systems is presented in this paper. The modular concept allows to solve 

optimal control problems in a centralized and distributed fashion using the same 

problem description. It is tailored to computational efficiency with the focus on 

embedded hardware. The distributed solution is based on the alternating direction 

method of multipliers and uses the concept of neighbor approximation to enhance 

convergence speed. The presented framework can be accessed through C++ and 

Python and also supports plug-and-play and data exchange between agents over a 

network.

Keywords Distributed model predictive control · Nonlinear model predictive 

control · Modular framework · Multi-agent systems

1 Introduction

Model predictive control (MPC) is a modern control concept that attained increasing 

attention during the last decades (Mayne et al. 2000; Allgöwer and Zheng 2012) as 

it is capable to handle nonlinear systems while considering constraints on both states 

and controls. It is based on solving an optimal control problem (OCP) on a finite 

horizon and applying the first part of the control trajectory to the actual plant, cor-

responding to the sampling time Δ
t
 of the controller. At the next sampling instant, 

the horizon is shifted and the OCP is solved again. This iterative scheme is executed 

repetitively to stabilize the plant on an infinite horizon.

A main difficulty is the computational complexity of solving the OCP in real-

time, which in turn requires an efficient implementation of suitable MPC algorithms. 
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In the recent past, several toolboxes were published that provide adequate software 

frameworks such as ACADO (Houska et al. 2011) and ACADOS (Verschueren et al. 

2019), VIATOC (Kalmari et al. 2015) or GRAMPC (Käpernick and Graichen 2014; 

Englert et al. 2019). In case of distributed systems with a high number of controls 

and states, the classic centralized approach is not capable of solving the overall OCP 

in real-time anymore. Hence, algorithms for distributed model predictive control 

(DMPC) (Camponogara et al. 2002; Maestre and Negenborn 2014) have been in the 

focus over the last years. Their basic idea is to decouple the centralized OCP and to 

split it into multiple local OCPs that can be solved in parallel. The expectation is to 

compensate the higher computational complexity due to the decoupled formulation 

as well as the increased communication effort by the parallel structure. There are 

multiple approaches to distributed algorithms for optimal control problems, such as 

sensitivity-based algorithms (Scheu and Marquardt 2011), the augmented Lagran-

gian based alternating direction inexact Newton method (ALADIN) (Houska et al. 

2016, 2018) or the alternating direction method of multipliers (ADMM) (Boyd et al. 

2011) that is also used in the presented framework.

The difficulty of an efficient implementation is drastically higher in case of 

DMPC than for classic MPC algorithms, as a potentially high number of subsystems, 

so-called agents, have to be managed. Several toolboxes for DMPC have been pub-

lished as well. Linear discrete-time systems are considered in the DMPC-Toolbox 

(Gäfvert 2014) that is implemented in Matlab. The PnPMPC-TOOLBOX (Riverso 

et al. 2013) focuses on the plug-and-play functionality and provides an implemen-

tation in Matlab that considers continuous-time and discrete-time linear systems. 

Several algorithms are implemented in the Python-Toolbox DISROPT (Farina et al. 

2019) regarding distributed optimization problems. ALADIN-� (Engelmann et  al. 

2020) is the most recent published toolbox that provides a Matlab implementation 

of the ALADIN algorithm. However, there is a lack of a DMPC framework that 

provides an implementation tailored to embedded hardware with the focus on real-

time capable distributed model predictive control. Many real-world problems such 

as smart grids or cooperative robot applications are only equipped with weak hard-

ware on the subsystem level that is not able to handle complex computation tasks 

in an appropriate time. Hence, for realizing distributed controllers on actual plants, 

an implementation optimized on execution time is required to enable real-time con-

trol. Furthermore, providing the possibility of communication between agents over 

a network is essential for a DMPC framework designed to control actual plants. 

The restriction to neighbor-to-neighbor-communication decouples the agents com-

munication effort from the overall system size by bounding it to the cardinality of 

its neighborhood. The focus on real-world plants requires the system class to cover 

nonlinear dynamics including couplings between the agents in both dynamics and 

constraints.

The presented framework, in the following GRAMPC-D, provides an open-

source C++implementation of the ADMM algorithm (Burk et al. 2019, 2020) that is 

capable of solving optimal control problems in a distributed manner with a per-agent 

computation-time in the millisecond range. The underlying minimization problems 

are solved with the MPC toolbox GRAMPC that is suitable for embedded hard-

ware implementations. However, other toolboxes for solving the local minimization 
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problem can be used as well. To enable actual distributed optimization, a socket-

based TCP communication is provided to allow agents to exchange data over a net-

work. Furthermore, a Python interface is provided in addition to the C++-interface 

using the software module Pybind11 (Jakob et al. 2017). The Python interface com-

bines both the functionality of Python and the performance of C++as it only wraps 

the C++interface while the actual code executing the DMPC algorithm is still run-

ning in C++. Furthermore, it allows for fast and efficient prototyping when develop-

ing a controller for a distributed system as both a centralized as well as a distributed 

controller can be derived based on the same problem description. The convergence 

behavior of distributed controllers can be improved by optionally using the concept 

of neighbor approximation. Thereby, the generated problem description of each 

agent is adapted to additionally approximate parts of its neighbors OCP and by this 

to improve the solution of its local OCP in each iteration, leading to an enhanced 

convergence behavior of the overall algorithm. The modular structure of GRAMPC-

D enables modifying the overall system in the sense of plug-and-play by including 

or removing agents or couplings at run-time. Supporting plug-and-play features is a 

core functionality for a DMPC framework with focus on embedded systems, as the 

assumption of a static system description does not hold for a large number of real-

world plants.

The paper is structured as follows. Section 2 outlines the considered class of cou-

pled systems and OCP formulation. The DMPC framework GRAMPC-D is intro-

duced in Sect. 3 including the ADMM algorithm as the method of choice for the 

algorithm. In addition, the concept of neighbor approximation is explained and the 

implemented algorithm for the crucial task of penalty parameter adaption is pre-

sented. The modular structure of the framework is presented in Sect. 4. Finally, sim-

ulation examples in Sect.  5 show the effectiveness and modularity of the DMPC 

framework, before conclusions are drawn in Sect. 6.

Throughout the paper, each vector x⃗ ∈ ℝ
n is written in bold style. Standard 

p-norms ��x⃗��p
=

�∑n

i=1

�
�xi

�
�
p� 1

p will be used as well as the weighted squared norm 

defined by ‖‖x⃗‖‖

2

P⃗
= x⃗

�
P⃗x⃗ with a positive (semi-)definite square matrix P⃗ . The stack-

ing of individual vectors x⃗
i
, i ∈ V from a set V is denoted by x⃗ =

[

x⃗
i

]

i∈V
 . As far as 

time trajectories are concerned, the explicit dependency on time t may be omitted to 

ease readability. The derivative with respect to time is written using the dot notation 
⃗̇x(t) =

d

dt
x⃗(t).

2  Problem description

The presented DMPC framework considers multi-agent systems that can be 

described by a graph G = (V, E) with the sets of edges E and vertices V . Each ver-

tex represents an agent, while each edge between two vertices stands for a cou-

pling between the corresponding agents. The couplings may be both uni- and 

bi-directional.

The considered optimal control problem for the coupled nonlinear system is 

given by 
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 with

states x⃗
i
(t) ∈ ℝ

n
x,i , controls u⃗

i
(t) ∈ ℝ

n
u,i and the horizon length T > 0 . Each agent 

may have a general nonlinear cost function l
i
∶ ℝ

n
x,i ×ℝ

n
u,i ×ℝ → ℝ and terminal 

cost V
i
∶ ℝ

n
x,i ×ℝ → ℝ . The overall cost function (1a) is given by the sum over 

the individual cost functions. The subsystem dynamics (1b) are defined by the func-

tions f⃗i ∶ ℝ
nx,i ×ℝ

nu,i ×ℝ → ℝ
nx,i and f⃗ij ∶ ℝ

nx,i ×ℝ
nu,i ×ℝ

nx,j ×ℝ
nu,j ×ℝ → ℝ

nx,i . 

The OCP additionally considers nonlinear equality constraints  (1d)–(1e) and 

inequality constraints  (1f)–(1g) with the functions g⃗i ∶ ℝ
nx,i ×ℝ

nu,i ×ℝ → ℝ
ng,i , 

g⃗ij ∶ ℝ
nx,i ×ℝ

nu,i ×ℝ
nx,j ×ℝ

nu,j ×ℝ → ℝ
ng,ij and h⃗

i
∶ ℝ

n
x,i ×ℝ

n
u,i ×ℝ → ℝ

n
h,i , 

h⃗ij ∶ ℝ
nx,i ×ℝ

nu,i ×ℝ
nx,j ×ℝ

nu,j ×ℝ → ℝ
nh,ij as well as box constraints  (1h) for the 

control input u⃗
i
 of each agent i ∈ V.

(1a)min
u⃗

i
,i∈V

∑

i∈V

J
i
(x⃗

i
, u⃗

i
)

(1b)
s.t. ⃗̇xi = f⃗i(x⃗i, u⃗i, t) +

∑

j∈N
←

i

f⃗ij(x⃗i, u⃗i, x⃗j, u⃗j, t), i ∈ V

(1c)x⃗
i
(0) = x⃗

i,0, i ∈ V

(1d)0⃗ = g⃗i(x⃗i, u⃗i, t), i ∈ V

(1e)0⃗ = g⃗ij(x⃗i, u⃗i, x⃗j, u⃗j, t), j ∈ N
←

i
, i ∈ V

(1f)0⃗ ≥ h⃗
i
(x⃗

i
, u⃗

i
, t), i ∈ V

(1g)0⃗ ≥ h⃗ij(x⃗i, u⃗i, x⃗j, u⃗j, t), j ∈ N
←

i
, i ∈ V

(1h)u⃗
i
∈
[

u⃗
i,min

, u⃗
i,max

]

, i ∈ V

(2)J
i
(x⃗

i
, u⃗

i
) = V

i
(x⃗

i
(T), T) + ∫

T

0

l
i
(x⃗

i
, u⃗

i
, t) dt,

Fig. 1  The neighborhood 

N1 = {2, 3, 4} of agent 1 is 

composed of sending neighbors 

N
←

1
= {2, 3} and receiving 

neighbors N→

1
= {2, 4}

1

2

34
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The neighborhood N
i
 of agent i ∈ V is given by two sets that differ in the direc-

tion of the coupling, sending neighbors N←

i
 and receiving neighbors N→

i
 , see Fig. 1 

for an example. States and controls of sending neighbors have an explicit influence 

on the dynamics of the agent i in form of functions f⃗ij , see (1b). Receiving neigh-

bors are neighbors of agent i that are explicitly influenced by this agent, hence states 

or controls of the agent are part of a function f⃗ij of receiving neighbors. While a 

neighbor can be both, receiving and sending, this separation is going to be beneficial 

in the ADMM algorithm by reducing unnecessary computation and communication 

effort.

The dynamics (1b) of each agent i ∈ V are neighbor affine in the sense that the 

dynamics consists of a function f⃗i that depend only on states and controls of the 

agent and a sum of functions f⃗ij that depend on states and controls of the agent and 

one neighbor. The constraints (1d)–(1h) on each agent are separated into constraints 

that depend on states and controls of the agent, given by g⃗i , h⃗i
 and the box con-

straints (1h), and constraints g⃗ij and h⃗ij depending on states and controls of the agent 

and one neighbor, similar to the dynamics.

The considered OCP formulation (1) covers a wide class of distributed systems, 

e.g. cooperative transport (Hentzelt and Graichen 2013) and scalable systems such 

as smart grids (Filatrella et  al. 2008). This generic system description combined 

with the focus on a time-efficient implementation opens a wide spectrum of usabil-

ity for the presented DMPC framework.

3  Distributed model predictive control

Optimal control problems for coupled systems as in (1) contain a large number of 

states and controls. This leads to a significant computational effort that is challeng-

ing for standard MPC algorithms to be handled in real-time. DMPC algorithms 

instead assume that each of the distributed subsystems are equipped with a dedicated 

control unit that is capable of solving a reduced optimal control problem. The idea 

based on this assumption is to decouple the global OCP and spread the computation 

effort over the set of agents in parallel. Overlying algorithms ensure convergence of 

the local solutions to an optimal solution for the overall system. While the computa-

tional complexity and communication effort of algorithms for DMPC is higher than 

solving the central problem, the expectation is to compensate this disadvantage by 

the parallel structure. In the presented DMPC framework, the well-known ADMM 

algorithm (Boyd et al. 2011) is employed in a continuous-time setting (Bestler and 

Graichen 2019). Note that the formulation of the algorithm is based on previous 

work (Burk et al. 2019, 2020).
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3.1  ADMM algorithm

The ADMM algorithm enables to spread the computation effort of the global 

OCP (1) completely on distributed agents. As a starting point, the global OCP (1) 

is brought into a decoupled form for each agent i ∈ V by introducing local copies 
⃗̄xji(t) ∈ ℝ

nx,j and ⃗̄uji(t) ∈ ℝ
nu,j for the states x⃗j and controls u⃗j of each sending neigh-

bor j ∈ N
←

i
 , i.e. 

These local copies (⃗̄xji,
⃗̄uji) represent new control inputs for the agent i and can 

be seen as a proposal of agent i for its neighbors j ∈ N
←

i
 . Equivalence between the 

local copies and the original variables is ensured by introducing the consistency 

(3a)min
w⃗,z⃗

∑

i∈V

Ji(x⃗i, u⃗i)

(3b)
s.t. ⃗̇xi = f⃗i(x⃗i, u⃗i, t) +

∑

j∈N
←

i

f⃗ij(x⃗i, u⃗i,
⃗̄xji,

⃗̄uji, t), i ∈ V

(3c)x⃗
i
(0) = x⃗

i,0, i ∈ V

(3d)0⃗ = g⃗i(x⃗i, u⃗i, t), i ∈ V

(3e)0⃗ ≥ h⃗
i
(x⃗

i
, u⃗

i
, t), i ∈ V

(3f)0⃗ = g⃗ij(x⃗i, u⃗i,
⃗̄xji,

⃗̄uji, t), j ∈ N
←

i
, i ∈ V

(3g)0⃗ ≥ h⃗ij(x⃗i, u⃗i,
⃗̄xji,

⃗̄uji, t), j ∈ N
←

i
, i ∈ V

(3h)u⃗
i
∈
[

u⃗
i,min

, u⃗
i,max

]

, i ∈ V

(3i)0⃗ =

[

z⃗x,i

z⃗u,i

]

−

[

x⃗i

u⃗i

]

, i ∈ V

(3j)0⃗ =

[

z⃗x,j

z⃗u,j

]

−

[

⃗̄xji

⃗̄uji

]

, j ∈ N
←

i
, i ∈ V.



777

1 3

A modular framework for distributed model predictive control…

constraints (3i) and (3j) with the coupling variables z⃗x,i(t) ∈ ℝ
nx,i and z⃗u,i(t) ∈ ℝ

nu,i . 

In (3) and the following, the notation 

 is used.

The ADMM method is based on the Augmented Lagrangian formulation (Bes-

tler and Graichen 2019; Bertsekas 1996). Regarding the continuous-time setting 

used in this paper, the consistency constraints  (3i) and (3j) are accounted for in 

the cost functional

subject to (3b)–(3h) with the Lagrange multipliers �⃗
x,ii
(t) ∈ ℝ

n
x,i , �⃗

u,ii
(t) ∈ ℝ

n
u,i , 

�⃗x,ji(t) ∈ ℝ
nx,j , �⃗u,ji(t) ∈ ℝ

nu,j and penalty parameters �⃗
x,i
(t) ∈ ℝ

n
x,i , �⃗

u,i
(t) ∈ ℝ

n
u,i , 

�⃗x,ji(t) ∈ ℝ
nx,j and �⃗u,ji(t) ∈ ℝ

nu,j . To ease notations, the multipliers and penalty 

parameters are stacked according to 

(4a)w⃗i =

⎡
⎢⎢⎢⎣

u⃗i�
⃗̄xji

⃗̄uji

�

j∈N
←

i

⎤
⎥⎥⎥⎦

, z⃗i =

�
z⃗x,i

z⃗u,i

�
, z⃗

-i =

�
z⃗x,j

z⃗u,j

�

j∈N
←

i

, i ∈ V

(4b)w⃗ =

[

w⃗i

]

i∈V
, z⃗ =

[

z⃗i

]

i∈V

(5)

J�,i(x⃗i, w⃗i, �⃗i, z⃗i, z⃗-i)

= Ji(x⃗i, u⃗i)

+ ∫
T

0

[
�⃗x,ii

�⃗u,ii

]� ([
z⃗x,i

z⃗u,i

]

−

[
x⃗i

u⃗i

])

+
1

2

‖‖‖
‖‖

[
z⃗x,i

z⃗u,i

]

−

[
x⃗i

u⃗i

]‖‖‖
‖‖

2

C⃗i

+
∑

j∈N
←

i

[
�⃗x,ji

�⃗u,ji

]� ([
z⃗x,j

z⃗u,j

]

−

[
⃗̄xji

⃗̄uji

])

+
1

2

‖
‖‖‖‖

[
z⃗x,j

z⃗u,j

]

−

[
⃗̄xji

⃗̄uji

]‖
‖‖‖‖

2

C⃗ji

dt

(6a)�⃗i =

⎡
⎢⎢⎢⎢⎣

�⃗x,ii

�⃗u,ii�
�⃗x,ji

�⃗u,ji

�

j∈N
←

i

⎤
⎥⎥⎥⎥⎦

, i ∈ V, �⃗ =

�
�⃗i

�
i∈V

(6b)C⃗i = diag

[

�⃗x,i

�⃗u,i

]

, i ∈ V C⃗ji = diag

[

�⃗x,ji

�⃗u,ji

]

, j ∈ N
←

i
, i ∈ V.
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The corresponding dual problem to (3) can be written as 

 with the primal variables (w⃗, z⃗) and the dual variables �⃗ . The ADMM algorithm 

solves the max–min-problem (7) by repetitively executing the three steps 

 with the iteration counter q. The minimization with respect to the coupling vari-

ables z⃗ (8ab) can be solved analytically while the steepest ascent is used in (8ac). 

Important to note is that each step can be subdivided into fully decoupled steps for 

either agent i ∈ V . Hence, the algorithm is fully distributable which allows to spread 

the computation effort over all agents.

(7a)max
�⃗

min
w⃗,z⃗

∑

i∈V

J�,i(x⃗i, w⃗i, �⃗i, z⃗i, z⃗-i)

(7b)
s.t. ⃗̇xi = f⃗i(x⃗i, u⃗i, �) +

∑

j∈N
←

i

f⃗ij(x⃗i, u⃗i,
⃗̄xji,

⃗̄uji, t), i ∈ V

(7c)x⃗
i
(0) = x⃗

i,0, i ∈ V

(7d)0⃗ = g⃗i(x⃗i, u⃗i, t), i ∈ V

(7e)0⃗ ≥ h⃗
i
(x⃗

i
, u⃗

i
, t), i ∈ V

(7f)0⃗ = g⃗ij(x⃗i, u⃗i,
⃗̄xji,

⃗̄uji, t), j ∈ N
←

i
, i ∈ V

(7g)0⃗ ≥ h⃗ij(x⃗i, u⃗i,
⃗̄xji,

⃗̄uji, t), j ∈ N
←

i
, i ∈ V

(7h)u⃗
i
∈
[

u⃗
i,min

, u⃗
i,max

]

, i ∈ V

(8a)
min

w⃗

∑

i∈V

J�,i(x⃗i, w⃗i, �⃗
q−1

i
, z⃗

q−1

i
, z⃗

q−1

-i
), s.t.(7b) − (7h)

(8b)min
z⃗

∑

i∈V

J�,i(u⃗
q

i
, �⃗

q−1

i
, z⃗i, z⃗-i;x⃗i,0)

(8c)�⃗
q

i
= �⃗

q−1

i
+ diag

⎡⎢⎢⎣
C⃗i�

C⃗ji

�
j∈N

←

i

⎤
⎥⎥⎦

⎡⎢⎢⎢⎢⎣

z⃗
q

i
−

�
x⃗

q

i

u⃗
q

i

�

�
z⃗

q

j
−

�
⃗̄x

q

ji

⃗̄u
q

ji

��

j∈N
←

i

⎤
⎥⎥⎥⎥⎦

, i ∈ V
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The resulting ADMM algorithm for each agent is given in Algorithm 1. It con-

sists of the computation steps 1, 3, 5, the communication steps 2, 4, 6, and the evalu-

ation of a convergence criterion in Step 7. The algorithm starts with an initialization 

of corresponding variables. The local OCP (9) is minimized in Step 1 with respect 

to the local variables w⃗
i
 . This minimization represents the main computation effort 

of the overall algorithm. In Step 2, the trajectories of the local variables are sent 

to the sending neighbors j ∈ N
←

i
 of each agent i ∈ V . The analytic solution for the 

minimization with respect to the coupling variables (8ab) is given in Step 3 of the 

ADMM algorithm, before they are sent to the receiving neighbors j ∈ N
→

i
 of each 
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agent in Step 4. The third computation step is given in Step 5 by a maximization 

with respect to the Lagrange multipliers �⃗ . In Step 6, the result of the maximization 

step is sent to the sending neighbors j ∈ N
←

i
 of each agent i ∈ V . A convergence 

criterion is checked in Step 7. If it is satisfied or the iteration counter has reached its 

maximum, the algorithm stops and returns the current trajectories. Otherwise, the 

iteration counter is increased and the algorithm returns to Step 1.

3.2  Neighbor approximation

In practice, the convergence speed of the ADMM algorithm can be enhanced by 

anticipating the actions of the neighbors in the own agents optimization. The con-

cept of neighbor approximation was introduced in Hentzelt and Graichen (2013) 

and extended in Burk et al. (2020) and relies on the neighbor affine structure of the 

dynamics (1b)–(1c) and constraints (1d)–(1h).

The basic idea is to use the already introduced local copies ⃗̄xji and ⃗̄uji to approxi-

mate parts of the neighbors OCP. The expectation is that the additional informa-

tion about the neighborhood improves the local solution of each agent and thus the 

convergence behavior of the overall algorithm. This also reduces the number of 

required ADMM iterations until convergence is reached, which has been confirmed 

in numerical evaluations in Hentzelt and Graichen (2013) and Burk et  al. (2020). 

In practical experience, the reduced number of ADMM iterations can compensate 

for the increased complexity of the extended OCP which can lead to a significantly 

decreased computational effort (Burk et al. 2020).

The neighbor approximation implemented in GRAMPC-D is modular in the 

sense that the neighbors cost, constraints, dynamics and each combination of the 

three can be considered.

3.2.1  Neighbor cost

The global cost to be mininized (2) consists of the single cost functions of the agents 

i ∈ V . The local copies of the neighbor variables ⃗̄xji and ⃗̄uji , j ∈ Ni , can be used to 

anticipate the neighbors cost Jj(⃗̄uji;x⃗j,0) on the local level of agent i ∈ V , i.e.

The normalization with the factors

is necessary in order to avoid that the neighbors cost function would appear in the 

overall cost function multiple times. Approximating the neighbor costs is especially 

beneficial in examples with a strong dependency on the other agents costs and ena-

bles the agent to anticipate the neighbors control action to minimize its local costs. 

(12)
J̃i(x⃗i, w⃗i) = �iJi(x⃗i, u⃗i) +

∑

j∈Ni

�jJj(⃗̄xji,
⃗̄uji), i ∈ V .

(13)�
i
=

1

1 + |
|
N

i
|
|

, i ∈ V
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It is recommended to combine the neighbor cost approximation with the approxima-

tion of the neighbor dynamics introduced in the following lines.

3.2.2  Neighbor dynamics

Similar to the neighbor cost consideration, the neighbor affine structure of the dynam-

ics  (1b)–(1c) can be exploited to approximate the neighbor dynamics and therefore 

to improve the quality of the local copies ⃗̄xji and ⃗̄uji . To this end, the local dynam-

ics (1b)–(1c) are extended by the approximate neighbor dynamics

with the initial condition ⃗̄xji(0) = x⃗j,0 . The dependencies of the neighbor’s states and 

controls in f⃗j and f⃗ji are decoupled using the local copies ⃗̄xji and ⃗̄uji . However, it is 

not possible to decouple further functions f⃗js as these depend on states and controls 

of agents s for which agent i has in general no local copies. For consistency, the 

external influence

is introduced with v⃗ij(t) ∈ ℝ
nx,i that captures the remaining terms of the neigh-

bors dynamics. The external influence is considered in the approximated neighbor 

dynamics (14) by introducing local copies ⃗̄vji(t) ∈ ℝ
nx,j . Thereby, the whole dynam-

ics of neighbor j is approximated in (14). To ensure convergence of the local copies 
⃗̄vji to the original variables v⃗ij , the consistency constraints 

 are introduced and replace the consistency constraints in (3i)–(3j) regarding the 

states. Note that the local copies of the states ⃗̄xji are not considered as control varia-

bles anymore, but are determined by the differential equation (14). Instead, the local 

copies of the external influence ⃗̄vji serve as new local control variables. In summary, 

the stacked notations (4) and (6) are adapted according to 

(14)⃗̄̇xji = f⃗j(⃗̄xji,
⃗̄uji, t) + f⃗ji(⃗̄xji,

⃗̄uji, x⃗i, u⃗i, t) + ⃗̄vji, j ∈ Ni, i ∈ V

(15)
v⃗ij =

∑

s∈N
←

i
⧵{j}

f⃗is(x⃗i, u⃗i, x⃗s, u⃗s, t), j ∈ Ni, i ∈ V

(16a)z⃗v,ij = v⃗ij, j ∈ Ni, i ∈ V

(16b)z⃗v,ji =
⃗̄vji, j ∈ Ni, i ∈ V

(17a)w⃗i =

⎡⎢⎢⎣

u⃗i�
⃗̄uji

⃗̄vji

�

j∈Ni

⎤
⎥⎥⎦

, i ∈ V z⃗i =

�
z⃗u,i�

z⃗v,ij

�
j∈Ni

�
, i ∈ V
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 and

with Lagrangian multipliers �⃗v,ij(t) ∈ ℝ
nx,i , �⃗v,ji(t) ∈ ℝ

nx,j , coupling variables 

z⃗v,ij(t) ∈ ℝ
nx,i , and penalty parameters �⃗v,ij(t) ∈ ℝ

nx,i , �⃗v,ji(t) ∈ ℝ
nx,j.

3.2.3  Neighbor constraints

In addition to the consideration of the neighbor cost and dynamics within the local 

OCP of agent i ∈ V , the constraints  (1d)–(1h) of each neighbor j ∈ Ni of agent 

i ∈ V can be taken into account by adding 

 to the local OCP (9). Again, the constraints are decoupled from the neighbors states 

and controls x⃗j and u⃗
i
 by using the local copies ⃗̄xji and ⃗̄uji.

As discussed before, this concept is restricted to the agent constraints of each 

neighbor j ∈ Ni and the coupling constraints between neighbors j and agent i, while 

further coupling constraints between neighbor j and its neighbors s ∈ N
←

j
⧵ {i} 

depend on states and controls of agents s for which in general agent i has no local 

copies.

3.3  Penalty parameter adaption

The update of the penalty parameters in the matrices C⃗
i
 and C⃗ji in (7) is crucial for a 

fast convergence of the ADMM algorithm. The adaptation method implemented in 

GRAMPC-D follows a proposal in [Boyd et al. (2011), Section 3.4.1] for the optimi-

zation problem 

(17b)�⃗i =

⎡
⎢⎢⎢⎢⎣

�⃗u,ii

⎡
⎢⎢⎣

�⃗v,ij

�⃗u,ji

�⃗v,ji

⎤
⎥⎥⎦

j∈Ni

⎤
⎥⎥⎥⎥⎦

, i ∈ V z⃗
-i =

�
z⃗u,j

z⃗v,ji

�

j∈Ni

, i ∈ V

(17c)C⃗i = diag
�
�⃗u,i

�
, i ∈ V C⃗ji = diag

⎡
⎢⎢⎣

�⃗v,ij

�⃗u,ji

�⃗v,ji

⎤
⎥⎥⎦

, j ∈ Ni, i ∈ V

(18)w⃗ =

[

w⃗i

]

i∈V
, z⃗ =

[

z⃗i

]

i∈V
, �⃗ =

[

�⃗i

]

i∈V

(19a)0⃗ = g⃗j(⃗̄xji,
⃗̄uji, t), 0⃗ = g⃗ij(⃗̄xji,

⃗̄uji, x⃗i, u⃗i, t), j ∈ Ni, i ∈ V

(19b)0⃗ ≥ h⃗i(⃗̄xji,
⃗̄uji, t), 0⃗ ≥ h⃗ij(⃗̄xji,

⃗̄uji, x⃗i, u⃗i, t), j ∈ Ni, i ∈ V

(19c)⃗̄uji ∈
[

u⃗j,min
, u⃗j,max

]

, j ∈ Ni, i ∈ V



783

1 3

A modular framework for distributed model predictive control…

The proposed adaption algorithm is given by

with the primal residual r⃗q
= A⃗x⃗q

+ B⃗z⃗q
− c⃗ , the dual residual s⃗q = �A⃗�B⃗(z⃗q − z⃗q−1) . 

The basic idea is to keep both within a factor of � of one another. Following this 

idea for the OCP (7), the primal and dual residuals are given by 

To reduce the number of tuning parameters, � = 1 is chosen which results in an 

equality instead of the inequality in (21). To further simplify the implementation, 

the equality is evaluated element-wise and at each discrete time step �
k
=

T

N−1
 with N 

as discretization of the predicted horizon. This results in the condition

for each discrete time step �
k
 and the norm evaluated element-wise. The condi-

tion (23) can be reformulated in form of the update law

with m as index for an arbitrary element in (23). The implementation is presented 

in Algorithm  2. At first, the division through small numbers, especially zero, is 

caught to prevent numerical issues. The factor �q is computed afterwards and bound 

between �
min

 and �
max

 , before the new penalty parameter is calculated by �q
= �

q
�

q−1

.

(20a)min
x⃗,z⃗

f (x⃗) + g(z⃗)

(20b)s.t. A⃗x⃗ + B⃗z⃗ = c⃗ .

(21)�q
=

⎧
⎪
⎨
⎪
⎩

� incr�q−1
if ��r⃗

q−1��2
> ���s⃗

q−1��2
�q−1

�decr
if ��s⃗

q−1��2
> ���r⃗

q−1��2

�q−1
otherwise

(22a)r⃗
q

i
=

⎡
⎢⎢⎢⎢⎣

x⃗
q

i

u⃗
q

i�
⃗̄
jix

q

⃗̄u
q

ji

�

j∈N
←

i

⎤
⎥⎥⎥⎥⎦
−

⎡
⎢⎢⎢⎢⎣

z⃗
q

x,i

z⃗
q

u,i�
z⃗

q

x,j

z⃗
q

u,j

�

j∈N
←

i

⎤
⎥⎥⎥⎥⎦

, i ∈ V

(22b)s⃗
q

i
= diag

⎡
⎢⎢⎣

C⃗
q−1

i�
C⃗

q−1

ji

�
j∈N

←

i

⎤⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

z⃗
q

x,i
− z⃗

q−1

x,i

z⃗
q

u,i
− z⃗

q−1

u,i�
z⃗

q

x,j
− z⃗

q−1

x,j

z⃗
q

u,j
− z⃗

q−1

u,j

�

j∈N
←

i

⎤
⎥⎥⎥⎥⎥⎦

, i ∈ V.

(23)
‖
‖
‖

r⃗
q

i
(�k)

‖
‖
‖2

!
=
‖
‖
‖

s⃗
q

i
(�k)

‖
‖
‖2

(24)�q
m
(�k) = �q−1

m
(�k)

|
|r

q
m(�k)

|
|

|
|s

q
m(�k)

|
|

= �q−1

m
(�k)�

q
m
(�k)
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4  Modular framework

GRAMPC-D is implemented in a modular fashion in order to achieve a scalable and 

flexible implementation. At first, the modular structure is explained before the capa-

bility for plug-and-play scenarios is laid out.

4.1  Modular structure

The main parts of GRAMPC-D and their interaction are presented in the following. 

Due to the modular concept, the implementation of GRAMPC-D can be subdivided 

into single modules that are composed depending on the chosen type of controller, 

centralized or distributed, as the structure of GRAMPC-D differs between the two 

cases. Both are visualized in Fig.  2. Either structure is generated automatically by 

choosing the corresponding controller type without further required interaction of 

the user. Both the distributed and centralized structure are scalable due to the modu-

lar concept and therefore suitable to handle large or complex systems.

The distributed control structure in the left part of Fig.  2 assumes that each agent 

only has access to its local variables and communication is required to acquire data 

from other agents. Thus, the central part in the distributed setup is the communica-

tion interface. While it enables to exchange data between agents, the actual imple-

mentation depends on the chosen type of communication interface. If the DMPC is 

simulated on a single processor, there is no need to actually send data over a net-

work. Instead, a central communication interface is provided that exchanges data 

pointers, which is a significant difference in performance. If the ADMM algorithm 

is implemented in an actual distributed setup, each agent creates its own local com-

munication interface that enables to exchange data over a network. The correspond-

ing protocol is encapsulated into the local communication interface due to the mod-

ular concept that enables implementing multiple protocols and switching between 

them. In either case, each agent creates a local solver that contains the local OCP 
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depending on the neighborhood and the chosen optimization parameters such as 

neighbor approximation. Hence, tasks like decoupling the global OCP by introduc-

ing local copies are done automatically in the background. The ADMM algorithm 

is implemented inside the local solver with an abstract implementation of the min-

imization problem with respect to the local variables. This enables implementing 

multiple solvers and switching between them without changing other parts of the 

software, although GRAMPC is chosen as default. The remaining two important 

modules are the coordinator and the simulator. The ADMM algorithm assumes a 

fully synchronized execution, which has to be guaranteed even in a distributed setup. 

This synchronization is handled by the coordinator by triggering each step of the 

algorithm and waiting for a response of each agent before sending the following trig-

ger. The last module is an integrated simulator that enables simulations independent 

of the chosen controller or the specific system.

A more simple structure is generated if a centralized controller is chosen, see 

right part of Fig. 2. In this case, the global OCP (1) is solved in a centralized manner 

including all agents dynamics and having knowledge of all variables. The central-

ized setup implicitly synchronizes the execution of the algorithm without the need 

for a coordinator. The only remaining module is the simulator that is used to simu-

late the overall system.

Each part of GRAMPC-D is interchangeable by alternative software. As already 

mentioned, the MPC toolbox GRAMPC is used by default to solve both the global 

OCP (1) in case of a centralized controller and the underlying reduced OCP (9) in 

Agent i

Local solver

Agent j

Local solver

Coordinator Simulator

Communication

Interface

Agent i

Central solver

Agent j

Simulator

Structure of GRAMPC-D

for a distributed setup

Structure of GRAMPC-D

for a centralized setup

Fig. 2  The communication interface is the central part of GRAMPC-D in case of distributed optimiza-

tion. Each agent has its own local solver that handles the steps of the ADMM algorithm. The coordinator 

provides a synchronization of all agents while the simulator handles the simulation of the overall system. 

If a centralized controller is chosen, GRAMPC-D is centered around the central solver that knows all 

agents and can access their variables



786 D. Burk et al.

1 3

Step 1 of the ADMM algorithm in case of a distributed controller. GRAMPC is 

tailored to embedded hardware and by this a natural choice, but if another solver 

is desired, e.g. with a stronger focus on precision instead of computational speed, 

then the only required change is to overload the class regarding the solver with a 

new implementation. The same holds for each part of the framework such as the 

implemented communication protocol. The TCP protocol is provided by default, but 

alternative protocols can be implemented by overloading the local communication 

interface.

4.2  Rapid prototyping

Both the local and global OCPs are dynamically generated at run-time based on the 

same problem description provided by the user, see Fig. 3. In case of a centralized 

controller, the global OCP is generated by the central solver while in case of a dis-

tributed controller, the local OCP is generated for each agent individually based on 

its neighbors and the optimization parameters. Therein, the corresponding flags for 

neighbor approximation are defined that state whether additional variables have to 

be initialized, e.g. local copies ⃗̄xji and ⃗̄uji or the external influence v⃗ij , see Sect. 3.2. 

This results in a convenient prototyping process while designing controllers, as each 

type of controller can be automatically generated and evaluated based on the same 

problem description. To further support the efficiency of prototyping, the possibility 

of multi-threading can be activated to spread the computation effort on each avail-

able core of the processor and thus to speed-up the computations.

4.3  Plug-and-play functionality

Plug-and-play is a core feature for the usability of a framework in the field of DMPC, 

see e.g. Zeilinger et  al. (2013), Riverso et  al. (2014), Riverso and Ferrari-Trecate 

Problem description

G
en

er
at

e

ce
nt

ra
l O

C
P

G
enerate

local O
C
P
s

MPC DMPC

Default Neigh. approx.

Fig. 3  Based on the same problem description, the global OCP is generated for a centralized controller 

and the local OCPs in the distributed case. The local OCPs are automatically extended by corresponding 

terms if neighbor approximation is enabled for the distributed controller
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(2015), where the OCP structure and size may change dynamically due to the 

removal or plug-in of agents. The generation of the OCPs (9) during run-time and 

the modular structure of the framework allows to integrate plug-and-play functional-

ity in the network. If an agent enters the system in the distributed control setting (left 

part of Fig. 2), the coordinator informs the direct neighbors of the agents to include 

the corresponding variables. Hence, only the OCPs (9) of the direct neighbors are 

updated and the new agent is integrated into the network. If an agent leaves the 

network, the agents and the coordinator delete the agent from their internal lists of 

active agents. This results in a smooth transition between two problem formulations.

5  Simulation examples

The modular framework GRAMPC-D is evaluated for different examples. The scal-

ability is shown for a coupled spring-mass system. The plug-and-play functionality 

and the concept of neighbor approximation are demonstrated for a smart grid and a 

coupled water tank network, respectively. Finally, a distributed hardware implemen-

tation for a system of coupled Van der Pol oscillators is considered by communicat-

ing over an actual network using the TCP protocol.

In each example, the terminal and integral cost in (2) are chosen quadratically

with the positive (semi-)definite weighting matrices P⃗
i
∈ ℝ

n
x,i
×n

x,i , Q⃗i ∈ ℝ
nx,i×nx,i and 

R⃗
i
∈ ℝ

n
u,i
×n

u,i . The desired state to be controlled is given by x⃗
i,des . The computation 

times are measured on an Intel i5 CPU with 3.4 GHz using Windows 10. The com-

munication effort is neglected if not stated otherwise.

5.1  Scalable system

The scalability of GRAMPC-D is shown for a system consisting of a set of masses 

that are coupled by springs. Each mass is represented by an agent i ∈ V and is 

described by the differential equations

with the position (px,i, py,i) of the respective mass in the x - and y-axis and the respec-

tive controls (ux,i, uy,i) . This results in the state and control vectors 

(25)

Vi(x⃗i, T) =
1

2
‖
‖

x⃗i(T) − x⃗i,des(T)
‖
‖

2

P⃗i

li(x⃗i, u⃗i, t) =
1

2
‖
‖x⃗i − x⃗i,des

‖
‖

2

Q⃗i

+
1

2
‖
‖u⃗i

‖
‖

2

R⃗i

(26)

[

p̈x,i

p̈y,i

]

=

[

ux,i

uy,i

]

+
∑

j∈Ni

c

m

(

1 −
�0

�ij(px,i, py,i)

)[

px,j − px,i

py,j − py,i

]

(27a)x⃗i =

[

px,i ṗx,i py,i ṗy,i

]�
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The spring is relaxed at the length �
0
= 1m . The spring constant is given by 

c = 0.5Nm
−1 and each agent has a mass of mi = 7.5kg . The function 

�ij(px,i, py,i) =

√

(px,i − px,j)
2 + (py,i − py,j)

2 computes the distance between two 

agents i and j. The dynamics (26) can be split into functions f⃗i and f⃗ij corresponding 

to the neighbor-affine form (1b). The weighting matrices are set to (SI units are 

omitted for simplicity)

with the desired state

It was shown in Burk et al. (2019) that the computation time per agent is nearly 

independent of the system size, whereas in the central MPC case the computation 

time rises drastically. The simulation results for a system with 40 × 40 agents are 

given in Fig. 4. It can be seen that the trajectories of the cost are quite similar. While 

the distributed solution is slightly suboptimal, it would converge to the centralized 

solution by increasing the number of ADMM iterations. The computation time for 

each time step, however, is 1072.58 ms for the centralized controller, while the dis-

tributed controller requires a maximum of 9.59 ms and an average of 2.23 ms per 

agent.

5.2  Plug-and-play

The plug-and-play capability of GRAMPC-D is presented using an exemplary setup 

of a smart grid. The network is described by a set of coupled agents that represent 

non-controllable power sinks and sources, such as private households, industry or 

renewable energy as well as controllable power plants. The dynamical behavior 

of the agents is generalized by describing them as generators with a mechanical 

phase angle �
i
(t) ∈ ℝ that may differ from the phase of the grid. The corresponding 

dynamics

(27b)u⃗i =

[

ux,i uy,i

]�

.

(28)P⃗i = diag[1, 1, 1, 1] , Q⃗i = diag[5, 2, 5, 2] , R⃗i = diag[0.01, 0.01]

(29)x⃗i,des =

[

px,i,des 0ms−1 py,i,des 0ms−1
]�

.
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Fig. 4  Global cost trajectory of the scalable spring-mass system with 40 × 40 agents for the central MPC 

and DMPC case



789

1 3

A modular framework for distributed model predictive control…

with friction constant � > 0 and the moment of inertia I is given in a neighbor-affine 

form and describes the dynamical behavior of the phase shift �
i
(t) ∈ ℝ given by

between the phase Ω� of the grid with frequency Ω and the mechanical angle �
i
 , see 

Rohden et al. (2012). Hence, the state vector is given by

In (30), P
source,i

 describes the generalized non-controllable power, e.g. the demanded 

power for private households and industry or the generated power by renewable 

energy. The coupling between two agents consists of the maximum transferable 

power P
max,ij that depends on the phase shift angle �j − �i between agent i ∈ V and 

its neighbors j ∈ N
←

i
 . Agents that describe power plants have a controllable input 

u
i
 that is used to stabilize the grid. A normalized parameterization is used with 

Ω = 1 Hz and I = 1 Js
2 , the friction term set to � = 1 × 10

−3
Js and the maximum 

transferable power to Pmax,ij = 0.1 Js
1 . The weighting matrices are set to

with the desired state

The first element of the desired state x⃗
i,des is set arbitrary, as there is no desired 

value for the phase and the first state is not weighted in the cost functional.

The implemented setup is visualized in Fig. 5. At the start of the simulation, 

one power plant is given that supplies one non-controllable power-sink such as 

a private household. During run-time, an additional power sink is coupled to the 

first one, i.e. the power plant has to supply both using the same connection. The 

simulation results are shown in Fig.  6, starting with the first power sink that is 

connected to the power plant. It can be seen that the phase difference between 

the power plant and the household converges to a stationary value that leads to 

a transmission of the demanded power. Furthermore, the angular velocity of the 

(30)�̈i =
1

IΩ

(

ui + Psource,i − �Ω2
)

− 2
�

I
�̇ −

∑

j∈N
←

i

Pmax,ij

IΩ
sin

(

�j − �i

)

(31)�
i
= �

i
− Ω�

(32)x⃗
i
=

[

�
i
�̇

i

]�

.

(33)P⃗i = diag
[

0s2, 0.1s4
]

, Q⃗i = diag
[

0s2, 1s4
]

, R⃗i = 0.01 s2 J−2

(34)x⃗
i,des =

[

× 0s
−2
]�

.

Power plant Power sink Power sink

Fig. 5  The plug-and-play capability of GRAMPC-D is presented using the simulation of a smart grid. At 

the beginning of the simulation, only one power sink is connected to the power plant. During run-time, 

the second power sink is connected to the first one, i.e. the power plant has to supply both using the same 

connection
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phase shift converges to zero. At simulation time t = 20 s, the second power sink 

is plugged in, leading to an additional power demand. Consequently, the phase 

shift between the power plant and the first power sink increases and the addi-

tional power is transmitted. The phase shift between the first and second power 

sink is adapted accordingly. The computation time for the distributed controller 

is given by a maximum of 84.67 ms and an average of 4.78 ms per agent using a 

step size of Δ
t
= 100 ms. The average time is significantly lower due to the con-

vergence criterion of the ADMM algorithm.

This plug-in and plug-out functionality of agents is supported at any moment 

during the simulation even if the controllers run on distributed hardware and 

communicate over a network. GRAMPC-D can handle planned changes in the 

system such as shown in this simulation example as well as spontaneous discon-

nections due to a broken network connection.
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Fig. 6  The Plug-and-play functionality of GRAMPC-D for the smart grid example is shown. The plot at 

the top shows the trajectory of the global cost, the plot in the middle the frequencies of the single agents 

and the plot in the bottom the phase shift between the agents. The additional power sink is plugged in at 

simulation time t = 20 s
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5.3  Neighbor approximation

The concept of neighbor approximation is evaluated for a system of water tanks 

that are coupled by pipes, see Fig.   7. Only the first water tank has a controllable 

input u
1
(t) ∈ ℝ . The last water tank has a constant outflow d

5
= 0.01 m3s−1 and the 

desired water height x5,des = 3 m . In addition, the inequality constraint h
i
≤ 3 m of a 

maximum water height has to be satisfied by all tanks. The dynamics of each water 

tank is given by

with the water height h
i
(t) ∈ ℝ and the state vector x

i
= h

i
 . The area of each water 

tank is given by A
i
= 0.1 m

2 and the diameter of the pipes by aij = 0.005 m2 . The 

weights for the cost functions are set to 

The simulation is run with a distributed controller both with and without neigh-

bor approximation using the same set of parameters for the ADMM algorithm and 

GRAMPC. The convergence of the ADMM algorithm is shown in Fig. 8 for both 

simulations. The simulation with neighbor approximation converges smoothly to the 

optimal solution and satisfies the convergence criterion after 7 iterations while 89 

ADMM iterations are required without neighbor approximation. Note that the cost 

is rising instead of falling as the solution is infeasible until the algorithm converges. 

The improved convergence behavior with neighbor approximation comes with a 

higher computational complexity per ADMM iteration. However, if a convergence 

criterion is used, the decreased number of ADMM iterations per time step compen-

sate for the higher computational complexity. The required computation time for the 

89 ADMM iterations without neighbor approximation is 955.6 ms and for the 7 iter-

ations using neighbor approximation 203.8 ms. Note that the same configuration for 

(35)ḣi =
1

Ai

(
ui − di

)
+

∑

j∈N
←

i

aij

Ai

sign
(
hj − hi

)
√
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|
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|
|
|
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−6
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(36c)P5 = 1 m−2, Q5 = 1 m−2, R5 = 0s2m−6.
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Fig. 7  The concept of neighbor approximation is shown at a simulation example of coupled water tanks. 

Only the first one has an input and only the last one has a desired water height while being disturbed by a 

constant outflow
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the ADMM algorithm and GRAMPC is used in this evaluation to provide a compa-

rable result. The standard ADMM algorithm may converge within less iterations if 

more computation effort is spent per iteration while the algorithm may require even 

less time if the parameters are tuned for neighbor approximation.

5.4  Distributed hardware implementation

This section shows the capability of GRAMPC-D to solve the ADMM algorithm 

on distributed embedded hardware. The following simulation is run on four Rasp-

berry Pi 3B+ using Raspberry Pi OS that are connected via Ethernet. Each agent 

runs on an individual Raspberry Pi while the coordinator and the simulator use the 

same hardware. The local communication interface from GRAMPC-D based on the 

TCP protocol is used. The simulation example consists of three coupled (Van der 

Pol oscillators Barrón and Sen 2009)

with state pi(t) ∈ ℝ , control u
i
(t) ∈ ℝ , the uncoupled oscillator constant 

�
1
= 1 m

−1
s
−2 , and the coupling constant �

2
= 1s

−2 . The state vector and desired 

state are given by 

 with the weighting matrices set to 

(37)
p̈i = �

1

(

1 − p2

i

)

− pi + ui +

∑

j∈N
←

i

�
2

(

pj − pi
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(38a)x⃗i =

[

pi ṗi

]�
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0 m 0 m s−1
]�
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]

,
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Fig. 8  Convergence behavior of the ADMM algorithm with and without neighbor approximation. The 

algorithm converges within 89 ADMM iterations without neighbor approximation opposed to 7 iterations 

if neighbor approximation is used
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The simulation is run for 10.000 time steps using a fixed number of q
max

= 5 

ADMM iterations.

Figure  9 shows the required time for computation and communication in each 

time step. The computation time to execute 5 ADMM iterations amounts to 10 ms 

per agent while the average time required to solve the ADMM algorithm in a dis-

tributed manner using the TCP protocol for the communication is 66.51 ms. Hence, 

the average effort for the communication is 56.51 ms including 72 communication 

steps. Since all agents have to be synchronized for the ADMM algorithm, either of 

them has to wait for the slowest agent at each step of the algorithm. All five ADMM 

iterations can be executed in 48 ms with the worst case time of 114 ms. This results 

in the minimum time for each communication step of 0.53 ms, an average time of 

0.79 ms and a maximum time of 1.44 ms. This time includes preparing the data to 

be sent, sending and receiving it and recreating the sent data structure from the byte 

array. These are plausible values as a ping to the loopback address 127.0.0.1 already 

requires 0.14 ms in average and 0.22 ms at maximum. These results show that the 

main effort in distributed optimization is the communication effort that requires 

82.3% of the overall time in average for this simulation example.

6  Conclusions

The open-source, modular DMPC framework GRAMPC-D is presented in this 

paper that enables to solve scalable optimal control problems in a convenient way 

and to stabilize plants using distributed model predictive control. This problem 

description can be used for both a centralized and a distributed controller. In the 

(39b)Q⃗i = diag
[
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]
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Fig. 9  Communication effort of the ADMM algorithm on distributed hardware with 48 ms (minimum), 

66.51 ms (average), and 114 ms (maximum) compared to the computation time of 10 ms
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distributed setting, the global optimal control problem is automatically decoupled 

and solved in a distributed manner using the ADMM algorithm. The convergence 

behavior of the ADMM algorithm can be improved by sugint he concept of neighbor 

approximation that allows the agents to anticipate the actions of their neighbors. The 

presented DMPC framework supports plug-and-play to connect and remove agents 

at run-time. Besides solving the ADMM algorithm on a single processor, it is pos-

sible to solve the local optimal control problems on distributed hardware. The local 

communication interface enables communication between agents over a network 

using the TCP protocol. By default, GRAMPC-D uses the MPC toolbox GRAMPC 

for solving the local optimal control problems on agent level, which is suitable for 

real-time and embedded implementations.

GRAMPC-D is licensed under the Berkeley Software Distribution 3-clause ver-

sion (BSD-3) license. The complete source-code is available at Github https ://githu 

b.com/gramp c-d/gramp c-d. Future work will use the modular structure to extend 

GRAMPC-D. For example, communication protocols besides TCP can be provided 

or alternative solvers to GRAMPC for the underlying minimization problem imple-

mented to increase the usability and flexibility of the framework.
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