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ABSTRACT

Although zonal mean rain rates from the Tropical Rainfall Measuring Mission (TRMM) are in good

(,10%) agreement between the TRMM Microwave Imager (TMI) and precipitation radar (PR) rainfall

algorithms, significant uncertainties remain in some regions where these estimates differ by as much as 30%

over the period of record. Previous comparisons of these algorithms with ground validation (GV) rainfall

have shown significant (.10%) biases of differing sign at various GV locations. Reducing these biases is

important in the context of developing a database of cloud profiles for passive microwave retrievals that

is based upon the PR-measured profiles. A retrieval framework based upon optimal estimation theory is

proposed wherein three parameters describing the raindrop size distribution (DSD), ice particle size dis-

tribution, and cloud water path (cLWP) are retrieved for each radar profile. The modular nature of the

framework provides the opportunity to test the sensitivity of the retrieval to the inclusion of different

measurements, retrieved parameters, and models for microwave scattering properties of hydrometeors.

The retrieved rainfall rate is found to be strongly sensitive to the a priori constraints in DSD and cLWP;

thus, these parameters are tuned tomatch polarimetric radar estimates of rainfall near Kwajalein, Republic

of Marshall Islands. An independent validation against gauge-tuned radar rainfall estimates at Melbourne,

Florida, shows agreement within 2%, which exceeds previous algorithms’ ability to match rainfall at these

two sites. Errors between observed and simulated brightness temperatures are reduced and climatological

features of the DSD, as measured by disdrometers at these two locations, are also reproduced in the output

of the combined algorithm.

1. Introduction

Global measurements of precipitation have been made

possible over the past two decades by increasingly sophis-

ticated technology available on satellite platforms. Al-

though infrared (IR) techniques had been in use since the

advent of geostationary satellites (Barrett 1970), the re-

lationship between IR brightness temperatures Tb and

surface rainfall is rather tenuous. More reliable satellite

precipitation estimates were achieved in 1987 with the

launch of the Special SensorMicrowave Imager (SSM/I) on

the polar-orbiting Defense Meteorological Satellite Pro-

gram F8 (Hollinger et al. 1990). At lower microwave fre-

quencies (e.g., 19 GHz), the emission from precipitating

clouds over oceans appears radiometrically warm com-

pared to the background. This ‘‘warmth’’ is strongly related

to the column-integrated liquid water. At higher frequen-

cies (e.g., 85 GHz), the emission signal saturates at smaller

amounts of liquid water, but increasingly effective scatter-

ing by precipitation-size ice crystals creates aTb depression.

Both of these signatures are physically related to the hy-

drometeor profile but contain limited information. Algo-

rithms that seek to retrieve the surface rain rate from

microwave observations often rely on Bayesian schemes

that involve a database of cloud and precipitation pro-

files (Kummerow and Giglio 1994; Kummerow et al.

2001).

Another major milestone was reached in 1997 with

the launch of the Tropical Rainfall Measuring Mission

(TRMM). In addition to a microwave radiometer [TRMM

Microwave Imager (TMI)], the platform included the first

spaceborne precipitation radar (PR). In addition to its

higher spatial resolution, the PR measures the vertical pro-

file of precipitation. Rainfall measurements from both in-

struments have shortcomings, which can be attributed to

their sensitivity to different geophysical parameters related

to rainfall as well as assumptions inherent in the algorithms
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used to retrieve rainfall from Tb or reflectivity mea-

surements. A global comparison of PR and TMI rainfall

retrievals reveals distinct regional biases (Berg et al.

2006). It has been suggested that these may be a result

of differences between the instruments’ threshold sen-

sitivity to shallow and/or light rainfall (Shimizu et al.

2009), errors in assumptions about the raindrop size

distribution (DSD) in the radar algorithm (Iguchi et al.

2009; Kozu et al. 2009), or systematic biases in the data-

base that is the foundation for radiometer-based re-

trievals (Seo et al. 2007).

Notwithstanding these inconsistencies, the TRMMdata

have provided unique insight into the tropical hydrologic

cycle and its response to short-term variability such as the

El Niño–Southern Oscillation (ENSO) and the Madden–

Julian oscillation (MJO) (e.g., L’Ecuyer and Stephens

2007; Chen et al. 2007; Masunaga et al. 2006; Morita et al.

2006; Cho et al. 2004). However, longer-term trends are

more difficult to discern, in part because of these dis-

crepancies between retrievals. One of the most pressing

questions surrounding climate change is the rate at which

precipitation scales with water vapor in the atmosphere.

Held and Soden (2006) reviewed the projections from

the suite of climate models included in the Fourth As-

sessment Report of the Intergovernmental Panel on Cli-

mate Change, and noted that, while water vapor scales at

a rate near 7% K21, precipitation scales at a reduced rate

near 2% K21. This predicted scaling is consistent with the

energy budget analysis of Allen and Ingram (2002). How-

ever,Wentz et al. (2007) observe that in the 20-year record

of precipitation derived from SSM/I instruments, which

closely resembles the TMI record during coincident time–

space subsets owing to their similar physical basis and

algorithm, precipitation and evaporation scale at the same

rate as water vapor. Interestingly, Berg et al. (2006) found

that the ratio of TMI to PR rain rate was greatest in re-

gions with high values (.3 g cm22) of column-integrated

water vapor, and suggested that these differences may be

due to incorrect assumptions about cloud properties in

higher vapor environments. If there is a positive bias in

radiometer-only precipitation in high water vapor re-

gimes, then the observed precipitation–water vapor scal-

ing relationship may be artificial. This underscores the

importance of resolving the differences between radar and

radiometer estimates of precipitation, and in particular

understanding the relationship between the environmen-

tal water vapor and cloud properties.

To address these issues, a retrieval framework that

incorporates both PR and TMI measurements to retrieve

a set of consistent geophysical parameters has been de-

veloped. Although the theory for multimeasurement re-

trievals has been reasonably well established (Rodgers

2000), a problem posed by the multi-instrument data

provided by TRMM and other platforms such as the

A-Train (Stephens et al. 2002) lies in the greatly dif-

fering resolutions and mismatched instrument fields-of-

view (FOVs), especially where the FOVs are significantly

larger than the scale of the features being retrieved. A

number of different techniques have been proposed

to deal with these issues, particularly in the context of

TMI 1 PR combined retrievals.

The initial operational combined algorithm for TRMM

(Haddad et al. 1997) adjusts the radar-estimated path-

integrated attenuation (PIA), upon which the rain DSD

is based, via empirical relation to the extinction measured

in the 10-GHz channel. In this algorithm, each PR pixel

was sensitive to the 4 nearest TMI 10-GHz FOVs and a

Bayesian approach was used to adjust the radar-derived

rain profiles in the intersection of these 4 footprints to

match the observed brightness temperatures. More re-

cently, algorithms have been developed to utilize informa-

tion from all TMI channels to enhance the PR retrieval and

to generate databases to be used in passive-only retrievals.

Grecu et al. (2004) and Masunaga and Kummerow (2005)

independently developed methodologies to match PR ob-

servations to a database of hydrometeor profiles generated

from cloud-resolving models (CRMs). Brightness tem-

peratures are then simulated from these profiles and

convolved to the TMI channel FOVs. In both of these

algorithms, an adjustment is made to the DSD in the

hydrometeor profile to simultaneously match the TMI-

observed brightness temperatures; however, the meth-

odologies differ in how these adjustments are made.

Masunaga and Kummerow (2005) developed a tech-

nique primarily intended to adjust the CRM databases

of raining profiles and associated brightness tempera-

tures to be used in passive-only retrievals. Initial profiles

were selected based upon similarities in the observed

and CRM reflectivity profiles and Tbs were computed

from the modeled profiles at the PR resolution. The

modeled Tbs were then convolved to the TMI resolution

and compared to observed Tbs that were interpolated at

each pixel. Thus, the adjustment made to the DSD to

account for the difference in observed and modeled

brightness temperature is done independently for each

PR pixel. A shortcoming of this method is the implicit

assumption that each PR pixel within a given TMI FOV

is equally responsible for the difference in observed and

modeled brightness temperature. This assumption may

not be valid for scenes with a significant variability in

rainfall physics within an FOV.

Grecu et al. (2004) formulated a retrieval thatmodified

a parameter of the DSD in the hydrometeor profiles. The

initial profiles were derived by matching reflectivities to

a CRM database, similar to Masunaga and Kummerow

(2005). Unlike their retrieval, however, Grecu et al.
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(2004) perform the retrieval on multiple TMI FOVs and

PR profiles simultaneously because of the overlapping

nature of the TMI FOVs. Their retrievalminimized a cost

function consisting of three terms: the difference between

observed and modeled values of an index related to

brightness temperature, the deviation of the modified

DSD parameter from its spatial average, and difference

between the radar-estimated and modeled PIA. All of

the terms in the cost function are weighted by covariances

which represent the expected deviation between observed

and modeled values, and mostly represent uncertainties in

nonretrieved parameters that nevertheless are necessary to

perform the radiative transfer calculations. The authors

noted that the values of covariances were somewhat un-

certain, and performed an analysis showing that the re-

trievalwas rather sensitive to theirmagnitudes.Thus amore

precise estimate of these errors, or a formulation that is less

sensitive to their relative magnitudes, is desirable for in-

creased confidence in the retrieved precipitation estimates.

In this study, we use a variational optimal estimation

inversion (Rodgers 2000) embedded within a modular

framework to retrieve rainfall profiles that are consis-

tent with all available observations (radar reflectivity,

radar PIA, TMI Tbs). This method differs from existing

algorithms in the following ways:

d three parameters describing the rain DSD, ice particle

size distribution (PSD), and cloud water are retrieved

for each radar pixel [previous algorithms only retrieve

the DSD and, in the case ofMasunaga and Kummerow

(2005), ice density];
d brightness temperatures are incorporated directly [as

opposed to the indices used byGrecu et al. (2004)] and

at their native resolution [instead of the interpola-

tion used by Haddad et al. (1997) and Masunaga and

Kummerow (2005)];
d the influence of nonraining parameters in FOVs with

partial rain coverage is explicitly handled with a non-

raining retrieval scheme; and
d an a priori covariance matrix is defined to constrain the

retrieval results, including spatial structures [this was

not included in Grecu et al. (2004) and is not applicable

to the other methods].

The algorithm details are described in section 2 in-

cluding a sensitivity and information content analysis.

The partitioning of rain and cloud water constitutes a free

parameter in this formulation and section 3 describes

how we used TRMM Ground Validation products at

Kwajalein and Melbourne, Florida, to adjust and inde-

pendently validate this partitioning. Section 3 also in-

cludes comparisons of simulated and observed Tbs and

comparison of the retrieval results with disdrometerDSD

measurements. A summary is presented in section 4.

2. Retrieval methodology

A brief outline of the relevant aspects of optimal esti-

mation theory is given in this section, followed by a de-

tailed description of the radar profiling algorithm. The

incorporation of this algorithm into the larger framework

of the combined retrieval follows. This section closes with

an analysis of the information added to the radar-based

retrieval by the TMI observations.

a. Optimal estimation theory

Optimal estimation (OE) is an inversion method that

has been devised for retrieving a set of parameters x, which

represent the true state of the systembeing observed, from

a set ofmeasurements y that are related through a forward

model, y5 f (x). Thismethodology is described in detail by

Rodgers (2000); a brief summary is presented here. Opti-

mal estimation seeks to find the set of parameters X̂ that

minimizes the cost function

F5 [y� f (X̂)]TS�1
y [y� f (X̂)]1 (X̂� x

a
)TS�1

a (X̂� x
a
),

(1)

where Sy is the measurement covariance matrix. This

cost function differs slightly from that ofGrecu et al. (2004)

in the inclusion of xa, the a priori parameter set, and its

covariance matrix Sa. Without xa, the solution only mini-

mizes the variance in the observations and can be under-

constrained. The a priori parameter set represents the

expected value of the retrieved parameters absent any

information from the measurement and prevents extreme,

unphysical values from being retrieved. Thus, the two

terms in the cost function represent the weighted differ-

ences between the measurements and retrieved parame-

ters from their forward-modeled and expected values,

respectively. The relativeweighting of these two terms that

can substantially influence the location of the minimum

cost, thus we describe the covariance matrices in more

detail in section 2c. The diagonal elements in these ma-

trices contain the variances of the elements of xa and y. The

off-diagonal elements represent the covariances between

different measurements or the retrieval parameters. Non-

zero values reduce the cost function if structures in the

measurement or retrieval fields resemble those implied by

the covariance matrices.

The solution that minimizes the cost function can be

calculated iteratively if the forward model is moderately

nonlinear, as is the case for radiative transfer. In each it-

eration, the forward model is linearized by calculating the

Jacobian K, where Kij 5 ›yi/›xj. Then, Newton’s method

can be used to arrive at a solution once a convergence

condition is satisfied. The iterative step is defined as
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a
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n
)

1K
T
nS

�1
y [y� F(X̂

n
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The convergence criterion is usually defined in terms of

the closeness of subsequent iterations. One such crite-

rion is that the standardized change in X̂ from one iter-

ation to the next is much less than the number of

retrieved parameters N:

(X̂
n11

� X̂)T(S�1
a 1K

T
nS

�1
y K

n
)�1(X̂

n11
� X̂) � N. (3)

b. Radar profiling algorithm

To apply OE theory to a radar–radiometer combined

retrieval, one must first choose the parameters that

compose x. Our retrieval begins with a radar-only so-

lution, and then adjusts that solution with the additional

information provided by TMI. The radar-only solution is

provided by a rainfall profiling algorithm, similar con-

ceptually to the TRMM operational radar rainfall algo-

rithm (2A25). To convert the profile of radar reflectivity

into a rain rate near the surface at the PR frequency, this

algorithm needs to correct for attenuation. Although the

full details of the stand-alone 2A25 algorithm are covered

in great detail by Iguchi et al. (2000, 2009), it is necessary

to understand the assumptions required by such an al-

gorithm so they are reviewed briefly here.

An attenuation-correcting radar algorithm was de-

scribed by Hitschfield and Bordan (1954) using internally

consistent relationships between reflectivity Z, hydro-

meteor content W, and attenuation k to retrieve hydro-

meteor profiles. Thismethod is numerically unstable; that

is, small changes in theZ2k relationship can lead to large

differences in the surface rain rate as errors in attenuation

estimates amplify toward the surface. However, indepen-

dent measurements of PIA provided by the surface refer-

ence technique (SRT; Meneghini et al. 2000) can provide

a constraint on the Z2k relationship or the DSD model

used to derive it.

Before describing the vertical hydrometeor model, it is

worth noting that a potential source of error is the de-

tection threshold of PR (17 dBZ). The 2A25 algorithm

can afford to ignore this problem, since rain of this re-

flectivity has negligible attenuation, but may nevertheless

contribute to a substantial fraction of the total LWP and

is important for modeling microwave Tbs. Our algorithm

fills the gaps in profiles by adding reflectivity at the lowest

value measured by PR in each profile below the 17 dBZ

threshold. This has amodest effect on simulatedTbs, with

an increase of up to 5 K in the 37-GHz channel.

The vertical model of the precipitating cloud requires

a description of hydrometeor phase, size distribution, ice

density and morphology (Bennartz and Petty 2001), and

melting layer structure (Olson et al. 2001) at each range

gate in order to properly simulate radar reflectivity and

upwelling microwave radiances. Because of the compu-

tational cost of retrieving multiple variables in each pro-

file, our radar profiling algorithm is designed to capture

the natural variability of these properties in as few

parameters as possible.

As in many other rain profiling algorithms [e.g.,

TRMM2A25 (Iguchi et al. 2000);Grecu andAnagnostou

2002], a gamma distribution is assumed to describe the

rain DSD: N(D) 5 N0D
me2LD, with an intercept pa-

rameter (N0), shape parameter (m), and slope parameter

(L). In thismodel, themedian volume diameterD0 can be

expressed as D0 5 (3.67 1 m)/L (Ulbrich 1983). This

relationship formulates a power law relating D0 and Z:

D
0
5 (3.671m)f[N

0
G(71m)]�1Zg1/(71m). (4)

The constants can be grouped together to form a more

simple power law D0 5 aZb, where a represents the

Z-normalizedD0 and is dependent onN0 andm, whereas

b only depends on m. It should be noted that these re-

lationships are only strictly valid ifZ represents the sixth

moment, that is, Rayleigh reflectivity, which is not true

for large raindrops (.1-mm diameter) at the PR fre-

quency. However, the error introduced by this approxi-

mation does not significantly affect the shape of the

relationship, so no systematic error is introduced so long

asN0 andD0 are derived fromPR reflectivity values using

Mie theory to calculate Z. To simplify the retrieval, the

coefficients a and b are fixed by rain type (Table 1) and,

along with the assumption m 5 3, are chosen to approx-

imate the 2A25 default Z2R relationships.

To adjust theZ2D0 relationship (e.g., in order tomatch

the SRT PIA), we define a multiplicative factor �DSD, so

that D0 5 �DSDaZ
b. This type of DSD adjustment is

mathematically similar to the dN0
* adjustment employed

by Grecu and Anagnostou (2002) in their profiling algo-

rithm and the a adjustment employed by 2A25 (Iguchi

et al. 2000).

The ice phase is treated similarly. An exponential size

distribution (i.e., m 5 0) is assumed for both snow and

graupel above the melting layer, which is consistent with

available aircraft measurements (e.g., Houze et al. 1979;

Stith et al. 2002). The following size–density relationships

for snow (rs) and graupel (rg), based on Heymsfield et al.

(2004) are assumed:

r
s
5 128D�0.95 and (5)

r
g
5 96D�0.95, (6)
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whereD is in millimeters and density is in kilograms per

meter cubed and is not allowed to exceed the density of

pure ice. The snow–graupel partitioning is assumed to

be a function of temperature and rain type (Fig. 1) and

derived from the database of CRM simulations used in

radiometer-only retrievals (Kummerow et al. 2001).

Improving the microphysics schemes in these simula-

tions is an active area of research (e.g., Li et al. 2008) and

part of planned prelaunch Global Precipitation Mea-

surement (GPM) ground validation.

As with rain, a Z2D0 power law (D0 5 aZb, where D0

represents the mass-weighted average diameter of snow

and graupel) is used to derive the ice PSD from the cor-

rected reflectivity. From this PSD, the attenuation and

scattering properties at all TMI frequencies can be calcu-

lated. In this study, the equivalent-mass sphere approach

has been used to calculate the scattering properties of

snow and graupel. This assumption can lead to significant

errors in the scattering and extinction parameters for a

given ice water content (Petty and Huang 2010), on the

order of the difference between an all-snow and all-

graupel column of the same reflectivity. Despite these

numerous sources of error, there isminimal impact on the

retrieved rainfall because attenuation at radar and lower

TMI frequencies is insignificant (,0.01 dB km21 for

1 g m23 at 13.8 GHz). The parameters of the Z2D0 re-

lationships for rain, snow and graupel are given in Table 1

and are consistent with the Z–ice water content (IWC)

relationships reported by Black (1990). Like the rain

DSD, these can be adjusted by a multiplicative factor,

which we define as �ICE. This has the effect of increasing

or decreasing the ice water path, for example, to match

the scattering signature at 85 GHz.

Our melting layer model is based on the finding of

Zawadzki et al. (2005) that the strength of the reflectivity

peak is strongly related to the density of the melting ice

particles. Our treatment begins by finding the peak cor-

rected (2A25) reflectivity (Zpeak) within 0.5 km of the

horizontally interpolated brightband height, provided

by the standard TRMM 2A23 product. The brightband

strength is given by the difference between Zpeak and the

lowest 2A25 reflectivity within 1 km below Zpeak and is

used to determine the initial snow density at the top of the

melting layer. For a given density, there is a relationship

between melt fraction and Zpeak 2 Z (Fig. 2), which is

used to determine the dielectric constant and fall velocity

ratio at levels up to 0.5 km above and 1 km below Zpeak.

With this additional information, the PSD is derived us-

ing the same m and Z2D0 relationship as the rain, en-

suring continuity between the melting and rain layers.

Although this model does not account for coalescence

and breakup, these processes lead to errors of only 1 dB

(Fabry and Zawadzki 1995), only slightly more than the

noise in the radar itself. This approach has the advantage

of mass consistency from top to bottom of the layer,

which is an improvement over static Z2R and Z2k

relationships in the melting layer, which are not valid at

all densities. Furthermore, there is no need for explicitly

separate convective and stratiformmelting layer models

since a weak Zpeak implies high particle density, that

is, graupel, whereas a stronger value is associated with

lower-density snow.

Cloud water has a small but nonnegligible contribu-

tion to attenuation at the PR frequency, and a stronger

contribution to Tbs, especially at higher frequencies and

TABLE 1. Default PSD parameters by 2A23 rain type.

Parameter Convective–other Stratiform

arain 0.4778 0.5973

brain 0.1210 0.1073

asnow 1.85 1.85

agraupel 0.31 0.31

bsnow 0.16 0.16

bgraupel 0.16 0.16

FIG. 1. Default profiles of graupel (solid) and cloud water

(dashed).
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in lighter rain. Like the snow–graupel partitioning, de-

fault cloud water profiles are derived from the CRM

database (Fig. 1) for each rain type. Since the cloud

liquid water path (cLWP) makes an important contri-

bution to microwave Tbs, particularly in light rain, we

define a third adjustable parameter, �CLW, which is used

to multiply the default cLWP equally at all levels in the

combined retrieval algorithm.

In summary, the profiling algorithm converts the ob-

served reflectivity profile into a profile of hydrometeor

PSDs with three adjustable parameters: �DSD, �ICE, and

�CLW (Table 2). From the top down, an attenuation

correction is made at each range gate, the PSD is derived

from the corrected reflectivity and � values, and the pro-

cess is repeated to the lowest clutter-free bin, below

which the same DSD is extrapolated to the surface. This

process is similar to 2A25, although there are differences

in details of the ice,mixed phase, and cloudwatermodels.

Perhaps the most important difference is in incor-

poration of the SRT PIA. Since the standard deviation

of the SRT can be greater than the PIA estimate itself in

light and even moderate rain, the profiling algorithm

needs to account for this to prevent unphysical profiles

from being retrieved. The 2A25 algorithm uses a com-

bination of the default and SRT solution that gives

higher weight to the SRT PIA in heavy rain, where the

SRT is most reliable. With the OE methodology, the de-

fault and SRT solution can beweighted with knowledge of

the variance of the SRT, which is known, and the variance

of �DSD, which has not been defined. When our profiling

algorithm is used without radiometer input, we desire that

the global rainfall estimates be unbiased relative to 2A25

both to serve as a standard reference to compare the

radiometer-adjusted estimates and to indirectly utilize

the data against which 2A25 itself has been validated. In

this simple case, x consists of �DSD and y is the SRT PIA,

with the profiling algorithm serving as the forwardmodel

to calculate the PIA from themeasuredZ profile (�ICE and

�CLW are not considered in the radar-only retrieval be-

cause of their minimal impact upon the PIA). The only

free parameter in this retrieval is the uncertainty in �DSD.

An analysis of profiler-derived (Williams 2008) and po-

larimetric radar–derived (Matrosov et al. 2002) DSDs

suggests a Z-normalized D0 standard deviation of ap-

proximately 35%. One month of global retrievals over

ocean provides a best match to 2A25 when 25% variance

is assumed. Different variance levels in Fig. 3 illustrate

the trade-off between matching the observations (SRT

PIA) versus the constraint of the default DSD. When

the constraint on the DSD is strong, it is difficult to ad-

just rain rates away from the default value, which tends

to produce less rain than the standard 2A25 solution.

c. Combined retrieval framework

The flow of the overall retrieval is illustrated in Fig. 4.

The parameters �DSD, �ICE, and �CLW required by the ra-

dar profiling algorithm form the retrieval vector x. In ad-

dition, there is another set of parameters that do not affect

the radar solution but are necessary to model the Tbs.

These parameters include SST and surface wind speed,

which are necessary for emissivity calculations.Also, since

most TMI FOVs cover some nonraining PR pixels, the

cLWP, total precipitable water (TPW), and height of the

freezing level need to be known for these pixels in order

accurately model the microwave Tbs. These parameters

are obtained either through ancillary sources or indepen-

dent retrievals.

SSTs are derived fromamultiday optimal interpolation

(Reynolds and Smith 1994) of TMI-based SST retrievals

(Gentemann et al. 2004). The SST data are gridded at

0.258 resolution, so a bilinear interpolation is used at each

pixel. The freezing level at all PR pixels within 300 km

of a reliable brightband height is interpolated using an

FIG. 2. Profiles of the 13.8-GHz extinction coefficient and re-

flectivity for a sample distribution of melting particles. Density

decreases going from black to red; values are 50, 67, 100, 150, 200,

267, 400, 567, and 800 kg m23.

TABLE 2. Summary of retrieval parameters.

Parameter Description

�DSD Median raindrop size (D0) divided by aZb

�ICE Median ice particle size divided by aZb

�CLW Multiplicative factor for default

cloud water profile
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inverse distance scheme with smoothing from the top of

the bright band as given by the 2A23 product (rain char-

acteristics) where a bright band is detected. For pixels

more than 1000 km from a reliable height, the climato-

logical freezing height level used by 2A25 is given instead,

and a linear combination is used in between 300 and

1000 km.

The surface wind, TPW, and cLWP are retrieved in-

dependently at each TMI FOV using the method of

Elsaesser and Kummerow (2008) and interpolated to the

nonraining PR pixels. This retrieval is considered valid

where the x2 error statistic is less than 18, which is in-

dicative of a homogeneous wind, TPW, and cloud water

field with no precipitation. The temperature profile is cal-

culated assuming a constant lapse rate that is calculated

from the freezing height and SST (with a maximum of

7 K km21), and a scale height of 2.3 km is assumed for

water vapor. In pixels with a radar echo, wind is in-

terpolated as in the rain-free pixels, but the water vapor

values are adjusted to 95%RHin range gateswith an echo.

Since many of the TMI FOVs are only partially filled

with raining PRpixels, it is necessary to have an accurate

representation of the nonraining parameters outside the

raining pixels. The chief cause of poor nonraining re-

trievals, aside from rain, is sub-FOV inhomogeneity of

the cloud water field (Rapp et al. 2009) as well as con-

tributions from drizzle, which has larger drops that

create a different Tb signature than cloud water, but are

too small to be detected by PR. Thus, we retrieve the

cloud 1 drizzle LWP for all nonraining PR pixels that

were within 30 km (approximately the size of a 19-GHz

FOV) of any TMI nonraining retrieval that did not meet

the x2 , 18 test or are adjacent to a PR pixel with rain.

Cloud is assumed to transition to drizzle once a LWP of

150 g m22 is reached; this is based on a median value

inferred from CloudSat and Moderate Resolution Imag-

ing Spectroradiometer (MODIS) observations by Kubar

et al. (2009). To maintain continuity among raining and

nonraining pixels, the retrieved cloud LWP is interpo-

lated into the raining pixels if it exceeds the value given

by the default rainwater–cloud water relationships.

The next two routines retrieve the parameters used by

the profiling algorithm (Table 2). Since modifying the

ice PSD affects primarily the 85-GHz channels, where

the emission signal is saturated even in light rain and

therefore insensitive to cloud water–rain DSD modifi-

cations, this process is separated from the rain DSD and

cloud water retrieval for computational efficiency. Rain

and cloud water, on the other hand, must be retrieved

simultaneously because of their similar, but not identi-

cal, contributions to upwelling microwave radiation at

the TMI frequencies.

In each retrieval routine, the a priori covariance ma-

trix Sa must be carefully constructed so that the algo-

rithm can reproduce the variability observed in nature

without giving unphysical profiles. To place an equal

cost on any given increase–decrease of rain D0, ice D0,

and cLWP, we assume the � parameters are distributed

lognormally. The variance of �DSD has already been

established via matching to 2A25 and observations, but

the covariance also needs to be defined, because the

observational datasets (Matrosov et al. 2002; Williams

2008) used to determine the variance of �DSD also show

spatial–temporal autocorrelation structure of the form

S
a
(i, j)5S

a0
e�DZ/Z0�DL/L0 , (7)

where Sa0 is the variance of �DSD, DZ is the reflectivity

difference (dBZ), Z0 is the reflectivity scale, DL is the

distance between pixels i and j (km), and L0 is the length

FIG. 3. Rain CDFs over global ocean for January 2000 using

different constraints on the default DSD.

FIG. 4. Flowchart of TRMM combined PR 1 TMI retrieval,

illustrating the modular nature of the overall algorithm.
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scale. Based on the aforementioned datasets, a length

scale of 10 km and reflectivity scale of 3 dBZ is used for

�DSD and, lacking sufficient observations for independent

determinations, also assumed for �ICE and �CLW.

There is less observational evidence for constraining

�ICE than �DSD, but a slightly larger value (50%) is suffi-

cient to match nearly all 85-GHz brightness temperatures

with reasonable mass continuity within the column. It is

likely that some snow–icemay fall below the PRdetection

threshold and still slightly depress 85-GHz brightness

temperatures, whichmay lead to a low bias in retrievals of

�ICE. This problem is effectively minimized by increasing

Sy at 85 GHz.

The value chosen to represent the variance of �CLW is

especially important, because rainwater and cloud water

produce similar radiometric signatures, making it easy

(with respect to minimizing x2) to adjust one at the ex-

pense of the other. However, if the rainwater content is

known, then the variance in �CLW can be set indirectly.

This approach is used in section 3.

The observation covariance (Sy) matrices contain the

measurement and modeling errors. In addition to the pre-

viously described PIA uncertainty, Sy represents the ex-

pected error in the brightness temperatures. This is

considered to come from three sources: error in non-

retrieved parameters, instrument noise, and radiative

transfer model approximations. The first term is calcu-

lated by perturbing the nonretrieved parameters (SST

by 60.7 K, column water vapor by 64 mm, wind by

61.5 m s21 following Elsaesser and Kummerow 2008)

in each pixel and convolving the perturbations to TMI

resolution. Typical values of these errors range from 2

to 4 K, depending on channel and rain coverage. In-

strument noise is much smaller, approximately 0.5 K

(Kummerow et al. 1998), and is also added to the error

estimate. If the sum of these is less than 3 K, then the

variance is increased to 3 K to account for radiative

transfer model error (Kummerow 1993). Higher mini-

mum values of 5 K at 37 GHz, and 20% of the Tb de-

pression from 280 K at 85 GHz, are used to account for

errors in ice particle modeling as well.

Some hard limits are also set to prevent the profiling

algorithm from retrieving unphysical profiles. A lower

limit of either 0.3 or the minimum value necessary to

perform the Hitschfield–Bordan adjustment to the sur-

face is set on �DSD in reliable PIA pixels, and a lower limit

that produces a maximum of 4 dB of attenuation is set in

unreliable PIA pixels. This represents the maximum PIA

that might be regarded as unreliable by the 2A21 algo-

rithm (Meneghini et al. 2000) over ocean.Meanwhile, the

upper limit on �DSD is set to 3.0, to prevent unrealistically

large raindrops from being retrieved. The limits of �ICE

are set at 0.2 and 4.0, mainly prevent unphysical mass

concentrations. The cloud water limits are set from 1%

of the original value to a maximum LWP of 10 kg m22,

based upon autoconversion thresholds in a high-aerosol

environment (Liu and Daum 2004).

For computational simplicity and continuity with op-

erational algorithms, a modified plane-parallel Edding-

ton approximation along the TMI slant path is used to

calculate the upwelling microwave radiances in this par-

ticular study, although the overall framework is con-

structed so that interchangeability with other radiative

transfer schemes is possible. The extinction, bulk scatter-

ing, and asymmetry properties of rain, snow, graupel, and

melting hydrometeor size distributions are computed using

Mie theory and stored in lookup tables. Like the radiative

transfer model, these tables can be easily interchanged

with others, such as those generated from T-matrix or

discrete dipole approximations of the hydrometeors that

would more realistically simulate scattering properties

at multiple frequencies and are thus particularly needed

for GPM.

Using Newton’s method to evaluate the nonlinear

solution to minimize the cost function [Eq. (2)] requires

a number of computationally intensive steps, which have

different scaling relationships with the number of rain-

ing pixels n. The calculation of the Jacobian matrix (K)

requires a run of the profiling algorithm with perturbed

values of �DSD, �ICE, and �CLW for each PRpixel, followed

by calculation of the brightness temperatures and con-

volution to TMI resolution. While these steps are com-

plex, they scale somewhere between O(n) and O(n2).

The inversion of the Sx covariance matrix in Eq. (2),

meanwhile, takes O(n3) time steps to compute, and for

large scenes becomes the limiting step in the retrieval. As

a result of these scaling relationships, an orbit must be

broken up into segments to process in real time or better

on current hardware. The definition of an orbit segment is

somewhat arbitrary but needs to be larger than a single

10-GHz FOV, and preferably, contain several such FOVs

in order to take advantage of that channel’s sensitivity to

heavy rain. Conversely, a segment should not be so large

that, when filled with rain, the simultaneous retrieval of

two parameters (�DSD and �CLW) results in prohibitive

computation time. For simplicity, a segment size of 49 3

49 PR pixels was chosen for comparison with ground

validation sites in section 3. For full orbits, a scheme that

identifies continuous areas of rain as the segmentsmay be

a workable approach.

d. Sensitivity and information content

A particularly interesting outcome of this retrieval is

the partitioning of rain and cloud water. This partitioning

has always been either an explicit or implicit assumption
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in the TRMM 2A12 and 2A25 products, thus this re-

trieval offers additional insight by retrieving it directly.

However, it is first useful to evaluate the extent to which

the two variables can be determined from the measure-

ments.

We consider three reflectivity profiles which are a PR

composites of stratiform, deep convective, and shallow

convective rain types near Kwajalein in 2008 (Fig. 5).

The �DSD and �CLW parameters were perturbed to pro-

duce a wide range of rain and cloud LWPs for each re-

flectivity profile, along with the associated Tbs. Given an

uncertainty in the observations (i.e., Sy), we can then

determine their constraint on the physical parameters.

For each profile, the difference between the perturbed

and default Tbs and PIA was normalized by standard

deviations of 3 K and 0.7 dB, respectively, and are

plotted in Fig. 6.

The constraint provided by PIA is poor in these pro-

files, which is not unexpected as they are composites of all

rainfall, which skews toward light rain (only the deep

convective profile barely exceeds 30 dBZ). The constraint

provided by the Tbs is much narrower than that provided

by the PIA. Although this represents an ideal scenario,

that is, uniform rain within same-size FOVs, there is

clearly some additional information present in the mi-

crowave radiances. Also note that the slope of the region

constrained by the Tbs is not parallel to contours of

constant total LWP, but instead represents a stronger

response to rainwater than cloud water, a consequence of

the increased absorption efficiency of raindrops relative

to a distribution of cloud droplets with the same liquid

water content due to Mie effects.

A similar exercise is performed to examine the sen-

sitivity of the retrieval to ice water path (IWP) and

FIG. 5. Composite reflectivity profiles used in sensitivity analysis.

FIG. 6. Contours of the cost function for various constraint for

each sample profile. The light dotted line follows the default value

of total liquid water path: (top) deep convective, (middle) shallow

convective, and (bottom) stratiform.
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snow–graupel partitioning. Only the deep convective

and stratiform profiles are examined here since no ice

is present in the shallow convective profile; however,

reflectivities were increased by 10 dBZ for each profile in

order to create a significant ice scattering signature. The

85V Tbs are contoured in IWP–graupel fraction space in

Fig. 7, with the lines enclosing the region defined by the

default Tbs 6 5 K. The most important feature of these

plots is that, while Tb does vary with graupel fraction,

a greater range can be achieved by altering the total IWP

via �ICE. In some cases it may be necessary to adjust the

graupel fraction to match the coldest observed Tbs, al-

though this is not done in the current implementation.

3. Retrieval evaluation

The combined retrieval algorithm is applied to TRMM

datasets within 150 km of ground radars that are part of

the TRMM Ground Validation (GV) network at Mel-

bourne, Florida, and Kwajalein, Republic of Marshall

Islands (Wolff et al. 2005). These sites were selected be-

cause they represent differing precipitation regimes, sig-

nificant coverage over ocean and, in addition to the

standard 2-km resolution rain map (GV product 2A53),

disdrometer measurements and polarimetric rainfall re-

trievals (Kwajalein only). The dual-polarization data

from Kwajalein are used to determine the cloud water–

rainwater partitioning via the uncertainty in �CLW, while

Melbourne is used as an independent verification site.

Finally, DSD statistics from ground-based disdrometers

are compared to the retrievals in both locations.

a. Kwajalein

The Kwajalein Ground Validation site, located on a

small atoll in the central PacificOcean, is an ideal site to test

the combined algorithm because of its oceanic location,

where the radiometer has the potential to add the most

information to the radar. Although GV rain products are

available since 1998, only recently have calibration prob-

lems been addressed and dual-polarization capability

added (Silberstein et al. 2008; Marks et al. 2009). With

these additional capabilities, a robust dataset of polari-

metric rain retrievals has been developed by D. Wolff

(2009, personal communication) using the method of

Bringi et al. (2004).

A free parameter in the combined retrieval is the vari-

ance of �CLW, which determines the cloudwater–rainwater

partitioning. The rain probability density functions (PDFs)

and cumulative distribution functions (CDFs) (Fig. 8)

show that a reasonable range of uncertainty in �CLW pro-

vides estimates that are in line with those of the GV radar,

with an optimal uncertainty of 100%. Higher values re-

duce the cost of changing �CLW, thus, the rain DSD is

modified to a lesser extent; similarly, lower values con-

strain cloud water more strongly, and the rain DSD is

modified more readily. The GV-tuned value results in a

10% increase of rainfall over 2A25, which is in line with

the PR–GV bias at Kwajalein reported by Wolff and

Fisher (2008). These PDFs also show the general agree-

ment of 2A25 and the PIA-only profiling algorithm, the

low rain bias of the default DSD in this region, and general

agreement of all methods in heavy rain, where the SRT

measurement of PIA is most reliable.

b. Melbourne, Florida

An independent validation test was performed by

comparing retrieval results to those from the standard

2A53 GV radar products over Melbourne for the years

2006–08. The mean rain rates from each retrieval are

plotted in Fig. 9. It is apparent that there is muchmonth-

to-month and year-to-year variability as to which re-

trieval method best matches the collocated GV totals.

FIG. 7. Contours of the a priori (dashed) and Tb (solid) con-

straints as a function of graupel fraction and total IWP, overlaid on

85V Tbs: (top) deep convective and (bottom) stratiform.
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The GV Z–R relationship is based on monthly gauge

accumulations, whereas there are only 10–20 overpass

events each month, with just a few of these dominating

the total rainfall. Thus, the average rain DSD that de-

termines the monthly Z–R relationship may be quite

different than that in the overpasses, especially consid-

ering the gauges are all on land whereas the retrievals

compared here are all over the ocean. Nevertheless, the

combined algorithm at the very least does no worse than

the PIA-based radar algorithms in making adjustments

from the default DSD. This is especially clear during

January–April, when all algorithms reduce rainfall con-

siderably relative to the default, implying larger drops as

might be expected in the predominately frontal, strati-

form rain that falls this time of year. The total accumu-

lated rainfall is only 1.6% higher than GV, while 2A25

underestimates the GV total by 5% and the default DSD

overestimates it by 14%. Thus, the combined method is

able to match the Melbourne rainfall while also being

unbiased at Kwajalein, where 2A25 underestimates GV

significantly.

c. Brightness temperature statistics

While agreement between the retrieved and observed

brightness temperatures does not guarantee that correct

DSD parameters are being retrieved, and cannot be

considered validation in a strict sense, such internal con-

sistency does indicate that the vertical model described in

section 2 is adequate to explain the observed Tbs. More-

over, the degree to which simulated Tbs improve in the

combined algorithm relative to a radar-only algorithm

(such as 2A25) can also be considered a measure of the

effectiveness of the retrieval.

Scatterplots of observed and simulated Tbs are shown

in Fig. 10.At the lower-frequency channels it appears that

a slight cold bias is evident in the default DSD and PIA-

adjusted products (both 2A25 and the PIA-only version

of the combined retrieval), particularly at 10 GHz. These

biases are improved, but still exist to a slight degree in the

FIG. 8. (top) PDF and (bottom) CDF of near-surface rainfall

rates within 110 km of the Kwajalein GV radar site during May–

November 2008. The legend in the top panel refers to the retrieval

method; in the bottom panel, the PIA 1 TMI retrieval is further

divided by cloud water sensitivity. The GV radar data were not

degraded to PR resolution in this figure.

FIG. 9. (top) Monthly and (bottom) yearly mean rain rates from

different retrieval methods at Melbourne, FL. Colors represent the

same retrievals as in Fig. 8.
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combined product. Meanwhile, the fairly large scatter in

theTbs simulated by the radar products at 37 and 85 GHz

is reduced significantly in the combined retrieval.

Quantitativemeasures of these errors are presented in

Table 3. The largest errors and biases occur when no

adjustments from the default DSD are made. When

adjustments are made in heavy rain to match the PIA,

errors are reduced slightly, by about 1 K, on average in

the Tbs and by about 0.6 dB in the PIA. A further re-

duction in the Tb errors is seen with the combined al-

gorithm but biases and RMS errors are only reduced by

about one-third to one-half of the default values, ap-

proaching the expected errors defined in the Sy co-

variance matrix. It is notable that the reduction in Tb

errors has occurred without increasing the PIA errors

from the radar-only algorithm. The residual RMS errors

are a consequence of the OE methodology, which does

not give a high value to matching observations better

than the a priori error. However, the residual biases

remain significant, particularly in the 19-GHz channels,

and may indicate a deficiency in the forward model or

calibration of these TMI channels.

FIG. 10. Brightness temperature scatterplots for (top to bottom) 10, 19, 37, and 85 GHz.
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d. Disdrometer comparisons

As a final reference point, the retrieved DSDs are

compared to ground-based disdrometer measurements.

Because the disdrometer represents a point measure-

ment and the number of TRMM overpasses during rain

events would yield an extremely small sample size, it

is more meaningful to compare summary statistics than

attempt to collocate TRMM overpasses with the GV

radar and disdrometer.Disdrometer data fromKwajalein

are available from 2003 to 2004, and Melbourne from

2006 to 2009. Although the former do not overlap the

TRMM observations we processed, the lack of a signifi-

cant interannual change inDSD atKwajalein (Kozu et al.

2009) should not prevent a statistical comparison.

Following Rosenfeld and Ulbrich (2003), we plot the

liquid water content as a function of drop diameter in

Fig. 11 for reflectivities representing light (20 dBZ), mod-

erate (30 dBZ), and heavy (40 dBZ) rain. Because of errors

introduced by calculating D0 from binned disdrometer

data, the mass-weighted mean diameter Dm is used in-

stead. For a gamma distribution, assumed in both ground

radar and PR retrievals, Dm 5 (4 1 m)/(3.67 1 m)D0.

Deviations along the lines of constant reflectivity represent

changes in theDSD, going frommaritime to continental as

Dm increases. Deviations perpendicular to these lines rep-

resent deviations in shape parameter or from the gamma

distribution itself, in the case of disdrometer data.

There is a relatively tight clustering of the DSDs de-

rived from the TRMM data at low reflectivities that di-

verges as Z increases. This represents the increase in

information (stronger PIA response) at higher rain rates

that leads to a change from the default DSD. Curiously,

the disdrometer data also show this divergence, despite

the lack of any a priori assumptions in that dataset. There

is also a clear increase inDm and the decrease inW from

Kwajalein to Melbourne, particularly evident in the dis-

drometer data, and both radar and combined retrievals.

There is an apparent offset of the disdrometer data

toward larger drop sizes, which was also noted by Kozu

et al. (2009) in the Kwajalein dataset, where it was sug-

gested that noisy conditions may have contributed to an

undercounting of small drops. Notwithstanding this off-

set, the change in Dm from Kwajalein to Melbourne is

nearly identical between the combined algorithm and

disdrometer at all reflectivities. This ability of the com-

bined algorithm to distinguish DSDs is particularly evi-

dent in moderate rain where PIA-only retrievals such as

2A25 must rely on default DSD assumptions. Even the

polarimetric radar algorithm Bringi et al. (2004) relies

upon an assumed DSD in the lightest rain, although the

small contribution of these rain rates to the total should

TABLE 3. Brightness temperature RMS error and bias (simulated minus observed) for FOVs with at least 30% rain coverage. (In the first

column, V stands for vertical polarization and H is for horizontal.)

RMS (K) Bias (K)

Channel 2A25 Default PIA only PIA1TMI 2A25 Default PIA only PIA1TMI

10 GHz V 6.52 7.90 6.69 4.83 25.70 27.22 26.04 23.85

10 GHz H 10.58 12.91 10.72 7.98 28.70 211.46 29.18 25.60

19 GHz V 8.08 9.30 8.59 6.30 26.29 27.76 27.16 24.93

19 GHz H 14.17 16.12 14.85 10.89 210.84 213.28 212.22 28.37

37 GHz V 7.19 8.02 7.94 5.97 20.77 23.59 23.50 22.92

37 GHz H 13.34 13.85 13.75 9.98 22.54 25.91 25.77 24.96

85 GHz V 18.82 16.36 16.38 12.56 6.50 22.15 22.29 22.83

85 GHz H 20.88 16.46 16.45 12.28 10.00 1.26 1.13 0.62

PIA (dB) 1.21 1.89 1.28 1.24 20.38 20.41 20.36 20.33

FIG. 11.Mean liquid water contentW vsmeanmass diameterDm

from TRMM algorithms and ground instruments at Kwajalein and

Melbourne at 20-, 30-, and 40-dBZ reflectivity. The solid lines

represent the theoretical relationship between W and Dm at the

given reflectivity assuming a gamma distribution with m 5 3.
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not impact the cloud water constraint that was derived

from the Kwajalein GV radar dataset.

4. Summary

Although radar- and radiometer-based satellite mea-

surements of rainfall have been available over the global

tropics for over a decade, key uncertainties remain in

some regions. Instrumental strengths and shortcomings

as well as algorithm assumptions are thought to play a

role in creating the regional biases evident in long-term

radar- and radiometer-based products from the TRMM

satellite. In an effort to explain these biases as well as

prepare for GPM, where combined radar–radiometer

profiles will be used as the Bayesian database for con-

stellation radiometers, a new method has been devised

to use radiometer measurements to retrieve hydrome-

teor profiles from radar reflectivity profiles.

The key component of this method is a radar profiling

algorithm with three variable parameters representing

the ice PSD, rain DSD, and cloud LWP. A variational

optimal estimation inversion is used to adjust the profiling

algorithm parameters to best match the observed mi-

crowave radiances and SRT PIA over a scene containing

hundreds to thousands of PR pixels. The overall frame-

work is modular, allowing for easy inclusion of different

microwave scattering tables and radiative transfermodels

as well as any ancillary data regarding nonretrieved back-

ground parameters.

TRMM PR and ground-based radar datasets were

used to set the uncertainty in the a priori DSD and cloud

water assumptions. These uncertainties were fit to best

match 2A25 and polarimetric radar rainfall retrievals at

Kwajalein respectively. These same values were then

used in retrievals over Melbourne, Florida, where rain-

fall totals were within 2% of the GV value, well within

the range of uncertainty expected given sampling error

and a significant improvement from the default DSD

assumption in the winter and early spring months.

Globally, the area-weighted mean rain rate from the

combined rainfall product exceeds version 6 of the 2A25

products by 17% for January 2001 (Fig. 12). Note,

however, that the patterns of rainfall adjustment are

nearly identical in going from the default DSD to 2A25

and 2A25 to the combined algorithm. The increase of

rainfall in the combined algorithm therefore results

from two sources: 1) The combined algorithm, unlike

the PIA-based 2A25, is not limited to pixels with heavy

rain; and 2) the majority of rainfall occurs in the regions

where DSD adjustments increase rainfall. The latter of

these is also evident in that the 2A25 global rainfall itself

is a 14% increase over the default DSD. Nevertheless,

caution is advised in interpreting the exact magnitude of

this increase relative to 2A25, because it is sensitive to

FIG. 12. Difference in mean rain rates between 2A25 and (top) the default Z–R relationship and (bottom) the combined and 2A25

algorithms on a 18 3 18 grid. Only the central 25 PR angle bins were analyzed to avoid biases from ground clutter and to speed com-

putations. Black areas represent land and gray pixels represent no rain during the period.
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the cloud water–rainwater partitioning. While the values

we have selected are in good agreement withGV radar at

Kwajalein andMelbourne, it is desirable to see additional

confirmation elsewhere over long observation periods.

Nevertheless, it does appear that some increase from

version 6 of the 2A25 products is reasonable, and in fact,

similar increases are seen in version 7 of the 2A25 prod-

ucts (J. Kwiatkowski 2010, personal communication).

A further analysis of theDSD adjustments made by the

combined algorithm will be the subject of a future study.

Potential areas of algorithm refinement include sensitivity

analyses to different radiative transfer models and hy-

drometeor scattering properties, including nonspherical

raindrops andmore complex representations of ice. More

accurate estimates of the global mean rainfall will require

additional tuning of the cloud water adjustment and/or

DSD assumptions using polarimetric radar data from a

variety of rainfall climate regimes. To continue prepara-

tion for GPM, a dual-frequency profiling algorithm will

need to be developed as well as an extension of the re-

trieval method over land and ice surfaces.
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