
A great deal is known about the determinants of the 
behavior of rats and pigeons in Skinner boxes. The pro-
cedures developed and described by Skinner (1938) have 
been effectively used for research on many psychologi-
cal processes, including perception (Blough, 1956), con-
ditioning (Rescorla & Wagner, 1972), timing (Gibbon, 
1977), and choice (Herrnstein, 1974). One purpose of 
that research has been to describe and organize the deter-
minants of behavior. The research has identified a large 
number of replicable results, so that, under many proce-
dures, it is possible to predict the behavior of an animal 
(Ferster & Skinner, 1957). The research has also led to 
general  principles—for example, the scalar timing prin-
ciples (Gibbon, 1977) and the matching law (Davison 
& McCarthy, 1987)—that permit prediction of behavior 
under a wide range of conditions.

Early attempts to develop a general process model of 
animal learning and performance (e.g., Hull, 1943) were 
regarded as premature, primarily because of insufficient 
data on which to base such a model. Before extensive data 
became available, a more productive path was to develop 
separate models for different psychological processes, 
such as perception, conditioning, timing, and choice. 
For example, theories of conditioning were developed in 
order to account for response strength as a function of the 
amount of training, and theories of timing were developed 
for response rate as a function of time since onset of a 
time marker. The Rescorla–Wagner model is one heavily 
cited model of conditioning (Rescorla & Wagner, 1972); 
on September 26, 2006, a search of PsychINFO generated 
188 citations including the words Rescorla, Wagner, and 
model. Likewise, scalar timing theory is a heavily cited 

model of timing (Gibbon, 1977); on the same day, a search 
of PsycINFO generated 117 citations for scalar timing 
theory or scalar expectancy theory.

The Rescorla–Wagner model was developed to account 
for the results of experiments on acquisition and extinc-
tion of classical conditioning, especially those involving 
multiple stimuli. The model has been stable, so that the 
original equation and assumptions are still being used 
(Rescorla & Wagner, 1972, pp. 75–77):

Vi  i j ( j  V ), 0  i  1 and 0  j  1,

where the change in the associative strength of stimulus i 
( Vi) is proportional to the product of the learning rate of 
the stimulus ( i), the strength of reinforcer j ( j), and the 
difference between the asymptotic associative strength of 
the reinforcer ( j) and the sum of the strength of all stimuli 
present (V). The assumption is that the magnitude or prob-
ability of conditioned responding is ordinally related to V. 
This was developed only as a model of conditioning; it 
does not account for timing.

Scalar timing theory was developed to account for 
the result of experiments in which behavior is a function 
of the time between stimuli, responses, and reinforcers 
(Gibbon, 1977). The theory initially referred to the basic 
principles of scalar timing—that is, the proportional rela-
tionship between the mean time of response and physical 
time, the linear relationship between the standard devia-
tion of the time of response and physical time, the constant 
coefficient of variation (Weber’s law), and the superposi-
tion of behavioral functions at different times. Later on 
it referred to a process model that included modules for 
temporal perception, memory, and decision processes 

 543 Copyright 2007 Psychonomic Society, Inc.

THEORETICAL AND REVIEW ARTICLES

A modular theory of learning and performance

PAULO GUILHARDI, LINLIN YI, AND RUSSELL M. CHURCH
Brown University, Providence, Rhode Island

We describe a theory to account for the acquisition and extinction of response rate (conditioning) 
and pattern (timing). This modular theory is a development of packet theory (Kirkpatrick, 2002; Kirkpat-
rick & Church, 2003) that adds a distinction between pattern and strength memories, as well as contribut-
ing closed-form equations. We describe the theory using equations related to a flow diagram and illustrate 
it by an application to an experiment with repeated acquisitions and extinctions of a multiple-cued-interval 
procedure using rats. The parameter estimates for the theory were based on a calibration sample from the 
data, and the predictions for different measures of performance on a validation sample from the same data 
(cross-validation). The theory’s predictions were similar to predictions based on the reliability of the behavior.

Psychonomic Bulletin & Review
2007, 14 (4), 543-559

P. Guilhardi, paulo_guilhardi@brown.edu



544    GUILHARDI, YI, AND CHURCH

(Gibbon, Church, & Meck, 1984). However, scalar timing 
theory was developed as a model of timing, and so does 
not account for the acquisition and extinction of response 
strength.

In an attempt to account for both the timing and condi-
tioning produced by many procedures, both the  Rescorla–
Wagner model and scalar timing theory have been ex-
panded. Real-time learning models were developed as 
extensions of the Rescorla–Wagner model to account for 
timing as well as conditioning (Sutton & Barto, 1981), 
and rate expectancy theory was combined with scalar tim-
ing theory to account for conditioning as well as timing 
(Gallistel & Gibbon, 2000). The learning-to-time model 
(Machado, 1997) and packet theory (Kirkpatrick, 2002; 
Kirkpatrick & Church, 2003) have provided integrated ap-
proaches to account for both timing and conditioning.

An Overview of Packet Theory
This article will describe and evaluate a modified ver-

sion of packet theory. This is a modular theory of learning 
and performance that contains parts that may be labeled 
perception, memory, and decision. The theory combines 
ideas from scalar timing theory (Gibbon et al., 1984), the 
learning-to-time model (Machado, 1997), conditioning 
theories (Bush & Mosteller, 1955; Rescorla & Wagner, 
1972), as well as from several additional sources. Like 
scalar timing theory, it considers a clock as an accumula-
tion process and uses a threshold for comparison of clock 
and memory. Like the learning-to-time model, it consid-
ers perception and memory as vectors. Like condition-
ing theories, it uses combinations of values with a linear 
operator rule.

Packet theory is not unique in being a modular theory: 
Many theories of conditioning and timing may be regarded 
as modular (Church & Kirkpatrick, 2001). This feature, 
however, may be the most important one for the develop-
ment of theoretical improvements. The name packet the-
ory derives from a focus on the decision module, which 
provides the basis for bouts of responses. Thus, with this 
theory, it is possible to compare the output of the theory 
with the primary behavioral data (i.e., precise times of 
occurrence of individual responses). The perception and 
memory modules, however, are just as important as the 
decision module, so it may be more balanced to consider 
ours a “modular model,” rather than a revised version of 
packet theory.

Packet theory has been previously simulated to account 
for data from random-interval, fixed-interval, and tan-
dem random-plus-fixed-interval procedures (Kirkpatrick, 
2002; Kirkpatrick & Church, 2003). In these previous ex-
periments, differences in the reinforcement rate produced 
changes in the overall response rate, and differences in 
the reinforcement distribution produced changes in the 
response pattern. Packet theory has also been simulated 
to account for the data from procedures in which more 
than one cue (time marker) is used to signal availability 
of the reinforcer (Guilhardi, Keen, MacInnis, & Church, 
2005). In these procedures, changes in the rate of respond-
ing (e.g., an abrupt reduction in response rate followed by 
a slow increase in response rate) and in the overall slope of 

the response rate gradient following the occurrence of an 
additional time marker have suggested that rats time mul-
tiple intervals simultaneously (Church, Guilhardi, Keen, 
MacInnis, & Kirkpatrick, 2003; Leak & Gibbon, 1995; 
Meck & Church, 1984). The addition of rules that describe 
how rats combined different temporal cues increased 
the generality of the predictions of the model. In addi-
tion to asymptotic performance, packet theory was also 
simulated with a single set of parameters to account for 
many different patterns described by different functional 
forms of different dependent measures of the dynamics 
of temporal discrimination (Guilhardi & Church, 2005). 
In some cases, the predictions of the theory were evalu-
ated via a qualitative comparison of the predictions to the 
data (Kirkpatrick, 2002; Kirkpatrick & Church, 2003). In 
other cases, the theory predictions were superposed onto 
the data and a quantitative index of goodness of fit, such 
as the variance accounted for, was reported (Guilhardi & 
Church, 2005; Guilhardi et al., 2005). The modularity of 
the theory facilitates the evaluation and extensions of the 
models to different procedures.

This article is an extension of packet theory based on 
earlier versions of that theory. It adds a distinction be-
tween pattern and strength memory—that is, the use of 
separate memory structures sensitive to both the times of 
reinforcers relative to time markers (“pattern memory”) 
and the rate of reinforcement (“strength memory”). It also 
includes the use of an operant baseline rate and specifi-
cations of the characteristics of a packet of responses, 
which makes it possible to make predictions of the time 
of responses. This new model extends packet theory by 
(1) applying it in order to account for the dynamics of the 
pattern and rate during extinction for fixed-interval proce-
dures and (2) providing closed-form equations of packet 
theory for fixed-interval procedures.

A Description of Packet Theory
Figure 1 is a flow diagram of packet theory. It contains 

the basic elements of the theory and the inputs and outputs 
of each of the elements. The time marker refers to stimuli, 

Figure 1. A flow diagram of a packet theory of behavior.
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reinforcers, or responses that are inputs to a clock; the re-
inforcer also has characteristics that affect the perceptual 
store, a function that relates the time of onset of a time 
marker to the time of reinforcement, and strength mem-
ory, a function that is affected by the rate of reinforce-
ment. The perceptual store is the input to pattern memory, 
which is a function related to the expected time to the next 
reinforcement as a function of time since the onset of a 
time marker based on previous experience. A decision to 
respond is based on pattern and strength memories, and an 
operant rate. If a decision to respond occurs, it produces a 
packet of responses.

Figure 2 provides a more detailed flow diagram of 
packet theory. The notation for the variables and param-
eters of packet theory is given in Appendix A. The process 
is divided into five stages, represented by the five rows of 
elements for (respectively) procedure, perception, mem-
ory, decision, and response. A procedure consists of the 
specifications of the conditions under which time markers 
(such as stimuli) and reinforcers will be delivered. A clock 
transforms the physical time (t) into subjective time (t). 

This perceptual representation of time is available to the 
entire system at all times. At the delivery of a reinforcer, 
the perceptual store is updated. Memory consists of a pat-
tern memory and a strength memory that represent the way 
that the system is altered by previous experience. The state 
of pattern memory is affected by the reference memory, 
which provides a record of the times of reinforcement rela-
tive to a time marker (from the perceptual store), and by a 
threshold. Strength memory is affected by the occurrence 
or nonoccurrence of a reinforcer at any time and provides 
a record of the reinforcement rate (relative to the configu-
ration of stimuli present). A decision is based on the state 
of pattern memory, strength memory, and an operant rate. 
If the decision is to respond, a packet of responses is initi-
ated. Each of the boxes in Figure 2 contains the number of 
the equation in the text that describes the transformation 
of the input(s) of the box into its output(s). The function 
forms for pattern and strength memory and packet initia-
tion are for a discriminative fixed-interval (FI) procedure.

Procedure. In a discriminative FI procedure, the first 
response (e.g., head entry) after a fixed time (T) since the 

Figure 2. A detailed flow diagram of the processes of perception, memory, decision, 
and response in packet theory. The equation numbers refer to the equations in the text.
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onset of a stimulus (e.g., a houselight) is reinforced with 
the delivery of food for a fixed duration (d). The delivery 
of food initiates a period with no stimulus, after which the 
stimulus is presented again.

Perception. The onset of the stimulus, response, or re-
inforcer is used as a time marker that restarts an internal 
clock that increases as a linear function of time. This pro-
cess serves as the perceptual representation of time that is 
available to the entire system at all times:

 t = c  t, (1)

where t is physical time, c is clock rate, and t is subjec-
tive time. Note that subjective variables and parameters 
are italicized consistently throughout the text, but physi-
cal and procedural variables and parameters are not. The 
perceptual representation of time with clock rate c = 1 
is shown in Figure 2 (Equation 1) as a linear increasing 
function that relates subjective time and physical time be-
ginning at the onset of a time marker.

When the reinforcer is delivered, a new expected time to 
reinforcer in the perceptual store is generated by a simple 
transformation of the perceptual representation of time 
(t, Equation 1) into an expected time to reinforcement, as 
expressed in Equation 2:

 
s t
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(2)

where Tn and dn are the perceived time of reinforcement 
and the perceived reinforcement duration on cycle n, re-
spectively. The perceptual store, with c  1 and Tn  T, 
is shown in Figure 2 (Equation 2) as a linear decreasing 
function that relates expected time to reinforcement and 
subjective time beginning at a time marker and ending 
at the time of the reinforcer delivery. If different types 
of time markers occur, each is independently perceived 
and, after reinforcement, stored as different entities in the 
perceptual store.

Pattern memory. If a reinforcer is delivered, pattern 
memory is updated. This includes the updating of refer-
ence memory and the generation of a thresholded response 
state. Reference memory is the weighted mean of the val-
ues in the current perceptual store and in the previous ref-
erence memory, as expressed in Equation 3:

 m t s t m tn n n( ) ( ) ( ), ,m m m1 0 11  (3)

where mn 1(t) is the reference memory containing infor-
mation about the experience before cycle n, and m is a 
learning rate parameter that varies between 0 and 1. The 
reference memory at the steady state is shown in Figure 2 
(Equation 3) as the same function that is in perceptual 
store. This occurs because the times from the onset of the 
time marker to the reinforcement are the same in every 
cycle in the example of an FI procedure. The short delay 
between the food availability and its delivery following a 
response in the FI procedure is not being considered in the 
present analysis.

Response state on a cycle is based on the comparison 
of reference memory with a threshold. The threshold is set 

at some percentile of the reference memory, as expressed 
in Equation 4: 

 b m tn n ( ) , (4)

where the subscript  refers to the th percentile. The 
threshold percentile  is a normal random variable with 
a mean  and a coefficient of variation . The variation 
of bn is primarily determined by the distribution of  (see 
Appendix B for details). The threshold on a cycle is shown 
in Figure 2 (Equation 4) as a constant value.

Response state (high or low) depends on whether ref-
erence memory is below or above the threshold, as ex-
pressed in Equation 5:

 
h t

m t b

m t bn
n n

n n

( )
, ( ) ,

, ( ) .

1

0  
(5)

The response state on a cycle is shown in Figure 2  (Equa-
tion 5) as a step function that begins at 0 and switches to 1. 
The threshold bn was set at some percentile of mn(t) in 
order to keep the area under the step function constant 
across reinforcement rates that are the same but have dif-
ferent distributions (e.g., fixed and random intervals). 
Reinforcement distribution has been reported to affect 
pattern of responding but not rate of responding, whereas 
reinforcement rate has been reported to affect rate but not 
pattern of responding (Kirkpatrick & Church, 2003).

Strength memory. Strength memory is updated in 
time. If no reinforcer is delivered, the strength memory, 
denoted by w(t), is decremented (Equation 6a); if a rein-
forcer is delivered, it is incremented (Equation 6b):
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with reinforcement,
dw t
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w t Tn

n

( )
( ) ,r 1 nn n nt T d , (6b)

where e and r are the learning rates during no rein-
forcement and reinforcement, respectively. The strength 
memory on a cycle is shown in Figure 2 (Equation 6) as 
a decreasing function of time since the onset of the time 
marker when no reinforcer is given, with a large increment 
at the time of delivery of a reinforcer.

Decision. The operant rate of packet initiation r0(t) is 
a decision component that is not affected by pattern or 
strength memories. It is, at present, a parameter simply 
estimated by a constant, as described in Equation 7 and 
shown in Figure 2 (Equation 7):

 r0(t)  r0. (7)

The decision to initiate a packet of responses is de-
scribed in Equation 8. It is a function of response state 
hn(t) (Equation 5), strength memory wn(t) (Equation 6), 
operant rate of packet initiation r0 (Equation 7), and a 
rate parameter A. Because of the addition of a constant 
operant rate of packet initiation, the decision to respond 
occurs in a two-state fashion: a low rate (r0) and a high 
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rate (A  wn(t)  r0). The decision to initiate a packet of 
responses function is shown in Figure 2 (Equation 8):

 rn(t)  A  hn(t)wn(t)  r0. (8)

Response. When responses are generated, they usu-
ally occur in bouts. Bouts are the observed clusters of re-
sponses that are generated on the basis of a theoretical 
structure of bursts of responses called packets. The struc-
ture of packets of responses, which is not affected by tem-
poral procedure, is measured by the number of responses 
per packet and the interresponse interval in a packet.

The number of head entry responses in a packet is as-
sumed to follow a Poisson distribution, as expressed in 
Equation 9a:

 P u e
u

uu( )
!

, , , , . . . ,= =
−

μ
μ

0 1 2  (9a)

where u is the number of responses in a packet,  is the 
mean response number, and P(u) refers to the probabil-
ity that a packet contains u responses. The interresponse 
interval of head entry responses is assumed to be an 
inverse-Gaussian (Wald) distribution, as expressed in 
Equation 9b:
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where x is the interresponse interval in a packet, w is the 
mean interresponse interval, and w is a scale parameter. 
The functions of number of responses in a packet and in-
terresponse time (IRT) are shown in Figure 2 (Equations 
9a and 9b, respectively).

Closed-Form Equations for Packet Theory
In this section, the equations used for fitting data are 

described. A more complete development of the closed-
form equations for the summary measures used in this 
article can be found in Appendix B. Response rate is gen-
erated by the combination of packet initiation and packet 
structure, as expressed in Equation 10:

 R t A h t w t r un n n( ) ( ) ( ) .0  (10)

Packet theory claims that the separation of response pat-
tern and response rate results from the independence of 
pattern memory and strength memory. (See the proof in 
Appendix B.)

The mean response rate as a function of time, Rn(t), at 
steady state is determined by pattern memory. The mean 
number of responses in a packet is , the steady state wn(t) 
is approximately constant and denoted by w, and hn(t) is 
derived as an integral of the density function of the thresh-
old distribution from the current memory to infinity (see 
Appendix B for details). Thus, the mean response rate as 
a function of time at the steady state is

 R t A f b db Rn uw m tn

( ) ( ) ,
( ) 0

 (11)

where Auw is the product of A, , and w; R0 is the product 
of r0 and ; and f (b) is the density function of threshold. 
Equation 11 suggests that the response pattern at steady 

state is determined by pattern memory. Thus, it can be 
described by the parameters of the threshold distribution.

The mean response rate as a function of cycles, Rn(t ), 
is determined by strength memory. The value of wn(t ) ap-
proximates wn(0), and hn(t ) is a constant (see Appendix B 
for details). Thus, the mean response rate as a function of 
cycles is

 Rn(t )  Auh  wn(0)  R0, (12)

where Auh is the product of A, , and hn(t ). The rate param-
eters Auh (Equation 12) and Auw (Equation 11) may have 
slightly different values, but both are measures of response 
rate. Equation 12 suggests that the overall response rate is 
determined by strength memory. Thus, it can be described 
by the strength memory parameters r and e.

An Application of a Packet Theory of Acquisition 
and Extinction

In the sections below, successive acquisitions and ex-
tinctions of three discriminative FIs are described and pre-
dictions of packet theory are compared with the observed 
data. The goals were (1) to predict the rate and pattern 
of appetitive behavior during the acquisition and extinc-
tion of discriminative FIs; (2) to determine the effects of 
extinction on the memory for the pattern of behavior; and 
(3) to compare the learning rates of acquisition and ex-
tinction of discriminative FIs.

METHOD

Animals
Twelve male Sprague Dawley rats with no previous experience 

were used in the experiment. The rats were housed individually 
in a colony room on a 12:12-h light:dark cycle (lights off at 8:30 
a.m. so that testing occurred during the dark phase of the light:dark 
cycle). Dim red lights provided illumination in the colony room and 
the testing room. The rats were fed a daily ration that consisted of  
45-mg Noyes pellets (Improved Formula A) that were delivered dur-
ing the experimental session, and an additional 15 g of FormuLab 
5008 food given in the home cage after the daily sessions. Water was 
available ad libitum in both the home cages and the experimental 
chambers. The rats arrived in the colony at 35 days of age and were 
187 days of age when training began.

Apparatus
The 12 boxes (25  30  30 cm) were located inside ventilated, 

noise-attenuating enclosures (74  38  60 cm). Each box was 
equipped with a food cup and a water bottle. Three stimuli, referred 
to as “noise,” “light,” and “clicker,” were generated by modules from 
Med Associates (St. Albans, VT). The noise was a 70-dB white noise, 
with an onset rise time and termination fall time of 10 msec, that was 
generated by an audio amplifier (Model ANL-926). The light was a 
diffused houselight (Model ENV-227M) rated to illuminate the en-
tire chamber over 200 Lux at a distance of 3 in. The clicker (Model 
ENV-135M) was a small relay mounted on the outside of the box 
that was used to produce auditory clicks at a rate of 1/sec. A pellet 
dispenser (Model ENV-203) delivered 45-mg Noyes pellets into the 
food cup on the front wall. Each head entry into the food cup was 
detected by an LED photocell. A water bottle was mounted outside 
the box; water was available through a tube that protruded through 
a hole in the back wall of the box. Two Gateway Pentium III/500 
computers running Med-PC Medstate Notation Version 2.0 (Tatham 
& Zurn, 1989) controlled experimental events and recorded the time 
at which events occurred with 2-msec resolution.
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Procedure
The animals received training in the multiple-cued-interval pro-

cedure (Guilhardi & Church, 2005). A cycle in this procedure con-
sisted of a 20-sec period in which the discriminative stimulus was 
off, followed by a fixed interval with the discriminative stimulus on. 
Food was primed at the end of this FI. Immediately after the next 
head entry into the food cup (measured as the time of the breaking 
of a photo beam in the food cup), food was delivered, the discrimi-
native stimulus was turned off, and the next cycle began. The daily 
sessions were composed of 60 cycles.

The experiment had four phases: acquisition, extinction, reacqui-
sition, and repeated acquisitions and extinctions.

Acquisition. In the first phase, all rats were trained for 30 ses-
sions under 30-, 60-, and 120-sec FI schedules of reinforcement dif-
ferentially signaled by white noise, light, or clicker. The assignment 
of stimuli to intervals was counterbalanced across animals. One of 
the three possible intervals (30, 60, or 120 sec) was presented ran-
domly with equal probability on every cycle.

Extinction. In the 35 sessions of the second phase, head entry 
responses were not reinforced after one of the intervals, and the 
stimulus terminated after 30, 60, or 120 sec (i.e., the time at which 
food would be available). The 12 rats were randomly partitioned 
into three groups of 4 rats. One randomly selected group had re-
sponses to the 30-sec interval extinguished, another had responses 
to the 60-sec interval extinguished, and the remaining group had 
responses to the 120-sec interval extinguished. Thus, for each rat, 
responses to one of the three intervals were extinguished, and the 
conditions of acquisition were maintained on the other two intervals. 
The  stimulus-to- interval assignment was counterbalanced across 
groups and randomized when counterbalancing was not possible.

Reacquisition. In the 10 sessions of the third phase, the condi-
tions were identical to those in the acquisition phase for all rats.

Repeated acquisitions and extinctions. In the final phase of 
45 sessions, there was extinction of responses to one of the three in-
tervals, as in the extinction phase. However, responses to a different 
interval, and therefore to a different discriminative stimulus, were 
extinguished on every session. On the first session of this phase, one 
of the three intervals was randomly chosen with equal probability. 
For each of the remaining sessions, one of the three intervals was 
randomly selected with equal probability, with the restriction that 
the interval during which responses of head entry were extinguished 
did not repeat on two consecutive sessions.

RESULTS

Response Rates During Acquisition, Extinction, 
and Reacquisition

Overall response rate as a function of sessions increased 
when the first response after the FI was followed by rein-
forcement during acquisition, plotted on a logarithmically 
spaced scale in Figure 3 (left panels). The overall response 
rate was defined as the mean response rate during the 
stimulus-on period. In contrast, overall response rate as a 
function of sessions decreased when responses after the FI 
were not followed by reinforcement during extinction for 
the FIs of 30 sec (top center panel), 60 sec (middle center 
panel), and 120 sec (bottom center panel).

Figure 3. Response rate. Response rate during the stimulus as a func-
tion of sessions, during acquisition (left panels), extinction (fixed interval 
[FI] 30 sec, top center panel; FI 60, middle center panel; FI 120, center 
bottom panel), and reacquisition (right panels). The empty symbols indi-
cate intervals with no reinforcement. The data are averaged across rats, 
and the smooth lines are the fits of Equation 12 to the data. Note that the 
y-axis is scaled logarithmically.
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During reacquisition, overall response rate rapidly in-
creased to levels similar to those at the end of acquisition. 
The smooth lines in Figure 3 are the fits of packet theory 
(Equation 12) to the mean data across intervals and rats 
during acquisition; to the interval extinguished and the 
mean of the remaining two intervals during extinction, 
averaged across rats; and to the previously extinguished FI 
averaged across rats during reacquisition. The estimated 
parameters were for the reinforcement learning rate ( r), 
the no-reinforcement learning rate ( e), the rate parameter 
(Auh), and the operant rate (R0). The proportion of variance 
accounted for ( 2) was .87, .88, and .88 for the FIs 30 sec 
(top panels), 60 sec (center panels), and 120 sec (middle 
panels), respectively.

Fits of the equation to individuals made it possible to 
compare the treatment conditions. The rate of learning dur-
ing reinforcement ( r) was faster than the rate of learning 
during no reinforcement ( e) for all FIs during both acqui-
sition and reacquisition phases [F(1,9) = 42.15, p < .001]; 
the rate of learning ( r) in reacquisition was faster than 
during acquisition [F(1,9) = 7.33, p < .05]. An ANOVA 
with phases (acquisition, extinction, and reacquisition) as 
a within-subjects factor and FI (30, 60, and 120 sec) as a 
between-subjects factor showed that the extinction learn-
ing rate e was similar across FIs [F(2,9) = 0.60, p = .568] 
and phases [F(2,18) = 3.17, p = .066]. There was no phase 
versus FI interaction [F(4,18) = 0.68, p = .615].

Response Pattern During Acquisition, Extinction, 
and Reacquisition

The patterns of responding at asymptote during acqui-
sition, extinction, and reacquisition are shown in Figure 4. 
The arrows indicate the response rate gradients for the in-
terval durations during which responses were extinguished 
(30 sec, top center panel; 60 sec, middle center panel; and 
120 sec, bottom center panel). Response rate increases 
as a function of time since stimulus onset during the FIs 
of 30, 60, and 120 sec. The increase in response rate is 
particularly pronounced for the stimuli during which rein-
forcement was delivered. The smooth lines are the fits of 
packet theory (Equation 11) to the mean data across rats.

The smooth functions in Figure 4 show the estimated 
response rates as a function of time since stimulus onset 
during the acquisition, extinction, and reacquisition 
phases. They are based on fits of Equation 11 using the 
rate parameter (Auw), the mean of the threshold percentile 
( ), the coefficient of variation of the threshold percentile 
( ), and operant rate (R0). The proportions of variance ac-
counted for by the model ( 2) were .988, .989, and .989 
for the FIs 30 (top panels), 60 (middle panels), and 120 sec 
(bottom panels), respectively.

A measure of overfitting due to excessive complexity 
by the model was determined by cross-validation. The pa-
rameters of the model were estimated for each rat, and 2 
determined, using a calibration sample composed of half 

Figure 4. Response pattern. Response rate as a function of time since stimu-
lus onset during acquisition (left panels), extinction (fixed interval [FI] 30 sec, 
top center panel; FI 60, middle center panel; FI 120, bottom center panel), and 
reacquisition (right panels). The arrows in the center panels indicate the gradi-
ents at the intervals during which no food was delivered. The data are averaged 
across rats during Sessions 21–30 of acquisition, 11–35 of extinction, and 1–10 
of reacquisition. The smooth lines are the fits of Equation 11 to the data.
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of the data (e.g., even sessions). The proportions of vari-
ance accounted for by the model relative to the calibration 
sample ( 2 calibration) averaged across rats were .975, 
.981, and .984 for the FIs 30, 60, and 120 sec, respectively. 
Another 2 was determined for each rat from the fits of 
the initial model fit (with parameters determined by the 
calibration sample) to the validation sample composed of 
the second half of the data (e.g., odd sessions). The pro-
portions of variance accounted for by the model relative to 
the validation sample ( 2 validation) averaged across rats 
were .944, .958, and .962 for the FIs 30, 60, and 120 sec, 
respectively. The ratios between 2 validation and cali-
bration, a measure of overfitting, were 0.968, 0.977, and 
0.978 for the FIs 30, 60, and 120 sec, respectively. A ratio 
close to 1 indicated little overfitting by the model. The 
ratios averaged across intervals were less than 1 [t(11) = 
5.58, p < .001], indicating some overfitting by the model. 
In addition, a measure of the reliability between the cali-
bration and validation data samples was determined. The 
proportions of variance accounted for by the calibration 
sample relative to the validation sample ( 2 reliability) 
were .917, .944, and .944 for the 30-, 60-, and 120-sec 
FIs, respectively. The ratios between 2 validation and re-
liability were 1.029, 1.015, and 1.019 for the 30-, 60-, and 
120-sec FIs, respectively. A ratio close to 1 indicated that 
the variabilities of the model and the data were similar. 
The ratios averaged across intervals were greater than 1 
[t(11) = 5.58, p < .001], indicating a greater variability in 
the data relative to the model.

One measure of response rate, the parameter Auw (the 
rate parameter determined from the fits of Equation 11), 
was greatly affected by reinforcement treatment during 
each experimental phase but not affected by the FI. An 
ANOVA with phases (acquisition, extinction, and reac-
quisition) as a within-subjects factor and FI (30, 60, and 
120 sec) as a between-subjects factor was performed on 
the rate parameter Auw. The parameter was much lower 
for extinction than for acquisition and reacquisition 
[F(2,18) = 105.37, p < .001] and was similar across FIs 
[F(2,9) = 0.70, p = .522].

Two measures of the pattern of responses, the mean 
threshold percentile ( ) and the coefficient of variation 
of the threshold percentile ( ), and another measure of rate 
of responses, the operant rate (R0), were not affected by 
reinforcement treatment (acquisition, extinction, and re-
acquisition) or by the FI.  was similar across phases (ac-
quisition, extinction, and reacquisition) [F(2,18) = 0.57, 
p = .577], and across FIs (30, 60, and 120 sec) [F(2,9) = 
0.31, p = .743].  was also similar across reinforcement 
treatments [F(2,18) = 0.21, p = .808] and across FIs 
[F(2,9) = 0.24, p = .794]. Moreover, R0 was also similar 
across phases [F(2,18) = 1.24, p = .335] and across FIs 
[F(2,9) = 0.61, p = .553].

The similarity of the patterns of response rate gradi-
ents during conditions in which responses were and were 
not followed by reinforcement (indicated by the arrows in 
Figure 4) are shown in Figure 5, with response rate during 
extinction plotted in a relative scale. Relative response 
rate (response rate relative to the mean response rate) in-

creased as a function of time since stimulus during the 30-, 
60-, and 120-sec FIs. The thin lines are the fits of packet 
theory (Equation 11) to the mean data across rats.

Response Rate During Repeated Acquisitions 
and Extinctions

In every session during repeated acquisitions and ex-
tinctions, reinforcers were once again delivered at the 
fixed interval extinguished during the previous sessions 
(repeated acquisition sessions) and removed for one of 
the two FIs that had been reinforced during the previous 
session (repeated extinction sessions).

The response rate as a function of sessions of repeated 
acquisitions (top panel) and repeated extinctions (bottom 
panel) during the FIs 30, 60, and 120 sec are shown in 
Figure 6. The mean response rate during sessions of re-
peated acquisitions was greater than that during sessions 
of repeated extinctions for all of the FIs. An ANOVA with 
reinforcement treatment during the repeated acquisitions 
and extinctions phase and FI as between-subjects factors 
showed an effect of reinforcement treatment [F(1,11) = 
73.07, p < .001]. In addition, the mean response rate was 
inversely related to the FI: The mean rates during repeated 
acquisitions were 77.4, 62.8, and 55.1 responses/min for 
the FIs 30, 60, and 120 sec, and the mean rate during re-
peated extinctions was 52.5, 48.3, and 35.4 responses/
min, respectively, for the three FIs. There was an effect of 
FI [F(2,22) = 4.52, p < .05].

The slopes of the response rate as a function of sessions 
of repeated acquisitions and extinctions were relatively 
flat. The lines shown in Figure 6 are at the mean response 
rates for the 30-, 60-, and 120-sec FIs during the sessions 
of repeated acquisitions (top panel) and repeated extinc-
tions (bottom panel).

Figure 5. Response pattern during extinction. Relative re-
sponse rate (proportion of the mean response rate) as a function 
of stimulus onset for the fixed interval (FI) 30-, 60-, and 120-sec 
conditions, during which responses were not followed by rein-
forcement, in the last 25 sessions of extinction. The smooth lines 
are the fits of Equation 11 to the data.
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Response Pattern During Repeated Acquisitions 
and Extinctions

Figure 7 shows that the response pattern was also main-
tained during the repeated extinctions and acquisitions. 
Response rate increased as a function of stimulus onset 
during the FIs 30, 60, and 120 sec. The smooth lines are 
the fits of Equation 11 to the data averaged across rats. 
The proportion of variance accounted for by the model 
( 2) averaged across rats, intervals, and repeated acquisi-
tions and extinctions was .981. A measure of overfitting 
due to excessive complexity by the model was determined 
by cross-validation. The parameters of the model were es-
timated for each rat, and 2 was determined using a cali-
bration sample composed of half of the data (e.g., even 
sessions). The proportion of variance accounted for by the 
model relative to the calibration sample ( 2 calibration), 
averaged across rats, intervals, and repeated acquisitions 
and extinctions, was .967. Another 2 was determined for 
each rat from the fits of the initial model fit (with param-
eters determined by the calibration sample) to the valida-
tion sample composed of the second half of the data (e.g., 
odd sessions). The proportion of variance accounted for by 

the model relative to the validation sample ( 2 validation), 
averaged across rats, intervals, and repeated acquisitions 
and extinctions, was .907. The ratio between 2 validation 
and calibration, a measure of overfitting, was 0.938. This 
ratio was less than 1 [t(11) = 5.12, p < .001], indicating 
some overfitting by the model. In addition, a measure of 
the reliability between the calibration and validation data 
samples was determined. The proportion of variance ac-
counted for by the calibration sample relative to the vali-
dation sample ( 2 reliability) was .877. The ratio between 

2 validation and calibration was 1.034. This ratio was 
greater than 1 [t(11) = 2.43, p < .001], indicating more 
variability across data samples than across a model and 
a data sample.

One measure of response rate, the parameter Auw (de-
termined from the fits of Equation 11), was greatly af-
fected by reinforcement treatment during repeated ac-
quisitions and extinctions, and was also affected by the 
FI. An ANOVA with reinforcement treatment (repeated 
acquisitions and extinctions) as a within-subjects factor 
and FI (30, 60, and 120 sec) as a between-subjects factor 
was performed on the rate parameter Auw. The parameter 
was lower for repeated extinctions than for repeated ac-
quisitions [F(1,11) = 51.52, p < .001] and was a function 
of FI [F(2,22) = 3.46, p < .05]; there was no interaction 
[F(2,22) = 0.79, p = .467].

A measure of the pattern of responses, the mean thresh-
old percentile ( ), was similar across reinforcement treat-
ments [F(1,11) = 3.69, p = .081] and was a function of FI 
[F(2,22) = 4.19, p < .05], and there was no reinforcement 
treatment versus FI interaction [F(2,22) = 0.93, p = .409]. 
Another measure of the pattern of responses, the coeffi-
cient of variation of the threshold percentile ( ), differed 
across reinforcement treatments [F(1,11) = 7.13, p < .05] 
and was similar across FIs [F(2,22) = 2.05, p = .153], but 

Figure 6. Response rate. Response rate as a function of ses-
sions during the repeated acquisitions (top panel) and repeated 
extinctions (bottom panel) for the fixed intervals (FIs) 30, 60, and 
120 sec. The data are mean response rates during the final por-
tion of the stimulus presentation (the last 5, 10, and 20 sec for 
the FI 30, 60, and 120 conditions) during Cycles 2–15, averaged 
across rats. The smooth lines are the fits of Equation 12 to the 
data. Note that the y-axis is scaled logarithmically.
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the fits of Equation 11 to the data.
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again there was no interaction [F(2,22) = 1.30, p = .293]. 
Another measure of rate, the operant rate (R0), was simi-
lar across reinforcement treatments [F(1,11) = 0.94, p = 
.353] and across FIs [F(2,22) = 1.21, p = .318], and there 
was no interaction [F(2,22) = 0.13, p = .876].

Response Bouts
Although the averaged response pattern was well char-

acterized by smooth functions (Equation 11), responses 
were organized in bouts. Moreover, the bouts were simi-
lar across stimulus durations. The interresponse time 
(IRT) distributions for the 30-, 60-, and 120-sec FIs dur-
ing the last 20 sessions of acquisition (Sessions 11–30) 
are shown in Figure 8. The data are averaged across rats, 
and the smooth line is the fit of Equation 9b to the mean 
data across rats and stimulus durations. Equation 9b was 
also used to fit the IRT distributions of individual rats for 
the 30-, 60-, and 120-sec FIs. The center ( w) and scale 
( w) parameters of the Wald distribution were similar 
across stimulus durations [F(2,22) = 0.96, p = .397 and 
F(2,22) = 0.14, p = .872, respectively]. Although the vari-
ance accounted for ( 2) by the fit of the Wald distribution 
to the IRT distribution averaged across fixed intervals was 
.93, there were systematic deviations of the data from this 
function form. The bimodal pattern was observed in all 
three intervals for half of the rats.

DISCUSSION

This article describes an experiment that investigated 
the dynamics of acquisition and extinction. The results 
from this experiment were consistent with the results pre-
viously described: Rate of acquisition was faster than rate 
of extinction (Guilhardi, Yi, & Church, 2006; Rescorla, 
2002); rate of reacquisition was faster than the rate of ini-
tial acquisition (Guilhardi & Church, 2005); and memory 
for interval duration was preserved after extinction (Guil-

hardi & Church, 2006; Ohyama, Gibbon, Deich, & Bal-
sam, 1999; Rescorla, 1996, 2001). In the present experi-
ment, the hypothesis that memory for interval duration 
was preserved after extinction was based on the fact that 
the response rate gradients were still related to interval 
duration during extinction. When the rate and pattern pa-
rameters of the model were free to vary, the rate parameter 
of the model (A) was greatly affected by extinction, but 
the pattern parameters (mean and coefficient variation of 
the threshold) were not. (One of the pattern parameters, 
the coefficient of variation of the threshold, had a mar-
ginally significant effect only in repeated extinctions; see 
Figure 7.)

In addition, the results of this experiment showed no 
evidence that the speed of extinction of response strength 
increased after successive acquisitions and extinctions 
(Figure 6). These results are surprising considering that, 
under many conditions of successive conditional discrimi-
nation learning, animals develop learning sets referred to 
as the ability of “learning to learn” (Harlow, 1949).

This article also describes a modular theory of learn-
ing and performance, its application to a multiple-cued-
interval procedure, and the bases for its evaluation. The 
model described here is a modified version of packet 
theory whose features include modularity, specificity in 
its behavioral output, and the availability of closed-form 
equations. The bases for evaluation of the model include 
a comparison of the goodness of fit based on the model 
relative to other samples of the data, as well as input and 
output generality, complexity, and predictive value.

Modularity
The modularity of the model is shown by the flow dia-

gram (Figure 2), with separate modules for perception, 
memory, decision, and response. The equation number in 
each of the boxes specifies the transformation rules for 
each module.

Probably the most important new feature of this model 
is the use of separate pattern and strength memories. Pat-
tern memory is updated by reinforcement, but its content 
is determined by current perception and previous memory. 
Since pattern memory is only updated when reinforcement 
occurs, the response pattern is maintained during extinc-
tion. These predictions of the model are consistent with 
experiments that have described the pattern of responses 
during extinction (Drew, Yang, Ohyama, & Balsam, 2004; 
Guilhardi & Church, 2006; Guilhardi et al., 2006), and 
also consistent with the maintenance of associations dur-
ing extinction (Rescorla, 1996, 2001). These predictions, 
however, are not consistent with experiments that have 
shown pattern learning during extinction (Guilhardi & 
Church, 2006, Experiment 2). Improvements in the pat-
tern memory of this module are still necessary.

Strength memory is increased by reinforcement and de-
creased by nonreinforcement. The implementation of this 
process was adapted from an application of the  Rescorla–
Wagner model to a procedure (Rescorla, 2002) in which 
the rates of acquisition and extinction were compared 
(Guilhardi et al., 2006). In this experiment, the authors 
described the effects of successive acquisitions and ex-

Figure 8. Response bouts. Interresponse time (IRT) distribu-
tions for the 30-, 60-, and 120-sec stimulus durations during the 
last 20 sessions of acquisition (Sessions 11–30). The data are aver-
aged across rats, and the smooth line is the fit of Equation 9b to 
the mean data across rats and stimulus durations.
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tinctions on response rate and pattern, and showed that 
a simple linear mapping of response rate to the response 
strength variable of the Rescorla–Wagner model was suf-
ficient to fit the response rate results.

This open architecture should facilitate modification 
and improvements in the model. For example, the present 
version of the model contains a representation of time that 
is proportional to physical time. Various alternatives have 
been proposed that could be explored in an overall model 
that was not otherwise changed. These alternatives might 
include a diffusion model that has been effectively used 
for reaction time (Ratcliff, Van Zandt, & McKoon, 1999); 
various pulse distributions, including the Raleigh distribu-
tion that directly produces the scalar properties (Reid & 
Allen, 1998); and oscillatory sources that produce small 
but systematic deviations from linearity in perceived time 
(Crystal, 2001).

Closed-Form Equations
Many quantitative models of behavior may be de-

scribed with difference equations (for discrete trials) or 
differential equations (for continuous time) in which one 
of the factors required for the prediction of behavior is 
the behavior on the previous cycle session (or at a previ-
ous time). Thus, such models provide statements about the 
change in behavior, not directly about the behavior itself. 
To obtain information about behavior on the nth cycle, it 
is necessary to calculate all previous cycles. Computer 
simulations of these models can be easily done, but there 
is a trade-off between the time required for a simulation 
and the accuracy obtained.

A closed-form equation is one that can be expressed 
in terms of elementary or well-known functions. Specifi-
cally, it may require an input of a trial number or a tem-
poral duration, but it will not include a measure of the be-
havior on the previous trial (or time). This type of equation 
requires much less calculation, which can be done more 
rapidly and accurately.

Closed-form equations have been developed for other 
theories of timing and conditioning, such as scalar tim-
ing theory (Gibbon et al., 1984) or the learning-to-time 
model (Machado, 1997), and they are available for the 
asymptotic value in the Rescorla–Wagner model (Yama-
guchi, 2006). Closed-form equations for packet theory are 
described in the present article.

Specificity of Behavioral Output
The primary data consisted of the times of head en-

tries into the food cup, the times of onset and termina-
tion of the stimuli, and the time of food delivery. From 
the primary data, various standard summary measures of 
performance were calculated. These measures reflected 
the response rate, response pattern, and response bouts. 
Response rate was examined as a function of sessions and 
treatment conditions; response pattern was examined as a 
function of the absolute and relative local response rates 
as a function of time since stimulus onset, and response 
bouts were characterized by the frequency distribution of 
interresponse intervals as a function of treatment condi-
tions. These summary measures had quite different func-

tional forms, so it is clear that a successful prediction was 
not based on curve fitting of a particular function (such as 
an exponential, logistic, or normal function). Presumably, 
a successful prediction of the different shapes of different 
summary measures required a valid process model. For 
example, additional dependent measures of FIs (Guilhardi 
& Church, 2004), such as postreinforcement pause and 
curvature index, could be used to describe performance 
under acquisition and extinction. The functional forms 
here described could not be directly used to predict these 
new functional forms, but the new forms could be derived, 
with no additional assumptions or parameters, from those 
originally used to describe the pattern and rate modules.

A goal of packet theory is to account for times of re-
sponses, and if that is achieved, it will obviously be pos-
sible to account for any summary measure. In fact, the 
predictions of multiple functional forms described by 
multiple dependent measures with a single set of assump-
tions have been described for acquisition using a simula-
tion of packet theory (Guilhardi & Church, 2005).

Generality
Output generality. Packet theory has been applied to 

various standard summary measures of the primary data. 
Ideally, for output generality, it should be extended to a 
sample of all summary measures of the primary data in a 
specified universe.

Finally, packet theory has been applied to two specific 
responses (leverpressing and head entry). Ideally, it should 
be extended to additional features of these responses (e.g., 
dwell time) and to other behavior that occurs in the box 
(such as drinking, types of grooming, and types of explo-
ration). Through online analysis of digital video, continu-
ous automatic monitoring of the behavioral state should 
be feasible.

Input generality. At present, packet theory has been 
applied to various specific procedures. Ideally, for input 
generality, it should be extended to a sample of all proce-
dures in a specified universe.

Goodness of Fit
Typically, goodness of fit refers to the percentage of 

variance accounted for by a model. It involves a com-
parison of the predictions of the proposed model with a 
null hypothesis. This is usually considered to be a neces-
sary, but certainly not a sufficient, basis for model selec-
tion (Myung & Pitt, 2002, pp. 443–453; see also Myung, 
2000; Pitt, Myung, & Zhang, 2002). In some cases, how-
ever, it may not even be necessary. Consider the extensive 
evidence that, under certain conditions, animals and peo-
ple may respond in a nearly random manner (Neuringer, 
2002). A good model of this process should also produce 
nearly random output, but the goodness of fit would be 
near 0. This is a serious limitation of a goodness-of-fit 
criterion that compares the fit of a proposed model with 
the fit of the null hypothesis.

Generalizability should refer to the ability of a model to 
mimic, not only a particular sample, but also other sam-
ples from the same process. An appropriate criterion for 
a successful prediction would be its similarity to the reli-
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ability of the behavior: The differences between the model 
and the data should be neither more nor less variable than 
the differences between two samples of the data. This is 
implicit in the use of a Turing test for the evaluation of a 
model (Church & Guilhardi, 2005).

Improvement of the fit. The theory should be modi-
fied when systematic deviations of the data from the pre-
dictions are identified. In the present article, these are 
most clearly seen in the frequency distribution showing 
the bouts (Figure 8). Of course, any modifications in the 
model should be tested for backward compatibility. The 
goal of a theory is to predict behavior at least as well as 
one sample of behavior can predict another (the reliability 
of behavior). In the present article, the 2 validation was 
slightly greater than the 2 reliability (Figures 4 and 7). 
This undoubtedly reflects the fact that the mean of the 
model does not reflect the sampling error in the calibra-
tion and the validation sets.

This is undesirable if one is trying to produce a model 
that is indistinguishable from the data, and may be cor-
rected in two ways: by changes in the evaluation proce-
dure (e.g., selection of dependent variables that represent 
the variability of the predictions of the model) or by cor-
rections in the model (e.g., change in the variability levels 
of the model predictions).

Decrease in Complexity
Because of the low amount of random variability in 

the data, there was no serious overfitting problem. Thus, 
the percentage variance accounted for by the model with 
cross-validation was only slightly lower than that without 
(Figures 4 and 7). Nonetheless, unnecessary complexity 
should be eliminated whenever possible. The modularity 
also facilitates the determination of ways to reduce the 
complexity of the model. Perhaps some modules are not 
necessary, or perhaps the function forms or the number of 
parameters can be reduced.

Predictive Value
Data archives. Primary data from animal cognition 

research (Kurtzman, Church, & Crystal, 2002; Vaughan, 
2004) have increasingly been made available by scien-
tific societies, such as the Psychonomic Society (www 
.psychonomic.org/archive) and the Society for Neurosci-
ence (big.sfn.org/NDG/site); by research institutes, such 
as the Massachusetts Institute of Technology (libraries 
.mit.edu/guides/subjects/data); and by researchers’ per-
sonal Web sites (e.g., www.brown.edu/Research/Timelab 
and www.uga.edu/animal-cognition-lab). These archives 
often include the times of all recorded behavioral and 
procedural events, as well as documentation of codes and 
other conventions. They are efficient resources for testing 
theoretical predictions prior to conducting experiments. 
At present, various related topics, such as conditioning, 
timing, and choice, are often explained with different the-
ories. With increased availability of mathematical theories 
of behavior in the archives, it will be feasible to develop 
more unified theories based on secondary data analysis.

Diagnosis. If prediction from a model is successful, 
there is a possibility that the theory can also be used for 

diagnosis. The prediction task is to infer the behavior from 
the input; the diagnosis task is to infer the input from the 
behavior. Thus, on the basis of the observed behavior and 
a theory, the problem would be to identify the conditions 
that produced the behavior. This is a more difficult task, 
but one that may be of greater practical importance.

Novel predictions. Most of the applications of packet 
theory have been to standard procedures that usually pro-
duce (at least qualitatively) standard results. Conditions 
under which standard procedures occasionally produce 
nonstandard predictions should also be examined, and 
the theory should be tested with some new procedures. 
A theory that makes no novel predictions serves only to 
organize the results; a theory that does make some novel 
predictions may simply need to be improved, but it might 
also lead to new discoveries.

Conclusions
A development of packet theory was described, with the 

additions of modularity, a distinction between pattern and 
strength memories, and closed-form equations. In addi-
tion to accounting for the dynamics of acquisition, this ar-
ticle extended the application of the theory to account for 
the dynamics of extinction. Goodness of fit of the theory 
was based on cross-validation: A calibration sample from 
the data was used for parameter estimates, and a validation 
sample from the same data was used to estimate goodness 
of fit. The predictions based on the theory were similar to 
predictions based on the reliability of the behavior.
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APPENDIX B 
An Application of Packet Theory

The equations and proofs of packet theory in this appendix are based on a fixed-interval procedure (FI). In 
this procedure, the first response after a fixed interval from the onset of a time marker produces a reinforcer; 
a cycle refers to the interval between the onset of the time marker and termination of the reinforcer. In this ap-
plication, the time between the fixed interval and the time of reinforcement is approximated by setting it to 0, as 
in a fixed-time procedure. Observed procedural and response variables are written in standard font; intervening 
variables, such as perception, memory, and decision variables, are written in italics. Parameters are written either 
in italics or Greek letters.

The first goal of this appendix is to describe the response rate as a function of time since the onset of a time 
marker for each cycle of each individual rat (Equation B19). The second goal is to describe the mean response 
rate as a function of time since the onset of the time marker (across cycles) and the mean response rate as a 
function of cycles (across time within the interval). The mean response rate as a function of cycles is given in 
Equation B20b; the mean response rate as a function of time is given in Equation B21b. The approach is to fol-
low the organizational scheme diagrammed in Figure 2.

Perception
The perceived time t is proportional to the physical time t:

 t  c  t. (B1, Equation 1)

According to Equation B1, the perceived time of reinforcement is

 T  c  T (B2a)

APPENDIX A 
Notation

Module  Variable Parameter  Name  Equation
Perception t Physical time

t Perceived time
T Target time
T Perceived target time

Pattern memory c Clock rate 1
sn(t) Expected time to reinforcer in perceptual store
mn(t) Reference memory
hn(t) Response state
bn Threshold

m Memory learning rate 3
( , ) Threshold percentile (mean and coefficient of 

variation)
4

Strength memory wn(t) Strength memory
wn(0) Zero-time strength memory

e Learning rate during no reinforcement 6

r Learning rate during reinforcement 6

Decision rn(t) Packet initiation
Rn(t) Response rate 

A A Auh uw,( ) Rate parameter
r0 Operant baseline rate of packet initiation 8
R0 Operant baseline rate of response 10

Response u Number of responses in a packet
x Interresponse interval in a packet

The mean response number in a packet

w The scale parameter in Wald distribution

w The center parameter in Wald distribution

Others n Cycle number
n– The average across cycles

  t–    The average across some interval   
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and the perceived reinforcement duration is

 d  c  d (B2b)

when c  1, t  t, T  T, and d  d. The expected time to reinforcement, sn(t), is

 s t
T t t T

T t T dn( )
, ;

, .

0

0
 (B3, Equation 2)

Because in the FI procedure sn(t) does not change with cycle, it can be simply written as s(t).

Memory
Pattern memory. Reference memory, mn(t), is updated when a reinforcer is delivered.

 m t s t m tn n( ) ( ) ( ), ,m m m1 0 11  (B4, Equation 3)

where m is the pattern learning rate parameter. According to Equation B4, mn(t) is a weighted mean of s(t) and 
mn 1(t). Similarly, mn 1(t) is a weighted mean of s(t) and mn 2(t), mn 2(t) is a weighted mean of s(t) and mn 3(t), 
and so on and so forth. Given the initial condition, m0(t)  m0, mn(t) can be derived:

 m t s t mn

n n
( ) ( ) .1 1 1 0m m

 (B5)

The situation in which the animal fails to learn, in which m  0 and mn(t)  m0, requires no further develop-
ment. If learning occurs, 0  m  1 or, equivalently, 0  1  m  1; after sufficient training, (1  m)n is 
close to 0 and mn(t) converges to s(t). Thus, s(t) is the asymptote of mn(t).

Threshold, bn, is set at the th percentile of reference memory,

 b m tn n( ) , (B6, Equation 4)

such that the probability that mn(t)  bn is /100. At steady state, the threshold is not affected by n, and thus 
bn  b. The threshold b is normally distributed with a mean B  [s(t)]  (the th percentile of s(t); , the mean 
of ) and a standard deviation B ( , the coefficient of variation of ). The density function of b is

 f b
B

b B

B
( ) exp

( )
.1

2 2

2

2 2

Response state, hn(t), is based on the comparison of mn(t) and bn.

 h t
m t b
m t b

n
n n

n n( )
, ( ) .
, ( ) ;

0
1

 (B7, Equation 5)

According to the definition of threshold, on a single cycle the probability that hn(t)  1 is /100, and the prob-
ability that hn(t)  0 is 1  /100. Thus, the mean response state on single cycles is a constant:

 hn(t ) 1 /100  0 (1  /100)  /100. (B8)

At steady state, the mean (expected value) of hn(t) across the cycles is

 hn(t )  1  P[s(t)  b]  0  P[s(t)  b]. (B9a)

Because the density function of b is f (b),

 P s t b f b db
s t

[ ( ) ] ( ) .
( )

Then,

 h t f b dbn s t
( ) ( ) .

( )
 (B9b)

Strength memory. Strength memory, wn(t), is decremented if no reinforcer is delivered; it is increased if a 
reinforcer is delivered.

 no reinforcement,
dw t

dt
w t tn
n

( )
( ) ,e 0 0 TT ; (B10, Equation 6a)

 reinforcement,
dw t

dt
w t T t Tn
n

( )
( ) ,r 1 dd. (B11, Equation 6b)

Two assumptions are required to connect Equations B10 and B11 together continuously. The first assump-
tion is that the strength memory just before a reinforcement equals the strength memory at the beginning of the 
reinforcement. Consider a small interval , such that T   is just prior to reinforcement, so that wn(T  ) is 
determined by Equation B10, and that T   is at the beginning of reinforcement, so that wn(T  ) is deter-
mined by Equation B11. When  is close to 0, wn(T  ) wn(T  ), such that
 lim ( ) lim ( ).

0 0
w T w Tn n

 (B12)

APPENDIX B (Continued)
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The second assumption is that the strength memory at the end of cycle n equals the strength memory at the 
beginning of cycle n 1. Similarly, consider a small interval , such that T  d   on cycle n is close to the 
end of reinforcement, so that wn(T  d  ) follows Equation B11, and that 0   on cycle n 1 is just after 
reinforcement, so that wn 1(0  ) follows Equation B10. When  is close to 0,

 wn(T  d  ) wn 1(0  )

and

  
lim ( ) lim ( ).

0 0 1 0w T d wn n  
(B13)

Solve wn(t) from Equation B10, and one can get

 wn(t)  wn(0)e et, 0  t  T. (B14)

Solve wn(t) from Equation B11, and one can get

 wn(t)  Ce rt  1, T  t  T  d, (B15a)

where C is a constant that can be obtained following the first assumption (Equation B12), C  wn(0)e( r e)T  
e rT. Then,

 wn(t) = wn(0)e( r e)T rt  e r(T t)  1, T  t  T  d. (B15b)

Because e and r are very small ( e and r  0.1), e et, e( r e)T rt, and e r(T t) are close to 1. Thus, wn(t) 
approximates wn(0).

Following the second assumption (Equation B13), Equations B14 and B15b can be combined:

 wn(0)e( r e)T r(T d)  e r(T T d)  1  wn 1(0). (B16)

Given the initial condition w0(0)  w0, wn(0) can be solved from this difference equation.

 w w w w d Tn

n
( ) ,0 10 r e  (B17)

where 

 w
d

d T
r

r e

.

Because e and r are very small, the value of 1  rd  eT is between 0 and 1, and after sufficient training, 
(1  rd  eT )n is close to 0. Thus, w is the asymptote of wn(0). Because wn(t) is approximately equal to wn(0) 
as demonstrated before, w is approximately equal to the asymptote of wn(t).

This application assumes that strength memory and pattern memory are independent of each other. Event A 
and Event B are claimed to be independent if and only if

 (i)  P(AB) = P(A)P(B), or equivalently,

 (ii) P(A | B) = P(A), given P(B)  0.

The probability that wn(t) increases and the probability that wn(t) decreases are denoted by P(w ) and P(w ). 
The probability that hn(t)  0 and the probability that hn(t)  1 are denoted by P(h  0) and P(h  1). During 
no reinforcement (0  t  T), wn(t) decreases, regardless of response state. Then,

 P w h P w h P wn n| |0 1 1

and

 P w P w=( ) ( ) =h P w hn n| |= =( ) =0 1 0. 

Thus, according to Condition ii, wn(t) and hn(t) are independent during no reinforcement. During reinforcement 
(T  t  T  d ), wn(t) increases and response state is high. Then,

 P(w  h  1)  P(w )P(h  1)  1,

 P(w  h  0)  P(w )P(h  0)  0,

 P(w  h  0)  P(w )P(h  0)  0,

and

 P(w  h  1)  P(w )P(h  1)  0.

Thus, according to Condition i, wn(t) and hn(t) are independent during reinforcement. However, because both of 
them are affected by the perceived time of reinforcement, T, wn(t) and hn(t) may not be independent on a com-
plete cycle (0  t  T  d ). Because the perceived reinforcement duration d is very short and the response rate 
analysis focuses on the interval before the reinforcement, in this application wn(t) and hn(t) are approximately 
independent of each other.

APPENDIX B (Continued)
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Decision
Packet initiation is determined by three factors: response state hn(t), strength memory wn(t), and operant rate 

of packet initiation r0 (see Equation 7 in text).

 rn(t)  A  hn(t)wn(t)  r0, (B18, Equation 8)

where A is a rate parameter. The number of responses per packet, u, is required to translate the rate of packet 
initiation rn(t) to the rate of response Rn(t).

 Rn(t)  A  u  hn(t)wn(t)  r0  u. (B19, Equation 10)

Fitting of Packet Theory to Summary Measures
Several properties of expectation (or mean) are used to derive the two means: the mean response rate as a 

function of cycles and the mean response rate as a function of time. Given two random variables x and y,

 (1) E(x  a)  E(x)  a, given a is a constant;

 (2) E(ax)  aE(x), given a is a constant;

 (3) E(x  y)  E(x)  E(y), if x and y are independent.

The mean response rate as a function of cycles can thus be obtained. The assumptions of independence for 
the variables of Equation B19 are that A and r0 are constants, u is independent of any temporal component, and, 
as demonstrated above, wn(t) and hn(t) are approximately independent of each other. Then, according to Proper-
ties 1, 2, and 3, one can obtain

 Rn(t )  Au  hn(t )wn(t )  R0, (B20a)

where Au and R0 are the products of  (the mean of u, see Equation 9a in text) with A and with r0, respectively.  
wn (t ) is approximately equal to wn(0), and hn(t ) equals /100. Then, Equation B20a can be rewritten as

 Rn(t )  Auh wn(0)  R0, (B20b, Equation 12)

where Auh is the product of Au and /100. Equation B20b is the equation that generates the fits in Figure 4. It 
suggests that the mean response rate as a function of cycles is determined by strength memory.

The mean response rate as a function of time can also be obtained on the basis of the same assumptions of 
independence about the variables and the three properties of expectation used to obtain Equation B20a:

 Rn–(t)  Au hn–(t)wn–(t)  R0. (B21a)

At steady state, wn (t) is approximate to a constant 

 w
d

d T
r

r e

,

and hn(t) is given by Equation B9b. Then, Equation B21a can be rewritten as

 R t An uw s t
f b db R( ) ( ) ,

( ) 0
 (B21b, Equation 11)

where Auw is the product of Au and w. Equation B21b is the equation that generates the fits in Figure 5. It suggests 
that the mean steady-state response rate as a function a time is determined by pattern memory.

(Manuscript received June 13, 2006; 
revision accepted for publication December 17, 2006.)
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