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Abstract This paper presents a modular system for

both abnormal event detection and categorization in

videos. Complementary normalcy models are built both

globally at the image level and locally within pixels

blocks. Three features are analyzed: 1) spatio-temporal

evolution of binary motion where foreground pixels are

detected using an enhanced background subtraction me-

thod that keeps track of temporarily static pixels, 2)

optical flow, using a robust pyramidal KLT technique ;

and 3) motion temporal derivatives. At the local level,

a normalcy MOG model is built for each block and

for each flow feature and is made more compact using

PCA. Then, the activity is analyzed qualitatively using

a set of compact hybrid histograms embedding both op-

tical flow orientation (or temporal gradient orientation)

and foreground statistics. A compact binary signature

of maximal size 13 bits is extracted from these different

features for event characterization. The performance of
the system is illustrated on different datasets of videos
recorded on static cameras. The experiments show that

the anomalies are well detected even if the method is

not dedicated to one of the addressed scenarios.
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Michèle Gouiffès
LIMSI, CNRS, Univ.Paris-Sud, Universit Paris-Saclay,
France
E-mail: michele.gouiffes@limsi.fr

Lionel Lacassagne
Sorbonne Universits, UPMC Univ Paris 06, CNRS UMR
7606, LIP6, France
E-mail: lionel.lacassagne@lip6.fr

1 Introduction

In order to enhance our sense of security, the use of

video surveillance systems has grown very rapidly in

the last few years. The computer vision and the multi-

media computing communities have recently witnessed

a surge of interest in automatic abnormal event detec-
tion and/or categorization in computer vision [1–4].

This task can be extremely challenging and has its

own limitations. The main one is the lack of a universal
and objective definition of abnormalities. They are usu-

ally defined in a subjective form and interpreted differ-
ently on a same dataset. In this paper, abnormal events
are described as unusual events encountered at a spe-

cific context and may be reported for further investiga-

tions [5]. Other limitations are related to the sparseness,

rarity, and discontinuity of abnormal events which limit

the number of examples available to train an anomaly

detection system. For crowded scenes, this difficulty is

compounded by the complexity of normal crowd behav-

iors. On the one hand, unlike videos containing one or

a few objects of interest, when dealing with large or

massive groups of moving objects like dense crowds, in-

dividual object tracking is virtually impossible. On the

other hand, it is infeasible to enumerate precisely the

set of abnormalities that are possible in a given surveil-

lance scenario.

One common solution to these issues is to define

anomalies as events of low probability with respect to

a probabilistic model of normal behavior. Then, a sta-

tistical analysis of anomaly detection can be performed,

which conforms with the intuition of anomalies as events

that deviate from the expected [4].

This paper proposes a modular system for abnor-

mal event detection and characterization. It involves

three categories of generic low-level features likely to
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be available in any videos and therefore suitable for

various applications, for scenes showing either small

groups of objects or dense groups like crowds. First,

the spatio-temporal evolution of binary motion pixels

is analyzed both globally and locally. These motion pix-

els are detected using an enhanced background subtrac-

tion method that keeps track of temporarily static pix-

els. Then, optical flow and its temporal gradient are
analyzed locally within pixels blocks. Optical flow is
computed using a pyramidal KLT technique robust to

photometric changes. Two models are used for these lo-

cal features: a mixture of Gaussians (MOG) for quan-

titative analysis, which is made more compact using

principal component analysis (PCA), and a set of com-

pact hybrid histograms that embed both motion (or its

gradient) orientation and binary motion statistics. On

the basis of these simple features, a binary descriptor

vector can be used to describe the event. The system is

modular in the sense that the different anomaly detec-

tors are independent and can be used solely for a given

application.

The remainder of the paper is organized as follows.

Section 2 reviews previous work on abnormal event de-

tection. An overview on the proposal is provided in Sec-

tion 3 and the main stages are detailed from Section 4

to Section 7. The algorithmic complexity is discussed

in Section 8. Section 9 presents the experimental evalu-

ation performed on different real datasets. Finally, con-
clusions are provided in Section 10.

2 Related Work

The procedure generally applied for anomaly detection
consists in modeling normal behaviors and then esti-
mating the deviations between the resulting model and

the observed behaviors [5] since statistics are far easier

to collect on normal behaviors than on anomalies.

Anomalies can be classified into three main cate-

gories: trajectory-based, motion-based, and anomalies

detected jointly from motion and appearance. The tra-

jectory-based approaches are founded on segmenting

and tracking each object in the scene, either explic-

itly or implicitly, then on fitting models to the result-

ing object tracks [6–10]. These procedures are how-

ever computationally expensive and difficult to apply

for crowded or cluttered scenes. To some extent, the
trajectory-based method can be applied to crowd mo-
tion, for example in [11] where representative trajecto-

ries of a crowd flow are learned by clustering optical

flow-based particle trajectories.

In motion-based techniques, the processing of each
individual object is avoided by modeling motion pat-

terns. The state-of-the-art methods differ mainly on the

model used. With increasing complexity, it can be his-

tograms of pixel changes [12], optical flow histograms
[13, 14], or optical flow measures, mainly flow magni-
tude and direction [11,15–17]. In [12], the authors used

a Markov Random Field (MRF) model to describe the

probability of observations within the same spatio-tem-

poral volume. In a different way, motion can be consid-

ered as a mixture of unitary events, such as [13] and [14]

where unusual events are detected via a sparse reconsti-

tution of query signals from a normal event dictionary.

Local optical flow can also be modeled with a mixture of

probabilistic principal component analyzers [15]. Social

force models [18] have also been used in [16] and [17] to

estimate the moving particles interaction forces. Note

that all these approaches model dynamics and ignore

anomalies of object appearance and thus anomalous be-

havior.

Some approaches use more comprehensive represen-

tations including appearance and motion [3,19–21]. By

modeling motion variations of several space-time vol-

umes as well as their spatial-temporal statistical be-

haviors, [19] proposes to characterize the overall behav-

ior of the scene. In [20], the authors consider a given

event as abnormal if the spatio-temporal patches can-
not be composed with previously learned visual exam-
ples. In a more empirical way, [21] quantifies abnormal-
ity by creating rules that are based on score functions

derived from local nearest neighbor distances across

spatio-temporal locations and scales. Finally, [3] pro-

poses a joint detector of temporal and spatial anoma-

lies using a mixture of dynamic textures models (noted
MDT). This detector uses dynamic textures to design
models of normalcy over both space and time dimen-

sions. A global analysis of the flow is however not in-

cluded in the system.

Even if several approaches were proposed to detect

abnormal events, it is usually quite difficult to objec-

tively compare their results. Usually, these methods use

different representations of motion and appearance with

different graphical models of normalcy, which are usu-
ally dedicated to a given application and designed for
specific scenes or specific definitions of anomaly. Abnor-

malities are themselves defined in a somewhat subjec-

tive form, sometimes according to what the algorithms

can detect. Moreover, the same datasets are sometimes

interpreted differently from one paper to the other. Fi-

nally, experimental results can be presented on datasets
of very different characteristics, e.g., traffic intersec-

tion or subway entrance, frequently proprietary, and

with widely varying levels of crowd density [3]. To fin-

ish, most papers propose very interesting and powerful

methodologies for anomaly detection [1–5, 9–16, 19–23]

or for specific activities categorization [6, 18]. Very few
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works attempt to both detect and characterize the ab-

normalities [24], except for specific applications like wa-

ter analysis [25] or intrusion detection [26].

In the following, we propose a system for abnor-

mal event detection and categorization that addresses

anomaly in a quantitative and qualitative point of view,

and which acts both globally and locally in the image.

3 Overview on the proposed framework

The proposed system aims to detect abnormal events
at two different levels, on the whole frame (global) and

on local areas. Figure 1 displays the architecture of the
system, which consists of four main blocks, from left
to right: features extraction, model matching, abnormal

event detection (decision making) and abnormal event

categorization.

1. Features extraction. From testing data, this block

extracts foreground pixels as well as the motion flow
and its temporal gradient. The information provided
by motion analysis is used to enhance the quality

of background subtraction algorithm. More details

about this stage are provided in Section 4.

2. Model matching. Themodel matching block checks

if the extracted features match the corresponding

models built during the training stage (see Section 5)

namely: appearance models based on foreground fea-

tures, motion models based on velocity distribution
and spatio-temporal models based on motion gradi-
ent distribution. The two latter models are then di-
vided into quantitative and qualitative models.Quan-

titative models aim to detect abnormal feature val-

ues while qualitative models aim to detect abnor-
malities in the shape of the distributions.

The choice of different features and a collection of

models is motivated by the fact that different tasks

may require different models of normalcy depending

on the context and the application. For instance, a

detector of freeway speed limit violations will rely
on normalcy models based on speed features. On the
other hand, global appearance is more important

for the detection of an abnormal crowd behavior

(gathering or dispersion for example).

3. Abnormal event detection. Based on models mat-

ching results, this block should decide whether the

event is normal or not (see Section 6).
4. Abnormal event categorization. Finally, the ab-

normal event categorization block consists of a sim-

ple classifier that should decide, based on distances

to models, if the abnormal event under considera-

tion is similar to some of the known events. More

details are provided in Section 7.

4 Features Extraction

Three types of features are detected. First, an enhanced
background subtraction is proposed to detect both the
moving and temporarily static foreground pixels. Then,

optical flow and its temporal gradient are computed.

4.1 Enhanced Background Subtraction

Identifying moving objects from a video is a fundamen-
tal low-level task. Generally assuming a static camera,
background subtraction (BGS) algorithms can fastly

provide regions of interest that can serve as masks for

more evolved (and possibly greedier) algorithms. Much

research has been devoted to develop BGS algorithms

that are robust against environmental changes (e.g. var-

ious levels of illumination, fog, rain, etc), and sensitive

enough to identify all moving objects of interest [27].

Unfortunately, for most techniques, the objects that

stop temporarily are assimilated as the background.

The detection of these static objects may be of a high

importance. For instance, crowd gathering in a walk-

way should be detected and reported as an usual event.
However, merging the static crowd into the background
makes them unnoticeable. On the other hand, disabling

the adaptation factor of the BGS algorithms makes

them sensible to environmental changes. A common ap-

proach to alleviate this issue is to use multiple back-

ground models running at different adaptation rates,

and periodically cross-validate between different mod-
els to improve the foreground extraction performance
[28–30].

In this paper, this issue is solved in a simple way

by consolidating foreground over frames and detecting
temporarily static foreground. It takes advantage of the

robust optical flow described further in 4.2 which is also

useful for abnormal event detection at pixel-block level.

The method consists in integrating the new position

of the previous foreground into the current foreground

even if the whole or some of it is not detected by the

BGS algorithm. In other words, if a foreground pixel

of coordinates (xt, yt) at time t moves to the location

(xt+1, yt+1) at time t+1 (in the next frame), the pixel

(xt+1, yt+1) is included in the foreground mask, even if
this point is not detected by the background subtrac-

tion algorithm or is not moving anymore (static fore-
ground).

Figure 2 displays the diagram of the background

subtraction enhancement. Using optical flow, a binary

flow mask is obtained by calculating the new coordi-

nates of each pixel of the previous foreground. An ad-
ditional filtering stage can be performed to remove noise

from the resulting mask, e.g. morphological opening
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Fig. 1 Architecture of the proposed system in four main blocks, from left to right: 1) Features extraction: back-
ground/foreground pixels, motion vectors, temporal gradient of the motion flow; 2) Model Matching, involving a global ap-
pearance model as well as two local models, both of them providing a quantitative and qualitative analysis; 3) Decision making
to classify the motion as normal or abnormal; 4) Categorization/classification of the detected anomaly.

Fig. 2 Principles of the Enhanced Background Subtraction
method.

and closing. In the experiments, a square structural el-

ement of size 7× 7 has been used in all datasets. Then,
the enhanced foreground mask is computed by merg-

ing the foreground mask obtained by a classical BGS

method with the flow mask.

In the proposed system, the enhancement of the

BGS does not require additional processing since it uses

the optical flow that is also useful for local anomaly de-

tection. Only a binary mask of the flow is used so the

requirements in terms of memory are low.

4.2 Motion

For motion computation, we use the KLT method [31–
33] in its pyramidal implementation [34] to approxi-
mate the optical flow of each pixel of the foreground.

The parameters of a local photometric model are es-

timated jointly with the motion model [33], which im-

proves the robustness against lighting changes. For each

pixel, the magnitude and the direction of the optical

flow are stored.
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4.3 Motion Temporal Gradient

To detect anomalies in motion variation, the temporal
gradient of the motion flow is computed. By considering

the last 2× n frames and by noting vt the flow at time

t, its gradient
.
vt is defined as follows:

.
vt =

1

n

n−1
∑

i=0

(vt−i − vt−n−i) . (1)

The choice of n depends on the frame rate and on

the anomalies under consideration. A small value of n

makes the algorithm very sensitive to noise and a big

value of n may cause a big delay in the detection pro-
cess; it may also attenuate the abnormality distortion

and thus reduce the detection performance. In our ex-
periments, n is set to 5, which corresponds to a period

of 0.12s for 25 fps videos. Typically, considering a focal

length of 18mm, a walking person located at 100 meters

from the sensor will move of 3 pixels approximately in

the image [35] during this period of time.

Figure 3 shows an example of feature extraction re-
sults on a sample frame from UCSD ped 1 dataset [3].

Figure 3(a) presents the original frame showing walk-

ing people in a walkway. The foreground extracted by

the enhanced BGS algorithm (see Section 4.1) is shown

in Figure 3(b), where the black pixels represent moving

pixels. Figure 3(c) shows the optical flows computed on

each foreground pixel, where each color is related to a
different direction of the motion, as described by the
color scale of Figure 3(e). To finish, Figure 3(d) shows
the gradient of the motion in the given frame.

5 Global and local models of normalcy

On the basis of the three features introduced in the

previous section, three categories of models are built: a

global motion model (see 5.1) in order to detect anoma-

lies at the image level, local motion models (see 5.2)

and local motion gradients models (see 5.3). In addi-

tion, both latter categories comprise a quantitative and

a qualitative model.

5.1 Global motion Model

Some simple statistical measures computed on the fore-
ground mask can provide a first analysis of the move-
ment in the scene, and can discriminate normal events

from abnormal ones in a straightforward way. Four mea-

sures are considered here: the area (number of pixels),

its barycenter, the spatial variance (computed as the

mean of the variances in x and y directions) and the per-

centage of the static area within the foreground. These

(a)

(b)

(c)

(d)

(e)

Fig. 3 Features extraction processes on a sample frame (a):
(b) detected foreground, (c) the motion flow and (d) the mo-
tion gradient. Each color indicates a different direction and
amplitude of the optical flow vectors as described by the color
scale (e).



6 Ahmed Chamseddine Ben Abdallah, Michèle Gouiffès, Lionel Lacassagne

values are easy to compute in any videos. For instance,

an unusual gathering will lead to a variance decrease

and to an area increase; on the contrary, a dispersion of

the crowd may cause a variance increase; a mass move-

ment of the crowd may be detected by a low variance

and a significant move of the barycenter; and an un-

usual crowdedness may increase the area of the fore-

ground. For consistency purpose, the three latter mea-
sures i.e. barycenter, variance and percentage of the

static area, are considered only if the area of the fore-

ground is large enough, above 2% of total number of

pixels. Table 1 summarizes the types of abnormalities

that can be detected using these four measures.

Table 1 Type of abnormal events that can be detected using
a simple statistical analysis on the foreground.

Measure Low value High value

Area Unusual low den-
sity

Unusual crowded-
ness

% static area Unusual move-
ment

Unusual stopping
crowd

Barycenter Concentration of the move-
ment in an usual side of the
frame

Variance Unusal gathering Unusual disper-
sion

In the training stage, these four features are com-
puted for all the frames, and the maximum and mini-

mum values are collected for each measure. Then, for
each testing frame, and for each measure m, the follow-

ing ratio is computed:

r =
max(mmin −m,m−mmax)

mmax −mmin

. (2)

An abnormal event is detected when the ratio r is higher

than a given threshold (5% in our experiments) i.e.

when the measure ofm is either much higher thanmmax

or much lower than mmin. For better precision, mmin

(resp. mmax) is the median value of the first (resp. last)

decile.

5.2 Local motion models

In addition to the global model discussed in section 5.1,
motion has also to be analyzed locally in the image,
with different models in each area. In fact, a normal

behavior at a large visual scale may be perceived as

highly anomalous when a finer scale is considered. For

instance, due to the perspective properties of images,

the size of an object decreases when it gets further from

the camera. As a result, a motion that can be usual

Fig. 4 Architecture of the Local Model Fitting Approach.

when the object is in front of camera should be con-

sidered as abnormal when the object is far away. Also,

the global model is able to detect speed limit violations

on a freeway but not lane violators. However, a normal

behavior in one side of the road should be considered

as an abnormal event when perceived on the other side.

So, in order to increase the detection sensitivity, the ac-

tivity is characterized locally in pixel blocks of similar

size w2 using two models.

5.2.1 Quantitative model based on motion MOG

Figure 4 displays the architecture of the model fitting

approach. Given all training frames, considered as nor-

mal, the 2D motion vector of each foreground pixel is

computed. Then, the frame is split into small contigu-

ous blocks, the width w of which is half the average

height of the moving objects in the observed scene.

Since the camera is static in most surveillance appli-

cations, this value is determined once for all, at the

initialization of the system. After collecting the flow in

each region, the expectation-maximization (EM) algo-

rithm [36] is used to fit the collected values to a mixture

of Gaussian models. For each Gaussian, the mean vec-

tor is stored, µ = [µx, µy], as well as the covariance

matrix Σ.

Figure 5 shows an example of model fitting. The

block under consideration, which comes from a sample

frame of the UCSD ped 1 dataset [3], is highlighted in
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(a)

(b)

(c)

Fig. 5 An example of model fitting in (a) a local region of
a sample frame : (b) the collected flow values and (c) the
created models.

Figure 5(a). Figure 5(b) displays the flow values col-

lected in this block. Using EM algorithm, these val-

ues are modeled by two Gaussians, as shown in Fig-

ure 5(c). They correspond to the two main directions

of motion on the walkway. Of course, other scenes may

show different models. For instance, a one-way street

may show one Gaussian per speed class (for example
cars/bikes/pedestrians).

In order to reduce calculation time and noise effect,

all flow values are projected on the main direction using
Principal Component Analysis (PCA) [37], where the
eigenvectors correspond to the main motion directions
and eigenvalues to the weights.

When the main eigenvalue explains 80% of the vari-

ance, the main eigenvector is assumed to be descriptive
enough. Then, the data projected on the eigenvector

are modeled by a mixture of 1D Gaussians. Generally,

the projection on the secondary eigenvector represents

(a)

(b)

Fig. 6 Projected flow values in a given local zone on (a) the
main and (b) the secondary eigenvectors.

a white noise, and can be modeled using a single Gaus-

sian model with a null mean.

For example, Figure 6 shows the projection of the

flow values collected in the block highlighted in Fig-

ure 5(a). It can be seen in Figure 6(a) that the his-

togram of flow values projected on the main eigenvector

can still be modeled with two Gaussian distributions.

Figure 6(b) shows the projection of the histogram on

the secondary eigenvector.

The local abnormality detection is explained in Fig-

ure 7. A normality MOG is built independently for each

block in the training stage. In the testing stage, each of

the w2 foreground motion values within a block is as-

signed to the closest mode considering the Mahalanobis

distance D:

D =

√

(v − µ)TΣ−1(v − µ).

with µ and Σ the mean and covariance matrix of the

normal distribution (the mere variance when the PCA

has lead to a 1D model). For each mode, the average

D is computed and an anomaly is detected in the block
when it is higher than a threshold (equal to 1 in the

experiments).

For the 1D models, it is necessary to check models

on both eigenvectors. A flow that does not fit any of

the main vector model(s) may indicate a moving ob-

ject/person with a different speed or direction; a flow
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Fig. 7 Architecture of the Model Fitting Block.

that does not match the secondary vector model may

indicate an abnormal movement on the transverse di-
rection.

5.2.2 Qualitative modelling using a set of compact

hybrid histograms

The quantitative model matching described previously

can detect the pixels moving with unusual speed or di-
rection but doesn’t provide any information about the
shape of the distribution. Let us consider a subway en-

trance where people can move in two opposite directions

but not at the same time. Then, motion in the two di-

rections should be considered as a usual event, but the

presence of the two flows at the same time should be

reported as an abnormal event. To solve this issue, the
histograms of motion orientation are computed on the
training images database of normal events. Figure 8

explains the training and testing stages required for

histogram analysis. Then, an event the distribution of

which does not match any of the training histograms

will be reported as an unusual event. The histogram

contains 10 bins. Each bin k ∈ [1, 8] counts the number
of pixels with the motion angle kπ/4± π/8. The ninth

and tenth bin count respectively the static foreground

pixels and the background pixels. As an example, figure

9(b) shows the histogram computed on the block high-

lighted in 9(a). For scenes with a principal direction of

the motion (e.g. walkway, entrance), the dimensions of

the space can be reduced as done previously, by project-
ing the flow on the first principal component provided
by PCA. This allows to reduce the algorithm sensitivity

to noise while accelerating the matching. The resulting

1D histogram has 5 bins, as illustrated by figure 9(c).

The first two bins count the number of pixels on the

two directions of the first principal component and the

third bin counts the number of pixels on the second

principal component. The last two bins count respec-

tively the number of static foreground and background

pixels.

One histogram is computed for each frame of the

training dataset, and the size of the training samples set

is reduced using complete linkage hierarchical clustering

Fig. 8 Architecture of the Local Histogram Comparaison Ap-
proach

[38]. The Euclidean distance is used to compare the

test histogram with the learned histograms. Note that

the Earth Mover Distance has also been tested. The

improvement is very limited and the complexity growth

is significant.

5.3 Local motion gradient models

In this section, the similar quantitative and qualita-

tive matching approaches described in Section 5.2.1 and
Section 5.2.2 are applied on motion flow gradient. This
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(a)

(b)

(c)

Fig. 9 An example of qualitative histogram in a local region
of a sample frame displayed in (a): (b) the global histogram
and (c) the reduced one (on 1D).

should allow detecting any abnormalities of flow varia-

tion, and detecting moving objects with unusual sizes,
e.g. cars or bicycle running in a walkway.

6 Decision Making

The association of the different models of normal behav-

iors described previously should allow detecting differ-

ent types of abnormalities, as illustrated by Figure 10.

The global model allows detecting abnormalities at the

frame level, for example for crowd motion (area, barycen-

ter, variance, etc). The quantitative and qualitative lo-

cal models are designed to detect respectively abnor-

mal flow values and abnormal flow directions. If another

type of abnormality occurs, it may be detected if it pro-

duces an abnormal variation of at least one of the used

features. Consequently, an abnormal event has to be

detected when at least one of the features extracted in

the test scene does not match the corresponding trained

models. Therefore, a simple logical or operator is used

to report the presence of an abnormal event.

7 Abnormal Event Characterization

When an abnormal event is faced, it may be helpful for

the human monitor to identify it. Through our multi-

model matching process, thirteen binary features are

collected to categorize the type of anomaly: (1) low fore-
ground variance, (2) high foreground variance, (3) low
foreground area, (4) high foreground area, (5) out of

range foreground barycenter, (6) low static foreground

area, (7) high static foreground area, (8) unmatched

quantitative flow model, (9) unmatched transverse quan-

titative flow model, (10) unmatched qualitative flow

histogram, (11) unmatched quantitative flow gradient
model, (12) unmatched transverse quantitative flow gra-
dient model and (13) unmatched qualitative flow gra-

dient histogram. The 7 former features are specific to

the whole frame and describe the global behavior of

the crowd while the 6 latter features are specific to the

given local block. Each abnormal event can be cate-

gorized based on one or more features. As a result, it

will be categorized by a binary vector, called signature,

which should be unique for each type of event.

For instance, dispersion events should provide a high

variance signature, gathering should be related to a low

variance signature and fighting should have simultane-

ously a low variance, a large static area and an un-

matched qualitative flow histogram.

8 Implementation Complexity

By considering N the number of pixels of the given
frame, M the number of local regions, and P the num-

ber of histogram models in the database, the complexity

of our algorithm is O(N +M × P ). The architecture of

our method, displayed in Figure 1, is based on different

independent models and algorithms that have been cho-

sen to be efficiently parallelized on a multi-core SIMD

General Purpose Processor (GPP). Motion detection,
morphological operators and KLT are embarrassingly
parallel and can be easily accelerated using SIMD1 and

OpenMP2. Temporal gradient of equation (1) can be

accelerated by using IIR recursive filters. Finally, the
more time-consuming part of the proposed method is

the histograms computation. As the regions do not have

the same size, the histograms computation will not take

the same execution time. This well-known issue can be

1 Single Instruction Multiple Data
2 http://openmp.org/
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Fig. 10 Types of detected abnormalities.

addressed with dynamic scheduling within OpenMP to
perform farming (one thread per histogram) and fix

load-balancing problem, as long as there are more re-

gions (a few hundreds) than processors (2× 12 core for

bi-socket Ivy-Bridge EP Xeon and 4×15 core for quad-

socket Ivy-Bridge EX Xeon). We are hence confident
in parallelizing this algorithm on a multi-core SIMD

processor.

The acceleration results would probably be less sat-
isfactory on GPU, mainly because histogram compu-

tation is an issue on such architectures. Indeed, there

are not enough regions (hundreds) and histograms per

region (maximum 4) to feed all the processing elements

of the GPU with data. The latest ones have more than

thousand cores: respectively 2034 and 2688 for Nvidia

GTX 780 and GTX Titan. The problem remains the
same with AMD GPU. Moreover, the PCIe bandwith
to communicate between host and GPU is very slow,
compared to internal bandwith of GPU and GPP.

9 Experimental Results

To evaluate the proposed system through different sce-

narios, three datasets showing different scenes are used,

namely the UMN dataset3, the UCSD dataset [3], and
the BEHAVE dataset4. The UMN dataset is a set of

escape events that allows us to test our global and lo-

cal models for abnormal event detection. The UCSD

dataset consists of videos of a crowded pedestrian walk-

way and is useful to test our PCA-based local model

3 Unusual Crowd Activity Dataset:
http://mha.cs.umn.edu/Movies/Crowd-Activity-All.avi
4 http://homepages.inf.ed.ac.uk/rbf/BEHAVE/

to detect local abnormal events. Finally, the BEHAVE
dataset contains some labeled events which will be help-
ful for testing our event categorization component.

In all the experiments, foreground pixels are de-
tected using the enhanced background subtraction de-
scribed in Section 4.1 based on a Mixture of Gaussian

Model [39]. The parameters used for the experiments

have been discussed in the previous sections and remain

the same during all the experiments.

9.1 UMN Dataset

This dataset, collected by University of Minnesota con-

tains videos of 11 different scenarios of an escape event.

The videos are shot in 3 different scenes, including both

indoor and outdoor situations, and in different config-

urations of the sensor, as illustrated by the samples of
Figure 11. Scenes in this dataset are relatively crowded,
with about 20 people walking around. Each video clip

starts with an initial part of normal behaviors and ends

with sequences of abnormal behaviors. In the following,

we use the half of the first part (normal behavior) to

train the system and to create the normality models.

Then, the algorithm is evaluated on the whole dataset.

Figure 12(a) displays the variance of the foreground

on the eleventh scenario. The vertical red line indi-

cates the starting of the escape event and the horizontal

green lines show the minimum and the maximum vari-

ance values detected on the training frames (i.e. the

first 367 frames). It can be seen that during the escape

event, the variance increases and exceeds significantly

the maximum value reached during the training phase.

From these variance values, the discriminative ratio is
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Fig. 11 Sample frames in three different scenes of the UMN
dataset.

calculated as described in (2). The results are displayed
in Figure 12(b).

Figures 12(c) and 12(d) are two sample frames from

the considered scenario. The first one corresponds to a
normal behavior of the crowd, with the lowest variance
value 4397, which yield a ratio r of −0.4 (equation (2)).

In this frame, the people are close to each other and

are gathered in the center of the frame. The second one

displays the dispersion event and shows a high variance

of 1.625.104 which corresponds to a ratio of 0.49. In

this frame, people are spreading in different directions,

the foreground barycenter is almost at the center of the

frame and the escaping people are close to the frame

edges, which make the variance increase.

Figure 13 displays the local results on some escape

event frames. The escaping individuals have a higher

speed than in normal situations, and they can be eas-

ily detected using our local models. In the presented

frames, even though our approach does not track peo-

ple, the abnormal areas are correctly highlighted.

(a)

(b)

(c) frame 215

(d) frame 776

Fig. 12 The variance on the eleventh scenario: (a) its distri-
bution, (b) the discriminative ratio and (c) (d) two sample
frames
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Fig. 13 The localization of the abnormal behaviors on dif-
ferent escape frames. Red blocks correspond to the highly
probable abnormal regions.

The ROC curves in Figure 14 illustrate the per-
formance of our approach on the UMN dataset. Fig-

ures 14(a), 14(b) and 14(c) show the ROC curves of

our method on the 3 different scenes from the dataset

and for all scenario. Obviously, the results obtained on

scene 1 and scene 3 are much better than those obtained

on scene 2. In fact, the performance of our system de-

pends on the performance of the background subtrac-
tion and the motion analysis algorithms. Since scene 1
and scene 3 are outdoor scenes, they are well lighted

which improves the quality of both the extracted fore-

ground and the motion flow. To evaluate the overall

performance of our approach on the UMN dataset, our

results are compared to those provided by two refer-

enced algorithms [16], that use social force flow (noted
Force Flow) and optical flow (Optical Flow) to train a

latent Dirichlet allocation (LDA) model.

Even if our algorithm has not been designed specifi-

cally for this scenario, it is competitive with these state-

of-art methods, and it gets better performance for low

false alarm probabilities.

(a)

(b)

(c)

(d)

Fig. 14 The ROC curves for the detection of abnormal
frames in (a) scene 1, (b) scene 2, (c) scene 3 and (d) the
whole UMN dataset, with a comparison to state-of-the-art.
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9.2 UCSD Ped Dataset

This dataset was acquired with a stationary camera

mounted at an elevation, overlooking pedestrian walk-

ways [3]. The crowd density in the walkways was vari-

able, ranging from sparse to very crowded. In the nor-

mal setting, the video contains only pedestrians. Ab-
normal events are due to either 1) abnormal speed, 2)
circulation of non pedestrian entities in the walkways,

3) anomalous pedestrian motion patterns or 4) circula-

tion in forbidden areas. Commonly occurring anomalies

include bikers, skaters, small carts, and people walk-

ing across a walkway or in the grass that surrounds

it. A few instances of people in wheelchair were also

recorded. The data was collected from two different

scenes and split into 2 subsets. The first scene contains

groups of people walking towards and away from the

camera while the second contains scenes with pedes-

trian movement parallel to the camera plane. Figure 15

shows some sample frames of these two scenes.

In this dataset, the people actions are more realis-

tic compared to the UMN dataset because all abnor-

malities occur naturally, they were not staged or syn-

thesized for dataset collection. As for many real video-

surveillance scenarios, the pedestrians’ normal behavior
can be modeled along one principal direction by get-
ting the flow main direction using Principal Component

Analysis as explained in Section 5.2.

Figure 16 displays the local results on some ab-

normal event frames. Figures 16(a), 16(c) and 16(d)
highlight respectively a cart, a bicycle and a skate-
board. These vehicles are detected since they are run-

ning faster than the pedestrians and they don’t match
the normal motion models. In Figure 16(b) a pedestrian
who walks on the grass is signaled as an abnormality

because the system has detected a motion in a motion-

less area.

The ROC curves in Figure 17 illustrate the perfor-

mance of our approach in comparison to several other

referenced approaches on the UCSD dataset, coming

directly from [23] for the first scene and from [22] for
the second scene. Table 2 provides a short explanation
about the methods under consideration. The area un-

der the ROC curve (AUC) and the equal error rate

(EER) of the different approaches on the first scene

are reported in Table 3. It is shown that our framework

achieves satisfactory performance even if it has not been

designed specifically for this scenario. It outperforms 6
up to 8 of them depending on the level of false alarm
(see Figure 17(a)).

More precisely, our system outperforms the model
of mixture of dynamic texture MDT [3] on the first

scene, and the results are a little bit worse on the second

(a)

(b)

(c)

(d)

Fig. 15 Sample frames from the UCSD dataset. (a) Normal
sample from the first scene. (b) Sample from the first scene
with abnormalities. (c) Normal sample from the second scene.
(d) Sample from the second scene with abnormalities.

scene. The relatively bad results of the second scene are
probably due to the limited size of the training dataset

(60% smaller than the dataset provided for first scene).

9.3 BEHAVE Dataset

To show the extension of the system to events cat-

egorization, experiments have been conducted on the
BEHAVE Dataset which consists of a large number of
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(a)

(b)

(c)

(d)

Fig. 16 Localization of the abnormal behaviors on different
UCSD frames, where red blocks correspond to highly proba-
ble abnormal regions.

complex group activities and is generally used for hu-
man activity classification. In this scenario, a abnormal

event is considered when one of the group activity is
detected: InGroup (IG), Approach (A), WalkTogether

(WT), Split (S), Ignore (I), Following (FO), Chase (C),

Fight (FI), RunTogether (RT), and Meet (M). Some

samples are shown in Figure 18.

This dataset is useful to check the consistency of our

categorization block. For display purpose, we use a sim-
plified signature of four binary values. The first value,

(a) Scene 1

(b) Scene 2

Fig. 17 The ROC curves for the detection of abnormal
frames in the UCSD dataset.

called F, is set to 1 if any unmatched flow model is de-

tected, i.e. it aggregates the last six fields of the original
signature. The value LV indicates a low variance and

the value HV highlights a high variance. Finally, the

value S stands for a high proportion of the static area

in the foreground. The distribution of the seven most

detected signatures is illustrated in Table 4.

To get a deep insight into the values presented in

Table 4, they are displayed in pie graphs in Figure 19.

As it can be seen, most of the presented events can be

mainly characterized by one, two or three signatures.

In fact, each event may be divided into different sub-

events. For example, Chase event is mainly character-
ized by three signatures: F, F-LV and F-HV. All these

events produce an abnormal event in the flow space.

An abnormal variance can also be detected depending

on the situation of the chased and chasing people. If

the chased person or group is caught, we may detect

an abnormal low variance feature. In the other case,

if the chased person or group is faster than the chas-
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ing group, an abnormal high variance is detected. Also,

within this dataset, a frame can contain different events

which make the characterization sometimes ambiguous.

For instance, InGroup scenes, which should have a low

variance and a high foreground static area, may corre-

spond to Approach or Split events which may increase
unexpectedly the variance and decrease the portion of

the foreground static area.

9.4 SPY project

The system has been applied in the ITEA2 SPY Euro-
pean project5 where several image processing methods

have been ported to an embedded system (ARM Cor-
tex A9) for video surveillance. Figure 20 shows a few
snapshots of the system installed at two different loca-
tions and using two different sensors. In each case, the

training has been performed on a 2 min video.

10 Conclusions

A modular system has been designed to detect and
characterize abnormal events in videos. This method

is based on a global analysis of the dynamic statistics
of the foreground binary pixels and a spatio-temporal
analysis of the motion in pixel blocks. Regarding the

foreground detection, the background subraction method

has been enhanced using optical flow to keep memory

of temporarily static pixels. Considering local activity,

a normalcy Mixture of Gaussians model is built on each

block and for each flow feature and is made more com-
pact using principal components analysis. A set of com-
pact hybrid histograms is used to characterize qualita-

tively the local activity in each block. It embeds both

optical flow orientation and foreground statistics.

An event is considered as normal if it fits all of the
designed models, otherwise an abnormal behavior is re-

ported. In addition, the method is able to precisely lo-
cate the abnormal area into the crowd, then it provides
a binary vector of maximum 13 features that can be

used for activity categorization. The system is modular

in the sense that each module independently provides

a normality/abnormality information. Due to the mod-

ularity of the system, the execution can be accelerated
on multi-core architectures. The method has been suc-
cesfully used in a European project on two differents
acquisition systems.

The method involves several parameters that have

been chosen so as not to be critical. The values spec-
ified in the documents should applied to most videos.

5 Surveillance imProved sYstem
https://itea3.org/project/spy.html

Even though the proposed approach provides promis-

ing results on different scenarios, improvements can be

made. An abnormality detected on actions can depend

on the size of the object in the image, which depends

on its distance from the camera. In the context of a

static camera, a calibration of the scene could be per-

formed in order to adapt the decision rules depending

on the location in the image. Furthermore, to catego-
rize an abnormal event, a binary vector is used. It could
be replaced by a vector of distances to the pre-defined

normal events, which may improve the precision of the

categorization results.
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Table 2 State-of-the-art methods used for comparison in the USCD dataset.

Abbreviation Meaning of the abbrevation
Adam [40] Real-time detection of unusual events based on multiple local monitors which collect

low-level statistics.
Antic [2] Scene parsing: localization of the abnormalities using statistical inference.
Lu [23] Fast sparse combination learning.

MDT [3] Mixture of Dynamic Textures models.
SF [18] Social force models.

MPPCA [15] Space-Time Markov Random Field. Atomic motion patterns are learnt via a Mixture
of Probabilistic Principal Component Analyzers.

MPCCA-SF [3,15,18] Idem where MPCCA is combined with SF Normalized flow.
Saligrama [21] Some empirical rules are used to fuse local statistics across spatio-temporal locations

and scales and produce a composite score for a video segment.
Sparse [13] Sparse reconstruction cost over a normal dictionary.

Subspace [41] Subspace clustering based on sparse representation.

Table 3 Equal Error Rate (EER) and Area Under the ROC Curve (AUC) on the UCSD Ped1 dataset.

SF-MPPCA SF MDT Sparse Saligrama Antic Subspace Lu Ours

EER 40% 31% 25% 19% 16% 18% 29.6% 17% 20%

AUC 59% 67.5% 81.8% 86% 92.7% 91% 68.4% 91.8% 86.6%

(a) Fight (b) Approach (c) Split

(d) InGroup (e) WalkTogether (f) Chase

Fig. 18 Sample frames of the BEHAVE dataset.
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Table 4 Distribution of the ten most repeated signatures among the ten labeled events.

Signature
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0 1 0 0 0 82 15 268 110 488 0 52 0 0

0 0 1 0 0 3 0 2 68 227 75 0 0 0

0 1 0 1 0 0 0 321 0 0 0 0 0 0
1 0 0 0 55 117 50 0 2 7 3 1 21 0

1 1 0 0 121 0 0 24 7 21 8 12 0 0

0 0 0 1 0 16 0 149 7 0 0 0 0 0

1 0 1 0 30 43 0 0 3 2 7 0 0 0

(a) Chase (b) Fight (c) RunTogether

(d) InGroup (e) Approach (f) WalkTogether

(g) Split (h) Ignore (i) Following

Fig. 19 Distribution of the ten most repeated signatures among nine events.
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(a) (b)

Fig. 20 Examples of anomaly detection on images from ITEA SPY project. (a) IP camera 25 fps from a commercialized
videosurveillance system, frame size 640 × 240 (1 row over two is not processed in order to reach real-time execution); (b)
Camera GigaEthernet, 50 fps, frame of size 1280 × 1024.


