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Abstract
Quantum entanglement is shown for causally separated regions along the radial direction by us-

ing a conformal quantum mechanical correspondence with conformal radial Killing fields of causal

diamonds in Minkowski space. In particular, the theory of local von Neumann algebras and Tomita

Takesaki modular operators is applied in the entanglement structure of causal diamonds in con-

formal quantum mechanics. The entanglement of local states in their respective causal regions is

shown through the measures of concurrence and entanglement entropy using the Tomita Takesaki

modular conjugation operator. A holographic entropy formula is derived for the conformal quantum

mechanics causal diamond correspondence. A new connection is made between the thermal time

flow defined by the modular group of automorphisms to the physical time flow in a causal diamond

via the aforementioned correspondence. The thermal interpretation of these results via two-point

thermal Green’s functions and modular group flow supports the idea of a possible emergent theory

of spacetime.

∗ corresponding author: Rupak.Chatterjee@Stevens.edu

1

ar
X

iv
:2

20
1.

01
89

8v
3 

 [
he

p-
th

] 
 2

2 
Fe

b 
20

22

mailto:corresponding author: Rupak.Chatterjee@Stevens.edu


I. INTRODUCTION

Conformal symmetry is a local scale symmetry that keeps the metric tensor of spacetime

invariant up to a spacetime dependent scale, ds2 = Ω(x)gµνdx
µdxν . Physically, this means

that a system is locally invariant under the change of observation scale while leaving space-

time angles invariant. Indeed it is an extension of the Poincare group possessing 15 degrees

of freedom, the extra five being four special conformal transformations and one dilation.

This class of symmetry has been previously used to study critical phenomena such as phase

transitions where the diverging correlation lengths indicate scale invariance. However, the

symmetry need not only be applied to systems of infinite degrees of freedom. Conformal

invariance in a quantum mechanical system was first investigated in [1] and subsequently,

with the interest in conformal field theories, seen as formally equivalent to a conformal quan-

tum field theory in (0 + 1) dimensions [2]. The conformal invariance analogy in a quantum

mechanical system is made with respect to a conformal algebra rather than a metric tensor

as in classical relativity.

A causal diamond is some finite region of spacetime that encompasses the past, present

and future of a particles spacetime world-line, whose causal geometric structure emerges

from the collective emanation of light from the said region. Such a region, and the energy

within it, could be interpreted as an observer with a finite lifetime [3]. In [4], Arzano made

a connection between the conformal radial symmetries of causal diamonds in Minkowski

space-time and time evolution in conformal quantum mechanics. Specifically, the two point

function of conformal quantum mechanics was related to a two point function for an observer

in Minkowski space, as well as the size of a causal diamond to a temperature parameter.

A deep relationship between the generators of the radial conformal Killing vector field in

Minkowski space, which describes the conformal symmetry of the radial dimension of space,

and the generators of the conformal symmetry in quantum mechanics was found.

Here, we investigate the entanglement properties within this correspondence by consid-

ering causal diamonds which are separated by a space-like distance in Minkowski space.

In particular, we construct a Tomita-Takesaki modular operator formalism within a von

Neumann algebra structure for two causal diamonds. This allows us to discuss the relation

between conformal radial Killing fields of two causal diamonds in Minkowski space and their

entanglement. Specifically, we use the modular conjugation operator to express Wooter’s
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concurrence for arbitrary states in two causally separated regions. The construction of

concurrence in terms of the modular conjugation operator was first discussed using a super-

symmetric quantum mechanical system in [5]. It is known in holography theory that bulk

causality can emerge from a boundary conformal field theory via a definition of modular

flow and its entanglement between distant regions [6, 7]. Conformal quantum mechanics

is an excellent model to better understand the emergence of bulk causality from a (0+1)

conformal field theory and arising entanglement due to separation of causal regions through

use of von Neumann algebras and Tomita-Takesaki modular theory. An entropy formula

is derived which is found to be proportional to the length of the causal diamond with a

corrective logarithmic term, similar to that found in [8]. The (0 + 1) conformal field theory

is mapped to a (1 + 1) causal physical system, leading to the concept of a "line density" of

entanglement entropy, similar to the holographic area density of Bekenstein and Hawking.

The framework developed in this paper may further elucidate the holographic emergence

of bulk causality. The problem that we solve is constructing local von Neumann algebras

for causal diamonds using the correspondence with conformal quantum mechanics. Further-

more, this allows us to define Tomita-Takesaki modular operators and provide holographic

entanglement entropy for a cyclic vector state of the von Neumann algebra representing the

radial dimension of a causal diamond. Finally, we then comment on the interpretation of

the model and its possible origination in thermality.

II. THE CORRESPONDENCE BETWEEN CLASSICAL AND QUANTUM SYM-

METRY

de Alfaro et al. [1] were the first to deduce from group theoretic principles the algebra of

quantum mechanical operators that correspond to the algebra of infinitesimal generators of

conformal transformations. They do this by examining projective Möbius transformations

for a time variable t in a (0 + 1) conformal field theory. Using Heisenberg’s equations of

motion, they are able to match the conformal generators to their unitary time evolution

operators for each transformation generator. It it thus interpreted that the theory is per-

forming projective conformal transformations over time. The conformal algebra is infinite in

two dimensions making any problem in 2D exactly solvable. Though we have (0+1) for this

model, the theory is still exactly solvable since the generators of conformal transformations
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are constants of motion. The Lagrangian for a quantum mechanical theory can be written

as

L =
1

2

(
∂tQ−

g

Q2

)
(1)

for some Hermitian quantum field Q(t) that only depends on time, hence a (0+1) field

theory. It is the action, A =
´
L dt, that is invariant under conformal transformations.

The transformations of the conformal group can be found via an infinitesimal analysis [1].

These transformations include translations generated by H =
d

dt
, dilations generated by

D = −t d
dt
, and special conformal transformations generated by K = −t2 d

dt
. The generators

of time evolution in conformal quantum mechanics thus form the sl(2,R) algebra [1],

[H,P ] = iH, [K,D] = −iK, [H,K] = 2iD (2)

Furthermore, a combination of these generators yields the observable quantity,

G = uH + vD + wK. (3)

This generator leaves the action of the quantum field invariant and is a constant of motion.

This means that one could choose any one of these conformal generators to study time

evolution, though they have different properties.

Consider now (3+1) dimensional Minkowski space associated with some symmetries. A

conformal radial Killing field is a radial vector field such that the Lie derivative acting on the

metric is proportional to the metric itself, Lχηµν α ηµν , demonstrating conformal invariance

of the spacetime. Such a Killing field, χ, can be written as a combination of three conformal

generators:

χ = {a(t2 + r2) + bt+ c} ∂t + r(2at+ b)∂r

= aP0 + bD0 + cK0

(4)

Arzano [4] obtains the relationship between generators of conformal quantum mechanics and

the conformal radial killing field as:

G = iχ

H = iP0, D = iD0, K = iK0

a = u, b = v, c = w

(5)
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That is, the generators of conformal symmetries in quantum mechanics, H, D, and K are

directly related to the conformal radial Killing vector field that describes the symmetry of

the radial dimension of a causal diamond in Minkowski space. The generators of conformal

radial symmetries of a causal diamond in Minkowski space are analytically continued into the

complex plane and are expressed with only quantum mechanical time evolution. Therefore,

the classical conformal symmetry of the radial and temporal coordinate in Minkowski space,

(r, t), appear to emerge from generators of conformal symmetry in quantum mechanics [9]. In

other words, a (1+1) conformal spacetime can be described with a (0+1) conformal quantum

theory. The first theory of this kind was the AdS/CFT correspondence of Maldacena [6].

There are classes of Hamiltonians that are characterized the determinant of the generator

G, as it is invariant under general transformations. The Hamiltonian corresponding to a

negative determinant of G is a rotational Hamiltonian that generates elliptical compact

rotations. For now, we recognize that this operator is convenient to use for calculations as

its basis is discrete and complete, and we thus proceed with the model in this rotational

basis. The operator R is given as,

R =
1

2

(
αH +

K

α

)
(6)

and generates elliptical rotations. The other classes of Hamiltonians are H andK generating

parabolic transformations around the light-like axis when the determinant is zero, while D

and S =
1

2

(
αH − K

α

)
generate hyperbolic transformations (Lorentz boosts) when the

determinant is positive. Note that the number α has units of time [1, 4].

The connection between the quantum conformal generators and the Killing field is illus-

trated through the fact that their classification depends upon the determinant of the Casimir

operator of the conformal group as explained in [4]. This connection highlights how the three

classes of ’Hamiltonians’ generate different types of time evolution. Indeed, one can express

the three ’Hamiltonians’ H, R, and S in terms of three different time coordinates,

H = i∂t, R = i∂T , S = i∂τ , (7)

where the times are related to each other through

t = αtan(T/2) = αtanh(τ/2) (8)
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Upon quantization, the rotation operator R has eigenstates and a corresponding rota-

tional vacuum |n = 0〉 such that [1]

R |n〉 = rn |n〉

L± |n〉 =
√
rn(rN ± 1)− r0(r0 − 1) |n± 1〉

R |n = 0〉 = r0 |n = 0〉

rn = r0 + n, n = 0, 1, 2, ...

(9)

with orthonormal eigenstates. One can introduce creation and annihilation operators for

the rotational eigenstates leading to

R = 1
2
(a†a+ 1

2
)→ rn = 1

2
(n+ 1

2
)

L+ = 1
2
a†2

L− = 1
2
a2

(10)

where we identify L+ and L− as raising and lowering operators.

Furthermore, one can write an expression for raising and lowering operators of rotations,

L± =
1

2

(
αH − K

α

)
± iD (11)

to realize the algebra in the Cartan sub-basis,

[R,L±] = ±L±, [L−, L+] = 2R (12)

thus allowing us to define a scaling dimension and spin for the generators of dilations and

rotations in conformal quantum mechanics by observing the conformal weights of the two

point functions [10]. We can identify a relationship between the conformal radial Killing field

in Minkowski space and the quantum rotational generator R by noticing that the generator

R = i∂T can also be written as

R =
1

2α
(α2H +K) =

i

2α

[
(t2 + r2 + α2)∂t + +2 t r∂r

]
= iχ (13)
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with a =
1

2α
, b = 0 and c =

α

2
using the relations H = iP0 and K = iK0. The parameter

∆ = b2 − 4ac determines the causal character of the radial conformal Killing field. For our

case, ∆ = −1 and thus the causal character is time-like everywhere. It is also interesting to

view the Killing field in terms of the (0 + 1) quantum field Q(t). Using the expressions for

the generators in terms of the field Q(t) found in [1], we obtain the relationship between R

and Q(t),

R =
1

2

(
α(∂tQ

2 + g/Q2) +
1

α

[
t2/2(∂tQ

2 + g/Q2)− 1

2
t(Q∂tQ+ ∂tQQ) +

1

2
Q2

])
(14)

and we can express the conformal radial Killing field for a causal diamond in Minkowski

space in terms of the quantum field Q(t),

χ =
−i
2

(
α(∂tQ

2 +
g

Q2
) +

1

α

[
t2/2(∂tQ

2 +
g

Q2
)− 1

2
t(Q ∂tQ+ ∂tQ Q) +

1

2
Q2

])
(15)

providing a relationship between the classical radial conformal Killing field of a causal dia-

mond and the (0 + 1) dimensional quantum field. From the relation −iR = χ = ∂T one can

adopt diamond coordinates as

t = α
sin(T )

cos(x) + cos(T )
, r = α

sin(x)

cos(x) + cos(T )
(16)

and transform the typical Minkowski line element ds2 = −dt2 + dr2 + r2dΩ2 = −dt2 + dr2 +

r2(dθ2 + sin2 θdφ2) into

ds2 =
α2

(cos(T ) + cos(x))2
(−dT 2 + dx2 + sin2xdΩ2) (17)

sufficing as a conformal transformation in the radial and time dimensions only. That invites

one to think of this as a holographic theory from which (1 + 1) spacetime can be described

as a (0 + 1) conformal field theory.

Using the integral curves of conformal radial Killing fields found in [11], we set a =
1

2α
,

b = 0, and c =
α

2
for the case of −iR = χ to obtain the one-parameter family of world-lines,

1

2α
(t2 − r2)− ωr +

α

2
= 0

t2 − (r − αω)2 = −α2(1 + ω2)

(18)
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for some parameter ω giving a family of hyperbola in the (t, r) Minkowski space. From these

curves, we note the corresponding acceleration of an observer in these coordinates as [11],

a =
1

α
√
ω2 + 1

=
sin(x)

α
(19)

for the parameter ω =
1

tan(x)
. This corresponds to hyperbolic relativistic motion. The

acceleration is zero when passing through x = 0 where we can also notice that

t = α
sin(T )

1 + cos(T )
= αtan(T/2) (20)

relating the diamond time t to the time variable of the conformal quantum rotation operator

T . As is well known, there is a deep connection between temperature and acceleration, as

illustrated through the Unruh/Hawking effect [12, 13]. There is also a direct relationship

between the acceleration of a massless scalar field along the world-line of a static observer

in a causal diamond and the temperature of the primary conformal two point function

of conformal quantum mechanics [4, 14, 15] with the appropriate conformal weight. The

length of this causal diamond is 2α [3] as seen from the line element (17), and is inversely

proportional to the temperature found in the thermal Greens function as T =
1

πα
. It was

in fact mentioned in [3, 4, 14] that 2α is the lifetime of a static observer in Minkowski

space. The construction in terms of the operator R was built in order to highlight the

connections between two separate causal diamonds via the correspondence reviewed in this

section. Indeed, it is the operator R whose eigenbasis we use to define the cyclic vector for

Tomita-Takesaki modular operators in the next section.

III. CAUSALITY IN CONFORMAL QUANTUM MECHANICS: MODULAR OP-

ERATORS

We begin by imagining that there are two causal diamonds in Minkowski space that

are separated by some spacelike distance such that there is no causal relationship between

observations in each region. The system is illustrated in Figure 1. Each diamond has

associated with their conformal radial symmetries a set of conformal quantum mechanical

operators through the correspondence reviewed in the previous section. In this section, we

show that a holomorphic representation of these quantum mechanical operators may be used

to form von Neumann algebras of observables such that the second diamond’s algebra of
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observables is shown to be the commutant of the first diamonds algebra. The conformal

symmetries of each diamond is interpreted to emerge from the quantum generators R of the

kets |n〉 as reviewed in the previous section.

The relationship between these two systems of algebras, shown below, may be generated

by Tomita-Takesaki modular operators from a standard form of von Neumann algebras (see

the appendix and [16]). Proceeding with the GNS construction (see appendix), let A be a

representation of a von Neumann algebra of bounded linear operators on a Hilbert space

H, A ⊂ B(H). A is a C∗-algebra with a commutant A′ (the set of elements in B(H)

commuting with A) such that A′′ = A (the double commutant returns one to A as defined

in the appendix). Let |Ω〉 ∈ H be a separating and cyclic vector for the C∗-algebra A (the

elements in A can create a space dense in H by acting on |Ω〉 ∈ H). The Reeh-Schlieder

theorem states that mathematically, the vacuum state of some quantum field theory is

cylic A(O) |Ω〉 is dense in the whole Hilbert space H for any open region O in Minkowski

space. Further, A(O∗) |Ω〉 is also dense in H, where O∗ is the causal compliment to O.

Physically, this suggests that energy can be created or annihilated anywhere in the universe

from anywhere in the universe, though there are of course caveats to this statement. See

Witten’s review [17] for an excellent discussion and proof. In the current theory, however,

the vacuum is not cyclic as there is not an invariant vacuum state for sl(2,R) [9] and so the

Reeh-Schlieder theorem does not immediately follow. It is of great interest to us, however,

to understand how the Reeh-Schlieder theorem can be analogously defined in a conformal

quantum mechanics model.

Tomita-Takesaki theory states that there exists an anti-linear map S : H → H, such that

SA|Ω〉 = A∗|Ω〉,∀A ∈ A. S has a polar decomposition given by S = J∆1/2 = ∆−1/2J, ∆ =

S∗S where the modular conjugation operator J has the following properties (see appendix),

J∆
1
2J = ∆−

1
2 , J2 = I, J∗ = J, J |Ω〉 = |Ω〉, JAJ = A′. (21)

One of the key feature for our purposes is that of the modular conjugation operator J that

takes an algebra A into its commutant A′.

Two causal diamonds separated by some spacelike distance will have local algebras of

bounded operators acting on their respective local Hilbert spaces as define through the

conformal quantum mechanical correspondence. To define some notion of causality, we

demonstrate that the Hermitian operators corresponding to observables commute with the
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operators in the other causal diamond using Tomita-Takesaki modular theory. This defines

the commutant of the algebra, and allows us to define local von Neumann Algebras in the

two distant causal diamonds [16]. While this is known in local algebraic quantum field

theory, it is through the conformal quantum mechanical correspondence that we construct

the commutant structure of local von Neumann algebras for the radial direction of causal

diamonds.

In the first causal diamond, we have local rotational quanta |n〉 described by a set of

operators a and a†. In the second diamond, we have local rotational quanta described by

a different set of operators b and b† that will be shown to be related via involution. The

algebraic structure of the double diamond system is given by,

H = Ha ⊗Hb

Aa = {Oa } ⊂ B(Ha)

Ab = {Ob } ⊂ B(Hb)

A = Aa ⊗Ab

(22)

We place the operators a and a† in a holomorphic representation as in [5],

a =
1√
2

(z + ∂z̄) , a
† =

1√
2

(z̄ − ∂z) (23)

such that [a, a†] = 1. We define the involution of the structure as transforming a to b such

that
a∗ =

1√
2

(z̄ + ∂z) = b

a†∗ =
1√
2

(z − ∂z̄) = b†

(24)

thus [b, b†] = 1 and therefore

[a, b] = [a†, b†] = 0 (25)

Then, Rb =
1

2

(
b†b+

1

2

)
. The modular conjugation operator J will transform states from

one diamond to another.

The Tomita-Takesaki modular conjugation operator for this theory fulfills the identity

for an arbitrary state,
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Figure 1. Double Causal Diamond Structure

J(a⊗ I)J |n〉 ⊗ |m〉 = J(a⊗ I) |m〉 ⊗ |n〉

= J
√
m |m− 1〉 ⊗ |n〉 =

√
m |n〉 ⊗ |m− 1〉

= (I ⊗ b) |n〉 ⊗ |m〉

(26)

for the modular operator

∆ = e−β(Na⊗I−I⊗Nb) (27)

and the physical state

|Ω〉 = N(β)
∑

n e
−βn/2 |n〉 ⊗ |n〉

= N(β)
∑

n

e−βn/2

n!
(a†)n |0〉 ⊗ (b†)n |0〉

(28)

where N(β) = (1− e−β)1/2, which is indeed cyclic and separating as there are no vanishing
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Schmidt coefficients [18]. Further relationships are fulfilled,

J∆1/2(a⊗ I) |Ω〉 = Je−
β
2

(Na⊗I−I⊗Nb)(a⊗ I) |Ω〉

= Je−
β
2

(Na⊗I−I⊗Nb)(a⊗ I)N(β)
∑

n e
−βn/2 |n〉 ⊗ |n〉

= Je−
β
2

(Na⊗I−I⊗Nb)N(β)
∑

n e
−βn/2√n |n− 1〉 ⊗ |n〉

= JN(β)
∑

n e
−βn/2e−

β
2

(2n−1−2n)
√
n |n− 1〉 ⊗ |n〉

= N(β)
∑

n e
−βn/2e

β
2
√
n |n〉 ⊗ |n− 1〉

= N(β)
∑

n e
−βn/2e

β
2 (I ⊗ b) |n〉 ⊗ |n〉 = a∗ |Ω〉

(29)

where the vector has been renormalized. The commutant structure ensures Einstein causality

as the commutators vanish for operators in the two algebras and therefore generate the

conformal radial symmetry of causally disconnected causal diamonds. Using these relations

we can identify the commutant,

JRaJ = Rb (30)

The physical interpretation is made a little more clear by recalling the representation of R

in terms of some time coordinate T ,

Ra = i∂T (31)

such that

Rb = −i∂T (32)

which may hint at opposite flows of complex time evolution for space-like separated causal

diamonds. Furthermore, since we also know that Ra = iχa, we have Rb = iχb = −iχa.

Clearly,

[Ra, Rb] = [iχa, iχb] = 0 (33)

12



since two space-like separated casual diamonds will not have any causal influence on each

others measurements or observations, making their respective symmetries commutative.

Though there is non local interaction between these two diamonds, as we will see through

the non-zero entanglement of the two diamonds which will be expressed below through the

conformal quantum mechanical correspondence.

Within one causal diamond, there exists a bipartite structure as discussed in [19] of

which this formalism may be applied. However, it is illuminating to consider one diamond

and its causal compliment, of which a second diamond is a subset, as it is a common

relationship to study in algebraic quantum field theory. Indeed, the identified commutant

algebra is physically a subset of the causal compliment of the first algebra representing a

causal diamond itself. In particular, the operators composing the commutant of conformal

quantum mechanics also can be mapped to the radial conformal Killing field of another

diamond.

The exponential argument Na ⊗ I − I ⊗ Nb of the modular operator is serving as the

modular Hamiltonian in this model generating rotations, as the quanta generated by the

operator R are indeed some type of abstract angular momentum, analogous to our familiar

notion of quantum "spin" as being some angular momentum. The modular operator allows

us to define a one parameter group of automorphisms on the algebra, A, that generates the

local time flow for the theory (see appendix),

αtA = ∆itA∆−it = eitβ(Na⊗I−I⊗Nb)Ae−itβ(Na⊗I−I⊗Nb) (34)

experienced by observables on the algebras such that they will remain in such algebras.

Furthermore, due to the fact that our system contains finite degrees of freedom, we can

define a suitable density matrix, ρ = Z−1e−β(Na⊗I−I⊗Nb) where Z = Tr(eβ(Na⊗I−I⊗Nb)) is the

partition function. An algebraic state can thus be written for some operator A ∈ A,

ω(A) = Tr(ρA) (35)

which indeed satisfies the KMS condition for the correlation function,

F (A,B, t+ iβ) = ω((αtB)A) = ω(AαtB) = F (A,B, t) (36)

via cyclicity of the trace operation, meaning that this state is analytic on the boundary of the

strip 0 < Im(t) < β. This constitutes the cyclic vector |Ω〉 as a thermal equilibrium state.
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Jacobson has emphasized [20] that the vacuum in any quantum field theory can be expressed

as a thermal density matrix when restricted to a causal diamond. This may suggest that

our cyclic vector may be related to a vacuum of some type, a point we will return to in a

later section.

Due to the fact that the time flow emerges from the modular group of a specific KMS

equilibrium state, ω, Connes and Rovelli [21] have hypothesized that physical time flow

has thermodynamic origin in the sense that the physical time flow, αt, depends upon the

thermal state of the system, ω. This is known as the thermal time hypothesis. They were

unable to connect such thermal modular time flow to a suitable metric coordinate for time

as in relativity theory. It is within the current model that this connection can be made, as

the (modular) thermal time evolution in conformal quantum mechanics is deeply connected

to the conformal radial Killing symmetries of a causal diamond in Minkowski space as

known from the relation R = iχ. The fact that a conformal radial Killing field is related

to quantum operators as opposed to quantum states is a reflection of the fact that it is

really the operators, and the algebraic relations they obey, that define a theory as is the

philosophy of algebraic quantum field theory [22]. This is a step toward bridging the gap

between thermal modular flow of time and dynamic geometric time flow of a causal diamond.

Entropy of entanglement can be used as a measure of entanglement for a bipartite quan-

tum system such as the vector |Ω〉 by computing the von Neumann entropy for the reduce

density matrix of the subsystems. Observing that the entanglement entropy is non zero

results in a finite von Neumann entropy, meaning that the reduced density is a mixed state

thus indicating entanglement for the bipartite state. We can compute the entanglement

entropy of the cyclic vector |Ω〉 as,

SΩ = −Tra(ρaΩ lnρaΩ) = −Trb(ρbΩ lnρbΩ)

= −N2(β)
∑∞

n=0 e
−βn(−βn+ ln(N2(β)) =

N2(β)βe−β

(1− e−β)2
− 2

N2(β)

1− e−β
ln(N(β))

(37)

indicating entanglement for the vector |Ω〉. Plugging in the normalization N(β) = (1 −

e−β)1/2 and using the relation β =
1

T
= πα, we obtain

SΩ =
πα

(eπα − 1)
− ln(1− e−πα) (38)

which is an expression for the entanglement entropy of the cyclic vector representing two

causal diamonds in terms of the length, α of one diamond, minus a logarithmic corrective
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term. This is similar to a well known logarithmic correction in holography theory [8]. This

is expected since the quantum theory represents only (1 + 1) components of the full (3 + 1)

causal diamond.

In summary, to generate the conformal radial symmetries of two causally disconnected

diamonds, one need define two sets of commuting conformal quantum operators. The non-

locality of the entanglement in algebraic quantum field theory is natural in a conformal

model where the causal diamonds themselves are seen to emerge from an algebraic structure

of conformal quantum operators that compose von Neumann algebras. We will see in the

next section how the entanglement of the model is quantified using the modular conjugation

operator J .

IV. A CONCURRENCE MEASUREMENT FOR ENTANGLEMENT USING MOD-

ULAR OPERATORS

A well known way to measure entanglement is Wooter’s Concurrence [23]. The entangle-

ment of formation of a generic bi-partite state ρ (quantum density operator) is related to

the concurrence of that state C(ρ) as follows:

EFormation(ρ) = Hbin

(
1 +

√
1 + C(ρ)

2

)

where Hbin is the Shannon binary entropy. One can define the concurrence for a bi-partite

state using the anti-unitary modular conjugation operator as [5]

C(|ψ〉) = | 〈ψ| J |ψ〉 | (39)

The concurrence relation (39) has given a physical meaning to the modular conjugation

operator as a quantitative measure of entanglement for a bi-partite state. It is known

that one needs an anti-linear, anti-unitary operator as the key driving force behind the

entanglement of formation of bipartite systems and it is now understood in this context as

the modular conjugation operator J .

The most convenient basis to use for an entanglement calculation here is that of quantized

rotational states, for these are discrete, normalized states that complete the Hilbert space.

For an entangled rotational state |Ψ〉 = α |n〉 ⊗ |m〉 + β |m〉 ⊗ |n〉, and for n 6= m, we have
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a concurrence given by the modular conjugation operator J as

C(|Ψ〉) = | 〈Ψ| J |Ψ〉 | = 2|αβ|. (40)

Clearly when α = β =
1√
2
we have a maximally entangled state of C = 1. The nonzero

entanglement again is interpreted to arise from the active separation of causal compliments,

A and A′ . This gives a measure of the entanglement between two spacelike separated causal

diamonds in Minkowski space as was achieved by representing the radial and temporal di-

mensions of each diamond as a set of conformal quantum mechanical operators that generate

rotational states in a (0+1) conformal field theory.

V. THERMAL STRUCTURE OF CONFORMAL QUANTUM MECHANICS

It was mentioned above that the thermal time flow can be derived from the modular auto-

morphism group for the current theory, αtA = ∆itA∆−it = eitβ(Na⊗I−I⊗Nb)Ae−itβ(Na⊗I−I⊗Nb).

The modular flow induced by the thermality of the system can be clearly viewed in confor-

mal quantum mechanics. This is due to the fact that the quantization of time was hinted

at in the original observation of conformal symmetry in a (0 + 1) field theory [1]. This view

leads to the quantization of states |t〉 labeled by a time variable t. These states are in fact

the Fourier transform of the energy eigenkets of the Hamiltonian,

|E〉 = 2r0E
1
2
−r0
ˆ ∞
−∞

dte−iEt |t〉 (41)

that form a continuous, orthonormal basis. Indeed, one can construct quantized time states

from the rotational vacuum through a complex time translation [1],

|t〉 = eiHt |t = 0〉 =
Γ

1
2 (2r0)

22r0
e(α+it)H |n = 0〉 (42)

where α is half the length of the causal diamond. One may interpret this to mean that

quantized time emerges from the thermal evolution of the vacuum. The quantization of

time was thoroughly discussed in [24–29] among many other works, though it is currently

unclear whether the time states |t〉 corresponds to states of the hypothetical "chronon",

which is a discrete unit of time of 6.266 ∗ 10−24s. Furthermore, it has been shown that these

are thermal states by observing the two point function for "τ" time states of the quantum

operator S [19],
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G(τ1, τ2) = 〈τ1|τ2〉 =
Γ(2r0)α2r0

(4isinh( τ1−τ2
2

))2r0
(43)

at a temperature of
1

2π
and conformal weight ∆ = r0. It was mentioned in [4, 30] that

there is a direct connection between this thermal two-point function of conformal quantum

mechanics and the one associated to scalar field along the world line of a static diamond

observer in spacetime. Note that our thermal cyclic vector (28) is related to the temporal

vacuum of [19], |τ = 0〉 =
∑

n(−1)n |n〉 ⊗ |n〉, coinciding with arguments that the vacuum

is thermal when restricted to a causal diamond [20]. Other thermal effects of conformal

quantum mechanics and thermal time flow were investigated in [31, 32]. This link also

provides a possible path to the Reeh-Schlieder theorem for conformal quantum mechanics,

which will be made more precise in future work. Further, this thermal structure supports

the interpretation that spacetime and causality may emerge from thermality. The physical

interpretation can be made more clear by noticing that the creation operator for time states,

O(t), is related to the creation operator for rotational states, L+, as in [33]

O(t) = N(t)eω(t)L+

N(t) = (Γ(2r0))1/2

(
ω(t) + 1

2

)2r0

,

ω(t) =
α + it

α− it
= eiθ, t = α tanθ/2

(44)

suggesting that the construction of a quantum time variable labeled by the ket |t〉 may be

interpreted as a form of abstract angular momentum scaled by some temperature.

Using the current construction of von Neumann algebras and modular operators of

conformal quantum mechanics from section III, we can determine the modular structure

of time states created from the commutant algebra for a second causal diamond. Let

Oa(t) = e(α+it)Ha such that

|t〉 = |ta〉 ⊗ |tb〉 =

(
Oa(t)⊗Ob(t)

)
|0〉 ⊗ |0〉 (45)

Our task is to determine the form of the operator Ob(t) such that it composes the commutant

of Aa. Using the above relations, we find that,
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J(Oa ⊗ I)J |t〉 = J(e(α+it)Ha ⊗ I)J(|ta〉 ⊗ |tb〉)

= J(e(α+it)Ha ⊗ I)(|tb〉 ⊗ |ta〉) = J(e(α+it)Ha ⊗ I)(Ob(t)⊗Oa(t) |0〉 ⊗ |0〉)

= (I ⊗ e(α−it)Hb)(Oa(t)⊗Ob(t) |0〉 ⊗ |0〉) = (I ⊗Ob(t)) |t〉 .

(46)

with Ob(t) = e(α−it)Hb . Indeed, in a similar fashion to equations (31, 32) we have the

commutant structure J(Oa(t) ⊗ I)J = (I ⊗ Ob(t)). Therefore we find that the state |tb〉 is

created from the vacuum at an inverse temperature
1

α− it
with opposite complex time −it

as opposed to |ta〉 which is created from the vacuum at the inverse temperature
1

α + it
and

complex time it. This therefore suggests that such a quantum time generated from those

states is flowing in opposite complex directions. If one associates the quantum time states as

representing the time in a causal diamond, then this would suggest opposite temperatures

and thus complex flows of time for causally disconnected regions. The concept of negative

temperature in the context of causal diamonds was discussed thoroughly in [34, 35]. However,

it is currently unclear how to relate the time kets, |t〉, and their eigenvalues [9], −r0ω, to

physical time, t.

The modular group flow, αtA = ∆itA∆−it, allows us to define a notion of thermal

time flow in the current model. We therefore find that the ordinary time evolution of a

quantum observable, γtA = eitH/~Ae−itH/~, can be equated with the modular time flow,

αtA = ∆itA∆−it, when H = ~β(Na ⊗ I − I ⊗Nb) thus giving γtA = αtA [21]. The thermal

time hypothesis, namely that the time flow is determined by the thermal state, is then sup-

ported for a theory including thermal states of quantized time. It is a topic of future work

to further investigate the application of modular operators to time states |t〉.

Indeed, one can approximately describe the dynamics of an eternal black hole in a maxi-

mally extended AdS by considering two entangled conformal field theories on each boundary,

which is the theory of thermo-field dynamics [7, 36]. In that framework, a thermal density

operator in the conformal field theory corresponds to a black hole geometry. The formalism

developed in this work can be understood to be associated with the formalism of thermo-field

dynamics, as our cyclic vector is the thermo-field double for two conformal field theories in

(0 + 1) dimensions.
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VI. DISCUSSION

We have elucidated how the entanglement of two causally closed regions emerges from

modular operator structure developed for conformal quantum field theory in (0+1) dimen-

sions. This was achieved by constructing local von Neumann algebras for conformal quan-

tum mechanics, which is known to be holographically dual to a causal diamond spacetime

structure. The representation of two von Neumann algebras is then studied using Tomita-

Takesaki theory, and connections between two causal diamonds are made by representing

each of them as local conformal quantum mechanical algebras. Entanglement between the

quantum states representing each diamond was quantified using Tomita-Takesaki modular

operators through entropy and Wooter’s Concurrence as defined in [5]. The entanglement

entropy of the cyclic vector of conformal quantum mechanics was found to be proportional

to the length of the causal diamond with a logarithmic correction, which is expected for

a holographic conformal theory. A physical interpretation is provided by seeing the radial

conformal Killing field in terms of the quantum field as in equation (15). This provides us

with a simplified model for understanding how spacetime and causality may emerge from

the entanglement entropy of causal diamonds, temperature, and quantum states.

It was also mentioned how to understand the thermal time hypothesis in terms of the

quantized states found in conformal quantum mechanics. By examining the algebraic struc-

ture of the quantized time states in conformal quantum mechanics, two causally disconnected

regions were found to be at opposite temperatures and thus opposite flows of complex time.

The states were shown to be KMS states and thus generated the modular automorphisms

from which local time flow emerges. It is of interest to us to understand better the relation

between quantum time in conformal quantum mechanics and physical time flow in a causal

diamond. Perhaps at the scale when quantum gravitational effects become relevant, the

current model suggests at such a scale that space is not a fundamental construct, but rather

temperature is the fundamental concept from which classical spacetime, causality and grav-

itation emerge. We plan to investigate further the bulk geometric spacetime structure that

emerges from the correspondence in a future work.

19



VII. APPENDIX: VON NEUMANN ALGEBRAS AND TOMITA-TAKESAKI MOD-

ULAR OPERATORS

The general references for this section are [37–39].

Normed Algebra: Consider an algebra A ∈ A over C. A normed algebra has a Norm

Map: A→ ||A|| ∈ R+ such that

||A|| > 0

||A|| = 0 iff A = 0

α ∈ C, ||αA|| = |α|||A||

||A+B|| ≤ ||A||+ ||B||

||AB|| ≤ ||A|| ||B||

Banach Algebra: LetA be an algebra. A normed algebra has a norm map: A → R+, A→

||A|| ∈ R+,∀A ∈ A such that

||A|| ≥ 0,

||A|| = 0 ⇐⇒ A = 0,

α ∈ C, ||αA|| = |α| ||A||,

||A+B|| ≤ ||A||+ ||B||,

||AB|| ≤ ||A|| ||B||.

A Banach algebra is a complete normed algebra (complete in the norm map): Consider a

Cauchy sequence A1, A2, ... ∈ A. For any ε > 0,∃ an integer N such that ∀ natural numbers

m,n > N , ||Am − An|| < ε (a sequence whose elements become arbitrarily close to each

other as the sequence progresses). By introducing a "distance" metric d(A,B) = ||A−B||,

once induces a topology on A where a neighborhood U in A is given by U(A, ε) = {B; B ∈

A, d(A,B) < ε, ε > 0}. A metric space (A, d) in which every Cauchy sequence converges

to an element in A is called complete in the standard norm. Counterexample: Rational

numbers (p/q) ∈ Q are not complete. The Cauchy sequence x + 0 = 1, xn+1 =
xn + 2/xn

2
converges to the irrational number

√
2.

Furthermore, for example, let A = C0(X,C) ≡ complex valued continuous functions f

on a compact space X (a bounded region): f : X → C.

Let x ∈ X, f, g ∈ A

(f + g)(x) = f(x) + g(x) (Addition)
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(αf)(x) = αf(x) (scalar multiplication)(
fg
)

(x) = f(x)g(x) (Algebra product)

||f || = sup
x∈X
|f(x)| (norm)

C∗-Algebra: A C∗-algebra A is a Banach algebra with an involutive map ∗ : A → A, A→

A∗ ∀A ∈ A, λ ∈ C such that

(A∗)∗ = A

(AB)∗ = B∗A∗

(λA)∗ = λ̄A∗

(λA+ αB)∗ = λ̄A∗ + ᾱB∗ (anti-linear) (so far, we have a ∗-algebra)

||A∗|| = ||A|| (norm condition for involutive Banach algebra),

||AA∗|| = ||A|| ||A∗|| = ||A∗A|| = ||A∗|| ||A|| = ||A||2 (C∗ condition for C∗-Algebra).

If A∗ = A, this element is called self-adjoint. If A∗A = AA∗ = I this element is called

unitary.

For example, let A = C0(X,C) ≡ complex valued continuous functions f on a compact

space X (a bounded region). From above, we know that this is a Banach algebra. We know

introduce an involution map through complex conjugation:

f ∗ : X → C, f ∗ ∈ A

f ∗(x) := f(x), ∀x ∈ X (Involution)

||f ∗|| = sup
x∈X
|f ∗(x)| = sup

x∈X
|f(x)| = sup

x∈X
|f(x)| = ||f || (norm condition)

Furthermore, consider complex n× n matrices A. Here, we have

A∗ := A† (involution is the adjoint operation)

||A|| :=
√
Tr(AA†) (norm is the square root of trace)

The algebra is given by commutative matrix addition A + B and non-commutative matrix

multiplication AB 6= BA.

Bounded Linear Operators B(H) on a Hilbert Space: Let H be a Hilbert space. A

bounded linear operator A ∈ B(H) acts on the Hilbert space A : H → H such that
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A(ψ + φ) = A(ψ) + A(φ), ∀ψ, φ ∈ H (linearity)

∃ a positive real number c <∞ such that ||A(ψ)|| ≤ c||ψ||, ∀ψ ∈ H (bounded)

||A|| = sup
ψ∈H,||ψ||=1

{||A(ψ)||} (norm of an operator)

For all A ∈ B(H), ∃ a unique element called the adjoint operator A† ∈ B(H) such that

(using the Hilbert space inner product 〈·, ·〉

〈A†(ψ), φ〉 = 〈ψ,A(φ)〉

(αA+ λB)† = αA† + λB†

(AB)† = B†A†

(A†)† = A

||A†A|| = ||AA†|| = ||A||2

||A†|| = ||A||

The C∗-Algebra features can be given to B(H) via the following

Banach Norm −→ Operator Norm

Involution ∗-operator −→ Adjoint operation †

||A∗|| = ||A†|| = ||A|| (Norm condition)

||AA∗|| = ||AA†|| = ||A|| ||A†|| = ||A||2 (C∗ condition for C∗-Algebra).

∗-Homomorphism ξ: Let A and B be C∗-algebras. A ∗-homomorphism ξ is a mapping

ξ : A → B that preserves the algebraic and ∗ structures of A. That is, ∀A,A1, A2 ∈ A

ξ(A1 + A2) = ξ(A1) + ξ(A2) (linearity)

ξ(A1A2) = ξ(A1)ξ(A2) (homomorphism)

ξ(A∗) = ξ(A)∗ (∗-preserving)

In general, ξ is norm decreasing, i.e. ||ξ(A)|| ≤ ||A||. If ξ is an ∗-isomorphism (one-to-one,

onto), then it is norm preserving, ||ξ(A)|| = ||A||. A ∗-automorphism is a ∗-isomorphism

from a C∗-algebra to itself, i.e. ξ : A → A.
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Representation π of a C∗-Algebra: A representation of a C∗-algebra A is a pair (H, π)

where H is a Hilbert space and π is a ∗-Homomorphism from A to B(H), π : A → B(H). If

π is an ∗-isomorphism, it is called faithful such that

ker π = {0} (faithful)

||π(A)|| = ||A||,∀A ∈ B(H) (norm preserving)

||π(A)|| > 0,∀A > 0 (positive)

A subset S ⊂ H is called invariant under A if π(A)S := {Aψ|A ∈ A, ψ ∈ H} ⊂ S

A representation π is called irreducible if the only subspace of H invariant under π(A) are

{0} and H.

An operator A ∈ B(H) is called dense if its range exists only in the dense subspace of the

Hilbert space D ∈ H.

Cyclic Vector Ω ∈ H: A vector Ω ∈ H is called a cyclic vector for a set of bounded

operators B(H) if {A Ω|A ∈ B(H)} is dense in the whole H.

Cyclic Representation π of a C∗-Algebra: A cyclic representation of a C∗-algebra

A is a triple (H, π,Ω) where (H, π) is a representation of A and Ω ∈ H is cyclic in the

representation π.

Linear Functionals (and States): Given an algebraA, a linear functional (or state) onA

(a scalar valued ’function’ onA) is a map ω : A → C such that ω(λA+βB) = λω(A)+βω(B).

Furthermore,

If A is a ∗-algebra, ω is called a positive functional if ω(A∗A) ≥ 0,∀A ∈ A

A state ω is a positive functional with ω(A∗) = ω(A).

If A is a ∗-algebra, and ωi are positive functionals then for λi ∈ R+,
∑

i λi = 1, one

may construct a positive convex linear functional as ω =
∑

i λiωi.

If Asa is self-adjoint subspace, i.e. A∗ = A and ω is a positive functional, then

ω : Asa → R (real scalars)

If A is a C∗-algebra, every positive functional ω is continuous.

Let A be a C∗-algebra. ∀A ∈ A,∃ a positive functional ωA such that, ||ωA|| = 1 and

ωA(A∗A) = ||A||2.
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GNS Construction-Representation from a State: Let A be a C∗-algebra (of observables).

Let ω be a functional (state) on A. A representation of A constructed from ω is a pair

(H, πω) where given the inner product on H, 〈 | 〉 : H×H → C and a cyclic vector Ωω with

respect to πω
(
πω(A)| Ωω〉 is dense in H

)
, one has the action of operators on H such that

ω(A) :=
〈Ωω|πω(A)Ωω〉
〈Ωω|Ωω〉

Remark: This method requires one to choose a preferred representation πω. In quantum

mechanics, the Stone von Neumann theorem states that all representations of the Weyl

algebra are unitarily equivalent to the Schrödinger representation so this is not a problem. In

Minkowski QFT, Poincaré invariance chooses an appropriate cyclic vector (vaccuum state).

The choice of a representation becomes an issue in QFT on curved spacetime manifolds.

Von Neumann Algebra: Consider a C∗-algebra B(H) = {A} of bounded linear operators

on a Hilbert space, A : H → H. Let C be a subset of B(H). An operator A ∈ B(H) belongs

to the commutant C ′ of the set C ⇐⇒ AC = CA, ∀C ∈ C. A von Neumann algebra A

is a unital C∗-subalgebra of B(H) such that A′′ = A. Consider a von Neumann algebra

A ⊂ B(H). A von Neumann algebra in standard form is one where there exists an element

|Ω〉 ∈ H which is both cyclic (operating on |Ω〉 with elements in A can generate a space

dense in H) and separating (if A|Ω〉 = 0, then A = 0).

Tomita Takesaki Modular Operators: Consider a von Neumann algebra A ⊂ B(H)

in standard form with a cyclic and separating vector |Ω〉 ∈ H. Let S : H → H be a anti-

unitary operator defined by SA|Ω〉 = A∗|Ω〉. Let the closure of S have a polar decomposition

given by S = J∆
1
2 = ∆−

1
2J , where J is called the modular conjugation operator and ∆ is

called the modular operator. J is anti-linear and anti-unitary whereas ∆ is self-adjoint and

positive. Furthermore, the following relations hold:

1. J∆
1
2J = ∆−

1
2

2. J2 = I, J∗ = J

3. J |Ω〉 = |Ω〉

4. JAJ = A′

5. ∆ = S∗S

6. ∆|Ω〉 = |Ω〉

7. ∆itA∆−it = A (one parameter-t group of automorphisms of A)
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8. If ω(A) = 〈Ω|AΩ〉, ∀A ∈ A, then ω is a KMS (Kubo-Martin-Schwinger) functional

(state) on A with respect to the automorphism of 7.

9.|Ω〉 is cyclic for A if and only if |Ω〉 is separating for A′
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