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Abstract: In recent times smart devices have attracted a large number of users. Since many 

of these devices allow position estimation using Global Navigation Satellite Systems 

(GNSS) signals, a large number of location-based applications and services have emerged, 

especially in transport systems. However GNSS signals are affected by the environment 

and are not always present, especially in dense urban environment or indoors. In this work 

firstly a Modular Localization Algorithm is proposed to allow seamless switching between 

different positioning modules. This helps us develop a positioning system that is able to 

provide position estimates in both indoor and outdoor environments without any user 

interaction. Since the proposed system can run as a service on any smart device,  

it could allow users to navigate not only in outdoor environments, but also indoors,  

e.g., underground garages, tunnels etc. Secondly we present the proposal of a 2-phase map 

reduction algorithm which allows one to significantly reduce the complexity of position 

estimation processes in case that positioning is performed using a fingerprinting 

framework. The proposed 2-phase map reduction algorithm can also improve the accuracy 

of the position estimates by filtering out reference points that are far from the mobile 

device. Both algorithms were implemented into a positioning system and tested in real 

world conditions in both indoor and outdoor environments.  
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1. Introduction 

In the recent years use of smart devices has increased significantly. Due to this, together with the 

fact that these devices have built-in Global Navigation Satellite Systems (GNSS) receivers, many 

location-based applications and services were created. The functions of many of these applications rely 

on the GNSS system because of its global availability. However these systems are highly reliable on 

Line of Sight (LoS) conditions, which are not the case in the urban environment. When the direct 

signal path between a transmitter (GNSS satellite) and a receiver (smart phone) is obstructed, the smart 

phone receives signals affected by multipath propagation and is not able to detect the direct signal. 

Another, even worse, condition is when the power of the received signal is lower than the minimum 

threshold at the GNSS receiver.  

In both cases, localization accuracy can decrease significantly or in worst case the position of the 

device cannot be estimated at all. In the past decade many localization systems based on radio 

networks were proposed to deal with this problem and provide position estimates in environments 

where GNSS systems cannot be used, especially in indoor environments.  

The most popular area for positioning systems and location based services (LBS) [1,2] is transport. 

With smart devices equipped with GNSS receivers, new possibilities for service providers were 

opened. Nowadays almost everyone owns a smart device and uses some basic LBS, like position 

estimation and navigation. However, based on previous analysis of the GNSS systems, these do not 

always provide position estimates which are accurate enough to provide good quality of service to the 

end user. To improve the performance of positioning systems, especially in areas where GNSS signal 

coverage is poor, alternative position estimates can be provided by positioning systems based on radio 

networks [3]. This can provide accurate position information even in indoor environments and  

thus could provide opportunities to provide new services e.g., navigation in underground parking lots 

and garages. 

In this paper we will propose a modular positioning system, which at this time consists of three  

modules which can operate seamlessly in any environment covered with ubiquitously used radio 

networks, namely Global System for Mobile Communication (GSM) and Wireless Fidelity (Wi-Fi). 

The idea is to propose a positioning system that will be able to work in any environment from open 

outdoor areas, to dense urban areas and indoor environments. The main advantage of this system is the 

fact that there is no need to modify the smart phone device and no need to build up new infrastructure. 

The service provider only needs to set up a localization server, which will do the position estimation 

based on requests from the users. Another advantage is that it can be extended by adding new modules 

based on new technologies to provide more robust and reliable results, once the technology becomes 

available in the smart device.  

The rest of the paper will be organized as follows: In Section 2 related work in the area of 

positioning in radio networks is described, while in Section 3 the proposed modular positioning system 
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will be introduced. Section 4 will introduce testing scenarios and the achieved results will be shown 

and discussed in Section 5. Section 6 will conclude this paper and will provide some thoughts about 

the future developments of the proposed system.  

2. Positioning in Wireless Networks 

In this section related work in the area of positioning using wireless networks will be described. Many 

different positioning systems have been developed recently utilizing different wireless technologies, e.g., 

Ultra-wideband (UWB) [4], ZigBee [5], Bluetooth [6], Wi-Fi [7–11], GSM [12–15] etc. In the paper we 

will focus on positioning in Wi-Fi and GSM since these technologies are almost ubiquitously deployed in 

the urban and indoor environment, where GNSS positioning is not reliable enough. 

2.1. Positioning in GSM Networks 

Since the GSM network represents the basis of modern area-wide wireless communication 

infrastructure, this technology is ideal for use in wireless positioning. The basic method for positioning 

in the GSM network is Cell of Origin (CoO) where the position of a mobile device is given by the 

position of the Base Transceiver Station (BTS) with the highest signal power. Advanced positioning in 

the GSM networks can be performed based on three approaches:  

• Distance-based positioning, 

• Angle-based positioning, 

• GSM fingerprinting. 

In the distance-based positioning the basic assumption is that the positioning service provider 

knows the exact positions of the BTS in the radio network and their transmission powers. In such a 

case the distance between the BTS and a mobile device can be calculated from the measured Received 

Signal Strength (RSS) using a suitable signal propagation model [13]. 

On the other hand, in angle-based positioning the only required information is the position of the BTS. 

The resolution of the measured Angle of Arrival (AoA) depends on the antenna configuration [13]. This 

information can be further diluted due to Non-Line-of-Sight (NLoS) conditions and multipath 

propagation. Angle-based positioning together with Round Trip Time (RTT) measurements is 

commonly used in the Enhanced Cell of Origin (ECoO) [14] method, where position of the mobile 

device can be estimated within a given sector of area covered by the BTS. 

The last and one of the most common ways to provide positioning service in GSM networks is to 

use a fingerprinting localization framework. In GSM fingerprinting [15] the position of a mobile 

device is estimated by comparison of measured RSS values from surrounding BTS with RSS values 

stored in the database at the localization server. A detailed description of the fingerprinting framework 

will be provided in the Section 2.3. 

2.2. Positioning in Wi-Fi Networks 

Nowadays the Wi-Fi network infrastructure is almost ubiquitous in dense urban areas and in indoor 

environments and all new smart devices have integrated Wi-Fi transmitters. This has led to the 

development of positioning systems based on Wi-Fi networks, mainly in indoor environments.  
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In Wi-Fi networks, like GSM, positioning can be performed in different ways. Positioning systems 

based on Wi-Fi commonly utilize one of the following frameworks:  

• Distance- or angle-based positioning (multilateration), 

• Wi-Fi fingerprinting. 

Other positioning techniques can also be used, e.g., Cell of Origin (CoO) and propagation 

modeling; however these methods are not very common [16]. Propagation modeling is actually a 

modification of the fingerprinting approach where a radio map database is created using propagation 

models. This helps to reduce the complexity of the calibration phase; however the accuracy of such a 

system is significantly lower. 

Multilateration positioning basically utilizes estimation of the distance or angle between  

transmitter and receiver. In Wi-Fi networks AoA can be estimated only when Multiple-Input and  

Multiple-Output (MIMO) technology is used and LoS conditions are required [17]. Nowadays this is 

not the common case, therefore positioning using AoA cannot be implemented in Wi-Fi.  

On the other hand distance between transmitter and receiver can be estimated by measuring RSS 

Time of Arrival (ToA) or RTT [18]. Both methods have their drawbacks when it comes to the 

accuracy of the distance estimate. In RTT measurements the accuracy is affected by latencies, which 

falsify outgoing and incoming time stamps [19]. Resulting delays may have typical variation of 5 µs 

which results in 1500 m error in the distance estimation. Another error in distance estimation can be 

caused by clock drift of the RTT observations [20]. When RSS is used to estimate the distance 

between transmitter and receiver, accuracy is given mainly by the propagation model used to compute 

the distance from RSS. Another challenge for RSS-based lateration is the high time-variability of 

signal strength caused by fading and multipath phenomena [21]. 

The most popular localization framework in Wi-Fi networks is empirical fingerprinting. Like in 

GSM networks, RSS from Access Points (APs) in the communication range is measured and used to 

estimate the position of mobile devices by comparison with the radio map database. The main 

advantage is that fingerprinting positioning seems to be more immune to multipath propagation 

phenomena. Another advantage in contrast to lateration positioning, is that there is no need to know 

the position of APs. It is also important to note that in Wi-Fi networks the RSS values are measured 

from beacon signals. Therefore RSS is not affected by the adaptive power regulation implemented in 

APs and device does not need to connect to the network. Thus APs from different providers and with 

different transmitting power settings can be used without any impact on the positioning system. 

2.3. Fingerprinting Localization Framework 

In this section fingerprinting positioning will be described in detail, since it is the most common and 

reliable positioning framework used in both GSM and Wi-Fi networks. Fingerprinting seems to achieve 

best accuracy in comparison to other positioning frameworks, especially in areas with strong multipath 

propagation and NLoS conditions. The operation of positioning systems based on fingerprinting 

frameworks can be divided into two phases—the calibration phase and the positioning phase [22].  
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2.3.1. Calibration Phase 

The calibration phase, sometimes also called offline phase, must be performed before the 

deployment of the positioning service. It represents a necessary step in the fingerprinting localization 

framework. During this phase a radio map database is created and stored in the database at the 

localization server.  

During the calibration phase the localization area is divided into small cells, where each cell is 

represented by a single reference point [9]. At each reference point RSS values from all APs within 

range are measured and stored in the radio map database, which is a collection of data vectors that can 

be described as:  

MjcS jjNj j
,...,2,1),,,...,( 1 == θαα  (1)

where Nj is the number of APs heard at the j-th reference point, M is the number of reference points, αi 

are RSS values, cj represent coordinates of j-th reference point and parameter vector θj can contain any 

additional information that may be used in the localization phase. The principle of radio map database 

creation is depicted in Figure 1. 

Figure 1. Radio map principle. 
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2.3.2. Localization Phase 

During the localization phase, also called in some literature online phase, the position of the mobile 

device is estimated. The mobile device measures RSS values from all APs within range. These are sent 

to the localization server, which compares them to the data stored in the radio map database. 

Algorithms used for estimation of a position of the mobile device can be divided into two main  

groups-deterministic and probabilistic. 

In the probabilistic (or statistical) framework the mobile device’s position is modeled as a random 

vector. The location candidate γ is chosen if its posterior probability is the highest [23]. The decision 

rule uses Bayes’ theorem: 
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where posterior probability P(ci|S) is a function of likelihood P(S|ci), prior probability P(ci) and 

observed evidence )()()( ii

i

cPcSPSP = , vector S represents the observed RSS values during online 

phase and ci stands for i-th location candidate, i.e., reference point (RP). 

On the other hand deterministic algorithms are based on the assumption that RSS values at the 

receiver are not random and depend on the position of the mobile device [9]. Thus the position of a 

mobile device is estimated by searching for the highest similarity between the measurements from the 

device and the fingerprints stored in the radio map database. The position estimate is commonly 

computed using the estimator: 
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where ωi is a non-negative weighting factor [9]. Weights can be calculated as the reciprocal of the 

distance between RSS vectors from the current measurements and radio map database. Usually the 

Euclidian distance is used, but different distance metrics are also possible [24]. 

The estimator of formula (3) that keeps the K largest weights and sets the others to zero is called the 

Weighted K-Nearest Neighbours (WKNN) method [10]. WKNN with all weights ωi = 1 is called the 

K-Nearest Neighbours (KNN) method. The simplest method, where K = 1, is called the Nearest 

Neighbour (NN) method [11]. In [9] it was found that WKNN and KNN methods perform better than 

the NN method, particularly when values of parameter K are 3 or 4.  

In the literature it is shown that both probabilistic and deterministic algorithms are able to achieve 

similar results in terms of accuracy [23]. The advantage of the deterministic algorithms is that there is 

no need of an accurate statistical model to describe the signal characteristics in the environment. 

Therefore we decided to implement deterministic algorithms to the proposed modular positioning system.  

3. Proposed Algorithm and Modular System 

3.1. Modular Localization System 

The proposed modular localization system is logically one level above the structure of standard 

localization systems. The components of a modular system have to be proposed according to the goals 

and requirements for such system. 

The proposed system is an integrated set of components that provide localization services for its 

users. The proposed system should be able to provide services to multiple users and the service should 

be accessed simultaneously. The proposed localization system is centralized and thus a localization 

service is provisioned from one source called a localization server. It can be described as a network-based 

system with device assistance. This means that all computations are performed at the centralized 

localization server implemented on the network side of the system and the mobile device performs 

measurements when requested by the server. The system is fully autonomous, because it 

communicates using the existing infrastructure of telecommunications networks. Switching of the 

system mode (indoor or outdoor) is currently performed automatically based on data measured by 

mobile device. The process of switching is controlled by a modular localization algorithm (MLA). 
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The proposed system is currently based on the assumption, that Global Positioning System (GPS), 

GSM and Wi-Fi together could allow ubiquitous positioning in an environment similar to that 

illustrated in Figure 2. Positioning modules based on these technologies are considered as basic 

localization modules of the system, since standard mobile phones contain the necessary hardware to 

exploit them. The system is open for implementation of other modules according to requirements,  

e.g., Bluetooth, Zig-Bee, etc. 

Figure 2. Example of an environment. 

 

The system can be divided into several components that communicate with each other and have 

their own responsibilities. The basic components are mobile devices (localized terminals), existing 

network infrastructures and the localization server. In terms of architecture, it is possible to describe 

the system from multiple perspectives that explain the importance and role of individual components 

such as: 

• functional view, 

• component view, 

• technological view, 

• user view. 

These perspectives will be presented in order to comprehensively describe the modular localization 

system implementation. The functional view also contains the description of the novel modular 

localization algorithm. 
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3.1.1. Functional View 

The functional view represents the role and responsibilities of the various components of the 

system. These tasks can be divided into multiple layers, namely: 

• Presentation layer—Provides visualization of the position of the user, allows him to control 

the localization of software, make requests and import radio map data. 

• Application logic layer—Contains algorithms for position estimation, data processing and 

validation, security control and user request processing. 

• Service layer—Provides information transfer between individual components. 

• Security layer—Prevents unauthorized access, secures the transmission of sensitive data. 

• Management layer—Monitors important changes in the system, records the errors and 

allows their analysis. 

Localization system features can be divided into these layers for the mobile station, as well for the 

localization server. This division is shown in Table 1. 

Table 1. Responsibilities of components in the proposed modular localization system. 

Layer Mobile Station Localization Server 

Presentation 

Display user position 

Display management interface 

Display other relevant data 

Enter localization request 

Control of map data collection 

Configuration of application 

Application logic 

Validation of input data 

Measurement and processing of 

localization data 

Validation of input data 

Implementation of MLA and 

partial localization algorithms 

User request handling 

Error handling 

Service 

Data exchange with localization 

server  

Localization service calls 

Data exchange with mobile 

stations 

Request transfer 

Insertion of data into database 

Reading of data from database 

Security Securing of sensitive data 

Authentication 

Authorization 

Securing of sensitive data 

Management 
Notify localization server about 

errors 

Make record of errors 

Make records of important changes 

in the system 

The individual layers are classified into three levels, where each layer communicates directly only 

with neighboring layers. Security and management layer are needed at every level and can 

communicate with any of the three layers. All layers in the system are shown in Figure 3. 
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Figure 3. Functional layers in the modular localization system. 

 

The application logic layer contains the original MLA algorithm. The algorithm is responsible for 

handling localization requests with all necessary signal information from GPS, GSM and Wi-Fi, 

selecting the most appropriate platform and returning the position. The details are depicted in the 

algorithm flowchart in Figure 4. The algorithm facilitates deterministic the fingerprinting localization 

framework, described in the previous section, together with the proposed map reduction algorithm. 

Figure 4. Flowchart of modular localization algorithm. 

 

In short, the MLA checks GPS availability and if the position can be determined, returns the 

position to the mobile device. However, GPS may not be available in scenarios involving missing GPS 

hardware, not enough visible satellites or indoor environments. In that case Wi-Fi or GSM 

measurements are used. The number of base stations with RSS 10 dBm above the minimum 
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measurable signal level is calculated for the Wi-Fi network (NAP) and GSM network (NBTS). If NAP is 

greater than or equal to 3, Wi-Fi localization is selected. The threshold of three transmitters (APs or 

BTSs) was chosen, since signals from at least three transmitters are needed to clearly define position in 

2D space. If that localization fails, e.g., similar radio map vectors are missing due to a non-mapped 

area or if NAP < 3, GSM localization is performed.  

The RSS thresholds were set to −90 dBm for Wi-Fi signals and −103 dBm for GSM signals, since 

most devices provide minimum RSS values of −100 dBm and −113 dBm for Wi-Fi and GSM signals, 

respectively. This threshold was added based on previous results published in [25] which show that 

low RSS values have a negative impact on localization accuracy, caused by the fact that these values 

are more significantly affected by RSS fluctuations.  

3.1.2. Component View 

The modular view presents the components of the system in terms of unique characteristics and 

interdependencies. Modularity enables later improvements and addition of features to the system in the 

future. Individual modules can extend the functionality of mobile stations, localization server or a 

localization system as a whole. The proposed modules relate to localization system as a whole and 

their roles are as follows: 

• GNSS module—Localization module that utilizes one or more GNSS, initially GPS. 

• GSM module—Localization module that utilizes GSM network. 

• Wi-Fi module—Localization module that utilizes Wi-Fi network. 

• Communication module—Data exchange and requirement transfer between the mobile 

station and the localization server. 

• Presentation module—Display position of a user on a suitable map of the environment, 

through which he can determine what is in its surroundings. 

• Security module—Security of communication between the mobile station and the 

localization server. 

• Application logic module—User or mobile station request processing. 

Modules should be substitutable and thus, for example when safety requirements change, the 

security module can be substituted by a more suitable one or a new localization module such as 

WiMAX or Bluetooth can be added. 

3.1.3. Technological View 

The technological view provides an overview of the technologies and the standards by which the 

system is constructed. The list of proposed technologies for localization server and mobiles stations is 

given in Table 2. The list consists of technologies used in the system developed by the authors, and the 

use of different technologies can cause minor changes in the performance of the system from the 

complexity point of view. 
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Table 2. Technologies of localization server and mobile station. 

Localization Server 

Hardware Depends on performance requirements 

Operating system Microsoft Windows Server (latest) 

Web server Internet Information Services 

Database Microsoft SQL Server (latest) 

Software platform Microsoft .NET Framework 

Programming language C# 

Mobile Station 

Hardware 
Mobile phone with GNSS, GSM and Wi-Fi 

enabled hardware 

Operating system Android (2.3 and newer) 

Software platform Android SDK 

Programming language Java 

Localization server software is built on technologies from Microsoft because of our extensive 

experience with their implementation, but also due to the presence of high quality tools and a vast user 

and programmer documentation. Data storage uses a SQL-based relational database system and thus 

enables advanced data analysis with other tools directly from the data of the localization system. 

The mobile station software is built on the Android operating system, which allows better access to 

the hardware equipment of the mobile station compared to other mobile operating systems such as 

Apple iOS or Microsoft Windows Phone. Furthermore the Java programming language is up to certain 

level similar to C# language that has been used in the localization server. 

The data transfer between a mobile station and the localization server is based on Hypertext 

Transfer Protocol (HTTP) and underlying TCP/IP protocol suite. The advantage of the HTTP protocol 

is in its wide use, therefore it is enabled on the communication networks, devices, operating  

systems and it passes network firewalls easily. Efficiency of the communication is achieved by 

Representational State Transfer (REST) principles used to expose localization server web services. The 

REST architecture represents a lightweight, computational and data transfer efficient alternative to the 

Simple Object Access Protocol (SOAP), which has been used for web services for years. The REST 

architecture saves computational resources on the mobile stations, where it is highly demanded as well 

as on the localization server. 

Another benefit of the HTTP protocol is its integrated support for authentication and data 

encryption. Users are authenticated via basic HTTP authentication. Transmitted data are encrypted 

with Transport Layer Security (TLS) or Secure Sockets Layer (SSL) protocols. 

3.1.4. User View 

User view represents the capabilities of the system from the user perspective. Users can be divided 

into groups, according to their role and permissions. Basic user groups are: 

• Standard user—Uses the system to obtain localization information. 

• Installer—Sets up the system before it can be used by standard users and administrators. 

• Administrator—Monitors system operation, updates the system and solves problems. 
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A person can be member of more than one group, for instance if the system administrator needs to 

obtain localization information, he would become standard user as well. Each action in the localization 

system requires membership in certain set of groups as shown in Table 3 below. 

Table 3. Actions in the localization system and user groups allowed performing them. 

Action (Permission) Allowed Groups 

Localize own person Standard users 

Localize someone else - 

Track own person Standard users 

Fill the database with necessary data Installer, Administrator 

Monitor the system Administrator 

Manage administrators Installer 

Manage users Administrator 

There are necessary steps to set up and configure the localization systems before it can provide the 

localization service. Three phases of the localization system lifecycle have been identified, namely: 

• Installation—Installer configures the localization server and creates one or more system 

administrators. 

• Initialization—Administrator creates accounts for users of services and installer fills the 

database with auxiliary data for localization modules such as fingerprinting radio map. 

• Normal operation of the system—Standard users utilize localization service, the 

administrator monitors statistics and resolves any problems in the system. Administrator 

also updates the database with new auxiliary data. 

3.2. Map Reduction Algorithm 

In a modular localization system the area where the positioning services will be provided is 

significantly larger, thus the size of radio map is increased. This may result in a significant increase of 

the time required for the localization server to estimate the position of a mobile device. Another reason 

to optimize the complexity of the positioning process is the ability of the localization server to provide 

responses to localization requests from a large number of devices.  

The aforementioned facts were the motivation to modify basic algorithms in order to reduce the 

complexity of the positioning process. The idea of the proposed algorithm is to filter out vectors that 

contain measurements from the same transmitters as the mobile device detected during the positioning 

process. In this way we can determine which vectors are in the area of mobile device and use them in 

the position estimation process.  

We called the proposed optimization algorithm as a 2-phase map reduction algorithm. In the first 

phase only relevant areas are selected from the radio map database. In the second phase reference 

points are selected from the relevant areas, thus the complexity of the system is reduced even more 

significantly. A flowchart of the proposed algorithm in comparison with the basic algorithm is depicted 

in Figure 5. The first phase of the proposed algorithm retrieves all vectors that match at least one 

transmitter with the measurement from mobile device. This is easily preformed via SQL language and 

the initial filtering reduces the radio map to the areas with least one matching transmitter in the range. 
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Figure 5. Flowcharts of the basic fingerprinting (a) and fingerprinting with 2-phase map 

reduction algorithm (b). 

 

(a) (b) 

Performance of this step can be improved by sound database administration practices, such as 

indexing or partitioning, which can pay off when the number of reference points in the map reaches 

millions. This reduction of the radio map is shown in the Figure 6. The algorithm will be described 

using a simple example, where only three transmitters (BTS1, BTS2 and BTS3) were detected during 

the offline phase and their signals are stored in the radio map. On the other hand, the mobile device 

detects signals from only two of them (BTS2 and BTS3) during the positioning phase.  

In Figure 6 the situation when the mobile device did not detect signals from BTS1 during the 

positioning phase is depicted. Areas chosen by the first phase of the algorithm are marked with a 

diagonal pattern. It can be seen that areas where signals from BTS1 should be detected were also 

chosen. It can be stated that in the first phase of the algorithm, reference points were chosen from area 

covered by signals from at least one transmitter detected in the radio map, other than BTS1.  

In the second part of the proposed map reduction algorithm, it selects the most appropriate areas 

from the relevant areas chosen during the first stage as can be seen in Figure 7. This step is performed 

by ordering all areas by number of transmitters in the radio map vectors that match the transmitters 

detected by mobile device during the positioning phase.  
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Figure 6. Phase 1 of map reduction algorithm. 

 

Figure 7. Phase 2 of map reduction algorithm. 

 

As stated before, only signals from transmitters BTS2 and BTS3 were detected during the 

positioning phase. Therefore the highest number of matches is 2 and reference points were chosen only 

from two small areas, where signals from both transmitters can be detected. The highest number of 

matches is selected in order to handle power fluctuations which may cause the measurement vector 

from the mobile device to contain more or less transmitters that were detected at the reference points in 

the radio map database.  

4. Testing Methodology and Setup 

Measurements were performed in the real world environment without any changes in the network 

infrastructure. Measurements were performed using implementation of the proposed modular 

localization system. The measurements were always coupled with the actual (i.e., real) position 

coordinates either to create the radio map or during the positioning of mobile device, to compare 
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estimated and actual positions. The actual position was taken from GPS in the outdoor environment. In 

the indoor environment actual position was entered manually in internal building coordinate system. 

Measurements in both phases were performed using Sony Xperia Arc with Android OS version 4.0 and 

the server software was installed on an Acer TravelMate 5744 equipped with Microsoft Windows 8.1. 

Both indoor and outdoor environments contained radio maps created from Wi-Fi as well as GSM. The 

RSS measurements in radio map use signal averaging to reduce fluctuations and improve robustness of 

the positioning system. Average RSS value was calculated as:  


=

=
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i

i

s

RSS
N

RSS
1

______ 1
 (4)

where NS is the number of samples, in the measurements set to 5, and RSSi represents i-th RSS sample. 

Radio maps were created during the evening hours, when the amount of traffic and pedestrians was lower, 

to achieve optimal results according to [26]. Measurements were performed in both indoor and outdoor 

environments. Radio maps for Wi-Fi and GSM in the outdoor environment can be seen in Figure 8.  

Figure 8. Outdoor radio maps for (a) GSM and (b) Wi-Fi displayed on Open Street Map. 

(a) (b) 

Measurements in the outdoor environment were performed on the campus of University of Zilina; 

the size of the area was 780 × 470 m. The GSM radio map was created with 937 reference points. On 

average five BTS were detected per reference point. GSM measurements were performed in a single 

network operated by Telefonica Slovakia. On the other hand, the radio map created using Wi-Fi 

signals contained 574 reference points. This difference is given by the fact that reference points with 

less than three APs detected by the device were excluded from the radio map database. On average  

15 APs were detected per reference point. 

The indoor measurements were performed in an office building with brick walls located in Zilina. 

The size of the area was 15 × 8 m. The GSM radio map consists of 50 reference points. At reference 

points the average number of detected signals from BTS stations was 4.5. The spatial distribution of 

reference points in the indoor environment for both Wi-Fi and GSM is shown in Figure 9. 
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Figure 9. Indoor radio maps for (a) GSM and (b) Wi-Fi displayed on a plan of  

the building. 

(a) (b) 

The radio map created using Wi-Fi consists of 43 reference points with average of more than 4 APs 

detected per reference point. Like the outdoor environment, the Wi-Fi radio map consists of a lower 

number of reference points compared to the GSM radio map, because a lower number of APs was in 

the range compared to the outdoor environment.  

In the next section results achieved in the real world measurements will be presented and discussed. 

In order to do that we need to define the accuracy measures which were used to evaluate performance 

of the proposed positioning system. Accuracy is commonly expressed by the value of localization 

error, which is in fact a random variable and thus should be evaluated by statistical functions. Whereas 

accuracy usually refers to mean (i.e., average) error values, the term precision is used for localization 

error-related properties.  

The accuracy is commonly evaluated by Mean Square Error (MSE), Root Mean Square Error 

(RMSE), Circular Error Probability (CEP) and Cumulative Distribution Function (CDF). The MSE, in 

localization also referred to as Mean Distance Error (MDE), expresses average of the squares of 

localization error, then RMSE represents average localization error. Using 2D coordinates, the values 

can be calculated as:  


=

−+−=
N

i

iiii yyxx
N

MSE
1

22 ])ˆ()ˆ[(
1

 (5)

MSERMSE =  (6)

where [xi; yi] are actual position coordinates of mobile device in i-th positioning step, [ ix̂ ; iŷ ] are 

coordinates of estimated position, M is number of measurements. The lower the values of MSE and 

RMSE, the higher the accuracy of position estimates. These metrics can be used to evaluate 2D as well 

as 3D accuracy. In the result section, every RMSE value is accompanied with standard deviation σ of 

values in a form RMSE ± σ. 
The CEP represents the radius of the circle where 50% of the estimated positions have an error 

lower than or equal to the accuracy value. The lower the value of CEP, the higher the accuracy of 

position estimates. This metric can be used to evaluate 2D accuracy. Similar circles can be defined for 
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other statistically interesting values such as 67% (R67) or 95% (R95). R95 is one of the most 

important metrics to decide which of the two systems is more precise.  

The CDF describes the probability that localization error will be smaller than some pivot value V. 

For N measurements in the set, it can be calculated as: 

)(

1
)(

VRMSEN
VCDF

<
=  (7)

CDF is commonly expressed by a function graph from starting from V = 0 and ending where CDF(V) 

is close to 1. The metric can be used to evaluate both 2D and 3D accuracy. 

Testing measurements were performed in two scenarios. The first scenario was proposed to evaluate 

impact of the proposed algorithm for map reduction. In this scenario outdoor positioning was 

performed with both Wi-Fi and GSM networks separately. During the measurements the localization 

accuracy and server response times were monitored.  

The second scenario was proposed to evaluate performance of MLA algorithm in both indoor and 

outdoor environments. In the measurements localization accuracy of the modular localization system 

was monitored. In the measurements GPS module was not considered in the modular system. This 

should simulate the worst case scenario when GPS is not available and helps us to evaluate the 

performance of backup modules.  

5. Achieved Results and Discussion 

In the first scenario impact of the proposed 2-phase algorithm for map reduction on the performance 

of positioning based on fingerprinting framework was tested. The implemented algorithm was verified 

in the outdoor environment with both GSM and Wi-Fi radio maps. One hundred measurements were 

performed for each position estimator and network. The accuracy results before and after application 

of the proposed algorithm improvements are shown in Table 4. 

From the results in the table it is obvious that map reduction improves the accuracy even if it was 

initially designed to only improve the performance. It can be seen that the mean localization error was 

reduced by 18 m for KNN, by 35 m for WKNN and approximately by 55 m for NN algorithm when 

GSM signals were used to estimate the position. On the other hand, improvement for Wi-Fi based 

positioning is even more significant. It can be seen that mean localization error was reduced from 

approximately 180 m to only 20 m, which is a significant improvement. This improvement is caused 

by the inaccuracy of the basic NN family algorithms, given by the fact that these algorithms do not 

consider the number of transmitters used to calculate the distance between RSS vectors. Thus basic 

algorithms can select RPs with only one detected transmitter with similar power, however in a 

completely different area, since other transmitters present at the given RP were not detected by the 

mobile device, the algorithms do not penalize this RP for missing transmitters and if the difference of 

RSS is relatively low, the position estimate is far from the real position. This problem of NN family 

algorithms emerges only when positioning is performed in large areas, since in small areas (e.g., 

buildings) the same transmitters are detected on all RPs.  
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Table 4. Impact of map reduction on localization accuracy. 

Network Estimator 
Basic Algorithm With Map Reduction 

RMSE [m] RMSE [m] 

GSM 

NN 144.78 ± 78.15 89.67 ± 64.61 

KNN 110.44 ± 71.02 92.42 ± 50.90 

WKNN 120.63 ± 69.18 85.10 ± 61.45 

Wi-Fi 

NN 178.47 ± 47.57 18.20 ± 10.74 

KNN 181.24 ± 29.60 21.66 ± 13.18 

WKNN 181.42 ± 29.60 19.22 ± 8.70 

The impact of the proposed 2-phase map reduction algorithm on performance of the localization 

algorithm is shown in Table 5. In the table T represents time of basic algorithm and TMR represents 

time after application of the map reduction algorithm. In the performance testing two kinds of different 

positioning requests, i.e., valid requests and invalid requests, were used. Valid requests mean that 

measurement vector consists of RSS measurements from transmitters present in the radio map database 

and therefore the position of the mobile device can be estimated. On the other hand, invalid requests 

were generated with transmitters that were not present in the radio map database, meaning the 

measurements were performed in the area where the positioning service is not available and the 

position of a mobile device cannot be estimated.  

Table 5. Impact of proposed map reduction algorithm on the response time of localization server. 

Metric 
GSM Wi-Fi 

T [s] TMR [s] T [s] TMR [s] 

Single valid request 0.68 ± 0.06 0.55 ± 0.17 4.31 ± 2.13 0.76 ± 0.60 

10 parallel valid requests 3.44 ± 0.37 2.84 ± 0.95 23.14 ± 11.34 3.96 ± 3.33 

100 parallel valid requests 30.76 ± 8.87 25.79 ± 10.81 289.86 ± 147.66 45.79 ± 41.90 

Single invalid request 0.86 ± 0.14 0.006 ± 0.001 4.49 ± 2.37 0.014 ± 0.007 

10 parallel invalid requests 4.32 ± 0.66 0.017 ± 0.006 24.15 ± 12.22 0.053 ± 0.033 

100 parallel invalid requests 39.15 ± 12.27 0.220 ± 0.085 308.78 ± 178.89 0.505 ± 0.327 

It can be seen that map reduction significantly reduces the duration of the localization algorithm. 

The positive effect is more obvious in the Wi-Fi radio map, since Wi-Fi fingerprint vectors contain 

more transmitters thus the radio map is bigger. Another positive effect of map reduction is that it 

reduces the duration by three orders of magnitude for invalid localization requests.  

The high values of standard deviation result from the fact that the application was running on a 

computer running on Windows OS and the computation time was affected by other processes running 

in the background, which causes high differences in computation times. It can be seen that the time 

needed to perform Wi-Fi-based positioning was significantly higher compared to the time needed to 

estimate the position using GSM signals. This was given by the fact that in Wi-Fi a higher number of 

transmitters was detected. Therefore more computations need to be performed to calculate the 

distances between RSS vectors. 

In the last scenario, the positioning was performed in both indoor and outdoor environments at 10 

evenly distributed positions. There were 10 localization requests executed at each position for all 

implemented positioning algorithms—NN, KNN and WKNN. Altogether there were 100 position 
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estimations performed by each of the algorithms and environment. The achieved accuracy of the modular 

positioning system is shown in Tables 6 and 7 for indoor and outdoor environments, respectively.  

Table 6. Accuracy of the modular positioning system in an outdoor environment. 

Estimator RMSE [m] CEP [m] 67% [m] 95% [m] 

NN 22.58 ± 23.20 16.60 23.44 71.93 

KNN 36.20 ± 33.82 22.37 31.68 116.52 

WKNN 25.38 ± 22.04 19.30 22.76 81.06 

Table 7. Accuracy of modular positioning system in the indoor environment. 

Estimator RMSE [m] CEP [m] 67% [m] 95% [m] 

NN 2.81 ± 2.65 2.15 3.58 7.35 

KNN 2.58 ± 1.95 1.73 3.97 5.84 

WKNN 2.74 ± 2.13 1.91 3.97 6.87 

From the achieved results it can be seen that positioning accuracy achieved by MLA positioning is 

slightly lower compared to the accuracy achieved by the Wi-Fi positioning with map reduction. 

However it is important to notice that Wi-Fi positioning is not available all the time and a low number 

of transmitters in the range can result in invalid positioning requests. Thus the accuracy of MLA is 

affected by GSM position estimates, which cannot achieve the accuracy of Wi-Fi positioning. In the 

outdoor environment the MLA selected Wi-Fi localization instead of GSM in 78% of cases, whereas 

GSM has been used only in 22% of cases. This is mostly caused by the signal coverage, because there 

were fewer positions with poor or no Wi-Fi coverage. For the better analysis of the achieved results 

CDF of localization error achieved by MLA in outdoor environment is shown in Figure 10. 

Figure 10. CDF of localization error in the outdoor environment. 
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From the figure it can be seen that NN algorithm achieved the best results and is able to estimate the 

position of mobile devices with an accuracy of less than 20 m in more than 60% of requests. It can also 

be seen that worst results were achieved by the KNN algorithm.  
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In Table 7, the achieved results for an indoor environment are depicted. There it can be seen that the 

accuracy achieved with the MLA algorithm is much better compared to the outdoor environment. This 

is caused by the fact that radio signals are attenuated by the walls and furniture in the building, which 

results in the higher differences in RSS measured at reference points. In the indoor environment the 

MLA preferred Wi-Fi localization over GSM in 51% of cases. This is caused by the signal propagation 

in the environment, and it shows that in 49% of cases, there were less than three Wi-Fi APs with RSS 

greater than −90 dBm in the range of mobile device. Like the outdoor environment, the results 

achieved for the indoor environment are shown as CDF of localization error in Figure 11.  

Figure 11. CDF of localization error in indoor environment. 
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From the results shown in the figure it can be seen that, in contrast to the outdoor environment, in 

the indoor environment positioning using the KNN algorithm achieved best results. It can be seen that 

more than 55% of position estimates have errors lower than 2 m, which is a good result.  

The differences between particular estimators are not significant; therefore we decided to 

implement NN in our modular localization system. The next very important fact is the computational 

capacity of particular estimators. The NN requires the lowest computational capacity therefore the 

decision seems to be optimal.  

6. Conclusions and Future Work 

In this paper a novel 2-phase map reduction algorithm and modular localization were proposed. 

Both algorithms were implemented in a localization system to evaluate their impact on the 

performance of the positioning system developed at the University of Zilina. Implemented algorithms 

were tested in real world conditions in both indoor and outdoor environments. From the achieved 

results it can be seen that proposed 2-phase map reduction algorithm reduced the complexity of the 

positioning process and also improved the accuracy of the position estimates. It has to be noted that the 

proposed algorithm allows detecting and ignoring false positioning requests, and thus can significantly 

reduce complexity.  

A modular positioning systems that can utilize Wi-Fi and GSM signals was proposed and 

developed. The main contribution is the proposal of the modular localization algorithm, which is able 
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to automatically switch between different localization modules. During the test, GPS positioning was 

disabled in the MLA algorithm, to determine performance of the positioning modules based on radio 

networks. The achieved mean localization error was 20 m in the outdoor environment and less than  

3 m in the indoor environment. From the results it is obvious that positioning in outdoor environments 

still needs to be improved. However it must be noted that measurements were not performed in dense 

urban area, where a larger number of wireless transmitters and more buildings are present. This could 

allow slightly higher positioning accuracy. The proposed system can be used in transport for 

navigation purposes, since it can operate in both indoor and outdoor environments seamlessly. 

In the future research the focus should be put mainly on optimization of the proposed positioning 

system, especially in outdoor environments, in order to provide more accurate results, even when 

GNSS-based positioning is not possible. We will also focus on development of an algorithm which 

will provide more precise switching between outdoor and indoor environments. Another interesting 

topic for the future research that can be performed on the proposed modular system is the impact of 

using different devices on the accuracy of the system.  
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